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Kurzfassung

Das Phänomen der Selbstorganisation ist allgegenwärtig in der Natur. Unter bestimm-
ten externen Bedingungen können sich beispielsweise atomare oder molekulare Bau-
steine selbstständig in komplexe, geordnete Nano-Materialien anordnen, welche dann
neuartige Eigenschaften aufweisen. Dieser Prozess kann technologisch genutzt werden,
etwa um integrierte Schaltkreise herzustellen, deren logische Elemente nur einige Na-
nometer groß sind. Selbst Technologien wie Nanomaschinen oder künstliche Rezepto-
ren scheinen greifbar. Maßgeblich für die physikalischen Eigenschaften von Materialien
sind nicht nur die Eigenschaften der jeweiligen Materialbestandteile, sondern auch die
vorherrschende mikroskopische Struktur des Materials. Es ist daher von grundlegen-
der Bedeutung zu verstehen, welche Struktur ein Material unter bestimmten äußeren
Bedingungen einnehmen wird.

Diese Dissertation umfasst eine umfangreiche computergestützte Abhandlung der
Strukturbildung zweier interessanter physikalischer Systeme: Zuerst untersuchen wir
das asymmetrische Wigner-Doppelschicht-System, bestehend aus Punktladungen, wel-
che an die Oberflächen zweier paralleler, entgegengesetzt geladener Platten gebunden
sind. Des Weiteren behandeln wir ein supramolekulares System von geladenen, poly-
aromatischen Molekülen, die sich an der Grenzschicht einer Metalloberfläche und einer
Flüssigkeit unter elektrochemischer Kontrolle anordnen. Als grundlegende Vorgehens-
weise verfolgen wir die Strategie, die innere Energie der Modelle der jeweiligen Systeme
mithilfe von eigens entwickelten, hoch spezialisierten numerischen Methoden zu mini-
mieren, um geordnete Grundzustände abhängig von den jeweiligen externen System-
parametern vorherzusagen.

Im Speziellen suchen wir im asymmetrischen Wigner-Doppelschicht-System nach ge-
ordneten, aber aperiodischen Strukturen dieses Systems, sogenannten Quasikristallen.
Bestimmte Kombinationen der Systemparameter erlauben die Ausbildung von zwölf-
eckigen Clustern und Super-Clustern der Ladungen. Diese lokalen Strukturen stellen
wichtige Vorstufen von quasikristalliner Ordnung dar. Im Allgemeinen weisen Quasi-
kristalle sowohl konzeptionell als auch technologisch faszinierende Eigenschaften auf.

Für unsere Untersuchungen zur Selbstorganisation des supramolekularen Systems prä-
sentieren wir eine numerisch effiziente und zuverlässige Methode zur Vorhersage geord-
neter Konfigurationen der Moleküle. Unsere numerischen Ergebnisse sind in semiquan-
titativer Übereinstimmung mit experimentell beobachteten zwei- und dreidimensiona-
len supramolekularen Gitterstrukturen: Abhängig von den gewählten Systemparame-
tern beobachten wir flache, poröse Gitter, Auto-Wirt—Gast Muster und stratifizierte
Doppelschichten von den im Experiment verwendeten organischen Molekülen an der
Metalloberfläche. Die Struktur und dadurch auch die Eigenschaften einer Oberfläche
durch die Wahl der Systemparameter gezielt zu verändern, wäre technologisch höchst
interessant.
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Abstract

The field of bottom-up self-assembly focuses on the self-organization principles of basic
atomic or molecular building blocks into well-ordered functional nano–materials with
tailored properties. Assisted by bottom-up processes, nano–electronic devices can be
realized and technological applications such as more efficient electrical energy storage
devices, nano–machines and molecular drug delivery systems have come within reach.
The physical properties of a material are usually determined not only by the related
properties of its constituents but also by the microscopic structure of the material. Cru-
cial to the understanding of the corresponding properties of a material is thus to first
understand the structure a material will assume under certain external conditions.

This thesis is dedicated to a comprehensive computational study of the structure for-
mation processes of two different systems: first, we consider classical point-charges
confined to the surface of two parallel, oppositely charged plates, the so-called asym-
metric Wigner bilayer system. Second, we investigate a supramolecular system of
charged, polycyclic aromatic molecules, deposited on a metal–liquid-interface under
electrochemical conditions. We study the structure formation processes of both sys-
tems by minimizing the internal energy of the related models of the systems for different
sets of the associated system parameters by employing sophisticated numerical tools.

We systematically search in the asymmetric Wigner bilayer system for possible quasi-
crystalline ordering: quasicrystals exhibit orientationally long-range ordered yet spa-
tially aperiodic particle arrangements and have intriguing conceptual and technological
implications. For selected combinations of the system parameters, we observe the for-
mation of dodecagonal clusters and super-clusters of the point-charges, structures that
are important precursors of aperiodic quasicrystalline ordering.

For the study of the self-assembly processes of the supramolecular system, we propose a
computationally lean approach to treat this problem reliably with elaborated numerical
tools. In a semi-quantitative agreement with experimental data, the target molecules
are seen to self-organize into two- and three-dimensional supramolecular lattices for
different sets of the system parameters: the molecules form an open porous structure,
an auto-host–guest pattern and a stratified bilayer.
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1 Introduction

Self-assembly is a ubiquitous phenomenon in nature. Under certain external conditions,
rather simple, basic building blocks such as atoms, molecules or nano–particles are
observed to organize themselves without external guidance into well-ordered functional
nano–materials with novel, tailored properties [1]. For instance, the molecular building
blocks of biological systems (such as lipids or amino acid residues) self-assemble into
membranes, proteins or DNA, which then, in further hierarchical steps of self-assembly,
allow the formation of viruses, cells, tissues, blood vessels or nervous systems [2–5].

More than sixty years ago Richard P. Feynman suggested to study these organiz-
ing principles of nature more intensively in order to make them technologically avail-
able [6]. Via his famous lecture entitled “There’s Plenty of Room at the Bottom.” [7]
he advertised the field of bottom-up self-assembly in 1959: in this research area ef-
fort is dedicated to designing the basic, microscopic building blocks of a material such
as molecules or nano–particles which then self-assemble, even from an initially disor-
dered configuration, into the desired, well-ordered functional nano–structures [3, 5].
In contrast, a more conservative approach to nanofabrication is the so-called top-down
method, where nano–structures are synthesized by selectively modifying the surface of
an existing crystalline structure on a larger length-scale compared to the size of the
material’s constituents (e.g. with lithography techniques, now also reaching 10 nm of
resolution [3]).

By now, directed self-assembly has become an indispensable tool in numerous (nano-)
technological applications in order to create functional materials with tailored proper-
ties [8]: by utilizing the morphology of block co-polymers it is possible to self-assemble
templates which facilitate accurate control over the structure formation of micro and
nano devices and materials, ranging from nano–electronics [9] over more efficient electri-
cal energy storage devices [10, 11] to nano–machines [12] and microscopic robots [13].

Another, rapidly growing field of research is supramolecular chemistry, which is dedi-
cated to the structure formation phenomena of chemical building blocks into supramolec-
ular structures beyond individual molecules, and lies as such at the basis of many nano-
and mesoscopic structures found in biology (at length scales of ∼ 102 nm to 1 µm) [14,
15]. Here, the predominant intermolecular interactions are typically of non-covalent
nature, such as ion-pairing, hydrogen bonding, van der Waals forces, π–π-stacking
or electrostatic contributions, to name a few [16]. Through supramolecular chemistry
concepts such as molecular recognition are studied, which are relevant, for instance, for
selective binding mechanisms of biological or artificial receptors, or for molecular host-
guest mechanisms where selected molecules or ions can be trapped within (and released
from) a supramolecular host matrix; such processes may be exploited for molecular
drug delivery systems [17], for gene regulation and oncogenesis [18] or for gas-storage,
gas-separation or catalysis [19]. Ideally, the well-defined supramolecular architectures
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1 Introduction

required for these applications self-assemble spontaneously but in a controlled manner
under given external conditions [14]. Many different molecular building blocks have
been used in supramolecular chemistry, among those are cryptands or crown ethers [14,
20], polycyclic aromatic compounds [21, 22], fullerens [23, 24], dendrimers [25, 26] or
nanoparticles and nanorods [27–30], to name a few. Notably, also the solvent, in which
the molecular units are immersed, can have a critical impact on the self-organization
strategies of supramolecular systems [21, 22].

Related, promising examples for highly flexible and versatile building blocks for self-
assembly are colloidal particles (whose sizes range typically from nm to µm), which
show a high capacity and propensity to arrange themselves without external guidance
into well-ordered structures such as lattices. Colloidal particles can be synthesized
in the lab with characteristic features, and there seems to be no limit in tailoring
properties such as their shape [31–36], their surface decoration [37–39], or their in-
teraction properties. As for the shape [31], colloidal particles of ellipsoidal, cuboidal,
or polyhedral shape [32–36] can meanwhile be synthesized or they can even emerge
as octapods [40]. As for the surface decoration, many strategies are applied, such as
DNA-grafting [37, 41] (exploiting the selective binding mechanisms of DNA-strands)
or treating selected regions of the particles via chemical or physical processes [38, 39].
The preceding list of references is far from being complete.

Some self-assembled nano–materials may even display quasicrystalline ordering [32, 35,
42–50] where the microscopic constituents of the structures exhibit long-range orienta-
tional order but no translational symmetry (in contrast to crystalline structures) [51].
Such an ordered, yet aperiodic arrangement of the building blocks of a material has
interesting conceptual and technological implications: quasicrystals typically show,
for instance, low friction coefficients owed to their inherent structural incommensura-
bility to crystalline materials at the microscopic level. On the other hand, metallic
quasicrystals often display low thermal conductivity and corrosion resistance while be-
ing exceptionally hard (some quasicrystalline materials are estimated to be roughly
ten times as hard as steel) [52]. These material properties render quasicrystals as ideal
candidates for “non-stick” coatings, for instance for frying pans [53]. Furthermore, qua-
sicrystalline materials may be used for bone repair and prosthetic applications, where
biocompatibility, corrosion resistance and low friction properties are required [52].

In general, the thermal, mechanical, optical or electronical properties of a material
– which are relevant for technological applications – are usually determined by the
specific microscopic arrangement of the material’s constituents, i.e., by the structure
formed by the atomic or molecular building blocks (or by even more complex units such
as nano–particles or macro-molecules) [54]. So-called metamaterials [55], for instance,
show novel, unconventional properties (which do not occur naturally) purely based
on the specific, highly ordered arrangements of the building blocks of the materials.
In that way, special waveguides for electromagnetic-, but also for acoustic- [56] and
elastic-waves [57] can be designed; notably, the respective patterns of the particle
arrangements must be of a smaller length-scale than the wavelength of the phenomenon
which is influenced. Photonic crystals [58, 59] may exhibit unconventional optical
properties such as a negative refraction index [60] and special type of electromagnetic
wave guides have been proposed, which might act as a “black hole” for radiation of
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certain frequencies [61]. Thus, understanding the structure a material will attain (under
certain experimental conditions) is key to understanding the corresponding properties
of the material [54].

However, in bottom-up processes it is not clear a priori which polymorph a material
will assume given its constituents and the relevant system parameters (such as tem-
perature, pressure, external electric or magnetic fields, etc.), which additionally govern
the structure formation process. The field of computational material science is dedi-
cated to predicting the structure of materials based on modeling of the relevant physics
and on computer simulations and optimization algorithms to study the corresponding
structure formation process. In that way, the properties of materials may ideally be
predicted even before the materials are synthesized in the lab [54].

In this thesis, we are concerned with computational studies of the structure formation
processes of two systems composed of (i) negative, classical point-charges confined to
the surfaces of two parallel, uniformly but differently charged plates and (ii) of charged,
polycyclic aromatic molecules confined to the volume near a metal–liquid-interface
under electrochemical conditions.

In Section 3.1, we numerically investigate (i) the asymmetric Wigner bilayer sys-
tem [62–64] for possible quasicrystalline ordering. In this system, negative, classical
point-charges are confined to the surface of two oppositely charged, parallel plates of
uniform but different charge densities. The point-charges thereby form Wigner crys-
tals [65] on each plate, whose structures strongly depend on the system parameters
(given by the plate separation distance and the charge ratio of the plates). In general,
such bilayer model systems may be used to describe systems of charged particles that
are located at the interface between two fluids as, for instance, electrons trapped at
the surface of liquid Helium [66, 67] or ions which are confined by electromagnetic
fields of Paul- and Penning-traps [68–70]. Furthermore, junctions between metals and
semiconductors in solid state physics [71–75] or even very simplified representations for
biological cell-membranes [76–80] might be described by such bilayer systems.

In Section 3.2, we study (ii) the self-assembly behavior of charged polycyclic aro-
matic molecules on a metal–liquid interface under electrochemical conditions [21, 22,
81–86]. Here, we deal with intermolecular interactions and structure formation into
supramolecular lattices, which originate from a delicate interplay between the typi-
cally non-covalent intermolecular and molecule–surface interactions. Such polycyclic
aromatic compounds, in particular, are promising candidates that are able to self-
assemble into active, functional materials (be it photoactive, electroactive, ionoactive,
thermoactive, or chemoactive) that may find applications in supramolecular electronic
and opto–electronic devices [14, 22]. Furthermore, the size and topology of the flat con-
jugated systems, as well as functional groups of such polycyclic aromatic compounds
can synthetically be modified in order to control their electronic properties [81–85].
The self-assembly of such complex organic molecules on inorganic substrates often
displays a particularly rich and intricate polymorphism of the supramolecular struc-
tures [54, 87–91]. In recent experiments [83] the spontaneous and reversible transition
between two- and three-dimensional self-assembly scenarios of a supramolecular system
(PQPClO4) at a solid–liquid interface under electrochemical conditions (i.e., Au(111)
in aqueous 0.1M perchloric acid) has been studied and thoroughly discussed; such
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1 Introduction

controllable self-assembly scenarios are both of fundamental and of technological rel-
evance, especially in fields such as corrosion, catalysis and nano–electronics [21, 22].
By a simple variation of the interfacial potential it was possible to selectively organize
the disc-shaped PQP+ cations in an open porous pattern, to fill these pores to form
an auto-host-guest structure or to stack the building blocks in a stratified bilayer. In
this thesis, complementary theoretical investigations are dedicated to rationalize these
experimental observations [83].

From a thermodynamic point of view, the specific equilibrium arrangement of the
constituent particles of a physical system minimizes the thermodynamic potential as
given by the experimental conditions. Such thermodynamic potentials may be the
entropy, S, of a system for the NVE-ensembles (constant particle number, N , constant
volume, V , and constant energy, E), the Helmholtz free-energy, F = E − T S, for
the NVT-ensemble (constant particle number, N , constant volume, V , and constant
temperature, T ), and so on.

From a computational point of view, identifying particle configurations can be consid-
ered as a sampling problem of the space of all possible configurations with the objective
of minimizing the corresponding thermodynamic potential of a system. In practice,
the sampling of this configuration space is performed under the variation of all micro-
scopic degrees of freedom (such as the positions and the orientations of the particles or
molecules, as well as the shape of the simulation box containing all the particles). In
this thesis, we restrict ourselves to investigations of ordered equilibrium structures of
the NVT-ensemble of the systems introduced above at vanishing temperature, T =0K.
Identifying the particular particle configuration which is indeed realized for a specific
system then reduces to the problem of finding the ordered ground state structure which
minimizes the internal energy of the system; since the entropic contribution to the free
energy vanishes due to T=0K.

Systems (i) and (ii) described in Sections 3.1 and 3.2 fall into a large class of quasi–two
dimensional (quasi-2D) systems where the spatial extension in one direction (typically
the one perpendicular to the surface) is very small compared to the spatial extent into
the other two in-plane directions [92]. Furthermore, we assume that the particles in
our (classical) model representations of the two systems carry Coulomb charges, such
that the corresponding interparticle potentials are of long-ranged nature. Particular
caution needs to be taken to correctly account for the long-ranged contributions to
the internal energy of a system when trying to predict ordered ground state config-
urations in anisotropic quasi-2D geometries with computer simulations: on the one
hand, different polymorphs of such systems may exhibit only tiny energy differences
at the same system parameters [62–64], complicating the sampling procedure. On the
other hand, computationally efficient implementations [93] of techniques used to eval-
uate the internal energy of systems with long-ranged interactions (such as the method
of Ewald summation [94]) typically rely on a spatially fully-periodic treatment of a
finite-sized simulation box of the system. We here employ specialized numerical tools
to treat long-ranged Coulomb interactions in quasi-2D systems with high accuracy in
a numerically efficient manner [62, 92, 95].

In this context, we want to emphasize that, in general, optimization problems faced
in computational material science are highly non-trivial since the number of possible
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local minima in the potential energy surface (embedded in a high-dimensional param-
eter space) increases exponentially with the number of particles (and their degrees-of-
freedom) of a system [96]. Exhaustive search strategies very quickly hit the computa-
tional limits or even exceed the capacities of present-day supercomputers [89, 96].

Over the past decades, a variety of techniques has been used in literature to tackle
related optimization problems in computational materials science; among those are:
Monte Carlo or molecular dynamics-based techniques such as simulated annealing [97,
98], basin-hopping [99–101], minima hopping [102, 103], and heuristic approaches based
on the ideas of natural evolution such as genetic algorithms [63, 104–115].

In recent years, very promising numerical techniques based on the ideas of artificial
intelligence and machine learning have emerged to tackle material science problems (or
optimization problems in general) [116–119] ranging from statistical learning [54, 89–
91, 120–122] over reinforcement learning [123–126] to generative models [127–132].

Here we utilize, extend and employ specialized numerical tools based on simulated
annealing [133, 134], replica exchange Monte Carlo [135–138] and memetic evolutionary
algorithms [62, 139, 140] to study the ground state self-assembly strategies of the two
different physical systems discussed in Sections 3.1 and 3.2. All of these methods are,
in principle, capable of determining global ground state configurations in a rugged
energy landscape. The practical numerical bottleneck when employing a particular
method, however, is always the corresponding computational cost related to a specific
problem [141–143].

This thesis is organized as follows: in Chapter 2 we present the methods we use in
this work. In Chapter 3 we investigate different physical systems which are studied in
the course of this thesis, namely (i) the possible emergence of quasicrystalline order
in the asymmetric Wigner bilayer system in Section 3.1 and (ii) the computational
prediction of supramolecular ordering of complex molecules under electrochemical con-
ditions in Section 3.2. Eventually, in Chapter 4 we conclude our studies and discuss
possible future directions of investigations related to the topics presented in this thesis.
Supplementary theory and information can be found in Appendix A.
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2 Methods

In this Chapter, we present and discuss methods which we use in this thesis to study the
confinement-driven self-assembly of different physical systems and the related emerging
structural properties.

We first introduce Ewald summation techniques in order to faithfully handle numer-
ical calculations of the potential energy of a system featuring long-ranged Coulomb
interactions in quasi-two and in three dimensions in Section 2.1. We then continue by
discussing methods and algorithms used and extended in this thesis to predict global
ground state structures – with respect to the internal energy of a system at vanishing
temperature – and finite temperature configurations of atomic or molecular lattices in
Section 2.2. In Section 2.3 we introduce the concept and explicit implementations of
order parameters that allow us to quantify and classify ordered structures. Finally, we
present unsupervised clustering techniques in Section 2.4 which we employ in an effort
to identify trends in the structure formation processes in the large amount of struc-
tural data that we produced through computer experiments of the physical systems
investigated in the scope of this thesis.

7



2 Methods

2.1 Long-Ranged Coulomb Interaction in Quasi-Two and
Three Dimensions

In this thesis, we are mostly concerned with numerical studies of systems featuring
long-ranged interactions at interfaces of solid surfaces. We consider macroscopically
large systems composed of particles such as point-charges, atoms or molecules which
interact with each other and with a surface either solely via long-ranged Coulomb
interactions in Section 3.1 or via a combination of long-ranged Coulomb and short-
ranged Lennard-Jones type of interactions in Section 3.2.

Numerically, we can only treat a computationally manageable number of particles
within a simulation box of finite volume. The presence of a macroscopically large bulk
system can then be modeled by treating the simulation box as the primitive cell –
or, equivalently, unit cell – of an infinite periodic lattice of identical cells [144], as
schematically illustrated in Fig. 2.1(a). In that way, the particles within the unit cell
not only interact with other particles within the unit cell but also with the periodic
images of all particles across the boundaries of the simulation box. To achieve this,
particles in the unit cell are usually subjected to periodic boundary conditions with
respect to the spatial extent of the simulation box [92, 144].

Interfaces of solid surfaces are intrinsically three-dimensional (3D) systems which ex-
hibit anisotropies in their spatial extensions [92]: the spatial extent of such systems
parallel to the surface are considered macroscopically large while the extent into the
direction perpendicular to the surface usually is of the same or of a similar order of
magnitude as the size of the involved particles (i.e., of microscopic rather than of
macroscopic scale [92]). Such systems differ in their physical properties strongly from
bulk systems and the numerical treatment of such quasi–two-dimensional (quasi-2D)
slab systems is more complicated as compared to 3D bulk systems [92]. To model
interfaces, often quasi-2D lattice geometries are used where, again, a finite-sized unit
cell can be defined. However, in contrast to 3D bulk systems the unit cell is now only
periodically repeated in a two-dimensional lattice of infinite extent in the directions
parallel to the surface (which we consider, without the loss of generality, as horizon-
tal) and the height of the unit cell (perpendicular to the surface) represents the finite
vertical extent of the interface, see Fig. 2.1(b). Thus, only the in-plane directions of
the unit cell are assigned with periodic boundary conditions, while the perpendicular
direction is considered to be non-periodic.

If, in addition, the interactions of particles of the system are long-ranged, the situation
is even more complicated. Usually, in systems where long-ranged interactions are
involved special numerical tools such as Ewald summation techniques [94, 145] (which
we heavily use in this thesis) are required to accurately evaluate the internal energy
of a system [92]. Conceptually, Ewald summation techniques explicitly rely on the
mathematical description of an infinitely large system of particles via periodic images
of the particles in a lattice [92]. The problem of evaluating the internal energy of such
an infinitely large, periodic system can then be split into two separate, numerically
manageable energy-summations in real space and in reciprocal space (which is related
to the real space lattice via Fourier transformation, see below). In quasi-2D systems not
all directions are periodic but rather anisotropic in their spatial extent, which makes
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2.1 Long-Ranged Coulomb Interaction in Quasi-Two and Three Dimensions

S0

si+ziezsi+Sn

+ziez

anisotropic slab(a) (b)

riri+Ln

periodic

Lzez

ex,ey

L0

Figure 2.1: (a) Schematic representation of a periodic system of particles of infinite extent, being
subject to macroscopic boundary conditions (gray surrounding medium). A simulation box, or unit
cell (central, light gray box which is framed by thick black borders indicating the boundaries of the
unit cell) is periodically repeated in all spatial directions and images of particle positions within
the unit cell, ri = (xi, yi, zi), are addressed by ri + Ln. Ln = (nxLx, nyLy, nzLz) represents the
origin of periodic images of the unit cell which we uniquely label (here in 3D) by three integers
n = (nx, ny, nz) such that L0 = (0, 0, 0) represents the origin; Lx, Ly and Lz are the lattice
constants of the simulation box (here considered as orthogonal box) along the x, y and z directions.
(b) Schematic representation of a quasi-2D system labeled “anisotropic slab” of infinite extent in
the periodic directions, which we chose without the loss of generality as ex and ey, and of finite
extent in the ez direction. Images of particle positions of the unit cell of the quasi-2D system are
now addressed by si + Sn + ziez, where si = (xi, yi, 0) describes the periodic part of the position
vector and zi the non-periodic one. Sn = (nxSx, nySy, 0) represents the origin of the periodic
images of the unit cell in the xy-plane which we uniquely label by two integers n = (nx, ny) such
that S0 = (0, 0, 0) represents the origin; Sx and Sy are the lattice constants of the simulation box
(here considered as orthogonal box) along the x and y directions and the unit cell height, Lz, along
ez is referred to as the slab-width. Note that the schematic visualization of the spatial extent of
the surrounding medium and of the periodic images of the simulation box are not drawn to scale
which, in fact, differ by many orders of magnitude.

the mathematical description of the internal energy of such systems more involved as
compared to 3D bulk systems (also see below).

Furthermore, a precise numerical evaluation of the internal energy of long-ranged quasi-
2D system via quasi-2D Ewald summation techniques [92] can computationally be very
expensive. It is hence of major importance to exploit special properties or symmetries
of a given system in the mathematical description of the internal energy such as, for
instance, the discrete vertical locations of particles in bilayer systems [62–64, 146, 147]
(see also Section 3.1). Otherwise, energy calculations of long-ranged interactions in
quasi-2D systems often render numerical studies essentially infeasible due to unaccept-
ably long computation times and often so-called slab-correction schemes [148–151] of
3D Ewald summation techniques are employed.

Section 2.1 is organized as follows: in Subsection 2.1.1 we will define the term “long-
ranged” interaction and continue in Subsection 2.1.2 with a brief introduction to Ewald

9
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summation techniques in three dimensions. In Subsection 2.1.3 we introduce Ewald
summation techniques for quasi-2D systems and related slab-correction schemes of
3D Ewald summation techniques. We conclude this Section in Subsection 2.1.4 by
discussing convergence criteria for accurate evaluations of the internal energy of long-
ranged systems using Ewald summation techniques.

2.1.1 What is a Long-Ranged Potential?

In computational physics calculating the internal energy of a system needs to be done
as accurate as possible. However, in practice the numerical accuracy with which the
internal energy should (or can) be evaluated needs to be carefully put into relation with
the computational cost and difficulties that are related to implementing a method [62].
The accuracy of evaluating the internal energy of a system may also strongly depend
on the type of interaction of its constituents. Some interactions decay rather quickly
with increasing distance, such as a square-well potential or Lennard-Jones type of
interactions. For these kinds of interactions the contribution to the internal energy
of particles at great distances are negligible compared to those between neighboring
particles [62]. If a large enough cutoff radius, rcut, is chosen, i.e., the distance up
to which spatially separated, interacting particles are considered to contribute to the
internal energy of a system, the internal energy can be evaluated rather accurately by
direct summation. However, for other types of interactions, such as Coulomb or dipole
potentials which only slowly decay with distance r as ∝ 1/r or ∝ 1/r3, respectively, the
contributions to the internal energy arising from interactions at large distances cannot
be neglected.

To demonstrate this we closely follow Ref. [62] and consider a system of N particles,
whose number particle density, ρ(r), is given by

ρ(r) =

N∑
i=1

δ(r− ri), (2.1)

i.e., by a sum of delta peaks where ri specifies the position of particle i. We assume
that different particles, i and j, interact via a pair potential V (ri − rj). The total
internal energy of a macroscopic sample of volume V of this system is given by

U =
1

2

∫∫
V

∗
dr dr′ ρ(r)V (r− r′)ρ(r′) (2.2)

=
1

2

∫∫
V

∗
dr dr′

[
N∑
i=1

δ(r− ri)

]
V (r− r′)

 N∑
j=1

δ(r′ − rj)

 (2.3)

=
1

2

∫∫
V
dr dr′

N∑
i=1

N∑
j 6=i

δ(r− ri)V (r− r′)δ(r′ − rj) (2.4)

where “
∫∫ ∗” in the first two lines indicate that we do not consider self-interaction terms

of the form δ(r− ri)V (r− r′)δ(r′ − ri) in the double integration.

10



2.1 Long-Ranged Coulomb Interaction in Quasi-Two and Three Dimensions

Transforming into the frame of reference of particle i, i.e., ri = 0, allows us to extract
its respective contribution, Ui, to the total internal energy, U =

∑N
i=1 Ui, by

Ui = 2× 1

2

∫∫
V
dr dr′

N∑
j 6=i

δ(r− rj)V (r− r′)δ(r′) (2.5)

=

∫
V
dr

N∑
j 6=i

δ(r− rj)V (r), (2.6)

where we performed the integration over r′ in the last step.

We here consider systems of macroscopic scale from a microscopic point of view. Al-
though the sample volume may be macroscopically small the volume, V , and the
number of particles, N , involved in the integration of the internal energy in Eq. (2.4)
are both large, i.e., N is usually of the order of magnitude of the Avogadro constant
NA ≈ 1023mol−1 [62]. It is therefore conceptually easier, from a numerical point of
view, to take the thermodynamic limit, N → ∞, and extend the considered sample
volume to an infinite extent, i.e., we approximate the integration over a macroscopi-
cally large, but finite sized volume by an integration over an infinite extent [92]. As
discussed above such macroscopic systems can be considered using the concept of nu-
merically feasible simulation boxes with periodic boundary conditions corresponding
to a computationally manageable system of infinite extent.

Assuming an isotropic potential, V (r) = V (r), in a three-dimensional volume, we can
rewrite Eq. (2.6) as

Ui =

∫ ∞
0

dr r2V (r)

∫ π

0
dθ

∫ 2π

0
dφ ρ(r) (2.7)

= 4π

∫ ∞
0

dr r2ρ(r)V (r), (2.8)

having introduce the radial number particle density1, ρ(r) =
∑N

j=1
1

4πr2j
δ(rj), in the

last step.

Eq. (2.8) describes an integral which we cannot evaluate directly for an arbitrary
macroscopic system with unknown density of particles and an unknown pair potential:
it is not guaranteed that the infinite integral converges. In practice (and in case the
integrand is well-behaved), the integration in Eq. (2.8) is approximated by defining a
cutoff radius, rcut, up to which the integration is performed:

U ≈ Ucut = 4π

∫ rcut

0
drr2ρ(r)V (r). (2.9)

1Since N =
∫
∞ dr ρ(r) = 4π

∫∞
0
dr r2ρ(r) =

∫∞
0
dr ρ(r) we find that ρ(r) =

∑N
j=1

1
4πr2j

δ(rj).

11
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This causes a relative error, δcut, in the numerical evaluation of the internal energy,
which is defined by

δcut =
Ucut

U
. (2.10)

For potentials which decay sufficiently fast with distance we can define a cutoff distance,
rcut, in the integration given by Eq. (2.9) such that the relative error made in the
numerical evaluation of the internal energy Ucut has an upper bound of δcut with
respect to U [62, 145]. Notably, the particular value of the cutoff radius – in order
to achieve a desired accuracy in the evaluation of the internal energy – can strongly
depend on the actual functional form of V (r) but can always be defined for sufficiently
fast decaying, short-ranged potentials [145].

Long-ranged potentials are often defined as potentials which decay no faster with dis-
tance than V (r) ∝ r−d for r → ∞, where d is the dimensionality of the system [145].
Coulomb potentials with V (r) ∝ r−1 and dipole interactions with V (r) ∝ r−3 in three
dimensions fall into this category and are thus considered long-ranged. For such types
of interactions the involved integrals in Eq. (2.8), when evaluating the internal energy
of a system, do not converge [62, 92, 145]. Moreover, using a cutoff radius to numer-
ically evaluate the internal energy via Eq. (2.9) leads to an inestimable relative error
with respect to the “correct” internal energy of the system [62].

The convergence of the internal energy given by Eq. (2.6) also depends on the macro-
scopic boundary conditions for a specific system such as the shape of the macroscopic
sample that separates the system from the surrounding medium [92, 152–157] (cf.
Fig. 2.1). For electrodynamic interactions also the electrostatic or magnetic properties
of the surrounding medium affect the calculation of the internal energy and, in gen-
eral, a proper treatment of the system with the Maxwell equations [158] is required.
If the surrounding medium is vacuum, i.e., with a dielectric constant of εr = 1, a net
polarization would be induced on the surface of a macroscopic sample of point-charges
(i.e., on the macroscopic boundaries) which corresponds to the total dipole moment of
the system; this induced surface polarization contributes to the internal energy of the
system and needs to be considered in the energy calculations [92, 152]. In this thesis,
we usually assume metallic (tinfoil) boundary conditions, i.e., we chose a dielectric
constant of εr =∞ for the medium surrounding the macroscopic system such that the
surface contributions to the internal energy stemming from surface polarization effects
can be neglected (see for instance Refs. [92, 152] for details).

Also for long-ranged interactions we usually approximate the internal energy of a
macroscopically large, yet finite system with a system of infinite extent while still sub-
jecting this infinitely large system to the macroscopic boundary conditions, see Fig. 2.1.
Continuing with our example of Coulomb interaction, we consider an infinitely large
periodic lattice of images of a finite sized unit cell (i.e., a simulation box) which con-
tains N point-charges qi. To warrant that the internal energy per particle, Ui, of such
an infinite, periodic lattice of identical cells is finite the laws of electrodynamic sug-
gest that the system needs to be electroneutral as a whole [62, 158]. Electroneutrality
can either be achieved by considering positive and negative charges in the simulation
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2.1 Long-Ranged Coulomb Interaction in Quasi-Two and Three Dimensions

box that directly sum up to zero,
∑N

i=1 qi = 0, or by adding a neutralizing background
charge density, ρ0(r), to the system, satisfying

∑N
i=1 qi+

∫
r dr ρ0(r) = 0 [62, 92, 158].

Thus, Ui defined by Eq. (2.6) is conditionally convergent and can be evaluated under
certain circumstances [92]. However, the internal electrostatic energy of an infinitely
large periodic system of point-charges can still not simply by evaluated by truncating
a direct lattice sum of the corresponding pairwise Coulomb energies without making
an inestimable error with respect to the correct internal energy of the system.

2.1.2 Ewald Summation of a System of Point-Charges in Three
Dimensions

Evaluating the internal energy via Eq. (2.6) for Coulomb interactions is a task far from
being trivial and has been addressed by several mathematical models so far. Some
of these, such as Ewald- [94] and Lekner sums [159], rearrange the lattice summa-
tion by splitting it into manageable, fast converging expressions in real and reciprocal
space. Numerical adaptations of Ewald summation techniques, such as the particle-
mesh Ewald method [160, 161] or particle-particle-particle-mesh Ewald method [162–
165] rely on interpolating particle position onto a discrete grid in real space and calcu-
late the internal energy of the modified, discretized system with the help of numerical
fast Fourier transformation (FFT) techniques [92]. Other, related approaches such as
Nijboer-de Wette and fast multipole approaches are discussed in Ref. [92].

In this thesis, we exclusively use the method of Ewald summation [94] for quasi-2D
bilayer systems [92] and slab-correction techniques of 3D Ewald summations [149, 151]
to evaluate long-ranged Coulomb interactions in quasi-2D slab geometries in a numer-
ically accurate yet computationally affordable manner. The basic concept of Ewald
summation is to split the slowly converging infinite real space summation into two
more rapidly converging parts: one performed in real space, the other performed in
reciprocal space. This step is possible for systems featuring electrostatic interactions
due to the fact that an electrostatic field potential needs to fulfill the Poisson equa-
tion [158].

Closely following Refs. [92, 166] and considering a three-dimensional bulk system with
electrostatic interactions and periodic boundary conditions this approach is demon-
strated below. The corresponding electrostatic field potential2 (or in short, the field
potential), φ(r), at the position r within the simulation box satisfies the Poisson equa-
tion [158], given by

∇2φ(r) = −4π
∑
Ln

ρ(r + Ln), (2.11)

2The field potential, φ(r′), is defined as the electrostatic energy corresponding to a unit charge, q = 1,
located at the position r′ within a volume V which exhibits a charge distribution ρ(r). Thus, the
(internal) potential energy corresponding to a point-charge qi located at ri is related to the field
potential via Ui = qi φ(ri) (self-interaction of particle i needs to be avoided in φ(ri)) [158].

13



2 Methods

where ρ(r) is the charge distribution within the simulation box (or equivalently, the
unit cell) and Ln is a symbolic notation for addressing the periodic images of the unit
cell within the lattice geometry3.

We define the charge density for a system ofN point-charges qi located in the simulation
box (i.e., in the unit cell of a periodic lattice of cells), similar to Eq. (2.1), as

ρ(r) = ρ0 +
N∑
i=1

qi δ(r− ri); (2.12)

ρ0 is a constant, neutralizing background charge density which assures electroneutrality
of the unit cell, i.e., (V ρ0 +

∑N
i=1 qi) = 0, V being the unit cell volume. Henceforward,

we assume electroneutrality of the form
∑N

i=1 qi = 0, such that ρ0 = 0 [92].

In order to derive the internal energy of a periodic lattice of point-charges we start
with the following considerations: for a single point-charge qi the electrostatic field
potential, φi(r), is defined at an arbitrary position r in real space via [158]

φi(r) =
qi

|r− ri|
. (2.13)

The total electrostatic field potential, φ(r), of a periodic lattice of N point-charges qj
within the simulation box is given by

φ(r) =
N∑
j=1

∑
Ln

φj(r + Ln) =
N∑
j=1

∑
Ln

qj
|r + Ln − rj |

, (2.14)

with φj(r + Ln) being defined by Eq. (2.13). The corresponding electrostatic field
potential φi∗(r) of such a system – excluding particle i – can thus be written as

φi∗(r) = φ(r)− φi(r) =
N∑
j=1

∑
Ln

∗ qj
|r + Ln − rj |

, (2.15)

where the notations “i∗” and “
∑∗” (used in Eq. (2.15) and henceforward) indicate,

that we do not consider contributions i = j for L0 = (0, 0, 0), i.e., we omit the self-
interactions of point-charges within the unit cell. With φi∗(r) given by Eq. (2.15) we
can write the internal energy, U , of the unit cell of the system as

U =
1

2

N∑
i=1

qi φi∗(ri). (2.16)

The electrostatic field potential as given by Eq. (2.15) represents an infinite, diverging
sum considering the infinite extent of the lattice and the long-ranged nature of the

3In three dimensions a triclinic simulation box with periodic boundary conditions, or equivalently
the unit cell of a lattice, is spanned by the lattice vectors a1, a2 and a3. The origin of periodic
images of the unit cell can thus be addressed by a vector of integers, n = (n1, n2, n3), via Ln =
n1 a1 + n2 a2 + n3 a3. Periodic images of particle positions can then be written as r + Ln; the
original simulation box, with a volume V = a1 · a2 × a3, is addressed by L0 = (0, 0, 0).
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2.1 Long-Ranged Coulomb Interaction in Quasi-Two and Three Dimensions

Coulomb interaction (cf. Subsection 2.1.1). Thus, we cannot reliably evaluate the
internal energy defined by Eq. (2.16) of the system by employing Eq. (2.15).

The Ewald method for evaluating the internal energy of such a system can be obtained
by formally modifying the charge density ρ(r) given by Eq. (2.12) without changing
ρ(r) physically: through adding and subtracting smoothly varying charge densities
±qi g(r; ri, α), which are centered at the locations ri of the point-charges and which
decay over a distance of ≈ 1/α, we redefine ρ(r) as

ρ(r) =

N∑
i=1

qi [δ(r− ri)− g(r; ri, α)] +

N∑
i=1

qi g(r; ri, α). (2.17)

In that way, each point-charge i is effectively screened by an oppositely charged,
smoothly decaying charge density in real space, ρ(S)

i (r) = qi [δ(r− ri)− g(r; ri, α)],
thereby transforming the corresponding Coulomb interaction into a screened short-
ranged interaction. In turn, an artificial lattice of charge densities ρ(L)

i (r) = qi g(r; ri, α)
of the opposite sign is introduced, which can be treated independently from the now
short-ranged screened Coulomb interaction.

Due to linearity, we can split the electrostatic field potential defined in Eq. (2.13) into a
corresponding short-ranged part, φ(S)

i (r), and a long-ranged part, φ(L)
i (ri), given by

φ
(S)
i (r) =

∫
dr′

ρ
(S)
i (r′)

|r− r′|
= qi

∫
dr′

δ(r′ − ri)− g(r′; ri, α)

|r− r′|
, (2.18)

φ
(L)
i (r) =

∫
dr′

ρ
(L)
i (r′)

|r− r′|
= qi

∫
dr′

g(r′; ri, α)

|r− r′|
, (2.19)

respectively, which both independently satisfy the Poisson equation given by Eq. (2.11).
Analogously, we can split φi∗(ri) = φ

(S)
i∗ (ri) + φ

(L)
i∗ (ri) defined by Eq. (2.15). Conse-

quently, also the corresponding contribution to the internal energy Ui = U
(S)
i + U

(L)
i

can be separated into a short-ranged term U
(S)
i = qi φ

(S)
i∗ (ri) and a long-ranged term

U
(L)
i = qi φ

(L)
i∗ (ri). It is now convenient to reintroduce the self-interaction term for the

long-ranged part of the electrostatic field potentials, φ(L)
i∗ (ri) = φ(L)(ri)−φ(L)

i (ri), such
that the internal energy U ≡ U (3D)

Ewald of the system is given by

U
(3D)
Ewald =

1

2

N∑
i=1

qi φ
(S)
i∗ (ri) +

1

2

N∑
i=1

qi φ
(L)(ri)−

1

2

N∑
i=1

qi φ
(L)
i (ri) (2.20)

= U (S) + U (L) + U (Self), (2.21)

where we defined U (S) = 1
2

∑N
i=1 qi φ

(S)
i∗ (ri), U (L) = 1

2

∑N
i=1 qi φ

(L)(ri) and U (Self) =
1
2

∑N
i=1 qi φ

(L)
i (ri) in the last step.

Henceforward, we explicitly use Gaussian charge densities g(r; ri, α) of the form

g(r; ri, α) =

(
α2

π

)3/2

exp
(
−α2(r− ri)

2
)
, (2.22)
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with a standard deviation of
√

2/α in real space (although other functional forms would
also be possible in what follows) [92].

As is well-known from literature [92], the electrostatic field potential of a Gaussian
charge density g(r; ri, α) can be solved using the error function, defined as erf(z) =

2√
π

∫ z
0 dt exp (−t2), such that φ(S)

i (r) and φ(L)
i (r) given by Eqs. (2.18) and (2.19) yield

φ
(S)
i (r) =

qi
|r− ri|

erfc(α|r− ri|), (2.23)

φ
(L)
i (r) =

qi
|r− ri|

erf(α|r− ri|), (2.24)

respectively, where we also introduced the complementary error function erfc(z) =
1−erf(z). In comparison to the field potential of a “bare” Coulomb point-charge which
is long-ranged and singular, the expression φ(S)

i (r) describes a short-ranged singular-
and φ(L)

i (r) a long-ranged non-singular electrostatic field potential. Moreover, we can
identify the short-ranged electrostatic field potential φ(S)

i∗ (ri) which all other charges
qj in the system generate at the position of charge qi as

φ
(S)
i∗ (r) =

N∑
j=1

∑
Ln

∗ qj
|r + Ln − rj |

erfc(α|r + Ln − rj |). (2.25)

The corresponding short-ranged energy U (S) defined in Eq. (2.21) then becomes

U (S) =
1

2

N∑
i,j=1

∑
Ln

∗ qi qj
|ri + Ln − rj |

erfc(α|ri + Ln − rj |). (2.26)

Notably, U (S) is similar to the usual Coulomb energy but every term in the sum is
strongly suppressed at distances r &

√
2/α via the complementary error function term.

Consequently, we can evaluate U (S) in a numerically faithful manner by truncating the
sum at large enough distances.

However, we have yet to define the long-ranged part, U (L), and the self-energy term,
U (Self), of the total internal energy U (3D)

Ewald = U (S)+U (L)+U (Self) defined in Eq. (2.21).

We start with the self-energy term: with the identity limz→0 erf(z) = 2z/
√
π we find

that the long-ranged electrostatic field potential φ(L)
i (r) given by Eq. (2.24) takes on

the value φ(L)
i (ri) = qi 2α/

√
π as r→ ri, and thus

U (Self) =
α√
π

N∑
i=1

q2
i . (2.27)

In order to derive a computationally manageable expression for the long-ranged part
U (L) of the internal energy (cf. Eq. (2.21)) we exploit the fact that we are dealing with
a periodic charge density ρ(L)(r) given by

ρ(L)(r) =
∑
Ln

N∑
j=1

ρ
(L)
j (r + Ln). (2.28)
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Consequently, also the corresponding electrostatic field potential φ(L)(r) is a periodic
function and can be defined as

φ(L)(r) =
∑
Ln

N∑
j=1

φ
(L)
j (r + Ln), (2.29)

using φ(L)
j (r) given by Eq. (2.24).

Hence, it is convenient to transform both ρ(L)(r) and φ(L)(r) into the reciprocal space4.
We can expand the periodic functions ρ(L)(r) and φ(L)(r) into a Fourier series as

ρ(L)(r) =
∑
k

ρ
(L)
k exp(ık · r), (2.30)

φ(L)(r) =
∑
k

φ
(L)
k exp(ık · r), (2.31)

respectively, where the Fourier coefficients ρ(L)
k and φ(L)

k are associated with the wave
vectors, k, representing the vertices of the reciprocal lattice5. The Fourier coefficients
ρ

(L)
k and φ(L)

k of the periodic charge density ρ(L)(r) and of the long-ranged electrostatic
field potential φ(L)(r) can then be determined via

ρ
(L)
k =

1

V

∫
V
dr ρ(L)(r) exp(−ık · r), (2.32)

φ
(L)
k =

1

V

∫
V
drφ(L)(r) exp(−ık · r), (2.33)

respectively, where the integration is performed over the volume V of the simulation
box. With the Gaussian charge densities ρ(L)

i (r) = g(r; ri, α) given by Eq. (2.22) we
find that ρ(L)

k reads [166]

ρ
(L)
k =

1

V

N∑
i=1

exp(k2/4α2) exp(−ık · ri), (2.34)

with k = |k|. By following the Poisson equation in reciprocal space, defined as

k2φ
(L)
k = 4πρ

(L)
k , (2.35)

we find with ρ(L)
k given by Eq. (2.34) the following expression for the Fourier coefficients

φ
(L)
k of the long-ranged field potential:

φ
(L)
k =

4π

V

N∑
j=1

qj
exp(−k2/4α2)

k2
exp(−ık · rj). (2.36)

4The reciprocal space, conjugate to the real space lattice, is spanned by the reciprocal lattice vectors
a∗1, a∗2 and a∗3 which are defined by the relation a∗kai = 2πδki with respect to the real space lattice
vectors a1, a2 and a3 [92].

5The wave vectors k = ha∗1 + k a∗2 + l a∗3 define the vertices of the reciprocal lattice with reciprocal
lattice vectors a∗1, a∗2 and a∗3 and with integers h, k and l such that exp(±ık · Ln) = 1 [92].
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Substituting Eq. (2.36) into Eq. (2.31) yields the following expression for the long-
ranged field potential φ(L)(r) in real space

φ(L)(r) =
4π

V

∑
k 6=0

N∑
i=1

qi
exp (−k2/4α2)

k2
exp (ık · (r− ri)) (2.37)

for k 6= 0; the contributions to Eq. (2.37) with k = 0 include diverging terms (not
shown here) which eventually cancel in the evaluation of the internal energy U (3D)

Ewald

if the system is electroneutral, i.e., if (V ρ0 +
∑N

i=1 qi) = 0 [92]. In that case, the
total long-ranged contribution U (L) to the internal energy of the system, defined in
Eqs. (2.16) and (2.21), can be written as

U (L) =
2π

V

∑
k6=0

N∑
i=1

N∑
j=1

qiqj
exp (−k2/4α2)

k2
exp (ık · (ri − rj)) (2.38)

=
2π

V

∑
k6=0

exp (−k2/4α2)

k2

∣∣∣∣∣
N∑
i=1

qi exp (ık · ri)

∣∣∣∣∣
2

. (2.39)

Via Eq. (2.39) we see that also the long-ranged term of the internal energy can be
expressed via a quickly converging sum in reciprocal space since each term in the
summation over the reciprocal lattice is suppressed for large values of k & α.

Summarizing, the internal energy U (3D)
Ewald = U (S) +U (L) +U (Self) defined by Eq. (2.21)

of an infinitely large three-dimensional periodic lattice of cells with N point-charges in
the simulation box can indeed be evaluated using 3D-Ewald summation techniques by
combining Eqs. (2.26), (2.27) and (2.39); U (3D)

Ewald is explicitly given by [92]

U
(3D)
Ewald =

1

2

N∑
i,j=1

∑
Ln

∗
qi qj

erfc(α|ri + Ln − rj |)
|ri + Ln − rj |

+
2π

V

∑
k6=0

exp (−k2/4α2)

k2

∣∣∣∣∣
N∑
i=1

qi exp (ık · ri)

∣∣∣∣∣
2

− α√
π

N∑
i=1

q2
i , (2.40)

which is – irrespective of the particular numerical value of the Ewald α parameter – a
mathematically exact but numerically manageable representation of the internal energy
of the system given by Eq. (2.16). Since Eq. (2.40) still contains an infinite number
of terms, the real space and the reciprocal space summations have to be (carefully)
truncated for any practical purposes, which will be discussed below. The correspond-
ing time complexity of the three-dimensional Ewald summation is O(N2), i.e., the
time necessary to evaluate U (3D)

Ewald via Eq. (2.40) scales with the square of the number
of charges in the simulation box. The time complexity can be improved further to
O(N3/2) by a proper choice of α (see Ref. [92]).

18



2.1 Long-Ranged Coulomb Interaction in Quasi-Two and Three Dimensions

2.1.3 Anisotropic Directions: Ewald Summation in Quasi–Two
Dimensions

Ewald summations of quasi-2D systems [92] can be seen as a limiting case of Ewald
summations in 3D: one of the spatial directions (here chosen without the loss of gener-
ality as êz=(0,0,1)) is non-periodic but is assumed to be finite in its spatial extent.

The unit cell (or the simulation box) of such a quasi-2D system is defined by two lattice
vectors a1 = (a11, 0, 0) and a2 = (a21, a22, 0) in the xy-plane and by the non-periodic
extent into the z-direction, Lzêz, which defines the unit cell area (in the xy-direction)
as A = |a1 × a2| and the volume as V = ALz. The finite extent, Lz, of the unit
cell into the z-direction is often referred to as slab width and we use the term quasi-
2D geometry synonymously to quasi-2D slab- or simply slab geometry. The origin of
the periodic images of the unit cell in the xy-plane are described symbolically by the
vectors Sn = n1a1 +n2a2 which are uniquely labeled by the two integers n = (n1, n2).
Also the wave vectors of the reciprocal lattice, k = G+kzêz, are treated separately for
the periodic and non-periodic directions. The component of the wave vector along êz
is defined by kz = 2πnl/Lz, while the wave vectors of the reciprocal lattice – associated
with the 2D lattice with lattice vectors a1 and a2 – is given by G = nha

∗
1 + nka

∗
2 with

a∗k · ai = δki, where nh, nk and nl are integers [92].

In the definition of the position vectors of point-charges within the unit cell of such
quasi-2D systems, ri = si + ziêz, we treat the periodic part of the vectors (i.e., si =
(xi, yi, 0) in the xy-plane) and the non-periodic part (i.e., ziêz = (0, 0, zi) in the z-
direction) separately. Periodic images of particle positions in quasi-2D geometries can
thus be written as ri + Sn = si + Sn + ziêz.

The spatial anisotropy of periodic directions in the plane and the non-periodic di-
rections out of the plane greatly complicates the calculation of the internal energy
of point-charges in quasi-2D slab geometries via Ewald summation techniques: many
steps during the derivation leading to Eq. (2.40) rely on the periodicity of the particle
positions in all spatial directions. Nevertheless, for Lz → ∞ an expression for the
electrostatic energy in quasi-2D (Q2D) can be given as [92]

U
(Q2D)
Ewald =

1

2

N∑
i,j=1

∑
Sn

∗
qi qj

erfc(α|rij + Sn|)
|rij + Sn|

+
π

2A

N∑
i,j=1

qi qj
∑
G6=0

F (G,α, zij) exp (ıG · sij)

− π

A

N∑
i,j=1

qi qj

(
zij erf(α zij) +

exp (−α2z2
ij)

α
√
π

)
− α√

π

N∑
i=1

q2
i , (2.41)

with F (G,α; z) defined as
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F (G,α; z) =
1

G

[
exp (Gz) erfc

(
G

2α
+ α z

)
+ exp (−Gz) erfc

(
G

2α
− α z

)]
, (2.42)

where rij = rj − ri, sij = sj − si, zij = zj − zi, A is the surface area of the unit cell
and G = |G|; erf(z) is the Gauss error function, erfc(z) is the complementary error
function and the asterisk in

∑
Sn

∗ indicates, that we do not consider contributions
i = j for S0 = (0, 0, 0), i.e., we omit self-interaction of point-charges within the unit
cell.

Analytically exact energy evaluations of systems of point-charges in quasi-2D slab
geometries achieved via Eq. (2.41) are for many practical applications prohibitively
slow (as for instance to study the ground state assembly of complex, molecular systems
at a solid–liquid interface as presented in Section 3.2). This origins in the second term
of Eq. (2.41): the function F (G,α; z) is asymmetric with respect to the periodic and
non-periodic directions such that the sums in the second term in Eq. (2.41) cannot be
factorized anymore, this was the case for 3D periodic systems (cf. step from Eq. (2.38)
to Eq. (2.39)). The associated time complexity of the second term in Eq. (2.41) is of
the order O(N2) for each wave vector, G, while the equivalent term in the 3D case,
given by Eq. (2.40), is a one-particle sum with a complexity of O(N).

Slab Correction

An alternative approach to analytically exact quasi-2D Ewald summation techniques
is to use so called slab correction techniques [148, 149, 154, 155]. The basic idea is
to make the quasi-2D system fully periodic again by introducing periodic boundary
conditions along ez and additionally separate the (now) vertically periodic images of
the slabs in the z direction by introducing wide layers of vacuum of width Lv between
them, see Fig. 2.2(a) for a schematic representation. These vacuum regions are not
accessible to particles but the 3D periodic treatment allows employing numerically
efficient 3D Ewald summation techniques, given by Eq. (2.40), to the modified system.
To correct the effects caused by introducing periodic boundary conditions and vacuum
layers in the z direction, the 3D Ewald energy, given by Eq. (2.40), is modified by a
correction term, J(M, P ), as [148, 149]

U
(slab)
Ewald = U

(3D)
Ewald + J(M, P ) (2.43)

accounting for the induced dipole-dipole interaction across the (now) periodic slabs in
the z direction by the total dipole moment of the entire simulation box, M =

∑N
i=1 qiri;

the parameter P in Eq. (2.43) symbolically specifies the geometry (as defined by the
macroscopic boundary conditions) of the system and different, P -dependent correction
terms need to be applied in Eq. (2.43). For a spherical geometry, P = S, with a
surrounding medium with dielectric constant εr the correction term J(M, S) is given
by [149]

J(M, S) =
2π

(2εr + 1)V
|M|2, (2.44)
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that is J(M, S) = 0 for tinfoil boundary conditions with εr =∞ and J(M, S) = 2π
3V |M|

2

for surrounding vacuum with εr = 1. A similar approach can also be applied for systems
composed of point dipoles [150] and for non-neutral quasi-2D slab systems [151].

(a)

si

+ziez

si+Sn

+ziez

slab correction anisotropic bilayer(b)

Lz

zi = 0  or  zi = Lz

ri

Lz

ri+Ln

ez

Lv

ex,ey

S0

L0

Figure 2.2: Similar to Fig. 2.1(b), but here panel (a) shows the approach of slab correction
techniques where periodic images of the simulation cell (emphasized by pink areas) are separated
by vacuum layers of width Lv which are not accessible to particles. In panel (b) a quasi-2D bilayer
geometry is presented where particles are restricted to occupy only the boundaries of the unit cell
in the non-periodic direction, i.e., zi = 0 or zi = Lz.

Bilayer System

In case of a further restricted slab geometry where particles are only allowed to occupy
the horizontal slab boundaries, i.e., zi = 0 or zi = Lz (see Fig. 2.2(b) for an illustra-
tion), Eq. (2.41) can be further simplified; equivalently we can define zi = ±d/2 with d
being the slab-width or the “layer separation distance”. The discrete spacing in the êz
direction permits us to split the energy summation, U (Q2D)

Ewald = U
(inter)
Ewald + U

(intra)
Ewald , into

an inter-layer term U
(inter)
Ewald , where zij = 0, and into an intra-layer term U

(intra)
Ewald with

zij = ±d, which can symbolically be written as [92]

N∑
i,j

• =

N1∑
i1

N1∑
j1

•+

N1∑
i1

N2∑
j2

•+

N2∑
i2

N1∑
j1

•+

N2∑
i2

N2∑
j2

• =

2∑
k,l=1

Nk∑
ik

Nl∑
jl

•. (2.45)

The symbolic notations ik and jl indicate that particles ik and jl belong to layer k = 1, 2
and l = 1, 2, respectively, and the respective summations over ik and jl cover all Nk

particles in layer k and all Nl particles in layer l. As already mentioned, in every sum
on the right-hand side of Eq. (2.45) the vertical spacing between particles is constant6

and we define, without the loss of generality, dkl = zikjl = (l − k) d with k, l = 1, 2.
With this discrete set of possible vertical spacings of the particles, dkl = 0 for k = l

6This also holds true more generally for multilayer systems [62, 92].
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and ±d otherwise, we can rewrite and further simplify the second term in Eq. (2.41) –
which is computationally especially costly – as

UQ2D
Ewald,II =

π

2A

N∑
i,j=1

qi qj
∑
G 6=0

F (G,α, zij) exp (ıG · sij) (2.46)

=
π

2A

2∑
k,l=1

Nk∑
ik=1

Nl∑
jl=1

qik qjl
∑
G6=0

F (G,α, dkl) exp (ıG · sikjl) (2.47)

=
π

2A

2∑
k,l=1

∑
G 6=0

F (G,α, dkl)

Nk∑
ik=1

qik exp (−ıG · sik)

Nl∑
jl=1

qjl exp (ıG · sjl),

(2.48)

with sikjl = sjl − sik and dkl = (l− k) d. The corresponding inter-layer term, U (inter)
Ewald,II,

with k = l can be written as

U
(inter)
Ewald,II =

π

2A

2∑
k=1

∑
G 6=0

F (G,α, 0)

∣∣∣∣∣∣
Nk∑
ik=1

qik exp (ıG · sik)

∣∣∣∣∣∣
2

(2.49)

and the intra-layer term, U (intra)
Ewald,II, with k 6= l as

U
(intra)
Ewald,II =

π

2A

2∑
(k 6=l)=1

∑
G6=0

F (G,α, dkl)

Nk∑
ik=1

qik exp (−ıG · sik)

Nl∑
jl=1

qjl exp (ıG · sjl)

(2.50)
such that UQ2D

Ewald,II = U
(inter)
Ewald,II + U

(intra)
Ewald,II. The corresponding time complexity for

numerical evaluations of Eqs. (2.49) and (2.50) then becomes comparable to the time
complexity of the corresponding term in the three-dimensional case (cf. second sum in
Eq. (2.40)).

Hence, the discrete set of possible vertical particle spacings permits us to study bilayer
systems of point-charges [62–64, 146, 147] with quasi-2D Ewald summation methods
with great accuracy and with great efficiency7 [62, 92].

2.1.4 Convergence Criteria for Evaluating Ewald Sums Numerically

The Ewald summations given by Eqs. (2.40) and (2.41) are explicitly defined for sys-
tems of point-charges in three and in quasi–two dimensions. Other long-ranged interac-
tion potentials may lead to variations of the particular form of the Ewald summation,
but many basic features remain the same [62, 92]. We want to stress, that the Ewald
summations given by Eqs. (2.40) and (2.41) are mathematically exact (irrespective of
the numerical value of the Ewald α parameter, i.e., of the (reciprocal) width of the
Gaussian charge distributions) and still contain an infinite number of terms.

7In this thesis, we rely on the efficient implementation of quasi-2D Ewald summation methods for
bilayer systems of Coulombic point-charges of M. Antlanger [62].
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For any practical purposes when evaluating Ewald summations numerically, cutoff dis-
tances in both the real space, rcut, and the reciprocal space, kcut, need to be introduced,
up to which the summations in Eqs. (2.40) and (2.41) are carried out. Introducing cut-
off distances and truncating the corresponding sums causes a numerical error in the
evaluation of the internal energy.

However, we emphasize that the internal energy of a long-ranged system can very
accurately be evaluated numerically via truncated Ewald summations [92]: rcut and kcut

can be chosen in accordance with the Ewald summation parameter α such that a desired
accuracy, 1 − δcut, of the internal energy of the system is achieved [62]. In practice,
the particular choice of those three parameters, rcut, kcut and α, should not affect
the value of the internal energy of the system (up to the specified numerical accuracy).
Thus, they must be chosen such that UEwald exhibits, as a function of rcut, kcut and α, a
plateau where the energy evaluation is independent to changes of α in a reasonable large
parameter range [92]. A rule of thumb is to chose kcut ∼ α and rcut ∼ 1/α, since

√
2/α

defines the width of the Gaussian charge distributions and, more importantly, roughly
sets the distance at which the complementary Gauss error functions annihilate the
integrands in the real space integrals in Eqs. (2.40) and (2.41); an analogous argument
holds for kcut ∼ α in reciprocal space. In general, these parameters need to be carefully
adjusted [62] such that the internal energy of arbitrary particle arrangements in a
simulation box can faithfully be evaluated.

Choosing the cutoff parameters rcut, kcut and the Ewald parameter α accordingly, such
that they do not affect the energy evaluations, can directly be applied for systems
of quasi-2D slab geometries discussed in Subsection 2.1.3. For slab correction models
the internal energy, cf. Eq. (2.43), should also be independent of the width of the
introduced vacuum layers, Lv, which needs to be chose large enough.
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2.2 Ground State Exploration: Objective, Methods and
Algorithms

In this Section, we will introduce methods and algorithms used in this thesis to predict
ground state configurations of particles or molecules arranged in lattices. First we
introduce the concept of the potential energy landscape in Subsection 2.2.1 which is
followed by a general introduction and background to optimization strategies in Sub-
section 2.2.2. We then introduce numerical approaches mainly used in this thesis to
reliable identify global ground state configurations, namely simulated annealing (SA)
and Replica Exchange Monte Carlo (REMC), see Subsection 2.2.3, and (memetic)
evolutionary algorithms (EA), see Subsection 2.2.4. We introduce these different nu-
merical tools (i.e., SA, REMC and EA) mostly in a general framework. Whenever
it is necessary or helpful for the discussion we address related algorithmic details of
particular applications to specific physical system which are studied in this thesis (cf.
Chapter 3).

2.2.1 Physical Energy Landscapes can be Complex

The main objective of this thesis is to identify ground state particle or molecule8 ar-
rangements in lattices, i.e., structural configurations that minimize the internal energy
(per particle) of a system at vanishing temperature. In what follows, we will use the
term “particle” synonymously for the elemental objects whose properties, such as their
positions or – in case of aspherical molecules – their center of mass coordinates and
orientations, are variables in the structure optimization procedures.

For simple (yet instructive) problems such as an attractive harmonic potential or
Lennard Jones interaction between two particles, the potential energy as a function of
the particle distance exhibits a single minimum which can easily be identified. For more
complex systems with more than two particles, the situation drastically changes [1]:
the potential energy as a function of all particle positions quickly becomes much more
complicated, may not be a strictly convex function anymore but rather be of rugged
shape with a large number of local minima. In fact, for a simple Lennard-Jones system
(or other systems of simple, isotropic pair-wise interactions), the number of possible
local minima of the potential energy as a function of particle positions increases expo-
nentially with the number of particles [96], rendering the identification of the global
minimum a far from trivial task.

We are ultimately interested in identifying ordered particle arrangements – in lattice
geometries – which globally minimize the internal energy (or, in our case equivalently,
the potential energy) of different physical systems. In other words, we want to identify
the particle arrangement which represents the global ground state configuration for
a given system. The challenge of finding the structural ground state configurations
of a system of isotropic interactions is to identifying the optimal particle positions,
RN = (R1, . . . ,RN ), of all N particles in the unit cell. We also might look for the

8We consider interactions of point-charges in Section 3.1 as well as interactions between rigid
molecules whose atomic constituents exhibit partial charges and a Lennard-Jones type interac-
tion in Section 3.2.
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optimal unit cell geometry, i.e., for the best choice of lattice vectors a1, a2 and a3,
here presented in three dimensions. Furthermore, for anisotropic particles also their
orientations, given by PN = (P1, . . . ,PN ), need to be considered in the structure
optimization procedure.

Although often not all parameters are independent (the unit cell volume might be con-
stant or certain angles of the unit cell might be fixed, etc.), the number of parameters
that need to be considered, in our example RN ,PN ,a1,a2 and a3, can be quite large
and may reach up to several hundreds. We collect all variable parameters in the set
X , i.e., X = {RN ,PN ,a1,a2,a3} for our example. Thus, we can define the objective
function we aim to optimize for different physical systems such as the potential energy
per particle9

U(X )/N → min . (2.51)

The overall shape of U(X )/N is called the potential energy landscape which is an
analytic (yet complicated) function of the set of all variable parameters, X , of the
system. The space of all possible realizations of X is called the configuration space.

Furthermore, for interactions operating on vastly different length-scales in geometries
with anisotropic directions, as we discuss above and in Section 3.2, both, faithfully
evaluating the energy of the system and studying the ground state self-assembly can
become rather difficult and may even lead to effects such as frustration10. A vast
number of other configurations – sitting at minima of the potential energy landscape
with energies comparable to the global energy minimum of the system – may also
play an important role in the structure formation processes [89]. When experimentally
(or numerically, see Subsection 2.2.3 below) cooling a structural configuration in an
effort to identify the global ground state of a system different low energy polymorphs
can easily be kinetically trapped, and the global ground state may remain hidden [89].
From a numerical point of view, this is equivalent to sampling a configuration space for
the global minimum in the presence of many disconnected local minima of comparable
energies – which is a quite challenging task. If competing structures can be transformed
into each other with negligibly energetic cost even aperiodic quasicrystals can emerge,
at least at finite (small) values of temperature [167, 168], which makes a numerical
treatment conceptually even more difficult (see Section 3.1). Thus, identifying and
classifying such competing structures is of great importance for understanding trends
in the structure formation process of physical systems at vanishing temperatures.

In order to cope with the complexity of such global optimization problems exhaus-
tive search strategies are numerically intractable, even for nowadays most powerful
supercomputers [89, 96]. To tackle this problem we utilize, combine and deploy within
this thesis advanced optimization techniques ranging from deterministic gradient de-
scent solvers over stochastic simulated annealing (SA) and Replica Exchange Monte

9The algorithms presented below are not restricted to minimize the potential energy but operate on
any (sufficiently well-behaved) objective function U(X ).

10Lowering the contribution to the internal energy from one interaction may increase the contribution
from another which can potentially trap numerical optimization procedures in local minima.
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Carlo samplers (see Subsection 2.2.3) to heuristic, memetic evolutionary algorithms
(see Subsection 2.2.4).

2.2.2 Navigating towards the Global Minimum

Finding an (arbitrary) local minimum can be performed in a relative straightforward
manner: the region in the configuration space surrounding a local minimum is called
an attraction basin and following down the gradient, ∂U/∂X → 0, leads to the local
minimum. A vast number of local, gradient based optimizer exist for that purpose [169–
176]

Identifying the global minimum of a complex function (such as the energy landscape
of a physical system) is a far more complicated challenge yet of great importance in
a vast variety of fields of research such as protein folding [126, 177–179], chemical
engineering [180–183], or – very prominently due to the recent outbreak of the SARS-
CoV-2 pandemic – in computational drug-design [184]; the above list is far from being
comprehensive.

Such tasks usually fall into the category of NP or even NP-hard problems, i.e., a set
of non-deterministic polynomial acceptable problems that are considered to be not
solvable in polynomial time (scaled by their degrees of freedom) with a deterministic
turing machine [185]; one very prominent example for the class of NP problems is the
traveling salesman problem [186].

Many researchers have been working on strategies to efficiently solve such optimiza-
tion problems computationally for decades, consequently a large number of algorithms
emerged over the years. They can roughly be grouped into deterministic, stochastic
and heuristic algorithms.

Deterministic Optimization Strategies

If the problem allows it, deterministic optimization strategies aim at solving the op-
timization problem in an exact and reproducible manner. Based on interval arith-
metic [187, 188] some algorithms try to describe the solution space analytically in
order to identify possible solutions deterministically. In other cases the general shape
and/or symmetries of solutions are known and the search space can be greatly reduced
by focusing on a relevant subspace of configurations. A proper educated guess for
the initial candidate may allow suitable, local, gradient descent based optimization
techniques11 to identify the global optimum.

11Gradient descent (GD) based optimizers minimize an objective function by following the direction
of the steepest gradient in configuration space, i.e., U(X ) → U(X ) − η · ∇XU(X ) with η being a
numerical step size; of course many quite sophisticated GD algorithms exist.
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Stochastic Optimization Strategies

A different class of optimization algorithms relies on random variables in order to
sample the parameter space for the optimal solution. Monte Carlo [189–192] algorithms
are typical realizations of such stochastic techniques. Via random moves, i.e., by
randomly changing degrees of freedom, these techniques, on the one hand, are able
to improve solutions and, on the other hand, allow jumps between attraction basins
of different local minima in order to explore the configuration space more broadly.
While the algorithmic parameters – such as the numerical step sizes of random moves
of different variables and the acceptance criteria of proposed moves, etc. – need to be
tuned carefully stochastic optimization strategies may eventually identify the global
minimum of an optimization problem.

An improvement of standard Monte Carlo algorithms for global optimization purposes
is, for instance, stochastic tunneling [193, 194]. The original objective function (which
is to be optimized) is non-linearly transformed allowing more efficient jumping between
regions in the vicinity of local minima. Thereby, convergence rates of the algorithm
are improved.

Simulated annealing [133, 134] techniques are inspired by the process of annealing in
metallurgy, a technique used to grow a crystal of high purity via heating and cooling
of the material. Simulated annealing algorithms mimic this technique by successively
modify the acceptance rates of regular Monte Carlo sampling [190, 191] via an artifi-
cial temperature: starting from high temperatures (i.e., from high acceptance rates)
large jumps in configuration space allow to broadly explore the search space. A con-
figuration (or equivalently a sample) is gradually cooled down and the jumps become
successively smaller such that, at lower temperatures, the sample approaches the global
optimum12.

Extending this idea, parallel tempering (or replica exchange Monte Carlo) [135–138]
performs sampling of several, different configurations in parallel at different tempera-
tures. Additional tempering steps are used to exchange configurations between neigh-
boring temperatures, constantly allowing configurations evaluated at high tempera-
tures to be further optimized at low temperatures (and vice versa), see Subsection 2.2.3
for more details.

Heuristic Optimization Strategies

In contrast to the techniques discusses above, heuristic optimization algorithms try to
explore the search space in a more intelligent way by making use of already obtained
information on the target function such as problem specific symmetries and bound-
aries, or by learning good update policies of parameters. Even for very complicated
optimization problems they guide the search process towards promising regions in con-
figuration space and explore regions of nearly optimal solutions in a problem specific
and more intelligent way as, for instance, stochastic procedures. It is worth noting
that usually such algorithms need to be specifically tailored for particular problems
12The global optimum of a configuration space may eventually be identified via simulated annealing

if the cooling process is performed adiabatically, i.e., slow enough.
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since it cannot be expected from an algorithm that can solve one particular class of
problem efficiently to work as good for a completely different task [62]: “there ain’t no
free lunch”, neither for search nor for optimization [141–143].

Examples of heuristic optimization strategies are reactive- or tabu search [195, 196]: (i)
a local search strategy is extended by also considering worsening steps during updates in
the minimization process and (ii) aspects from machine learning are applied such that
already visited solutions are marked tabu in order to avoid them during the continuing
optimization process.

Graduated optimization [197] aims at greatly reducing the difficulty of the full opti-
mization problem in the initial phase of the algorithm; the complexity of the simplified
search problem is then gradually increased during optimization until, eventually, the
original problem complexity is restored and can be treated.

Other techniques rely on ensembles of candidate solutions, i.e., on a pool of configura-
tions which is gradually updated and thereby gather information about the problem.
In biologically inspired swarm optimization algorithms, such as particle swarm opti-
mization [198, 199], an ensemble of candidate solutions, i.e., particles, propagates in
configuration space according to specific, simple mathematical models [200] for their
positions and velocities. The members of the swarm or of even several diverse swarms
(as in multi-swarm approaches [201, 202]) can be located and propagate in a single or
between different attraction basins while exploring the configuration space. Eventually
the entirety of particles is guided towards the global optimum (although convergence
cannot be guaranteed). A related technique is differential evolution [203]: Based on a
population of different candidate solutions selected configurations within this popula-
tion are picked and their parameters are combined in a so-called crossover move which
is performed according to a specific, simple formulae [203]. The new sample may be
better suited to optimize the problem in which case it is accepted and forms a new
part of the population, otherwise it is simply discarded.

In this thesis, we use and further develop tools based on evolutionary algorithms [62,
204, 205] which are built upon ideas of biological evolution, i.e., natural (or better
artificial) selection, reproduction and mutation. An ensemble of configurations forms
a population of previously obtained solutions from which selected parents are chosen,
combined or modified in order to produce offsprings which may be better equipped
to optimize the problem [62]. Due to slow convergence rates, especially in continu-
ous optimization problems (as in material science), these tools can be combined with
local optimization techniques, such as gradient descent algorithms. This can steer off-
springs configurations towards local minima before accepting or discarding samples;
such a combination of local and global optimization is referred to as memetic algo-
rithms [139].

Above methods make only few or no assumptions about the problem and are classified
as meta-heuristics. However, sometimes prior information about the system is available
and can be incorporated into the optimization strategy. Bayesian approaches to global
optimization [206], for instance, are sequential design strategies which make use of this
property in terms of Bayesian statistics.
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Recent Trends in Optimization: Artificial Intelligence

In recent years, very promising numerical techniques have emerged to tackle material
science problems (or optimization problems in general) which are based on the ideas
of artificial intelligence and machine learning (for very instructive reviews of this topic
we refer to by Refs. [116–119]). Current trends in optimization strategies heavily
point into the direction of using data driven models and artificial intelligence such
as generative models [129] and reinforcement learning [123, 124]. Generative models
(such as Boltzmann-machines [130]) can be used to draw high quality samples from
an arbitrarily complex configuration space (e.g. from the space of images of human
faces) after a model has been trained on a (typically large) data set of representative
examples which follow the probability distribution of the configuration space [119].
Reinforcement learning has, for instance, very successfully been applied to find optimal
solutions to protein folding problems [126] beyond the capabilities of conventional
approaches in a similar way as AlphaGo [125] was able to master the infamous board
game.

Even more abstract machine learning models are used in materials science or chemistry
which are based on ideas of natural language processing of sequential data (such as
chemical structure formulas or written, scientific text). For instance, a deep neural
network13 based model, denoted IBM RXN [182, 183], has successfully been employed
to predict chemical reactions based on a text-representation of the involved chemical
reactants. It has been shown [182, 183] that this tool is able to outperform professional
human scientists in predicting the outcome of chemical reactions. The interesting thing
here is, that the IBM RXN model is solely trained on text representations of chemical
reactions, i.e., no other physical or chemical models what so ever are involved during
the training of the model. Similar tools have been used to screen large data bases of
molecules or material science data in order to “discover” new materials with specific
target-properties, such as previously unknown thermo electrica [209]; very recently such
an approach was employed in the field of computational drug design to identify certain
molecules which may be promising candidates to treat a CoV-Sars-2 infection [184].

All of these machine-learning based approaches introduced above aim at identifying
optimal candidates from a configuration space of possible solutions to a given opti-
mization problem. The field of artificial intelligence based optimization methods is
rapidly growing (not at least owed to the now available computational resources and
data), and the above list is far from being comprehensive. It will be fascinating to see,
which problems can be tackled with tools from artificial intelligence in the near and
more distant future and also to learn about the limitations of these methods.
13 An artificial neural network (or neural network in short) is a set of interconnected artificial neurons

which collect weighted signals (either from external sources or from other neurons) and create and
redistribute output signals generated by a nonlinear activation function [207]. In that way a neural
network can process information in a very efficient and, more importantly, very flexible way: by
adjusting the weights and biases of connections between different neurons (or by adjusting the
network topology), especially so-called deep neural networks can be trained to map an arbitrary
input of the network onto desired output signals in a highly non-trivial way thereby realizing
task specific operations which are often too complicated to be implemented manually [207, 208].
Usually, a neural network is referred to as “deep”, if it is composed of more than three consecutively
interconnected layers of neurons [208].
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With this we conclude Subsection 2.2.2 and we will proceed with a more in-depth
explanation of three algorithms which we heavily used in this thesis, namely simulated
annealing, replica exchange Monte Carlo and a memetic evolutionary algorithm. These
three algorithms are – in principle – able to find global minima in high-dimensional,
rugged energy landscapes.

2.2.3 Monte Carlo Methods: Simulated Annealing and Replica
Exchange Monte Carlo

Monte Carlo (MC) methods [189] are scalable, general tools mainly used to draw ran-
dom samples from a certain probability distribution. They are used for numerical
integration or – relevant for our purposes – to numerically solve optimization prob-
lems. They are widely used not only in physics and mathematics but also in computer
science, finances, industry and many other fields of research [192]. The core idea is to
repeat a computer experiment many times based on random sampling, i.e., simulating
sufficiently long, to gather sufficient information about the underlying statistics of a
random quantity which mimics the behaviour of real-life process; basically, MC meth-
ods can be applied to any problem which has a probabilistic interpretation [192].

For parametrized probability distributions, so-called Markov chain Monte Carlo meth-
ods (MCMC) can be applied for obtaining sequences of samples from (preferably high-
dimensional) probability distributions for which direct sampling is difficult [190, 191].
The Metropolis–Hastings algorithm [191] is probably the most prominent MCMC al-
gorithm. The Boltzmann distribution in statistical physics14 is one very prominent
example of a parametrized probability distribution which takes the form

p(X , T ) =
1

Z
exp (−U(X )/kBT ), (2.52)

where Z =
∫
VX
p(X , T ) dX is the partition function ensuring p(X , T ) is normalized,

kB is Boltzmann’s constant and T is the temperature. X is a particular realization of
the random quantity – to which we frequently refer to as sample – from all possible
realizations within the volume VX of the so-called configuration space. In our case, X
might represent a structural configuration composed of point-charges or molecules.

Metropolis-Hastings Algorithm

The Metropolis-Hastings Algorithm represents an MCMC process which is uniquely
defined by its transition probabilities P (X ′|Xt), i.e., the probability of transition to
get from one sample, Xt, to another state, X ′. It is assumed that the MCMC process
reaches asymptotically a stationary distribution, p(X ), such that the detailed balance
condition

P (X ′|Xt)p(Xt) = P (Xt|X ′)p(X ′) (2.53)
14 As put forward by Jaynes [119, 127, 128] the Boltzmann distribution, underlying statistical physics,

can be derived in a purely information theoretic way when applying the method of maximum
entropy [127, 128] to the conservation of expectation values of thermodynamic variables over
ensembles of microstates; The maximum entropy method represents a generative model [129] which
inspired, for instance, Boltzmann machines [210] in machine learning [119].
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is fulfilled: detailed balance implies that transitions from Xt to X ′ are as probable
as the inverse process. The transition probability, P (X ′|Xt), is then separated into
a conditional15 proposal probability, g(X ′|Xt), and a joint16 acceptance probability,
A(X ′,Xt), i.e., P (X ′|Xt) = g(X ′|Xt)A(X ′,Xt). Inserting the latter expression for
P (X ′|Xt) into Eq. (2.53) yields

A(X ′,Xt)
A(Xt,X ′)

=
p(X ′)
p(Xt)

g(Xt|X ′)
g(X ′|Xt)

. (2.54)

Now, an acceptance probability ratio A(X ′,Xt)/A(Xt,X ′) needs to be chosen which
satisfies Eq. (2.54); a common choice is the so-called Metropolis choice given by

A(X ′,Xt) = min

(
1,
p(X ′)
p(Xt)

g(Xt|X ′)
g(X ′|Xt)

)
, (2.55)

where either A(X ′,Xt) = 1 or A(Xt,X ′) = 1 such that detailed balance is fulfilled.

In cases of constant proposal probability, g(X ′|Xt) = g(Xt|X ′), the acceptance prob-
ability reduces to A(X ′,Xt) = min (1, p(X ′)/p(Xt)) which yields for the Boltzmann
distribution defined in Eq. (2.52) the following expression for the acceptance probabil-
ity:

A(X ′,Xt;T ) = min
(
1, exp (−∆U(X ′,Xt)/kBT )

)
. (2.56)

The acceptance probability given by Eq. (2.56) depends on the energy difference,
∆U(X ′,Xt) = U(X ′) − U(Xt), between the candidate sample, X ′, and the current
sample, Xt, and additionally on an artificial temperature, T , at which the simulation
is conducted.

The Metropolis-Hastings algorithm consists of the following steps:

1. Start from an arbitrary initial sample, Xt (and set t = 0).

2. Generate a new sample, X ′, via random updates (or, equivalently, random moves)
applied to Xt following the proposal probability g(X ′|Xt).

3. Accept X ′ if a uniform random number r ∈ [0, 1] ≤ A(X ′,Xt), reject otherwise.

4. If accepted, set Xt+1 = X ′, otherwise Xt+1 = Xt

5. Increment t→ t+ 1 and continue with step 2.

Over multiple iterations this Markov chain process generates a random walk sequence
of realizations from the stationary distribution p(X ).

For so-called ergodic systems any state can be transformed into any other from the
same configuration space by a sequence of update-moves. For such systems, expectation
values of certain functions, f(X ), of the random process can be approximated – by the
law of large numbers – using the empirical mean, i.e., 〈f(X )〉 =

∫
VX
f(X ) p(X ) dX ≈

(1/N)
∑N−1

t=0 f(Xt), where VX is the configuration space volume [190, 191].
15A conditional probability distribution p(X|Y ) quantifies the probability that an event X occurs

given Y has occurred. In our case, the proposal probability g(X ′|Xt) quantifies the probability of
proposing a state X ′ given Xt.

16A joint probability distribution p(X,Y, . . . ) quantifies the probability that several events X,Y, . . .
occur simultaneously. In our case, A(X ′,Xt) represents the probability to accept the proposed
state X ′ starting from state Xt.
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Monte Carlo based Optimization: Simulated Annealing

Continuing our discussion on optimization problems, the inherent randomness of MC
algorithms is the key quantity which makes them applicable for global optimization
tasks. In contrast to gradient descent algorithms, which are well suited tools to reli-
ably evaluate local minima, MC methods are able to jump – with a certain probability
– between different basins in the potential energy surface; given enough time and/or
resources MC based optimization algorithms may eventually identify the global mini-
mum. A very prominent example for an MC based optimization algorithm is simulated
annealing (SA) [133, 134] which is inspired by the process of annealing in metallurgy,
i.e., a technique involving heating and cooling of the material, to grow a crystal of high
purity.

SA is an adaptation of the Metropolis-Hastings algorithm. A single sample is constantly
subjected to the Metropolis-Hastings MC algorithm while the temperature, Ti, in the
acceptance probability A(X ′,Xt;Ti) defined by Eq. (2.56) is successively decreased
over time in i = Ni, Ni − 1, . . . , 0 additional annealing steps. The temperature grid,
TNi > . . . > Ti > Ti−1 > . . . > T0, is usually predefined, the initial temperature, TNi ,
is typically large and the final temperature T0 = 0 K.

The SA algorithm can be described as follows:

1. Start with an (arbitrary) initial sample, Xt=0, and at an initial large value of the
temperature, Ti=Ni , by setting i = Ni.

2. PerformNt iterations of Metropolis-Hastings MC (or use another suitable MCMC
sampler) at a given temperature, Ti, starting from the sample X0.

3. Decrease the temperature Ti → Ti−1 by setting i→ i− 1.

4. If i ≥ 0 set X0 = XNt and continue with step 2., otherwise terminate with the
result XNt .

At the initially large value of the temperature, TNi , the acceptance probability of
A(X ′,Xt;TNi) ≈ 1 permits large jumps in configuration space during theNt Metropolis-
Hastings MC steps. Large energy-difference are compensated by large temperatures
in the acceptance probability and the initial sample, X0, is subject to large thermal
fluctuations such that XNt is essentially randomized.

If SA is performed adiabatically, i.e., if the temperature is decreased slowly enough (via
a sufficiently fine Ti grid) and Metropolis-Hastings MC sampling at each temperature,
Ti, is given enough time (via a sufficiently large Nt), SA cools down a sample and
guides it towards the global optimum (although this process might be computationally
infeasible for many difficult problems due to prohibitively long execution times).

For temperatures close to zero the acceptance probability approaches 0 for worsening
steps (i.e., if a proposed sample is less favorable with respect to the objective function
compared to the current one) and the sample configurations freezes out, ideally into
the optimal solution.
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Replica Exchange Monte Carlo Optimization

Another approach to tackle global optimization problems with Monte Carlo algorithms
is Replica Exchange Monte Carlo (REMC) [135–138], or parallel tempering (we use
both phrases synonymously in this thesis). REMC extends the idea of simulated an-
nealing by subjecting several samples in parallel to Metropolis-Hastings MC (or MCMC
approaches in general) at different temperatures. The samples of neighboring tempera-
tures are then successively swapped in additional tempering steps instead of annealing
a single sample as in SA.

The REMC algorithm can be described as follows:

1. Start fromNT+1 arbitrary initial samples, XNT = {XT,0,XT,1, . . . ,XT,i, . . .XT,NT }
and define an associated, ordered temperature grid TNT = {T0 < T1 < . . . < Ti <
. . . < TNT }.

2. Perform Nt iterations of Metropolis-Hastings MC sampling (or use another suit-
able MCMC sampler) for each temperature, Ti, respectively starting from the
current (associated) sample XT,i. This can be done in parallel.

3. Set XT,i = XNt with the final sample, XNt , of the respective Metropolis-Hastings
MC simulation performed at the temperatures, Ti, for all i = 0, . . . , NT .

4. Exchange samples XT,k and XT,l between neighboring temperatures Tk < Tl=k+1

in the following way:

4.1 Pick k = 2j and l = 2j+1 pairs every even cycle and k = 2j+1 and l = 2j+2
pairs every odd cycle for every j = 0, 1, . . . , Nt/2; Nt is considered to be an
even number and if l > NT the k, l pair is omitted. In that way, the samples
can diffuse along the temperature direction

4.2 A sample swap between neighboring temperatures Tk < Tl is always ac-
cepted if ∆Ukl = U(XT,l) − U(XT,k) < 0 and accepted according to the
REMC acceptance criteria, i.e., if a uniform random number r ∈ [0, 1] ≤
exp (−∆Ukl/kB∆Tkl) with ∆Tkl = Tl − Tk.

4.3 The actual swap, XTk ↔ XTl , for a particular k, l pair is only performed if
the swap between the temperature pair Tk and Tl was accepted.

5. Continue with step 2. until a convergence criterion is met, otherwise terminate
with the result XT,0.

At large temperatures the parallel tempering algorithm allows to broadly explore the
configuration space and good samples (with low energies) are successively swapped
down to lower temperatures. Good samples are continuously further optimized at
low temperatures but are always in competition with other low-energy samples which
may independently emerge during the execution of the algorithm. REMC can be
understood as several interlinked simulated annealing procedures, which are executed
in parallel and which are able to exchange good samples in additional tempering steps.
Furthermore, REMC also allows good, yet sub-optimal solutions to resolve possible
defects when being swapped to higher temperatures.
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TN...
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Simulation Steps Simulation Steps

(a)  Simulated Annealing (b)  Parallel Tempering

Figure 2.3: Schematic time evolution of (a) simulated annealing (SA) procedure and (b) of parallel
tempering or replica exchange Monte Carlo (REMC). Colored boxes represent MCMC simulations
at the respective temperatures, T0, · · · , TN (color coded). For SA the optimization is a “single
trajectory” (the sample evolution is indicated by the thick black arrow) where the temperature
is successively decreased after sufficient MCMC iterations at a single temperature. REMC, in
contrast, can be performed in parallel at many different temperatures: samples are exchanged
between neighboring temperatures after the respective MCMC simulations (cf. thick black arrows)
according to the REMC acceptance criterion. At even swap steps neighboring (T2i, T2i+1) sample
pairs are exchanged (indicated by the nine solid-framed boxes in (b)) while at odd swap steps
neighboring (T2i+1, T2i+2) sample pairs are exchanged (four dashed-framed boxes in (b)).

REMC can easily be utilized using standard MCMC algorithms and, furthermore, can
easily be scaled to run on many parallel cores on supercomputers. Thus, parallel tem-
pering representing a highly efficient, powerful tool for global ground state exploration
– particularly for sampling discrete configuration spaces.

In Fig. 2.3 we schematically visualize a time evolution of both, the simulated annealing
procedure and the parallel tempering or REMC algorithm. Note that the SA algorithm
is essentially a “one shot” trajectory and the annealing needs to be performed very
carefully in order to faithfully identity the global minimum. In REMC, on the other
hand, an ensemble of different samples is considered in parallel and good solutions
at low temperatures are constantly in competition with other potential ground state
solutions emerging at larger values of the temperature.

2.2.4 Evolutionary Algorithm

From Natural Selection to Global Ground State Search

Inspired by the principles of Darwin’s theory of evolution [211] of biological systems,
evolutionary algorithms (EA)[62, 63, 104–109, 139, 140, 205] use concepts of natural
(or better artificial) selection to find the best solution to an objective function.

In the theory of evolution a population of genetically diverse individuals, which are
called phenotypes, populate a shared environment. Based on their genetic blueprint,
i.e., based on their genotype, they exhibit different physical traits reflecting on how
well they are adapted to their natural environment. Individuals of a population (or
better of a species) can pass on their (shared) genetic information via reproduction to
their offsprings, which may then be better equipped for survival than other members
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of the population and take over their place; individuals less adapted will eventually
perish and whole species not adequately equipped may become extinct. The rate of
adaptation, i.e., how well individuals perform, is called fitness and in nature only the
fittest may survive. It is more likely for well adapted individuals to pass on their
genetic information than others, with lower fitness, since the former have a higher
survival probability, i.e., they have been around for a longer time thus having more
chances to reproduce. This also suggests that associated good traits are passed on to
subsequent generations with a higher probability such that, over time, the majority
of individuals of a population are gradually adapted to their environment in order to
increase their chances of survival. Furthermore, because nothing seems to be perfect
in nature, errors may occur during the reproduction stage – at random – when genetic
material is passed on over generations. Such mutations usually affect how an individual
is adapted to its environment and can have either beneficial or disadvantageous effects.
However, random mutations may give access to completely new features and strategies
of survival and open up new regions in the configuration space of possible solutions to
the evolutionary process.

Both the genome representation of individuals and the environment of biological sys-
tems are far too complicated to be simulated in all their details by present day tech-
nology. Still, evolutionary algorithms take on the heuristic yet flexible concepts of
biological evolution and adaptation processes – in a very simplified way – in order to
explore the configuration space of an optimization problem for the global minimum.
From an algorithmic point of view, individuals can be represented by objects or data
structures on a computer (describing, for instance, particle arrangements in a lattice)
and further can be serialized to a genome string, X ∈ RNA , where NA is the dimension-
ality of the search problem, i.e., the number of degrees of freedom to which we refer
to as genetic traits or attributes; these digital individuals, in the language of EAs, are
called candidates (or here sometimes configurations) to make a clear distinction from
their biological counterparts. The environment in evolutionary algorithms is typically
represented simply by an analytic objective- or target-function, U(X ), which is to be
optimized (this might be the internal energy of a system).

In contrast to biological systems, where a population also affects its environment, in
most implementations of evolutionary algorithms the target function stays constant
over time and is also not affected by the population in any way. This greatly simplifies
the task of quantifying the degree of adaptation of a configuration to the environment
via a so-called fitness function F (X ) : RNA → R; the value of the fitness function of
a candidate may directly be related to the value of the objective function, F (X ) =
F (U(X )). A large value of the fitness function indicates that a candidate is a better
solutions for minimizing the objective function compared to candidates with lower
fitness values.

The two main ingredients which have inspired evolutionary algorithms are reproduc-
tion and mutation processes of biological systems: the former is usually referred to as
crossover operation (or crossover move), where traits from several parent configura-
tions of the most recent population are heuristically extracted and intercombined to
create new offsprings, or candidate solutions. Some possible combinations of different
traits of the genetic material of a particular pair of parent configurations may form a
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better solution to the optimization problem as the parents themselves (or offsprings of
other parents). Over time, the crossover operation of an evolutionary process aims at
identifying the best possible combination of genetic material present in the population.
With only a finite amount of genetic information being present in a population only
a finite (yet potentially huge) number of combinations of different attributes or traits
in the genetic material can be achieved. If the “correct” attributes, which would allow
the formation of the global ground state via crossover operations, are not present in
the population, the global optimum cannot be identified by a purely crossover-based
evolutionary process. The purpose of the mutation operation in EAs is to explore
the configuration space of candidate solutions more broadly for completely new com-
binations of genetic traits (i.e., for new features and strategies which are, hopefully,
favorable for the optimization process). Notably, this operation is of similar nature
as random moves in stochastic optimization strategies, namely to jump between dis-
connected regions in the configuration space, an ingredient which is indispensable for
global ground state search strategies. Mutation operations are, of course, only applied
rather rarely as opposed to crossover moves, since an evolutionary process also need
time to identify good offspring candidates via successive recombinations of the available
genetic material.

A candidate solution generated that way is then evaluated by its fitness and either
integrated into the population, if it has a sufficiently high fitness value, or discarded
otherwise. Over time (and given enough computational resources) this artificial se-
lection procedure will successively bring forth highly adapted candidates with respect
to the optimization problem and will hopefully steer the solution towards the global
optimum.

For many problems the convergence of such an algorithm governed only by crossover
and mutation operators [205], is quite poor. For example, the recombination of two
different molecular lattice configurations may frequently lead to offspring configurations
with overlapping molecules. Such offsprings have large values of the internal energy,
correspondingly low fitness values and are thus frequently rejected by the evolutionary
selection process, which renders this approach quite inefficient. So-called memetic
approaches circumvent this problem by combining global and local search strategies:
while the global optimization strategy (here the EA) continuously – heuristically –
explores the configuration space for different attraction basins, local optimization (often
gradient descent algorithms) rapidly guides newly generated candidate solutions to the
nearest local minimum [62, 139, 140].

The memetic evolutionary algorithm [86] which we further developed [62, 140, 205]
and which we have heavily applied in this thesis can be outlined as follows (Fig. 2.4
depicts a flow-chart of this procedure):

0. Define a convergence criterion (e.g., terminate after a maximum number of cycles
of the evolutionary algorithm or terminate, if for a certain number of cycles no
better solution as the current optimal solution was found, etc.).

1. Initialize a population of candidate solutions at random or load a predefined one
(potentially from a previous optimization run).
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2. While the algorithm has not converged generate new offsprings from the current
population via a reproduction operation, otherwise continue with step 7.

3. Locally optimize, i.e., relax, the newly generated offsprings to their nearest local
minimum in configuration space (this is, by far, the most time-consuming task
and can be performed in parallel).

4. Evaluate the fitness of the newly relaxed candidate solutions and either include
them into the population in case of sufficiently large fitness (while removing
other configurations from the current population, keeping the population size
constant), reject them otherwise.

5. In the case a new candidate was inserted into the population the updated pop-
ulation is stored (i.e., exported) to a checkpoint file, which iteratively collects
all populations encountered during the execution of the EA. (Furthermore, the
updated population is synchronized among all parallel processes.)

6. Continue with step two.

7. Export the most recent population to the checkpoint file and export the best
encountered candidate solution to the optimization problem, and terminate.

Over all, this memetic evolutionary algorithm may be quite time-consuming – espe-
cially the relaxation step represents, by far, the computationally most expensive task –
but the overall convergence rate can easily be improved: the crossover and relaxation
procedures for generating new candidate configurations can be performed in parallel.

Our implementation of the memetic evolutionary algorithm, which emerged throughout
this thesis17, is completely modular and flexible such that practical applications of the
algorithm may be tailored problem-specifically (cf. Sections 3.1 and 3.2 and Ref. [213]).
Below we explain several concepts and terms used in our EA implementation such
as population and genome representation of candidate solutions. The reproduction
operation is split up into several operations, which we all explain in detail below: the
mating, crossover, mutation, invasion and insertion-operation; a flowchart of the entire
reproduction operation is presented in Fig. 2.5. Furthermore, we discuss the offspring
relaxation operation and introduce the functional form of the fitness function we used
in this thesis. We then explain concepts such as elitism, extinction, genetic diversity
and nichening and eventually provide some details on the inherent parallelization of
our implementation of the memetic evolutionary algorithm.

Population and Genome Representation

The total number of NEA different candidate configurations at a given iteration step
of the EA is referred to as the (evolutionary) population, which is constantly exposed
to concepts of natural (or, rather, artificial) selection.

The candidates of a population are commonly defined by a genome representation, X ,
of the object which is subject to the evolutionary optimization [139, 205]; X usually
17Our memetic evolutionary algorithm implementation, introduced in Ref. [86], is available (on re-

quest) via Ref. [212] and is based on the ideas of Refs. [62, 140], which we further developed.
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Figure 2.4: Flowchart of the memetic evolutionary algorithm starting at the top and ending at
the bottom (see description in the text). Potentially parallelizable blocks (and associated syn-
chronization operations) are colored by bright red background color: the reproduction operation
(here labeled “generate offspring”) and the subsequent local, gradient descent optimization (LO),
here labeled “relax offspring”, are performed in parallel on Nw worker tasks. The relaxed offsprings
are collected by a “master” thread (see text below) which keeps a synchronous list of the most
current population. After updates of the population occurred the updated population has to be
synchronized amongst all idle worker processes; this is done asynchronously by the master thread.
For parallelization we rely on the message passing interface (MPI) [214, 215] (see text below).

represents a structural configuration in this thesis, whose NA degrees of freedom –
to which we refer to as genetic traits or attributes – the EA can modify in order to
minimize the objective function U(X )→ min .

For instance, we might represent an arrangement of molecules within a lattice (cf. Sec-
tion 3.2) phenotypically (rather than genotypically [205]) by the set X = {RN ,PN ,a1,
a2,a3} of positions, RN = {R1, . . . ,RN}, and orientations, PN = {P1, . . . ,PN}, of
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all N molecules within a simulation box, which is spanned by the lattice vectors, a1,a2

and a3. In the example above the objective would be to find the optimal positions,
orientations and lattice vectors which minimize the internal energy of the molecular lat-
tice. This, of course, depends on the particular type of interaction of the molecules and
on other system parameters (see Section 3.2). We would like to emphasize, however,
that the EA described here is not restricted to this particular system.

Henceforward different candidate configurations are labeled by Latin indices via Xi and
we define the population of candidate configurations as XNEA = {X1,X2, . . . ,XNEA

}.

Reproduction Operation: Mating Operation, Pick Parents

In the first step of generating an offspring, two parent configurations, Xi and Xj , are
picked at random or via the ”roulette wheel” method from the current population
(see below) [62, 104, 105, 140, 216]; this strategy favors parents of high quality hence
making them more likely to be used for reproduction than ”weaker” configurations, i.e.,
configurations from the population with less favorable values of the objective function
U(X ).

Reproduction Operation: Crossover Operation

After the two parents Xi and Xj were chosen, the two configurations are combined
via a crossover operation (i.e., a cut-and-splice process) creating thereby an offspring
configuration, Xi⊕j , with the subscript ’i⊕j’ emphasizing the executed crossover oper-
ation between Xi and Xj . The purpose of this operation is to save high quality blocks
of the genetic material (e.g., the relative positions and orientations of molecules within
the unit cell) in order to efficiently sample the parameter space [62, 104, 105, 139, 140,
205, 216].

The cut-and-splice process can be performed in several ways [62, 140, 205] but boils
down to untangling the genomes of two (or in general NP ) parents into their attributes
and mix different blocks of genetic material together in order to form a valid offspring
candidate. In our implementation, the two parent genomes are cut at NC randomly
chosen positions (at the same positions for all parent genomes) partitioning their at-
tributes into piecewise blocks, always assuring that attributes belonging to the same
object (e.g., position and orientation of one molecule for our example of a molecular
lattice) belong to the same parent configuration. The partitioned genomes are then
zipped together (i.e., the first piece stems from parent one, the second from parent
two, the third again from parent one18, and so on). Special, attributes which can only
be taken from one parent (such as the unit cell vectors at constant volume calculation
of our molecular lattice example) can be labeled and are then only taken from one
parent, i.e., usually parent one.

The here introduced crossover operation has limited applicability to efficiently explore
a configuration space for studying ground states arrangements of highly aspherical
18The crossover move between parents has been extended to NP parents in our implementation of the

EA, but we usually use NP = 2.
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particles or molecules at high packing fractions, (i.e., if the combined volume of all
particles or molecules is of the same or of comparable order as the available volume of
the unit cell) [213]. The reason for this is, that in such cases with very high probability a
crossover operation leads to unphysical overlaps between particles or molecules which is,
as a consequence, associated with large numerical values of the internal energy of a con-
figuration. To avoid this problem, we perform so called ramp-compression–moves [213]
after a crossover operation of the EA: with a certain probability we scale up the volume
V of the unit cell by a factor of si if the energy of a configuration after a crossover
operation exceeds a certain threshold. The unit cell is then successively shrunk in Ni

equidistant steps of ∆V = (si−1)V/Ni until the original volume is restored. For every
intermediate unit cell volume we iteratively perform a (small) number, Nr, of gradi-
ent descent based optimization steps for the positional and orientational variables of
Xi⊕j . Thereby, we could efficiently favor non-overlapping configurations after crossover
operations and reduce the rejection rate for offspring candidates19 [213].

Reproduction Operation: Mutation Operation

The newly generated offspring configuration, Xi⊕j , is then exposed to random mutation
moves: particular mutation operations of single attributes of Xi⊕j need to be speci-
fied specifically for a particular optimization problem, either in predefined numerical
boundaries of the different attributes or in a more specialized way.

In case of the above example of a molecular lattice, mutations are either translations
or rotations of single molecules, swaps of center-of-mass positions or orientations of
pairs of molecules or deformations of the unit cell. Each of these mutation moves are
performed with a certain probability and within preset numerical boundaries [Xmin,
Xmax].

This step of the algorithm has the purpose of exploring disconnected areas in configu-
ration space, a feature which is indispensable in global minimization techniques.

Reproduction Operation: Invasion- and Injection-Operations

We usually perform independent optimization runs simultaneously for several, differ-
ent sets of system parameters in this thesis. In Section 3.2 such system parameters
might be the molecular density or the value of an external control parameters such
as the electrostatic field strength. In a related project [213] on the self-assembly of
ionic liquid crystals20 [217, 218] the locations and values of the charges within the
anisotropic particles, the aspect ratio and the packing fraction of the particles of el-
lipsoidal shape are the system parameters. For a particular problem, some of these
19Notably, ramp-compression-moves are not applied in this thesis but in a related project in the scope

of R. Wanzenböck’s diploma thesis [213] on the “self-assembly of ionic liquid crystals into smectic
phases”, i.e., of ellipsoidal shaped, charged molecules, in three dimensions [217, 218].

20Ionic liquid crystals have attracted a steadily increasing interest during recent years both, in aca-
demic and in industrial research. With their anisotropic shape and their ability to carry charges
they combine properties of charged particles and liquid crystals which are, for instance, reflected
in their self-assembly capacities, making them technologically highly interesting [217, 218].
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sets of parameters are very similar, such that we can expect that the respective evo-
lutionary optimization processes lead to similar results (or at least similar, competing
candidate solutions may emerge during the respective evolutionary processes). We
define compatible sets of parameters as sets of parameters which exhibit the smallest
available numerical difference – amongst all considered sets of parameters in different
evolutionary optimization procedures – in all predefined “directions” of the parameter
space; which particular parameters are considered to be relevant for identifying com-
patible sets of parameters is an input to the algorithm, i.e., a hyper-parameter. The
populations of evolutionary optimization procedures which use a compatible parameter
set are labeled as compatible populations. To make use of the heuristically evaluated
genetic traits of different, independent evolutionary optimization procedures, which
use compatible sets of parameters, we introduce a so-called invasion-operation:

1. Choose one particular current compatible population – which represents a popu-
lation of alien candidates to the current optimization procedure (with different,
yet compatible system parameters).

2. Pick one high fitness candidate from the chosen compatible population according
to the “roulette wheel” (or a suitable other) method; the fitness values of the alien
candidates from the compatible evolutionary process are used for this purpose.

3. We label the particularly picked alien candidate as invader configuration.

The invasion-operation is performed with a certain probability, rI , and, if applied,
replaces the mating operation: the invader configuration replaces the offspring in the
rest of the reproduction operation, see Fig. 2.5.

This move allows to more efficiently perform evolutionary optimization for a large grid
of system parameters since good genetic information can diffuse throughout different
parallel optimization runs of compatible (neighboring) sets of system parameter: dif-
ferent, compatible optimization procedures can make use of the heuristics of other
compatible populations. In that way, the invasion-operation permits to easily and
efficiently embed additional evolutionary optimization procedures for new sets of sys-
tem parameter into a grid of already converged evolutionary optimization procedure
which use different system parameters: a rather new, non-converged population can
be quickly guided towards promising regions in the configuration space by employing
frequent invasion operations. However, in general the invasion-operation needs to be
applied with great caution, especially along phase boundaries in the parameter space,
since successive invasions introduce a certain bias to the evolutionary process.

We also introduce a so-called injection-operation which allows us to bias an evolu-
tionary ground state search towards selected regions in the configuration space (i.e.,
towards specific candidate solutions with specific, selected traits). The injection-
operation is performed with a certain probability, rJ , and, if applied, replaces the
mating operation: an injection population of specially designed candidates is gener-
ated at the beginning of the EA, which are considered to be promising candidates for
(or at least valid competitors to) the optimal solution of the optimization problem.
The candidates of the injection population are usually designed via an educated guess
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or are good solutions to the optimization problem suggested by other sources21. One
designed candidate configuration is chosen at random from the injection population
and replaces the offspring in the rest of the reproduction operation.

With such an injection-operation the convergence of the EA can be biased and analysed:
for difficult problems it can be quite time-consuming for the EA to identify promising
regions in configuration space starting from a random population. Furthermore, the
EA can prematurely converge towards a local minimum of the optimization problem
(and trap itself there). Via injecting specially designed candidate solutions both, an
initially random or a trapped population can intentionally be steered towards other
regions in the configuration space. On the other hand, if the EA has, indeed, identified
the global optimum, the injection-operation can be used to challenge the solution of
the EA.

Offspring Relaxation: Local Optimization

After the crossover and mutation steps, and assuming the offspring configuration,
Xi⊕j , does not yet represent a local minimum with respect to the objective function,
a local, gradient-descent based optimization (LO) is performed. For such LOs, we
mainly rely on the implementations of gradient descent algorithms such as the sequen-
tial least squares programming [169] (SLSQP) gradient-descent algorithm or the lim-
ited memory [170] Boyden-Fletcher-Goldfarb-Shanno gradient-descent algorithm [171–
174] in its bounded variant [175] (L-BFGS-B) from the open-source software package
“SciPy” [176]. These algorithms allow us to define numerical boundaries and con-
straints of the attributes of the genomes during a gradient descent optimization.

In our molecular lattice example, the LO operation has the purpose of minimizing
the forces and torques between the molecules and the stress of the unit cell. The
above mentioned constraint gradient descent optimizers are very helpful numerical
tools, for instance, to keep the unit cell volume fixed for restricted volume calcula-
tions and to prevent re-orientations of the molecules which would cause some of their
atomic constituents to be transferred into positions outside of the slab geometry (see
Section 3.2).

Subsequently we perform several basin-dropping (BD) steps, where we further try to
lower the energy of the candidate configuration by applying several small random moves
to the attributes of the locally optimized or, equivalently, relaxed offspring; from the
emerging configurations only the ones improving the value of the objective function
are accepted. The BD operation turned out to considerably improve the convergence
rate of the local optimization, in particular if multiple and alternating sequences of LO
and BD runs are applied.

21Often, such designed candidates can be identified via studying related problems (in literature) or by
identifying special symmetries of the optimization problem which favors special candidate solutions
over others.
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Artificial Selection: Survival of the Fittest

After the local search procedure the optimized offspring configuration, Xi⊕j , becomes
a new candidate to enter the evolutionary population, XNEA . The objective of the
EA is to retain the best configurations (i.e., the most favorable one with respect to
the objective function U(X )) within the population and to include only candidates
with values of the objective function, Ui = U(Xi), better or comparable to those of
the current population22. In an effort to quantify the quality of the candidates, their
so-called fitness is evaluated [62, 104, 105, 140, 205, 216], for which we have used in
this thesis the function:

F (U) = exp

(
−s U − Umin

Umax − Umin

)
; (2.57)

F (U) is a monotonic function of the evaluated objective function, U , of the candidates,
whose value ranges within the interval 0 ≤ F (U) ≤ F (Umin) = 1; Umin and Umax are
the minimal and maximal values of the objective functions realized in the current pop-
ulation. The selection parameter, s, quantifies the reproduction-rate for configurations
within the population in the sense that large values of s tend to exclude configurations
with low fitness from reproduction; following Ref. [62] we commonly use s = 3.

The aforementioned “roulette wheel” method for choosing suitable parent configura-
tions also relies on the fitness function (and hence the selection parameter): assuming
that the configurations within the population XNEA are sorted by their respective
fitness values in descending order, F (Ui) > F (Ui+1), the probability, f(Ui), of a con-
figuration, Xi, to be selected for reproduction is given in terms of the relative fitness [62,
104, 140, 216]:

f(Ui) =

NEA∑
j=i

F (Uj) ·

[
NEA∑
k=1

NEA∑
l=k

F (Ul)

]−1

, (2.58)

NEA being the total number of configurations within the population.

With a certain probability (commonly in 20% of all crossover moves) we also allow
reproduction between randomly chosen configurations.

Elitism and Extinction

Once a new configuration is accepted to enter the population another configuration
has to be eliminated. The probability p(Ui) for a configuration, Xi, to be eliminated
is given by

22As soon as a sufficient number of candidates are exchanged within the population, the later is
stored in a checkpoint file with a unique generation label; any generation may be used to initialize
a population in subsequent optimization runs.
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p(Ui) = exp [−sF (Ui)]

NEA∑
j=1

exp [−sF (Uj)]

−1

, (2.59)

a value which is again related to the fitness of the configuration, F (Ui), and the selection
parameter s. Thus, configurations with low fitness are more likely to be eliminated.

A certain number, NE , of the best configurations within the population are retained
in an effort to keep the so far best solutions as appropriate parent candidates for
the above-mentioned crossover procedures (a strategy referred to in the literature as
elitism [140]).

It should be emphasized that this strategy does not follow biological selection mech-
anisms [211], where populations are replaced entirely once that new generations have
been formed; however, our strategy ensures to protect the best genetic material from
extinction during the entire search procedure [62, 140].

Maintaining Diversity: Nichening

During evolutionary optimization processes it can happen that very few, highly adapted
(in our case structurally identical) candidates “overrun” the population and thereby
bring the evolutionary process effectively to an end. In an effort to prevent this from
happening we aim at maintain the genetic diversity within the population, i.e., we aim
at maintaining qualitatively different candidates which feature different, yet potentially
promising genetic traits for maximizing the fitness value of the objective function.
We achieve this by additionally applying a so-called nichening operation [112] in the
artificial selection process of the EA: locally optimized offspring configurations will be
discarded if the values of their objective function are too close to values of any other
configuration in the current population.

However, this procedure alone cannot cope with “degenerate” configurations, i.e., if
qualitatively different configurations exhibit essentially the same values of the objec-
tive function (within the specified nichening tolerance). In our approach we allow
configurations to enter the population only if their genetic traits differ significantly
from those of the competing, degenerate configurations (with similar values of the ob-
jective function). In order to quantify the difference between the traits of configurations
we associate a feature vector, xi, which collects a set of order parameters pertaining
to configuration Xi (see Section 2.3 for details for lattice configurations). The degree
of similarity between two configurations, Xi and Xj , is then evaluated by taking the
Euclidean distance between the corresponding feature vectors, i.e., ∆ij = |xi − xj |
(other measures are also possible); similar configurations will have a small distance,
while unlike configurations will have a large distance. If ∆ij is above a certain thresh-
old value Df , which is a parameter to the algorithm and depends on the magnitude of
the involved order parameters, the offspring configuration, Xi⊕j , will not be discarded
by the objective function nichening operation.
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Parallelization

In every cycle of the EA a new configuration, i.e., an offspring, is created from exist-
ing configurations of the most recent population, via a reproduction operation. This
new configuration is then subjected to an LO, an operation which represents by far
the most time-consuming task in our algorithm and is therefore performed in parallel
using the “mpi4py“ framework [214, 215, 219]. For an optimal load-balance we addi-
tionally spawn a “master” thread on one of the MPI-processes, which asynchronously
distributes reproduction and optimization tasks of offspring configurations among all
idle MPI-processes. The task of the master thread is represented by the entire flowchart
depicted in Fig. 2.4; the sub-task of the worker processes (i.e., the total number of Nw

MPI-processes which perform the main computational “workloads” of the EA) are also
indicated in Fig. 2.4.

The relaxed configurations are gathered by the master thread, which keeps a syn-
chronous list of the most current population. The master thread then decides – via
criteria based on the fitness values of the configurations and the nichening operations
with respect to the current population – whether the new relaxed candidates are ac-
cepted or rejected. In case of acceptance, the elitism and extinction operations are
applied and updates to the current population are made. The updated population is
stored into a checkpoint file (i.e., into separate files for every set of system parameters
of the evolutionary optimization procedure), which iteratively collects all encountered
populations during the evolutionary process. The updated population is then asyn-
chronously distributed amongst all idle MPI-processes.
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Figure 2.5: Flowchart of the reproduction-operation in our (memetic) evolutionary algorithm start-
ing at the top and returning an offspring candidate at the bottom. Until a proper offspring is
generated (i.e., an offspring which satisfies the nichening criterion and whose fitness is reasonably
large), the following steps are iteratively applied according to the flowchart: first, it is randomly
decided if an invasion operation is applied (with a rate rI , which we typically set < 1%) or, oth-
erwise, if a regular crossover operation is (potentially) performed. In case of being in the “yes”
branch of the invade population decision, an invasion operation is applied, see text (here also an
insertion operation can be performed, not shown here). In case of being in the “no” branch of
the invade population decision, i.e., in the crossover branch, it is randomly decided (with a rate
rC , which we typically set ≈ 80%) whether the crossover operation is applied or if a single can-
didate is directly picked from the current population as offspring. In case of being in the “yes”
branch of the perform crossover decision, first, NP parents (typically two) are picked from the
population, following the mating operation, which are then subject to the crossover operation in
order to generate an offspring. The offspring outcome after the invade population decision, i.e.,
either an invader configuration or a generated or single offspring, is then potentially (with a rate
rM , which we typically set ≈ 20%) subject to mutations of its attributes, i.e., to mutations of the
variables of the offspring candidate. Notably, after the perform mutation decision we check if the
(potentially mutated) offspring fulfills the nichening criterion (and if its fitness is reasonably large).
If so, the offspring is considered a proper offspring and the reproduction operation is considered
to be successful (otherwise the above steps are repeated). A successfully generated offspring is
eventually returned.
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2.3 Order Parameters of Structural Data

Order parameters are essential tools when it comes to understand structures, especially
when categorizing many of them into a phase diagram. Order parameters are functions
that map structural data, X , such as coordinates, orientations, etc., to a numerical
value23, Ψ(X ). Such a function usually quantifies a particular “fingerprint” in structural
data which allows us to relate a structure to an entire family of structures (such as
crystalline structures of specific symmetries). Typically, X can be related to a certain
family of structures if the value of the related order parameter is large, i.e., usually close
to unity, Ψ(X ) ≈ 1. On the other hand, low values of an order parameter suggest that
X can be distinguished from the related structural family. A set of order parameters,
thus, may provide us with essential information about the symmetries in structural
data.

Order parameters, from a thermodynamic point of view, are quantities which specify
the type of transition between two thermodynamic phases. Changes of the structure,
induced by changing external system parameters, are reflected in changes of the respec-
tive (representative) order parameters, which eventually vanish if the order is lost. In
case of a discontinuous jump of an order parameter at the transition point we speak of a
first order transition, in case of a continuous change between two phases the transition
is of second order [220–222].

In this thesis, we mostly quantify the order of structural data by means of the local
neighborhood of the constituents of ordered ground state structures. Therefore we start
this Section by introducing the concept of local neighborhoods on the basis of Voronoi
constructions in Subsection 2.3.1. We then define bond orientational order parameters
in Subsection 2.3.2 and orientational order parameters in Subsection 2.3.3. Further, we
introduce the concept of diffraction patterns, structure factors and reciprocal lattices in
Subsection 2.3.4 in order to quantify characteristic length scales and global rotational
symmetries of crystalline structures.

2.3.1 Local Environments and Neighbors: Voronoi Construction

The evaluation of local order parameters strongly depends on the method on how to
identify neighbors. In this thesis, we use the well-defined method of Voronoi construc-
tion [223, 224]. We are mostly concerned with particles or molecules in quasi–two-
dimensional slab or bilayer geometries. We therefore present the basic concept of
Voronoi construction in two dimensions (2D) below.

A Voronoi construction describes the partitioning of a space filled with a finite num-
ber of objects (also called seeds, vertices or generators) into non-overlapping polygons
without leaving voids; each polygon of a Voronoi construction defines the local, “clos-
est” environment of an object. To be more specific, a Voronoi construction defines a
tessellation of a space into Voronoi cells around these objects such that all points within
such a cell are closer24 to the central object than to any other vertex [223, 224].

23Usually – or often – the value of order parameters are normalized Ψ(X ) ∈ [0, 1].
24Usually, Euclidean distance metrices are used.
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In practice, Voronoi constructions are generated with the help of Delaunay triangula-
tion – which is possible in any dimensions – and we present the algorithm in 2D (the
bullet points correspond to panels (a) to (c) in Fig. 2.6):

(a) For each vertex i, i.e., for each particle position ri, we draw connections to all
other vertices, rj .

(b) These connections are then “cut in half” by straight lines, gij , satisfying gij :
(ri− 1

2(ri+rj)) · r̂⊥ij = 0, where r̂⊥ij is the unit vector orthogonal to rj−ri, thereby
drawing a convex hull around the centering particle, i. The so-called partitioning
lines, gij , thus contain all points which are equidistant to both particles i and j.

(c) The Voronoi cell of a vertex, i, is defined as the smallest polygon built by these
partitioning lines, gij , around the vertex; the corners of this polygon define the
vertices of the Delaunay-triangulation. In other words, the Voronoi-cell of vertex
i is the region in the vicinity of ri that is void of all partitioning lines, gij .

ri

rj

gij

rj

ri

rj

ri

(a) (b) (c)

lij

Figure 2.6: Schematic illustration of the Voronoi construction using Delaunay-triangulation fol-
lowing the algorithm described in the text. (a): Drawing connection from a central vertex i to
all other vertices j (dotted lines). (b): Drawing partitioning lines, gij , orthogonal to connection
lines rj − ri, i.e., solid, color-coded lines for each vertex connection (dotted lines). The smallest
polygon surrounding the central vertex, i.e., its Voronoi cell, is emphasized by thick blue lines. (c):
Nearest neighbors to vertex i, according to Voronoi construction, are connected with dashed lines,
the vertices of the Delaunay-triangulation are emphasized by small filled circles at the corners of
the Voronoi cell (thick blue polygon).

Vertices, or particles, i and j, that share a side, lij , of a Voronoi polygon (or the area of
a polyhedron in higher dimensions) are considered the nearest neighbors of the Voronoi
construction (cf. connected vertices in Fig. 2.6(c)).

Many open source software packages [169] provide faithful and numerically optimized
implementations of the Voronoi tessellation scheme explained above for any dimen-
sions.

2.3.2 Bond Orientational Order Parameters

In this thesis, we mostly employ order parameters which describe global properties (or
symmetries) of an ordered structure in two dimensions based on the local proximity
of all of its atomic or molecular constituents. These parameters can be expressed as a
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sum (or the average) over local order parameters ψi, calculated for all N particles in
the system, i.e.,

Ψν(X ) ∼
N∑
i=1

ψi(ri, r
Ni ; ui,u

Ni ; ν); (2.60)

where, here, X = {rN ,uN} represents the set of particle positions, rN = {r1, . . . , rN},
and orientations, uN = {u1, . . . ,uN} of a particular structure, the vectors ri and ui
specify the position and the orientation of particle i, while rNi and uNi are the sets of
positions and orientations of the neighboring particles of particle i, respectively; Ni is
the number of neighbors25 of particle i. The role of the parameter ν will be specified
below.

ri

rj

Φij eref

rk

Φik

ri rj

(a) (b)

ui ujrji

Figure 2.7: (a) Schematic representation of ingredients of bond-orientational order parameters
defined by Eqs. (2.61) and (2.62) and (b) of orientational order parameters given by Eqs. (2.63)
and (2.64); polygon sides, lij , are shown in Fig. 2.6(c).

We define the so-called bond orientational order parameters (BOOPs), Ψν(X ), as de-
fined in Refs. [225, 226] and revisited in Ref. [227], as

Ψν(X ) =
1

N

N∑
i=1

∣∣∣∣∣∣ 1

Ni

Ni∑
j=1

exp[ıνφij ]

∣∣∣∣∣∣ ; (2.61)

who depend only on the angles, φij (with cosφij = r̂ij · êref), which is enclosed between
the bonds of a central particle, i, to each of itsNi neighbors. In Eq. (2.61) we introduced
the vector r̂ij = (rj−ri)/|rj−ri|, i.e., the unit vector between two neighboring particles
i and j, the reference axis êref (which is of unit length), and the complex unity ı,
ı2 = −1; the situation is depicted in Fig. 2.7(a).

The orientational symmetry, which is related to the mean coordination number, is
quantified by the (integer) variable ν: the ν-fold bond orientational order parameter,
Ψν(X ), assumes the value one if the angles between neighbors are multiples of 2π/ν
and attains values close to zero for a disordered particle arrangement or if the ν-fold
symmetry is not present.

The numerical value of Ψν(X ) defined by Eq. (2.61) strongly depends on the number of
neighbors Ni and on the complex phase, ıνφij , between neighboring particles i and j.
Even tiny numerical deviations of the particle positions from an ideal configuration can
25Neighbors might be defined according to the Voronoi construction described in Fig. 2.6.
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change the number of neighbors and the associated complex phases between neighbors
in a way that strongly affects the value of Ψν(X ) [62]. In this thesis, the lattice
structures we are dealing with are never perfect and the number of nearest neighbors
can differ from the ideal value. In an effort to guarantee better numerical stability
in the evaluations of bond orientational order parameters of numerically imperfect
configurations we use a modification of the POOPs defined by Eq. (2.61), which was
proposed in Ref. [228]: this modified definition includes a weighting factor which is
related to the polygon side length, lij , that neighboring particles share

Ψν(X ) =
1

N

N∑
i=1

∣∣∣∣∣∣ 1

Li

Ni∑
j=1

lij exp[ıνφij ]

∣∣∣∣∣∣ ; (2.62)

with Li =
∑Ni

j=1 lij ; the polygon side lengths, lij , are extracted from the Voronoi
construction, cf. Fig. 2.6(c).

We usually drop the argument, X , for both, the bond-orientational order parameter
defined by Eq. (2.61) and for the orientational order parameters defined by Eq. (2.62),
and write Ψν ≡ Ψν(X ), unless indicating a particular realization of a structure, Xi, is
explicitly necessary for the discussion.

2.3.3 Orientational Order Parameters

In case of molecular configurations one often deals with anisotropic shapes and inter-
actions; it is therefore useful to quantify the orientational order of molecular configura-
tions. Similar to Eq. (2.62) we can quantify global orientational order including again
the above Voronoi nearest-neighbor construction in the following way:

β =
1

2N

N∑
i=1

1

Li

Ni∑
j=1

lij |ûi · ûj | ; (2.63)

here ûi is a unit-vector which specifies the orientation of particle i, see Fig. 2.7(b).

Finally, we can combine orientational order with positional degrees of freedom, using
the unit vector r̂ij between two neighboring particles i and j:

α =
1

2N

N∑
i=1

1

Li

Ni∑
j=1

lij
∣∣(ûi · r̂ij)2 + (ûj · r̂ij)2

∣∣ , (2.64)

suggesting again a modified version of the order parameters with the side lengths of
the Voronoi polygons, lij [229]; ûi is again a unit-vector defining the orientation of a
particle in the lab-frame.

2.3.4 Global Symmetries: Reciprocal Lattice and Structure Factor

X-ray, electron or neutron diffraction experiments are important tools in order to in-
vestigate the microscopic structure of materials, be it of crystalline, quasicrystalline or
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of disordered nature. Here we are concerned with the static structure factor, which is
an important mathematical description of how a material scatters incident radiation.
Further, we are only concerned with crystalline structures, i.e., a spatially periodic lat-
tice of copies of a unit cell (which is spanned by the lattice vectors ai) with N atoms or
molecules in its basis. We define the lattice vectors a1, a2 and a3 in three dimensions
as

a1 = (a11, 0, 0), (2.65)
a2 = (a21, a22, 0) and (2.66)
a3 = (a31, a32, a33). (2.67)

In diffraction experiments an incident beam is scattered at scattering centers (i.e.,
particles) within the lattice; constructive (or destructive) interference of the scattered
waves from different scattering centers form a scattering pattern. We assume weak26

and elastic scattering27 with an incident wave vector kI and a scattered wave vector
kS , whose wave length is given by λ = 2π/|kI | = 2π/|kS | with |kS − kI | = 4π

λ sin (θ),
where θ is the angle between incident and scattered wave vectors [220, 230].

According to Bragg’s law [231], i.e., 2d sin(θ) = nλ, constructive interference of scat-
tered beams only occurs at angles θ, where the phase-shift between beams that are
scattered at different, parallel planes, d, of the periodic scattering centers is an integer
multiple of the wave length, λ.

The reciprocal lattice vectors, a∗i, are defined through the condition ai · a∗j = 2πδij ,
with δij = 1 for i = j and δij = 0 otherwise. For a three-dimensional lattice the
reciprocal lattice vectors can be given by

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
=

2π

V
(a2 × a3), (2.68)

a∗2 =
2π

V
(a3 × a1) and (2.69)

a∗3 =
2π

V
(a1 × a2), (2.70)

where V = a1 · (a2 × a3) = a11 a22 a33 is the unit cell volume; a× b denotes the cross
product and a · b the inner product between two vectors a and b, respectively.

The integer Miller indices {h, k, l}, which define all possible parallel planes, dhkl, in the
real space lattice (cf. Bragg’s law above) also define the lattice points, (ha∗1, ka

∗
2, la

∗
3),

of the reciprocal lattice. In that way, the reciprocal lattice determines the positions
(i.e., the angles θ) of constructively interfering diffracted beams kI = (ha∗1, ka

∗
2, la

∗
3)

by Bragg’s law.

A perfect crystal is mathematically defined by a unit cell, i.e., by the lattice, and
the atomic or molecular basis, i.e., the arrangements of particles within this unit cell.
26The amplitude of the incident beam is assumed to be constant throughout the sample and no

multiple scattering shall occur.
27Incident wave vector kI and scattered wave vector kS have the same wave length, |kI | = |kS |.
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Analogously, a reciprocal crystal – which is actually observed in scattering experiments
– is composed of a reciprocal lattice and a structure factor, the latter being defined
by

Fhkl =
N∑
i=1

fi exp (−2πı(hxi + kyi + lzi)) (2.71)

where N is the number of particles in the primitive unit cell, xi, yi and zi ∈ [0, 1] are
the coordinates within the unit cell and fi is the form-factor (which we here usually
set one) of particle i. This expression relates the amplitude and phase of the incident
beam, kI , diffracted by the {h, k, l} planes of the crystal to that produced by a single
scattering center, i, of the unit cell [220, 230].
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2.4 Categorizing Structural Data with Unsupervised
Clustering Algorithms

Scientists and engineers nowadays are often confronted with huge data sets, may it be
images or written text of any kind, scattering data from particle detectors, geometric
data of lattice structures (i.e., particle arrangements) generated by computer experi-
ments or order parameters of such particle configurations [119]. Analysing such data
sets is usually a task far from being trivial, especially in high-dimensional spaces: a
data set, X = {x1, . . .xN}, consists of i = 1, . . . , N data elements (or, equivalently,
data points), xi = {x1, . . . , xNf }. Each data element, xi, also referred to as feature
vector, may contain a large number, j = 1, . . . , Nf , of so-called features, xj , such as the
values of different pixels of an image, the different channels of the measurement of a
particle collision or the coordinates, orientations and/or order parameters of a particle
arrangement of a (lattice) structure. In certain circumstances a few clear signals in the
data (i.e., a few characteristic features, xj , in the feature vectors, xi, of a data set X)
may permit us to categorize the elements of a data set (e.g. into different structural
families with clear, characteristic order parameters). However, the shear size of typical
data sets and the often immense complexity of the involved features usually render a
classification scheme intractable to be manually carried out by a human being. In such
cases, and to obtain a more comprehensive picture of the properties of the underlying
data in general, one can turn to methods from unsupervised machine learning [119,
232].

In this thesis, we are mostly concerned with organizing large sets of lattice structures,
which are generated by different computer experiments for a variety of system pa-
rameters (e.g. with algorithms described in Section 2.2), into archetypical families of
structures (i.e., into different categories). To achieve this, we rely on a set of order
parameters28,29 (cf. Section 2.3) which we evaluate for every structure and which we
then collect in a corresponding data set of order parameters; every element in the order
parameter data set represents a feature vector which is related to one specific lattice
structure from the computer experiments. The elements, or data points of such an or-
der parameter data set may be arranged in the Nf -dimensional so-called feature space,
spanned by the Nf features, in a certain geometric way, such that spatially separated
clusters (in the different directions of the feature space) of similar data elements30

may be identified. Methods from unsupervised machine learning [119] can be used to
analyse a data set of feature vectors (or of order parameters in our case) for certain
similarity measures in the features which may permit us to algorithmically organize
the elements of the data set into an initially unknown set of categories [232].

We use maybe simplest (and therefore maybe the most applied) form of unsupervised
machine learning [119], namely clustering algorithms [119, 235, 236], in order to or-
ganize data sets of lattice structures into families of structures. In the language of

28Of course, a set of order parameters needs to be defined specifically for a particular problem.
29Other techniques may even directly operate on the structural data (i.e., on a data set of coordinates

of the particles), see for instance Refs. [233, 234].
30One specific cluster is considered to contain similar data elements. See Ref. [232] for an in depth

discussion on different, problem specific similarity measures in data science problems.
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clustering algorithms, the procedure of categorizing data elements via similarity mea-
sures of data points in a feature space into different clusters is usually denoted as
clustering or labeling : each of the i = 1, . . . , N elements of a data set is labeled by an
identifier, kc, which assigns each element i to one of the c = 1, . . . , Nc categories (or
clusters) identified by the clustering algorithm31.

There exists a vast, ever growing number of clustering algorithms and the decision for
choosing a suitable method may depend on several issues [119]:

• The intrinsic geometries forced upon the feature space of a data set by the partic-
ular choice of features32 as well as the specific geometric shapes of clusters in the
feature space of a particular data set may influence the outcome of a clustering
algorithm33 [119].

• The size, N , of the data set and the dimensionality, Nf , of the feature space may
influence the choice of clustering algorithm used in practice (from a conceptual
point of view).

• The data set size and feature space dimensionality are also relevant when con-
sidering the time complexity of different clustering algorithms (with respect to
N and Nf ) and the available resource when applying a specific method.

Depending on the intrinsic properties of the available features and on the particular
realization of the data elements of a data sets some algorithms might be favorable over
others [119, 232].

Many different clustering algorithms (and many other machine learning methods) are
implemented in the Scikit-Learn Python package [237] which also provides great tuto-
rials and literature on that topic. A very instructive review on such useful tools and
many other helpful machine learning applications in physics or chemistry can be found
in Ref. [119].

This Section is organized as follows: in Subsection 2.4.1 we first present some ideas
form the literature how to identify and capture characteristic features in a data set
and how to reduce the dimensionality, Nf , of the feature space to an Nl-dimensional
(representative) latent space with Nl ≤ Nf , using principal component analysis [238].
We then focus on two heavily used standard clustering algorithms, namely k-means
clustering [239–242] in Subsection 2.4.2 and density-based (DB) clustering [243] in Sub-
section 2.4.3, which both rely on the Euclidean distance as a measure for similarity of
data points in the feature space. In Subsection 2.4.4 we introduce t-distributed stochas-
tic embedding (t-SNE) [244], a clustering algorithm which does not rely on Euclidean
distance measures. In Subsection 2.4.5 we introduce the concept of (adjusted) mutual

31Depending on the particularly applied clustering algorithm the number of clusters, Nc, may be a
preset parameter to the algorithm or may even be identified by the algorithm during execution.

32For instance, to identify spatially separated, spherical clusters of data elements in an Nf dimensional
feature space might be conceptually different from identifying clusters of data elements which are
arranged on the surface of spheres with different radii but with a common center (in the same
feature space).

33Different clusters may be of different geometric shape, of different spatial extent, may be separated
or may overlap either due to intrinsic properties of the features (which might not be capable of
distinguishing between different categories) or due to noise in the features of the data set.
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information [245, 246], which quantifies the agreement of different clusterings of the
same data set via information theoretic measures.

2.4.1 Dimensional Reduction with Principal Components Analysis

Introducing order parameters (or features) of a system often is not an easy task. Fur-
thermore, interpreting features, especially in high-dimensional spaces, spanned by the
number of data elements, N , and the dimensionality, Nl, of the feature space, quickly
becomes very difficult. Working in such high, N ×Nf -dimensional spaces – with often
more than hundred-thousands or millions of data elements and more than thousands
of features per data element – can be very challenging and impractical. If all data
in this data sets were relevant, i.e., if the information necessary for categorizing the
data was uniformly distributed across all captured features, we would have a hard time
identifying meaningful results; this is often referred to as the curse of dimensionality.
Luckily, in real-world physical problems a vast number of features of raw or processed
data may indeed be redundant or simply irrelevant to the problem at hand. In sta-
tistical physics, for example, macroscopic systems with a huge number of microscopic
degrees of freedom can often be described by very few order parameters such as tem-
perature, magnetisation, density, etc.; a few characteristic, collective quantities, which
are based on ensembles of microscopic states of a system, are often sufficient to describe
a macroscopic physical system [119].

In this Subsection we present some ideas form the literature on how to identify and
capture characteristic features in an arbitrary data set and how to reduce the di-
mensionality of the Nf -dimensional feature space of a data set to an Nl-dimensional
(representative) latent space using principal component analysis [238] (PCA).

In general, dimensional reduction describes the process of transforming a data set
X = {x1, . . . ,xN} ∈ RN×Nf of N data elements, xi ∈ RNf , represented in a high,
Nf -dimensional feature space, via the operator P to a low-dimensional latent space
representation of the data, L = P(X) = {l1, . . . , lN} ∈ RN×Nl , with li ∈ RNl being the
Nl-dimensional latent space representation of xi, see Fig. 2.8 for an illustration.

nfeatures nlatent

nsamples

Figure 2.8: Schematic illustration of the transformation of a data set, X, of nsample data elements
(or samples) defined in a high, nfeatures-dimensional feature space (X ∈ Rnsample×nfeature) to a
lower, nlatent-dimensional latent space representation, L = P(X) ∈ Rnsample×nlatent , of the data.
The transformation from X to L is indicated by the operator P, the inverse transformation (which
is, in general, not possible without information loss) as P−1 [238, 247, 248].
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In most cases such transformations are (necessarily) associated with information loss,
i.e., the transformation is not bijective and we have P−1(L) = X′ 6= X. It is, however,
crucial the low-dimensional representations of the data in the latent space, L, is able
to address the essential features of the original data, X, as good as possible: the
content of the relevant information in X should still be contained in X′. For that
purpose, it is, for instance, desirable that pairwise distances34, D(xi,xj) = |xj − xi|,
of data elements xi and xj of the data set in the feature space representation, X, are
conserved, as good as possible, in the latent space representation, L, of the data, i.e.,
D(xi,xj) ≈ D(li, lj). The distances may differ in scale but the important point for our
purposes is, that neighboring points, xi,xj ∈ RNf , in the feature space should also be
neighboring points, li, lj ∈ RNl , in the latent space [119].

One very frequently used method for dimensional reduction is the above mentioned
principal component analysis. PCA can be understood as a projection, PXL, of the
N data elements of a data set represented in the high-dimensional feature space, X ∈
RN×Nf , to a low-dimensional latent space representation, L = PXL(X) ∈ RN×Nl .

Closely following the derivation in Ref. [119], we start from N data elements (or
equivalently, data points), X = {x1, . . . ,xN}, each living in an Nf -dimensional fea-
ture space, xi ∈ RNf . We assume – without the loss of generality – zero empiri-
cal mean, xi → xi − E[x], with E[x] = N−1

∑N
i=1 xi and unit-variance, Var[x] =

(N −1)−1
∑N

i=1(E[x]−xi)
2 = 1. The N ×Nf matrix X is called design matrix (whose

rows are the data points and whose columns are the different features). We are inter-
ested in a linear transformation that reduces the covariance between different features
which can be expressed using the Nf×Nf symmetric covariance matrix, Σ(X), defined
by

Σ(X) =
1

N − 1
XᵀX, (2.72)

whose diagonal elements, Σ(X)jj , measure the variance of features and whose off-
diagonal elements, Σ(X)ij , the covariance between feature i and j; Xᵀ is the trans-
formed of X. Further, we can perform singular value decomposition (SVD) on the
design matrix

X = USVᵀ, (2.73)

with S being the Nf × Nf diagonal matrix of singular values, si, and the N × Nf

matrix U and the Nf×Nf matrix V are orthogonal matrices whose columns represent,
respectively, the left and right singular vectors of X. We use Eq. (2.73) to rewrite the
covariance matrix given by Eq. (2.72) as follows

Σ(X) =
1

N − 1
VSUᵀUSVᵀ = VΛVᵀ, (2.74)

where we introduced the Nf × Nf diagonal matrix Λ = S2/(N − 1) representing
the eigen-decomposition of the covariance matrix Σ(X). The along the diagonal
descending-ordered i = 1, . . . , Nf eigenvalues, λi = s2

i /(N − 1), of Λ can be used
for dimensional reduction: large values of λi label directions along the associated sin-
gular vectors vi ∈ RNf (collected in the matrix V = (v1, . . . ,vNf )) of high variance in
the feature space of the data which are, in many cases, those directions which contain
34Here we assume a Euclidean distance metric but other choices of distance metrices are also possible.
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the relevant information of the data. In contrast, directions with small variance, i.e.,
with associated small values of λi, are usually associated with noise and can potentially
be ignored. The name “principal component analysis” stems exactly from the ordering
λ1 > λ2 > λ3 > . . . > λNf of the eigenvalues of Λ: the singular vector, vi, with the
largest (second largest, third largest, . . . ) eigenvalue, λi, is called the first (second,
third, . . . ) principal component.

An important measure to quantify the information contained in a principal component
is its percentage in the explained variance λ(e)

i , given by

λ
(e)
i =

 Nf∑
j=1

λj

−1

λi. (2.75)

Often, only very few of the singular values, si, are significantly larger than zero.
Selecting the Nl = N∗f largest eigenvalues, λi, and the associated singular vectors,
V∗ = (v1, . . . ,vN∗f ) ∈ RNf×N

∗
f , provides us with an effective way to project the data

points to a low-dimensional (but representative) latent space L = XV∗ = PXL(X).
In that way, the transformation PXL is simply a linear projection from RNf to RN

∗
f

for every data point. For a more comprehensive explanation of PCAs see [238, 249,
250].

There are many examples in physics where PCA has been applied, many of which are
listed in Ref. [119]. We employ the concept of PCA heavily in Subsection 3.1.4 in
order to identify families of structures from a large data set of unlabelled (i.e., not
categorized), ordered ground state configurations of the asymmetric Wigner bilayer
system [62–64].

2.4.2 k-means Clustering

Probably simplest and yet instructive form of unsupervised learning are clustering algo-
rithms, whose objective is to identify groups in unlabeled data according to similarity
or distance measures of one kind or another [119, 235, 236]. Here we introduce the
k-means algorithm [239–242] by closely following the derivation in [119].

Starting from N data points, X = {x1, . . . ,xN}, in an Nf -dimensional feature space,
xi ∈ RNf , the objective is to distribute a predefined (fixed) number of K cluster
centers, called the cluster means K = {µ1,µ2, . . . ,µK} with µk ∈ RNf , in the feature
space, such that data points assigned to the different clusters minimize the following
cost function

C(X,K) =

K∑
k=1

N∑
i=1

rik(xi − µk)
2. (2.76)

In Eq. (2.76) the assignment of data point i to cluster k is realized via the binary
variable rik = 1 (and rik′ = 0 ∀ k 6= k′). Consequently,

∑K
k=1 rik = 1 ∀ i expresses

the fact that data points are assigned exclusively to one cluster only.
∑N

i=1 rik = Nk

defines the size of cluster k, i.e., the number of data points associated with it. The set
of assignments k = {rik} is also called labeling or clustering of the data points.
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Minimizing Eq. (2.76) can be interpreted as finding the K cluster means, K, and
assigning, via rik, the N data points to different clusters, k, such that the (scaled)
variance of each cluster,

∑N
i=1 rik(xi − µk)

2, is minimized. This is performed in a
two-step procedure:

1. Eq. (2.76) is minimized with respect to µk given a set of assignments {rik}, i.e.,
(∂C/∂µk)|{rik} = 0, yielding the update rule for µk = N−1

k

∑N
i=1 rikxi, i.e., µk

is assigned as the geometric center of the members rikxi of cluster k.

2. Given the cluster means, K = {µ1,µ2, . . . ,µK}, we want to find the assignments
k = {rik} which minimize Eq. (2.76) by assigning each data point to its nearest
cluster-mean: rik = 1 if k = arg mink′(xi − µk′)

2 and rik = 0 otherwise.

These two steps are performed in an alternating way until some convergence criterion
is met, for instance if the change of the object function, given by Eq. (2.76), between
two iteration steps is smaller than a threshold.

The k-means algorithm scales linearly with the size of the data set, more specifically as
O(KN), and can therefore be used for a large amount of data. However, Eq. (2.76) is in
general a non-convex function and the minimization result may largely depend on the
initial (random) choice of the means K and the assignments k = {rik}. In practice, the
k-means algorithm is applied multiple times with different (random) initial conditions
which may result in different assignments. Then, usually the particular assignment with
the minimal value of C(X,K), given by Eq. (2.76), compared to all other assignments,
is chosen as the “best” solution to the clustering problem.

2.4.3 Density-Based Clustering: DBSCAN

Density-based (DB) clustering is particularly useful in cases where different clusters of
data points, xi ∈ RNf , of a data set X = {x1,x2, . . .xN} form high density regions
in the Nf -dimensional feature space (i.e., regions with many data points per feature
space volume) which are separated by regions of lower density. The core idea behind
DB clustering is to assume that a relative local density estimation in the feature space
of the data is possible (see below for details) which allows the data to be ordered (and
clustered) by their densities [119].

The most prominent DB clustering algorithm is called density-based spatial clustering
of applications with noise (DBSCAN) [243]. All data points, xn, that are at a distance,
|x−xn|, smaller than an ε to other data points in X = {x1,x2, . . .xN} are collected in
an ε-neighborhood Nε(xn) = {x ∈ X : |x−xn| < ε} and are considered as a group. If a
minimum number of data points, Nm, (which, besides of ε, is one of the two parameter
of the algorithm) lie within Nε(xn) the point xn is considered to be a so-called core-
point, otherwise xn is considered to be a noise-point. Overlapping core points – by
means of the ε-neighborhood Nε(xn) – are considered to form a cluster.

The main advantage of DB clustering is, that the number and the size of the clusters
can be detected by the algorithm. DBSCAN works quite accurately in low-dimensional
feature spaces, such as Nf = 2 or Nf = 3. However, density based measures, especially
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in high-dimensions, can easily be affected by noise in the data, which limits the applica-
bility of DB clustering methods to data with low-dimensional feature spaces for many
practical purposes [119]. Often, dimensional reduction of a high-dimensional feature
space via, for instance, PCA (see Subsection 2.4.1) can be applied prior to DBSCAN
(or, in general, to any other clustering algorithm) to transform the clustering problem
into an easier one with a more manageable number of degrees of freedom of the latent
space representation of the data.

2.4.4 t-SNE Clustering and High-Dimensional Visualization

Another quite useful tool for visually representing a set of data from a high-dimensional
feature space in a low-dimensional latent space, i.e., in a few embedding coordinates,
is t-stochastic neighbor embedding (t-SNE) [244]. To be more specific, t-SNE is a
non-linear mapping of a total number of N data points, X = {x1, . . . ,xN} with xi ∈
RNf , to low-dimensional embedding coordinates (in two [or three] dimensions), T =
{t1, . . . , tN} with ti = (ti1, ti2[, ti3]) ∈ RNl=2[or 3], while aiming at preserving “local
structures” in the original feature space representation, X, of the data35. Nf is the
number of features in the data set and Nl is the dimension of the latent space.

The idea behind the t-SNE analysis is to identify neighboring data points in the feature
space by a proper distance and similarity measure with respect to the different features
of the data. Specifically, t-SNE aims at matching the probability distribution pij
(defined below) of two data points, xi and xj , being neighbors in the features space
with the probability distribution qij (also defined below) of the same two data points, ti
and tj , being neighbors in the latent space representation of the data. This is achieved
by choosing the embedding coordinates ti for all i = 1, . . . , N data points accordingly,
as discussed below [119].

The Gaussian likelihood, pi|j , that data point xi is a neighbor of xj in the data set X
of N data points can be written as [244]

pi|j =
exp(−|xi − xj |2/(2σ2

i ))∑N
j 6=i exp(−|xi − xj |2/(2σ2

i ))
, (2.77)

where σi is free a bandwidth parameter which is usually determined by fixing the local
entropy H(pi) = −

∑N
j=1 pj|i log2 (pj|i) for each data point and where we set pi|i = 0.

For every i = 1, . . . , N data point xi the local entropy H(pi) is set to the same constant
value Σ, i.e., to the so-called perplexity Σ = 2H(pi) [244]. In that way, σi is determined
for every i = 1, . . . , N data point xi such that the value of σi is smaller for data points
in high-density regions of the data points X in the feature space and larger for data
points in low-density regions [119].

The main contribution to the Gaussian likelihood pi|j defined by Eq. (2.77) stems from
data points that are “nearby” in the feature space (which should also be nearby in
the t-SNE latent space). For data points that are “far apart” the contributions to pi|j
35Usually, t-SNE is combined with a preceding data preparation, such as scaling all features to unit-

variance– and zero-mean coordinates and applying principal component analysis or other dimen-
sional reduction tools beforehand, xi → x′i, see Subsection 2.4.1.
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is vanishingly small which, however, can consequently lead to ambiguous embedding
coordinates [119, 244]. For that reason, the symmetrized probability distribution pij ,
defined by

pij =
1

2N
(pi|j + pj|i), (2.78)

is used, rather than the Gaussian likelihood pi|j , to describe the local neighborhood
relations of data points in the feature space. Note that pii = 0 (since pi|i = 0) and∑N

i,j=1 pij = 1.

The t-SNE approach now aims at identifying a similar probability distribution, qij ,
of two data points, ti and tj , being neighbors in the low-dimensional latent space
representation, T = {t1, . . . , tN}, of the data with ti ∈ RNl ; qij is defined by [244]

qij =
(1 + |ti − tj |2)−1∑N
j 6=i(1 + |ti − tj |2)−1

, (2.79)

which is chosen as long tail distribution in contrast to short tail symmetrized Gaussian
distribution pij defined via Eqs. (2.77) and (2.78).

The two probability distributions pij and qij , respectively defined by Eqs. (2.78)
and (2.79), are then matched by minimizing the cost function C(T), which is defined
by the Kullback-Leibler divergence, DKL(p||q), as

C(T) = DKL(p||q) =
N∑

i,j=1

pij log

(
pij
qij

)
; (2.80)

C(T) is minimized under the variation of the embedding coordinates, T = {t1, . . . , tN},
and the embedding coordinates minimizing Eq. (2.80) represent the latent space rep-
resentation of the original data.

At this point, it is instructive to explicitly present the gradient, ∂tiC(T), of the cost
function, defined by Eq. (2.80), with respect to the embedding coordinates ti, i.e.

∂tiC(T) =

N∑
j 6=i

4 pijqijZi(ti − tj)−
N∑
j 6=i

4q2
ijZi(ti − tj) (2.81)

= F
(attr.)
i − F

(rep.)
i , (2.82)

with Zi = 1/(
∑N

k 6=i(1 + |tk − ti|2)−1). We can see in Eqs. (2.81) and (2.82), that
for every data point ti in the latent space, the gradient of the cost function can be
separated into two contributions: the first sum in Eq. (2.81) can be interpreted as a
collective force F

(attr.)
i , defined in Eq. (2.82), acting on a data point ti in the latent

space, which origins in attractive interactions between ti and all other data points tj 6=i;
analogously, the second sum in Eq. (2.81), represented by F

(rep.)
i in Eq. (2.82), can be

interpreted as a collective force, acting on data point ti, originating from repulsive
contributions between the data points [119].

In that way, the t-SNE approach of minimizing the Kullback-Leibler divergence be-
tween the feature space distribution pij and the latent space distribution qij can be
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interpreted as equilibrating the effects of attractive forces F
(attr.)
i and repulsive forces

F
(rep.)
i acting on the data points in the latent space: data points which are nearby in

the feature space (with large contributions to pij) experience large attractive forces
in the latent space (via large contributions to qij) and are thereby grouped together
in clusters in the latent space representation of the data by minimizing C(T); in that
way, short distance information (i.e., relative neighborhoods) of the data points is pre-
served. Data points which are far apart in the feature space, on the other hand, are
repelled from each other in the latent space due to the long range tails of qij . The
representation of the data in the t-SNE embedding coordinates thus forms clusters of
similar data points but different clusters are repelled such that they can more clearly
be distinguished from each other in the latent space compared to the original feature
space [119].

Often it is easier to visually separate clusters in a few t-SNE dimensions than in the
higher-dimensional feature space [119]. One can subsequently use clustering techniques
such as DBSCAN [243] (see Subsection 2.4.3) to label the different clusters identified
by the t-SNE analysis (see Refs. [86, 119]).

2.4.5 (Adjusted) Mutual Information

In the Subsections above we introduced clustering algorithms, with the objective
of partitioning a set, X = {x1, . . . ,xN}, of N data elements, into subsets, UR =
{U1,U2, . . . ,
UR}, such that the union of all clustered elements, ∪Ri=1Ui = X, uniquely gives the
set, i.e., they do not overlap, Ui ∩Uj = ∅ ∀i 6= j [246].

Commonly used algorithms, such as k-means clustering or DBSCAN, see Subsec-
tion 2.4.2 and Subsection 2.4.3, are, on the one hand, applicable in different situations
and, on the other hand, are not unique in their behaviour. The final result of such
algorithms may strongly depend on the respective initial conditions of the particularly
applied clustering algorithm (such as the initial, usually random choice of assigning
data points to clusters, etc.) and on the choice of the parameters of the algorithm, or
on noise in the data [237].

Here we are interested in comparing the results of different clusterings36, UR = {U1,U2,
. . . ,UR} and VC = {V1,V2, . . . ,VC}, by quantifying their overlap, or in other words,
by quantifying the shared information of different clusterings.

A fundamental class of techniques for comparing clusterings is formed by information
theoretic measures [246]. In this thesis we used the concept of adjusted mutual in-
formation, i.e., an information theoretic approach used for comparing clusterings of a
labeled data set [245, 246].

In order ot do so, we first define the R × C contingency table M = [nij ]
i=1...R
j=1...C in

Table 2.1, whose elements, nij = |Ui ∩Vj |, quantify the number of common objects
in clustering Ui and Vj .

36We want to compare either the results of different clustering algorithms or compare the results of
the same algorithm but with different initial conditions.
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UR/VC V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1

U2 n21 n22 . . . n2C a2
...

...
...

. . .
...

...
UR nR1 nR2 . . . nRC aR
Sums b1 b2 . . . bC

∑
ij nij = N

Table 2.1: Contingency table between two different clusterings, UR = {U1,U2, . . . ,UR} and
VC = {V1,V2, . . . ,VC}, with nij = |Ui∩Vj | being the number of common objects in clusterings
Ui and Vj ; and ai =

∑C
j=1 nij and bj =

∑R
i=1 nij .

The mutual information, IM (U,V), of two different clusterings, U ≡ UR and V ≡ VC ,
is defined as [245, 246]

IM(U,V) =
R∑
i=1

C∑
j=1

PUV(i, j) log
PUV(i, j)

PU(i)PV(j)
(2.83)

where PUV(i, j) = |Ui ∩Vj |/N is the probability that a data point, i, belongs to both
clusters Ui (in U) and Vj (in V) and PU(i) = |Ui|/N and PV(j) = |Vj |/N denote
the probabilities, that the data points i and j fall into the cluster Ui and Vj , respec-
tively. In that way, IM(U,V) quantifies the information which is shared between two
clusterings and thus can be interpreted as a similarity measure for clusterings; notably,
the upper bounds of IM(U,V) are the entropies H(U) = −

∑R
i=1 PU(i) logPU(i) and

H(V) = −
∑C

j=1 PV(j) logPV(j) [246].

The adjusted mutual information, IK(U,V), corrects the information theoretic mea-
sures of mutual information agreement of clusterings for chance (see Refs. [245, 246,
251] for details), and can be given by

IK(U,V) =
IM(U,V)− EMI(U,V)

max(H(U), H(V))− EMI(U,V)
, (2.84)

where the expected mutual information, EMI(U,V), between two (random) clusterings
is defined by

EMI(U,V) =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(1,ai+bj−N)

nij
N

log

(
N nij
aibj

)
×

ai !bj !(N − ai) !(N − bj) !

N !nij !(ai − nij) !(bj − nij) !(N − ai − bj + nij) !
, (2.85)

with ai =
∑C

j=1 nij and bj =
∑R

i=1 nij being the partial sums over the contingency
table M [nij ]

i=1...R
j=1...C defined in Table 2.1.

A value of IK(U,V) = 1 means perfect overlap between two different clusterings (i.e.,
the two clusterings label the data equivalently but potentially use different numerical
values to label the different clusters), a value smaller than one indicates differences in
the clusterings.
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In this Chapter, we present our numerical investigations of the structural ground state
self-assembly of two different systems, which are composed of (i) negative, classical
point-charges confined to the surfaces of two parallel, uniformly but differently charged
plates or (ii) of charged, polycyclic aromatic molecules confined to the volume near a
metal–liquid-interface under electrochemical conditions.

In Section 3.1 we numerically investigate the ordered ground state configurations of
the asymmetric Wigner bilayer system [62–64, 146, 147], a system of negative, classi-
cal point-charges confined to the surfaces of two oppositely charged, parallel plates of
uniform but different charge densities. Based on the studies of Antlanger et al. [62–64]
we investigate the asymmetric Wigner bilayer system for ordered, yet aperiodic qua-
sicrystalline structures [51] for selected values of the system parameters. To identify
the corresponding regions in the parameter space we first employ clustering algorithms
to the structural database of currently suggested bilayer ground state configurations
from Refs. [62–64]. We then focus on structures related to the snub-square ground
state configurations of the system – featuring an equilateral square-triangle tiling on
one of the plates, which is thus often considered to be a precursor of a dodecago-
nal quasicrystal [252–254]. Thereafter, we investigate possibly aperiodic ground states
configurations related to the trihexagonal phase of the system which give rise to pseudo-
dodecagonal traits in the tiling (clusters of rectangles and two different types of equi-
lateral triangles resembling regular dodecagons emerge). In both cases we identify a
series of self-similar super-structures which we then compare with ground state candi-
date configurations of the asymmetric Wigner bilayer system known from literature [62–
64].

In Section 3.2 we investigate the ground state self-assembly behavior of complex charged
molecules on a metallic surfaces under electrochemical conditions with elaborated nu-
merical tools [21, 22]. We propose a computationally lean, two-stage approach [86] to
treat this problem reliably. Stage one uses ab initio simulations to provide reference
data for the structures of the different molecules as well as of energies (evaluated for
archetypical configurations) to fit the parameters of a conceptually much simpler and
computationally less expensive force field of the molecules: classical, spherical particles,
represent the respective atomic entities while a flat and perfectly conducting wall repre-
sents the metallic surface. Stage two feeds the energies that emerge from this force field
into highly efficient and reliable optimization techniques to identify via energy mini-
mization the ordered ground state configurations of the molecules. We demonstrate
the power of our approach by successfully reproducing on a semi-quantitative level
the intricate supramolecular ordering observed experimentally for PQP+ and ClO−4
molecules on a Au(111)-electrolyte interface, including the formation of open-porous,
auto-hosts–guest, and stratified bilayer phases as a function of the electric field at
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the solid–liquid interface. We also discuss the role of the perchlorate ions in the self-
assembly process, whose positions could not be identified in the related experimental
investigations [83].
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3.1 Towards Quasicrystalline Order in the Asymmetric
Wigner Bilayer System

3.1.1 Introduction

In a Wigner bilayer system [146, 147] classical point-charges are confined between two
parallel plates with uniform, opposite surface charge densities, σ1 and σ2, maintaining
overall charge neutrality, see Fig. 3.1(a) for a schematic representation. Only recently,
analytic results of the zero temperature ground state formation of the charges for the
symmetric case, σ1 = σ2, could be determined [146, 147].

Detailed investigations [63, 64] on the self-assembly scenarios of the charges on the
two layers of the asymmetric case, σ1 6= σ2, have revealed a rich plethora of zero-
temperature ground state configurations; the phase diagram is shown in Fig. 3.1(d)
and Fig. 3.3. Any state of this system can be characterized by the separation of the
plates, d, and the ratio of the surface charge densities of the two plates1, A = σ2/σ1;
the setup is illustrated in Fig. 3.1(a) and a detailed explanation of the physics of the
system is presented in Subsection 3.1.3.

The results presented in Refs. [63, 64] show ordered zero temperature ground-state
structures which can be built by periodic stacking of respective irreducible unit cells (see
Fig. 3.3). In well-defined regions of the parameter space of the system (spanned by η ∝
d and A), ordered structures have been identified which can be considered as precursors
of quasicrystals [51]: amongst them are snub-square type of tilings, S1, i.e., a square-
triangle tiling [255] on one plate and squares on the other (cf. right panel of Fig. 3.1(b)).
Then there are tilings with pentagonal motives on one plate and rectangle-triangle
tilings on the other (cf. left panel of Fig. 3.1(b)) and Ix-Cairo type tilings [255] with
rectangles and two different types of equilateral triangles representing the basic tiles
of one plate of a bilayer structure which give rise to a hexagonal monolayer structure
if the particles of both plates were projected onto the same layer, see Fig. 3.1(c).

In contrast to an ordered crystalline structure, the particles of a quasicrystal – atoms,
molecules or in our case point-charges – form ordered but aperiodic (i.e., quasiperi-
odic [51]) patterns: a finite number of local motives (or tiles) can be used to aperiodi-
cally tile the entire space (or plane) without leaving any voids [256, 257]. Quasicrystals
exhibit long range orientational order but no translational symmetry [51]. Often qua-
sicrystals exhibit conspicuous five-fold, ten-fold, eight-fold or twelve-fold rotational
symmetries apparent in X-ray diffraction patterns which are inconsistent with any
kind of periodic crystalline structure with traditionally allowed two-, three-, four- and
sixfold rotational symmetry [51, 258, 259]. A prominent example of a quasicrystalline
pattern in two dimensions is the Penrose tiling [257, 260] with local pentagonal motives
formed by two distinct rhombic tiles with the same side-lengths. The respective angles
of the thin rhombus are 36◦ and 144◦, for the thick rhombus we have 72◦ and 108◦

(i.e., multiples of 36◦ = 360◦/10). The shapes of the tiles are related to the golden
mean, Φ = (1 +

√
5)/2: the long diagonal of the thick rhombus is Φ and the short

diagonal of the thin rhombus is 1/Φ (in units of the side-lengths of the tiles). When

1Following Refs. [62–64] and without the loss of generality we chose A ∈ [0, 1].
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imposing very specific local matching rules of these two basic tiles during tiling, global
decagonal rotational symmetry is achieved.

Some physical systems are structurally quite similar to quasicrystals by forming crys-
talline structures with large unit cells (thereby approximating aperiodic order) such as
Frank-Kasper phases [261] or, more generally, some tetrahedrally close-packed struc-
tures [262] or Mackay icosahedra [263]; so-called quasicrystalline approximants can
interpolate between crystalline and quasicrystalline order by forming ever-larger irre-
ducible unit cells2 which all feature local motives and environments of a certain tile-set
that also allows quasicrystalline ordering [264]. Quasicrystalline approximants often
show up in the experiment at similar (yet slightly different) values of the system param-
eters (such as temperature, pressure, etc.) as real quasicrystals [264] and potentially
indicate the presence of a quasicrystal in the system [265–268].

Mathematically, quasicrystals can be related to regular, periodic lattices in a higher-
dimensional space: it has been shown, for instance, that three-dimensional icosahedral
quasicrystals correspond to arrangements of three-dimensional hypersurfaces (or hyper-
surface segments) in a six-dimensional hpyercubic lattice [259, 269]; two-dimensional
aperiodic square-triangle based dodecagonal quasicrystals can be represented as pe-
riodic lattices in a four-dimensional space [253, 270, 271]. Thus, the structure of
aperiodic quasicrystals can be described via projections of higher-dimensional periodic
lattices onto hypersurfaces (i.e., onto the so-called physical space) that exhibit certain
angles with the hyperlattice vectors [264].

In this thesis, we focus on specific regions in the parameter space of the asymmetric
Wigner bilayer system featuring specific tilings or symmetries such as snub-square
tilings or structures with strong signals in the five- or twelve-fold orientational order
parameters [225–227], which thereby suggest structures related to quasicrystals.

Below we provide an outline of this Section. We first provide an overview of the basic
physics of the asymmetric Wigner bilayer system in Subsection 3.1.3. The results of
our investigations are then subdivided into three main topics – schematically depicted
in Fig. 3.1(d,c,b) – which can be considered as the precursors of three forthcoming
contributions:

In Subsection 3.1.4 we propose a new scheme based on k-means clustering [239–242]
of structures based on their order parameters to extend the current picture of the
phase-diagram of Refs. [62–64] via automatized (unsupervised) classification of struc-
ture families (cf. Fig. 3.1(d)). With this tool at hand, we can gain broader insights
into the complex phase behavior of the asymmetric Wigner bilayer system which will
help us identifying promising regions in the phase diagram which potentially host qua-
sicrystalline states.

In an effort to find dodecagonal quasicrystalline ground state candidates we specifi-
cally explore in Subsection 3.1.5 ever-larger square-triangle tilings which approximate
a dodecagonal quasicrystal [252, 254, 273] (cf. right inset in Fig. 3.1(b)) and test these
approximants against ground state configurations in the S1 region. We systematically

2An irreducible unit cell is the smallest possible unit cell, with as few particles inscribed as possible,
which is sufficient to fully describe a periodic structure.
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 RTt Decoration Scheme

Inflation

Dodecagonal Type I (S1)Pentagonal Families and General Trends

General Strategies: Dodecagonal Type I and Pentagonal TilingsWigner Bilayer System

Rectangle-Triangle-triangle Super-Structures Clustering: New Insights to Phase Diagram

Figure 3.1: Schematic overview of different subdivided studies on quasicrystalline order in the
asymmetric Wigner bilayer system performed in this thesis: (a) schematic representation of the here
investigated asymmetric Wigner bilayer system [62–64, 146, 147] at T = 0 K with blue/red colored
charges belonging to the bottom/top plates (layer one/two), respectively (see Subsection 3.1.3).
In this thesis, we always color charges of layer one in blue and charges of layer two in red in
the visual representations of bilayer structures. (b) General strategies to systematically explore
the asymmetric Wigner bilayer system for quasicrystalline ordering related to the S1 configuration
(example structures featured in right, red shaded panel in (b), cf. Subsection 3.1.5) and to structures
belonging to pentagonal families of bilayer configurations (example structures featured in left,
green shaded panel in (b), cf. Subsection 3.1.7) using so-called inflation rules [252, 254, 272]
and tailored optimization algorithms in the relevant regions of the (η, A)-plane (emphasized by
dashed, correspondingly colored areas in (d)). (c) Energy difference (logarithmic scale) of rectangle-
large–triangle-small–triangle (RTlts) super-structures to the ground state energies from Refs. [62–
64] in the relevant region of the (η, A)-plane (emphasized by dashed, blue rectangle in (d),
cf. Subsection 3.1.6). Insets show the decoration scheme of the rectangular and the two types
of triangular tiles and selected, newly discovered RTlts ground state candidate super-structures,
emerging in the white regions in (c), see Subsection 3.1.6. (d) Energy difference (logarithmic
scale) between the ground state– and the (lowest energy) competing structures from literature
[62–64] in the (η,A)-plane identified with the help of unsupervised clustering techniques (see
Subsection 3.1.4) highlighting phase boundaries of the asymmetric Wigner bilayer system (via dark
colors, cf. colorbar). The dashed, shaded regions in (d) emphasizes regions of interest – possibly
featuring quasicrystalline ordering in the Wigner bilayer system – which are studied in this thesis.

increase the complexity of the unit cells by a factor of (2 +
√

3) using “Stampfli”-
inflation [252] and periodic stacking of the unit cells, covering 6, 19, 22, 76, 82, 88,
306, 1142 and 1224 particles per unit cell. The required structure optimization of
these increasingly complex unit cells is performed with specifically implemented simu-
lated annealing and replica exchange Monte-Carlo methods, utilizing so-called zipper -
moves [254].
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In Subsection 3.1.6, we identify a new class of zero temperature ground state candi-
date structures in the proximity of the phase boundary between the regions of stability
of the trihexagonal- (Ix) and the honeycomb structure (H). Elemental rectangular
and two different types of equilateral triangular tiles arrange themselves in pseudo-
dodecagonal motives – composed of rectangles and triangles rather than squares and
equilateral triangles in S1– which themselves form triangular and rectangular super-
tiles. We provide design rules for mapping approximate dodecagonal square-triangle
structures via bilayer modulations3 of the hexagonal lattice which is related to hexag-
onal symmetric metallic mean quasicrystals [45, 264, 274]. Our analysis – numerically
based on replica exchange Monte-Carlo and a careful study of local environments –
reveals the emergence of zero temperature super-tiling global ground state candidates
of the asymmetric Wigner bilayer system with 25, 49, 56 or 192 particles per unit cell
(cf. Fig. 3.1(c)).

In Subsection 3.1.7, we discuss the current state of our research and miscellaneous
topics regarding pentagonal ground state structures of the asymmetric Wigner bilayer
system, where the trends in the structure formation are less clear at first sight. How-
ever, we can identify routes towards understanding the structure formation in some
of these pentagonal regions in parameter space (cf. left inset in Fig. 3.1(b) and green
region in Fig. 3.1(d)). Also, we briefly discuss the region of stability of Vx structures
(i.e., hexagonal bilayer structures with different particle densities per layer) and we re-
port relations between different ground state configurations in the asymmetric Wigner
bilayer system and three-dimensional atomistic structures known from intermetallics.

We conclude this Section with summarizing our results and with final remarks on our
findings in Subsection 3.1.8.

3.1.2 Terminology

Here we explicitly collect different terms and phrases that are frequently used in the
investigations of the structural ground state self-assembly scenarios in Section 3.1.

We refer to a specific arrangement of particles (i.e., charges) in a quasi-2D bilayer lattice
geometry as structure or, synonymously, as configuration. The position of a single
charge or of multiple particles forming the structure is referred to as vertex or vertices
of a configuration. The lattice geometry which underlies a structure is referred to as
lattice which is defined by the lattice vectors. A unit cell is the simulation box hostingN
particles in a volume of finite spatial extent (given by the lattice vectors) with periodic
boundaries in the x and y direction and with a finite slab-width in the z direction. The
quasi-2D lattice of 2D-periodic copies of the unit cells (including 2D-periodic images
of all particles inscribed to the unit cell) defines a structure (or a configuration). The
smallest possible unit cell, i.e., a unit cell with as few inscribed particles as possible
with whom a structure can fully be described is called the irreducible unit cell of the
configuration.

3We vertically reassign particles of a hexagonal monolayer to the other plate into rectangular and
two different types of triangular tiles.
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A tiling (or equivalently a tesselation) of a flat surface is defined as the covering of
a plane with non-overlapping geometric shapes without leaving holes. The different
geometric shapes with whom the tiling is generated are called tiles. In Section 3.1 we
refer to the geometric shapes, i.e., the regular or irregular polygons formed by nearest
neighbor vertices of a configuration, as tiles; the corresponding structure is, in this
respect, also referred to as a tiling. If all tiles of a structure are of a special geometric
shape such as, for instance, of equilateral triangular or square shape, this geometric
property might be indicated via writing triangular tiling or square tiling, respectively.
For tilings composed of regular polygons with a unique side length, we also refer to the
side length of the tiles as tiling length.

We usually refer to the tiling in layer one of a bilayer structure as layer one tiling
and the tiling in layer two as layer two tiling, respectively. Wherever we want to
address the structure, the configuration, the vertices or the tiles specifically for one
of the two layers we emphasize this through writing layer one structure, layer one
configuration, etc., and analogously for layer two. Occasionally, we also address those
structures emerging when the planar coordinates of the vertices of both layers are
projected to the same layer as projected structure, but we especially highlight this in
the text whenever necessary. Notably, we use the words layer and plate synonymously
in the context of the Wigner bilayer system.

We here use the phrase “with respect to the periodic boundary conditions” to address
the toroidal periodicity of a specific configuration or of a family of configurations (i.e.,
of a configuration space) that has a fixed number of particles per unit cell with fixed
lattice vectors. The periodic boundary conditions of a specific realization of a family of
structures from a configuration space impose, which tiles can be formed geometrically
by the particles in the unit cell and across periodic directions.

We use the term super-tile to address tiles, which are formed by clusters of several tiles
on a larger length scale by connecting special vertices of the clusters and we refer to
the tiling composed of such super-tiles as super-tiling and to the related structures as
super-structures.
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3.1.3 The Model of the Asymmetric Wigner Bilayer System

A classical Wigner bilayer system [146, 147] consists of two parallel plates of infinite
extent4 with uniform charge densities, σ1 and σ2, respectively, with classical, oppositely
charged point particles, qi = −e, being confined between the two layers, maintaining
overall charge neutrality; e being the elementary charge. At zero temperature, T = 0 K,
the charges are – as a consequence of the Earnshaw-theorem [275] – prohibited to
occupy the interior of the volume but have to be located on its boundaries, i.e., on the
plates. The system is sketched in Fig. 3.1(a).

In the asymmetric Wigner bilayer system [62–64], where σ1 6= σ2, any state of the
system can be characterized by the separation of the plates, d, or by the dimensionless
quantity η defined by

η = d

√
σ1 + σ2

2
, (3.1)

and by the ratio of the surface charge densities of the two plates, i.e.,

A =
σ2

σ1
∈ [0, 1]. (3.2)

We exclude from our investigations the trivial case of A < 0, where all particles are
located on one plate and, without loss of generality, we chose σ2 ≤ σ1, since inverting
the z axis covers situations where σ2 > σ1 [62].

The total number density5, ρ = N/S0 = ρ1 + ρ2, together with the number densities
of layer one, ρ1 = N1/S0, and layer two, ρ2 = N2/S0, specify the total number of
charges, N = N1 + N2, which occupy layer one and two in the quasi 2D unit cell
of a bilayer structure with surface area S0 and height d. Overall charge neutrality is
satisfied when

σS0 = N e = ρS0 e (3.3)

which relates the total uniform background charge density of the two plates, σ =
(σ1 + σ2), and the number charge density of the particles, −ρ e = −(ρ1 + ρ2)e. In
other words, the total charge of the particles, −N e = −ρS0 e = −Q0, within a unit
cell of area S0 is compensated by the total plate charge ot the unit cell, Q0 = σS0.
Overcharging effects of the two layers have been observed for zero temperature ground
state structures in Refs. [63, 64], i.e., charge neutrality does not need to be satisfied
locally, −eρi 6= σi, as long as Eq. (3.3) is satisfied.

The classical point-charges interact via long range Coulomb interaction with each other
and with the uniformly charged plates. Further, there is a distance dependent but
otherwise constant plate to plate interaction contributing to the total (internal) elec-
trostatic energy of the unit cell of a bilayer structure, E(rN ;A, η), which is given by

E(rN ;A, η) =

N∑
i=1

 N∑
j=1

∑
Sn

∗ e2

|ri − rj + Sn|
− 2πe2(σ1 − σ2)zi

+ const. (3.4)

4Which we assume perpendicular to the z axis.
5Without loss of generality we fixed ρ = 1 in this thesis following Refs. [62–64, 146, 147].
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rN = (r1, . . . , rN ) is the set of position vectors, ri = (xi, yi, zi), of all N charges in
the unit cell, zi = 0 or zi = d ∝ η defines if particle i occupies plate one or two and
Sn is a symbolic notation for periodic images of the unit cell in the x and y directions
used to carry out the lattice summation6 [92] (see Subsection 2.1.3 for details). For
convenience, we chose the dielectric constant, ε, of the dielectric medium in which the
particles are immersed, as well as the dielectric constant of the two plates, ε1 and ε2, to
be one, i.e., ε = ε1 = ε2 = 1. Closely following Ref. [62] we employ Ewald summation
techniques [94] – specifically implemented for quasi-2D bilayer geometries [62, 92] –
to numerically evaluate the long range electrostatic energy of the system in a highly
reliable and computationally efficient manner.

Investigating global ground state configurations in the asymmetric Wigner bilayer sys-
tem for any pair of η and A boils down to identifying simultaneously the correct number
of particles, N , per unit cell, to find the optimal particle arrangement, rN , on both
plates and identifying the correct unit cell geometry7 which, all together, minimize the
total unit cell energy per particle, E(rN ;A, η)/N , given Eq. (3.4). We collect all of
these variational parameters to the structural ground state search in the expression

X = (rN ,a1,a2) (3.5)

and we also might write E(X ;A, η)/N ≡ E(rN ;A, η)/N to parametrize the energy per
particle8. If the particular values of A and η are not important for the discussion we
may simply write E(X )/N or even drop the argument of the energy E/N totally.

The required accuracy with which the energies of competing structures need to be
evaluated is tremendously high: relative differences in the sevenths or eighths digit are
very relevant when comparing energies of magnitude E/

(
N
√
ρe2
)
≈ −1, which sets

the energy scale of this system. The high accuracy with which the internal energy
of the system needs to be evaluated poses a very delicate and complicated optimiza-
tion problem in a high dimensional search space, a task which has very successfully
been carried out in Ref. [62] with the help of memetic evolutionary algorithms, see
Subsection 2.2.4.

The computational cost for exploring the search space in the (η,A)-plane can be re-
duced significantly as the energy, E/N , defined by Eq. (3.4), can be separated into a (i)
structure-dependent but A-independent part and an (ii) A-dependent but structure-
independent part: Following Refs. [62–64] we first introduce the reduced energy per
particle as

6∑∗ in Eq. (3.4) indicates, that for Sn = (0, 0, 0) the sum is carried out only for j > i to avoid
double counting within the unit cell.

7The components a11, a21 and a22 of the lattice vectors a1 = (a11, 0, 0) and a2 = (a21, a22, 0) are
subject to the structure optimization problem under the constraint of keeping a constant unit cell
area, S0 = a11 a22; the lattice vector a3 = (0, 0, d) is fixed by the plate separation distance, d.

8Notably, the energy, E(rN ;A, η)/N , defined by Eq. (3.4) also depends on the in-plane lattice vectors,
a1 and a2, via the definition of Sn (cf. Subsection 2.1.3). We do not explicitly list the lattice vectors
in the argument list of E(rN ;A, η) but we emphasize the intrinsic dependency of the energy of a
configuration on the lattice vectors in the definition of the variational parameters, X , of a structure
defined by Eq. (3.5).
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E∗(rN ;A, η)

N
=
E(rN ;A, η)

N
√
ρe2

(3.6)

and we then define the structure independent term as

E∗A(A, η, x)

N
= 23/2πη

A

(1 +A)2
[A− 2x(1 +A)], (3.7)

where we introduced the composition, x, defined by

x =
N2

N
, . (3.8)

Eq. (3.7) allows us to redefine the total (reduced) unit cell energy per particle as

E∗(rN ;A, η)

N
=

1

N

[
E∗(rN ;A0, η)− E∗A(A0, η, x) + E∗A(A, η, x)

]
(3.9)

and we use E∗(rN ;A, η, x) ≡ E∗(χ;A, η) occasionally; notably, the composition x =
N2/N can be evaluated by the vertical particle arrangement of a particular configura-
tion, i.e., by the z coordinates in rN , in Eq. (3.9).

With this the computational overhead of ground state identification in the entire (η,A)-
plane can be greatly reduced since the energies of geometrically optimized structures
(at fixed plate separation, η, and composition, x) at one specific value of A0 – usually
and without loss of generality at A0 = 0 [62–64] – can be compared for all values of A
using Eq. (3.9).

To be more specific, the geometric ground state configurations have been determined
in [62] by independent evolutionary searches at a fixed value of A = 0 for different,
numerically tractable values of the composition9, x = N2/N ∈ [0, 0.5], with N ranging
from one to 40 and N2 from zero to 20 (N = 40 represents a numerical limit for
the evolutionary algorithm [62]) for different values of the plate separation η. Such
a set of structural ground state configurations of different compositions which are
identified at A = 0 but at a particular value of η provide all necessary information
to subsequently identify the ground state configuration for any state point (η,A) and
renders the approach very efficient. For a given (η,A)-pair the configuration which
minimizes E∗(rN ;A, η, x)/N given by Eq. (3.9) is considered as the ground state and we
label the ground state energy as a function of η and A as E∗GS(A, η)/N . Henceforward,
we usually drop the arguments of the energies for different configurations – unless we
want to emphasize the dependency of certain arguments – and we synonymously use
E∗/N for Eq. (3.9) and E∗GS/N for the ground state energy in the entire parameter
space.

9The total number of compositions at each value of η is Ntot = 1 + 1
2

∑N
n=2 (n− nmod2 ) = 401 for

N = 40, since N2 = 0 for N1 = 1 and 0 < N2 ≤ N1
2

for N1 > 1 was chosen.

72



3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

3.1.4 Revisiting the Complex Phase Diagram with Unsupervised
Clustering Algorithms

The structural ground states of the asymmetric Wigner bilayer have intensively been
studied with the help of evolutionary algorithms and Monte Carlo simulations10 in
Refs. [62–64]. A cascade of ordered patterns has been observed when changing the
system parameters, i.e., the layer distance, η, or the plate charge asymmetry, A, see
Fig. 3.2. The structural versatility of the ordered ground states at different system
parameters is based on the competition between commensurability of the attained
configurations in both layers and charge neutralization of the long range Coulomb
interaction [64].

Figure 3.2: Redrawn phase-diagram from Refs. [62–64]. Colored and labeled regions denote
identified phases with structures indicated by correspondingly labeled subfigures (layer one particles
are colored blue, layer two particles are colored red and the thick black frames indicate the unit
cells of the bilayer structures). The cyan lines in the left panel highlight the phase boundaries.
Structures within the white region have not been classified yet.

Several phases were classified in Refs. [62–64] in the categories shown in Fig. 3.2: to be
more precise, 14 structures, or rather families of structures, can be related to special
values, or features of order parameters, such as the composition x defined by Eq. (3.8)
and bond-orientational order parameters [225–227] defined in Subsection 2.3.2 – which
we will discuss in detail below.

10The algorithms are presented in Subsections 2.2.3 and 2.2.4.
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Despite giving broad insights into the phase-diagram the phase classification scheme
suggested in Refs. [62–64] and depicted in Fig. 3.2 draws not a complete picture of the
emerging phases. There is still a large region in the phase-diagram where the respective
ground state structures – due to the considerable structural complexity – have not yet
been classified (cf. white region in Fig. 3.2). Furthermore, there is strong evidence [276]
that other regions in the diagram – such as the Ix region – can be subdivided into more
specific structures of their own kind.

In this Subsection we present a route towards (i) systematically identifying families of
structures using unsupervised clustering algorithms and (ii) we use this information to
highlight sweet-spots in the phase-diagram which hint at possible quasicrystalline order
of dodecagonal (and possibly even decagonal) rotational symmetry in the asymmetric
Wigner bilayer system.

3.1.4.1 Order Parameters and Phase Relations

As previously mentioned, the ground state phase-diagram of the asymmetric Wigner
bilayer system [62] shown in Fig. 3.2 was drawn by relating phases to special features of
order parameters. A labeling of bilayer configurations into structure-families has been
performed in Refs. [62–64, 146, 147] according to selection rules based on characteristic
features of certain order parameters (cf. Table 3.1).

This labeling mainly relies on the composition x = N2/N , defined in Eq. (3.8), and on
different variants of so called bond-orientational order parameters (BOOPs) [225–227],
Ψν , which we introduced in Subsection 2.3.2 by Eq. (2.62). Four different types of
these BOOPs have been defined in Ref. [62] namely

(1) Ψ
(1)
ν , quantifying ν-fold bond-orientational order of particles in layer one,

(2) Ψ
(2)
ν , quantifying ν-fold bond-orientational order of particles in layer two,

(3) Ψ
(3)
ν , quantifying ν-fold bond-orientational order of particles of both layers pro-

jected onto the same plate, and

(4) Ψ
(4)
ν , quantifying ν-fold bond-orientational order of particles of layer two, con-

sidering only layer one particles (projected onto the same layer) as neighbors.

We here introduce a short-hand notation for addressing a set of ui = u1, . . . , un
different BOOPs, Ψ

(ui)
νj , of different bond-orientational order, νj = ν1, . . . , νm, via

Ψ
(u1,...,un)
[ν1,...,νm] = {Ψ(u1)

ν1 , . . . ,Ψ
(u1)
νm ,Ψ

(u2)
ν1 , . . . ,Ψ

(u2)
νm , . . . ,Ψ

(un)
ν1 , . . . ,Ψ

(un)
νm }; if only one lower

index is present, e.g. [ν], the lower brackets may also be omitted and we may write
Ψ

(u1,...,un)
ν = {Ψ(u1)

ν , . . . ,Ψ
(un)
ν }.

Twelve of these order parameters have been used in Ref. [62], i.e., νj = 4, 5, 6-fold
BOOPs of all four types, Ψ

(1,2,3,4)
[4,5,6] . The geometrical classification power of these order

parameters is demonstrated in the top left panel of Fig. 3.3 which shows the so called
“hole” BOOPs Ψ

(4)
[4,5,6] with 4, 5, 6-fold order for the currently suggested ground state

configurations in the (η,A)-plane in an [R, G, B]-scheme [62–64]: the value of the
ν1 = 4-fold order parameter gives the relative amount of red, the ν2 = 5-fold order
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

parameter the relative amount of green and the ν3 = 6-fold order parameter the relative
amount of blue color11; every color channel (i.e., the relative amounts of red, green
and blue) is normalized to a minimum value of zero and a maximum value of one.
Note that in Ref. [62] the specific features in the order parameters which are used to
label a certain family of structures (i.e., to label different phases) were carefully chosen
according to Table 3.1, such that equally labeled structures exhibit similar values of
the bond-orientational order parameters.

Label Description Characteristic Features
I hexagonal monolayer x = 0

II rectangular bilayer x = 1
2 , Ψ

(1,2)
4 = 1, 0 < Ψ

(1,2)
6 < 1

III square bilayer x = 1
2 , Ψ

(1,2)
4 = 1, Ψ

(1,2)
6 = 0

IV rhombic bilayer x = 1
2 , 0 < Ψ

(1,2)
4 < 1, 0 < Ψ

(1,2)
6 < 1

V hexagonal bilayer x = 1
2 , Ψ

(1,2)
4 = 0, Ψ

(1,2)
6 = 1

Ix trihexagonal (layer one) 0 < x < 1
3 , Ψ

(3)
6 > 0.9

H honeycomb (layer one) x = 1
3 , Ψ

(3)
6 > 0.9

IIx modified rectangular bilayer 1
3 < x < 1

2 , Ψ
(3)
6 > 0.9

Vx hexagonal bilayer 0 < x < A
1+A , (1− x)Ψ

(1)
6 + xΨ

(2)
6 > 0.9

S1 snub square (layer one) x = 2
6 , Ψ

(1)
5 > 0.7, Ψ

(2)
4 > 0.9

S2 snub square like (layer two) x = 2
6 , Ψ

(2)
5 > 0.45

P1 pentagonal type two 1
3 < x < 1

2 , Ψ
(2)
5 > 0.45

P2 pentagonal holes 1
3 < x < 1

2 , Ψ
(4)
5 > 0.9

P3 pentagonal holes 0 < x < 1
3 , Ψ

(4)
5 > 0.9

Table 3.1: Structure labels, description and characteristic features of the current phase-diagram
of the asymmetric Wigner bilayer system from literature [62–64] shown in Fig. 3.2.

Here we are aiming at automatically identifying phases in the asymmetric Wigner
bilayer system using a more systematic classification scheme based on unsupervised
clustering (cf. Section 2.4) of a data set of order parameters which corresponds to the
database of structural ground state candidates of the system from Refs. [62–64]. We
thus introduce additional bond-orientational order parameters with ν = 3, 8, 10, 12-
fold symmetry for all four types of BOOPs, which are, in combination with the order
parameters of Refs. [62–64], hopefully sufficient for the clustering algorithm to also
identify structures with eightfold, tenfold or twelvefold-symmetric traits. (These newly
introduced BOOPs can be written in short-hand notation as Ψ

(1,2,3,4)
[3,8,10,12].) In Fig. 3.3

we present the ground state phase-diagram of the asymmetric Wigner bilayer system
in a similar [R, G, B]-scheme as introduced for the Ψ

(4)
[4,5,6] BOOPs (cf. top left panel

in Fig. 3.3) where we use some of the 16 newly introduced BOOPs as [R, G, B] values
in the color coding (i.e., [Ψ

(2)
4 ,Ψ

(2)
6 ,Ψ

(2)
12 ] in the top right and [Ψ

(2)
10 ,Ψ

(4)
5 ,Ψ

(1)
6 ] in the

bottom left panels of Fig. 3.3).

A first, visual inspection of the top right panel of Fig. 3.3, showing [Ψ
(2)
4 ,Ψ

(2)
6 ,Ψ

(2)
12 ] in

an [R, G, B]-scheme, indeed reveals an area of interest with a strong (blue) signal of
11The values of any BOOP defined by Eq. (2.62) is bound between zero and one.
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the dodecagonal order parameter of plate two, i.e., of Ψ
(2)
12 , below the honey-comb, H,

and within the Ix-region (cf. Fig. 3.1(c)), while Ψ
(2)
4 and Ψ

(2)
6 are not as pronounced;

we will continue this discussion in Subsection 3.1.6.

Furthermore, the bright whitish/greenish area in the P3 region of the bottom left
panel of Fig. 3.3 which depicts [Ψ

(2)
10 ,Ψ

(4)
5 ,Ψ

(1)
6 ] (also in an [R, G, B]-scheme) indicates

decagonal (or at least pentagonal) ordering in layer two via large values of Ψ
(2)
10 . The

pentagonal “holes” BOOP, Ψ
(4)
5 , and the hexagonal BOOP in layer one, Ψ

(1)
6 also

obtain large values; we will come back to this particular combination of BOOPs in
Subsection 3.1.7.

In an effort to quantify the ratio of the average nearest neighbor distance in layer
one, r(1)

nn (X ), and the average nearest neighbor distances in layer two, r(2)
nn (X ), for a

certain bilayer configuration, X , we define the intralayer nearest neighbor ratio order
parameter, rg(X ), as

rg(X ) =
r

(1)
nn (X )

r
(2)
nn (X )

, (3.10)

where we assume for monolayer structures, Xm, with N2(Xm) = 0 that r(2)
nn (Xm) =∞

such that rg(Xm) = 0. In the bottom right panel of Fig. 3.3 we present rg ∈ [0, 1.07] for
the ground state configurations of the asymmetric Wigner bilayer system suggested in
Refs. [62–64] in the (η,A)-plane. Note that the rg(X ) order parameter is not bound to
a maximum value of unity, but we empirically find an upper limit of max(rg(X )) ≈ 1.07
for all considered bilayer ground state configurations from the literature database [62–
64] with x ∈ [0, 0.5].

We define the feature vector, x(X ), by

x(X ) = {f1(X ), . . . , fNf=30(X )} (3.11)

collecting all i = 1, . . . , 30 features, fi(X ), of the 28 bond-orientational order param-
eters, Ψ

(1,2,3,4)
[3,4,5,6,8,10,12](X ) (written in shorthand notation), the value of rg(X ) and the

composition x(X ) related to the respective structure X .

Henceforward, we may drop the argument of feature vectors, x(X ), and of the different
features, fi(X ), and simply write x and fi unless emphasizing X is explicitly necessary
for the discussion. Analogously, we may refer to Ψ

(1,2,3,4)
[3,4,5,6,8,10,12](X ), rg(X ) and x(X )

simply as Ψ
(1,2,3,4)
[3,4,5,6,8,10,12], rg and x if no particular configuration is addressed.

3.1.4.2 Unsupervised Clustering: Outline

To make the order parameter based classification more rigorous, we will extend the
phase-classification scheme of Refs. [62–64] with the help of unsupervised machine-
learning techniques in order to automatically identify different families of structures
directly from the feature vector, x, given by Eq. (3.11) (i.e., by the set order parameter
evaluated for a given bilayer structure). To be more specific, we perform a principal
component analysis [238] (PCA) on the feature vectors of all structures from Ref. [62]
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Figure 3.3: Phase diagram of the asymmetric Wigner bilayer system colored by bond-orientational
order parameters (BOOPs) in a [R, G, B] color-scheme for [Ψ

(4)
4 ,Ψ

(4)
5 ,Ψ

(4)
6 ] (top left), and the

newly introduced order parameters [Ψ
(2)
4 ,Ψ

(2)
6 ,Ψ

(2)
12 ] (top right) and [Ψ

(2)
10 ,Ψ

(4)
5 ,Ψ

(1)
6 ] (bottom left)

and in gray-scale for the intralayer nearest neighbor ratio order parameter rg defined by Eq. (3.10)
(bottom right) of the ground state configurations of the asymmetric Wigner bilayer system in
the (η,A)-plane [62–64]. The color-scheme of the top panels and the bottom left panel is given
by an [R, G, B]-scheme with respect to the three indicated BOOPs of each panel which define
the relative amount of [red, green, blue] for each pixel representing an (η,A)-pair (red = Ψ

(4)
4 ,

green = Ψ
(4)
5 , blue = Ψ

(4)
6 for the top left panel and analogously for the other panels showing

other BOOP combinations); each color channel [red, green, blue] is normalized to attain values
between zero and one. The color-scheme of the bottom right panel is in gray-scale such that rg = 0
is colored black and rg = 1.07 is colored light-gray (to be distinguishable from the white colored
phase boundaries). Phase boundaries from literature [62–64] are indicated by thick white lines and
the identified phases are labeled according to Table 3.1.
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(which defines our data set). This allows us to identify directions of large variance in
the data set12 – holding the most information amongst the different features, fi, cf.
Subsection 2.4.1.

We then apply k-means [239–242] clustering13,14 to the latent space representation
of the data set (spanned by the leading principal components) in order to identify
new, previously unclassified phases which are potentially hidden in the large set of the
original structural data from Refs. [62–64].

As a benchmark for this approach and for illustrative reasons we start our analysis with
the simplest problem in the domain of this Subsection, namely with the symmetric
Wigner bilayer system [146, 147] with σ1 = σ2 or, equivalently, A = 1.

3.1.4.3 k-means Clustering of Structural Data of the Symmetric Wigner Bilayer
System

In the symmetric case with A = 1 the ground state pattern formation of the Wigner
bilayer system can be solved analytically [146, 147] and five emerging phases, i.e.,
I through V depicted in Fig. 3.4, can be identified: the hexagonal monolayer (I) is
stable only at η = 0 and transforms in a rectangular bilayer (II), which is stable at
0 < η . 0.263. Increasing η further leads to a second order transition into a square
bilayer (III), stable at 0.263 . η . 0.621, which transforms – again as second order
transition – into a rhombic bilayer phase (IV), stable at 0.616 < η ≤ 0.728. For
0.728 < η a hexagonal bilayer (V) emerges (also see A = 1 line in Fig. 3.2).

III III IV IVV

Figure 3.4: Phases I through V (color coded in purple, blue, green, orange and red) representing
ground state solutions of the symmetric Wigner bilayer system [146, 147]. The presented structures
are archetypical structures of phases I through V identified by the evolutionary algorithm in Ref. [62]
and the respective unit cells are indicated by thick black frames.

We now want to apply the clustering approach outlined above (cf. Subsections 2.4.1
and 2.4.2) in order to identify these phases directly from the order parameters of

12Actually, we first transform the data set of feature vectors to unit-variance and zero-mean coordi-
nates (for each feature, fi), a technique called whitening used to unbias PCA from the relative
scale of different features [119].

13The k-means algorithm identifies groups of data points by iteratively reassigning data points to one
of the k groups (the number of groups, k, is fixed during the entire algorithm) with the nearest
group average, also called the group mean. In a second state group averages are redefining when
data points have been reassigned and both steps are repeated until a convergence criterion is met,
see Subsection 2.4.2 for details.

14Other approaches, such as DBSCAN of principal components or of t-SNE manifolds [244] similar as
in [86] have not been very fruitful approaches in this perspective, see Appendix A.1.1 for details.
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all Nsym = 141 ground states identified by the memetic evolutionary algorithm (cf.
Subsection 2.2.4) in Ref. [62] for different values of η ∈ [0, 1] at A = 1.

We first perform a principal component analysis (PCA) [238] on the set of (unit-
variance and zero-mean) feature vectors, X(sym) = {x1, . . . ,xNsym} with xi ∈ RNf=30

defined in Eq. (3.11), of all structures and transform the data to an N∗f -dimensional
latent space representation, L(sym) = {l1, . . . , lNsym} with li = (vi1, vi2, . . . , viN∗f ) ∈ RN

∗
f

(see Subsection 2.4.1). The numerical value of N∗f ≤ Nf defines how many leading
principal components are considered in the latent space representation of the data and
by default N∗f = Nf . In the top panels of Fig. 3.5 we visualize all i = 1, . . . , Nsym

data points as a function of the first three principal components, i.e., we present the
coordinates, vi1, vi2 and vi3 corresponding to the data points xi in the first three
latent space directions v1, v2 and v3 (cf. Subsection 2.4.1); we color-code the data
points according to the different phases I through V they correspond to, following the
color-scheme of Fig. 3.4.

As illustrated in Fig. 3.5 the leading three principal components already allow – to
some extent – to distinguish the different phases by eye: data points (i.e., structures)
belonging to a certain phase are organized in clusters in the latent space and clusters of
different structures are – to some extent – spatially separated from each other. In the
bottom panel of Fig. 3.5 we present the explained variance λ(e)

j , defined by Eq. (2.75),
for all j = 1, . . . , 30 principal components. The explained variance quantifies the
amount of information encoded in each principal component direction vj . The value
of λ(e)

j drops quickly from λ
(e)
1 ∼ 1/3 to λ(e)

6 < 5%, and further by several orders of
magnitudes, such that the higher principal components are insignificant compared to
the leading ones. Thus, we can safely restrict ourselves to the leading five principal
components and set Nl = N∗f=5 for the here studied symmetric case of the Wigner
bilayer system.

We now perform k-means clustering (cf. Subsection 2.4.2) on the Nl=5 dimensional
latent space representation L(sym) of the data X(sym) (corresponding to the leading five
principal components) to assign all i = 1, . . . , Nsym data points with a cluster label
ci ∈ {1, . . . ,K} and thereby define the labeling (or clustering) k(sym) = {c1, . . . , cNsym}
of the data set. In the particular case of the symmetric Wigner bilayer system we know
the numbers of phases and we set K = 5. As can be seen in Fig. 3.6 the “K=5-means”
clustering, k(sym), of the data is in excellent agreement with the phase-assignment
from literature [146, 147], w(sym) = {C1, . . . , CNsym}, where Ci = 1 through 5 label
the corresponding phase I through V, respectively for every data point i by following
Table 3.1. Notably, the particular numerical values that associate the data points with
a certain cluster are unique but usually arbitrarily chosen by the k-means algorithm: in
Fig. 3.6 we see that the clusters related to phases I through V are respectively labeled
by ci = 5, 1, 3, 4 and 2. However, the clustering of the data points into the different
phases is almost perfect and the labels ci can be redefined to match the numerical
values of Ci (not shown here). We report an (adjusted) mutual information score,
defined by Eq. (2.84), of IK(k(sym),w(sym)) = 94.97% between the clustering k(sym)

and the phase-assigment from literature w(sym) [146, 147]. Only two data points,
which are emphasized in Eq. (2.84) as outliers, are assigned with a wrong label by the
K=5-means clustering algorithm (see discussion below).
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Figure 3.5: Top panel: ground state structures of the symmetric Wigner bilayer system, A = 1, for
different value sof η represented as a function of the first three principal components, v1, v2 and
v3 of the latent space representation L(sym) of the data set X(sym). Each data point represents
one symmetric Wigner bilayer structure and we color-code the data points according to the phase
they belong to (i.e., I through V, cf. Fig. 3.4). Bottom panel: Explained variance, λ(e)j defined
by Eq. (2.75) for all j = 1, . . . , 30 principal components (blue) and for the leading five principal
components (orange).

In the right panel of Fig. 3.6 we present a t-SNE [244] analysis (see Subsection 2.4.4 for
details) of the five leading principal components of the data points in X(sym) which are
thereby mapped (and visually clustered by similarity) into a two-dimensional t-SNE
latent-space manifold, spanned by the axes “t-sne 1” and “t-sne 2”. t-SNE is a very
useful tool to present high-dimensional data in a low-dimensional latent space (here
given by the two axes “t-sne 1” and “t-sne 2”). Indeed, the different phases can be
distinguished in this two-dimensional visualization of the data points by spatially well
separated clusters of, respectively, similar data points (except15 maybe for phase I and
V)

The results from k-means clustering may depend on the initial conditions of the algo-
rithm such as (i) the initial, usually arbitrary placement of the K different cluster cen-
ters in the latent space of the data set X(sym) and (ii) the initial data point assignments
to the clusters. To justify the results shown in Fig. 3.6 we thus perform l = 1, . . . , 100
independent runs of k-means clustering on the leading five principal components of the
data set X(sym) and we find that all corresponding labelings, k

(sym)
l , share the same ad-

justed mutual information, defined by Eq. (2.84), of IK(k
(sym)
l ,w(sym)) = 94.57% with

the results from literature w(sym). Furthermore we varied the number of leading prin-
cipal components from five to 30 without observing significant changes in the results
15The proximity of phases I and V in the t-SNE plot shown in the right panel of Fig. 3.6 could be

owed to the fact that the hexagonal monolayer,i.e., phase I, only appears once in the data set, i.e.,
at η = 0, while there is several structures of the family V, i.e., of hexagonal bilayer structures.
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Figure 3.6: Left: Labeling w(sym) [146, 147] of the ground states of the symmetric Wigner bilayer
system, i.e., I: 1, II: 2, III: 3, IV: 4 and V: 5 (color-coding according to Fig. 3.4), and labeling
k(sym) by the k-means clustering (black) for every data point i = 1, . . . , Nsym of the data set
X(sym) identified in Ref. [62] for different values of η ∈ [0, 1] at A = 1. Note that the numerical
value of a particular cluster label ci = 1 through 5 assigned by the k-means algorithm to all
data points belonging to one particular cluster is unique but arbitrary. An almost perfect mapping
between the data points assigned to phases I through V and the respective clusters of data points
labeled by ci = 5, 1, 3, 4 and 2, respectively, can be achieved: an adjusted mutual information
score, defined by Eq. (2.84), of IK(k(sym),w(sym)) = 94.57% is realized and only two outliers
(highlighted by arrows) amongst all data points occur in the clustering. Right: Mapping of the
Nl=5-dimensional latent space representation, L(sym), of the data X(sym) (corresponding to the
leading five principal components) onto a two-dimensional t-SNE manifold [244] (t-sne 1 and t-sne
2). Each data point, i, is color-coded according to its label, ci, assigned by the k-means clustering,
k(sym) = {c1, . . . , cNsym

}, such that clusters labeled by ci = 5, 1, 3, 4 and 2 appear in the same
colors as the corresponding phases I through V following the color-scheme in the left panel and in
Fig. 3.4. The two outliers are again indicated by arrows.

(when using less than five principal components the results become unreliable). This
suggests that the clustering shown in Fig. 3.6 is indeed the optimal k-means clustering
to group the data points of X(sym) into the phases I through V.

Interestingly, there is a small discrepancy in labeling the structures at the transition
from phase II to III as well as from III to IV: the k-means algorithm identifies a tiny
portion of configurations to be part of phase III instead of phases II and IV to both
sides of the respective η range. The bright, green colored circles in the right panel of
Fig. 3.6 correspond to phase III and from a visual inspection of the t-SNE plot the two
outliers from phase II and IV (small orange and blue dots within the cluster of large
green background dots) should rather be associated to phase III. The respective order
parameters that characterize the phases of these two outlier structures according to
Table 3.1 are given in Table 3.2:

w(sym) label [146, 147] k(sym)-means label x Ψ
(1)
4 Ψ

(2)
4 Ψ

(1)
6 Ψ

(2)
6

II III 0.5 1 1 0.025 0.025
IV III 0.5 0.949 0.949 0.125 0.125

Table 3.2: Phase classification and order parameters of outliers shown in Fig. 3.6 (see also text).

Clearly, these two data points can respectively be labeled as phase II and IV from
the point of view of an unsupervised clustering algorithm as the transition from II
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to III and III to IV is of second order [62, 146, 147]: structure III (square bilayer)
can be considered as a special case of both phases, II (rectangular bilayer) and IV
(rhombic bilayer), and transitions of II →III and of III →IV are continuous. However,
the distinction between a rectangular bilayer, a square bilayer or a rhombic bilayer
configuration can be performed analytically by clearly associated values and boundaries
of some order parameters to certain phases (see Table 3.2) [146, 147]. The clustering
results are simply wrong here but increasing the resolution in η could most likely resolve
this issue.

In general, small variations in the data, which are often related to artifacts such as
noise, can trigger undesired effects in clustering approaches and may lead to artificial
partitioning of data in a clustering or classification task. A proper preparation of the
data with, for instance, PCA can help to reduce the effects of noise on the outcome
of a clustering approach of a particular data set. However, sometimes small variations
in the data indeed have physical meaning such as, for instance, in continuous phase
transitions and great caution needs to be taken for correctly distinguishing between
different clusters of data points.

Nevertheless, clustering tools can be incredibly useful for establishing first insights into
a large amount of data as well as to gain a deeper understanding of hidden features in
a data set which are often too complicated to identify manually.

3.1.4.4 Principal Component Analysis of Structural Data of the Asymmetric
Wigner Bilayer System

In the symmetric Wigner bilayer system discussed above with σ1 = σ2 five ground
state configurations, I through V, emerge at different values of η. The energies of these
structures can be evaluated with analytical tools [146, 147] and the corresponding phase
boundaries can subsequently be calculated with high precision. In contrast, identifying
ground state structures of the asymmetric case where σ1 6= σ2 (see Fig. 3.2) is much
more complicated and one has to rely on global optimization tools such as memetic
evolutionary algorithms (cf. Subsection 2.2.4) to investigate the ground states of the
system [62]. The suggested phase boundaries of the asymmetric case in Ref. [62] mainly
rely on the so-called bond orientational order parameters. These boundaries were
identified such as that structures pertaining to certain categories – which are labeled
according to Table 3.1 – occupy regions in the phase-diagram of similar symmetry. In
the top left panel of Fig. 3.3 we see, for instance, that the Ψ

(4)
[4,5,6] order parameters are

good candidates for describing the symmetries of the ground state configurations of the
asymmetric Wigner bilayer system for large, extended regions in the (η,A)-plane [62–
64]. Thus, the phase classification scheme given by Table 3.1 was obtained [62] by
relating phases of structures with monochrome regions in [Ψ

(u1)
ν1 ,Ψ

(u2)
ν2 ,Ψ

(u3)
ν3 ]-based

[R, G, B] ground state phase-diagrams similar to the one presented in the top left
panel of Fig. 3.3. This classification scheme has high predictive power but is, to some
extent, arbitrary.

We have demonstrated in Subsection 3.1.4.3, that a combination of (i) principal compo-
nent analysis [238] (PCA) and (ii) successive k-means clustering [239–242], k(sym), of a
data set of order parameters of structural data of the symmetric Wigner bilayer system,
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X(sym) [62–64], is in excellent agreement with analytic labeling results, w(sym) [146,
147]. The phase-diagram in η can (almost perfectly) be recovered, however, correctly
identifying second order transitions with the current set of order parameters turned
out to be numerically delicate (cf. Fig. 3.6). We would like to emphasize, that we did
not only performed this clustering analysis of structural data of the symmetric Wigner
bilayer system as a benchmark for the PCA and the k-means clustering algorithm
but also for pedagogical reasons to tackle the much more involved asymmetric case
below.

Following the approach in Subsection 3.1.4.3, we here perform the same analysis (PCA
and k-means clustering) on the set of feature vectors, X(asym) = (x1, · · · ,xNasym) with
xi ∈ RNf=30 being defined by Eq. (3.11), for the entire database of i = 1, . . . , Nasym

structures considered in the asymmetric Wigner bilayer system [62–64]. The structural
database of Nasym ∼ 64000 configurations was generated by independent evolutionary
structure optimization of configurations with N = 1 to N = 40 particles per unit
cell and all possible values of the composition, x = N2/N , at 140 different values of
η ∈ [0, 1.4] (with a step size of ∆η = 0.01/

√
2) at A = 0 (see Subsection 3.1.3 for further

details). At any point in the (η,A)-plane the particular bilayer configuration which
minimizes E∗(Xi;A, η)/Ni, defined by Eq. (3.9), is assigned as ground state amongst
all 401 competing structures for each (η,A)-tuple [62]; Xi is defined by Eq. (3.5) and
represents a particular realization of the set of variable attributes of a configuration
with composition xi and Ni particles per unit cell from the database of i = 1, . . . , Nasym

structures.

Via PCA we transform the data set X(asym) to a latent space representation L(asym) =
(l1, . . . , lNasym) of the data, with li ∈ RN

∗
f being the vector of the data point xi ∈ RNf in

the latent space of dimension N∗f ≤ Nf (the numerical value of N∗f is yet to be defined).

In Fig. 3.7 we present the explained variance, λ(e)
j defined by Eq. (2.75), for each of the

j = 1, . . . , 30 principal components of the (unit-variance and zero-mean coordinates of
the) data set of feature vectors, X(asym), of the entire database of structures considered
in the asymmetric Wigner bilayer system in Refs. [62–64]. We see that, similar to the
symmetric case above (cf. Fig. 3.5), only very few principal components appear to
carry relevant information (i.e., have significant values of λ(e)

i ). Thus, we restrict our
analysis to the leading nine principal components, whose explained variance is larger
than 2%, and we set Nl = N∗f = 9 for the here investigated asymmetric case.

In Fig. 3.8 we present the leading nine principal components v1, . . . ,v9 ∈ RNf=30 in
the feature space spanned by x = (f1, . . . , fNf ), cf. Eq. (3.11). The i = 1, . . . , 30
elements of the principal component vector, vj , indicate the direction of the principal
component in the feature space; we here refer to the values of the i = 1, . . . , 30 elements
of a principal component as feature weights. Large positive or large negative values of
certain feature weights of a particular principal component indicate important features
which quantify information in the data set (i.e., directions of high variance). These
characteristic features of principal components can be used to identify important order
parameters or, if several feature weights are dominant in a particular principal com-
ponent, combinations of order parameters. Feature weights close to zero, on the other
hand, indicate less important directions.
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Figure 3.7: Explained variance, λ(e)j , of the principal components (PC) of the data set X(asym)

of feature vectors of all Nasym ∼ 64000 configurations considered in the construction of the
phase-diagram in Refs. [62–64] (blue dots) and of the leading nine PC, Nl=9, whose explained
variance λ(e)j > 2% (orange diamonds). Also structures that do not correspond to ground state
configurations in the database [62–64] are considered. We define the data set X(∗) which contains
all data points of X(asym) except for those which correspond to hexagonal monolayer configurations
where x = N2/N = 0 and we also present the explained variance, λ(e)j , of the PC of the data set
X(∗) (green crosses).

We see in Fig. 3.8 that the first principal components, v1, exhibits large positive fea-
ture weights from the six and twelvefold order parameters Ψ

(1,3,4)
[6,12] and medium to large

negative weights of Ψ
(1,3,4)
[4,5,8,10], rg and x. The principal components v2 and v3 exhibit

medium to large feature weights distributed over a range of order parameters which
makes them more difficult to interpret than v1. Starting from the fourth principal
component, single (or very few) directions in feature space become important (Ψ(2)

[10,12]

in the case of v4 and Ψ
(1)
[10,12] in the case of v5). We can see in Fig. 3.8 that through-

out all principal components, the feature weights for the intralayer nearest neighbor
order parameter, rg, and for the composition, x, are practically the same. Thus, we
conjecture the nearest neighbor distances of particles in both layers for low energy
configurations of the asymmetric Wigner bilayer system16 are largely governed by the
composition; in turn this suggests, that the particles tend to be distributed as uniform
as possible throughout both layers for ground state configurations of the system.

In the left panel of Fig. 3.9 we present the ground state phase-diagram of the asym-
metric Wigner bilayer system in the (η,A)-plane in an [R, G, B]-scheme – simi-
lar to Fig. 3.3 – based on the leading three principal components17 of the data set
X(asym) = (x1, . . . ,xNasym): we consider the latent space representations, lg, of the
feature vectors, xg, which correspond to the suggested ground state configurations,
Xg, of the asymmetric Wigner bilayer system from the literature database [62–64] for
different values of the system parameters, η and A. For each of these data points,
lg = (vg1, . . . , vgNl), we use the first three coordinates, [vg1, vg2, vg3], i.e., the coordi-
nates of lg associated to the principal components v1, v2 and v3, to define the relative
amount of red, green and blue color used in the [R, G, B]-scheme to color every pixel

16We consider a constant particle area-density of bilayer configurations in this thesis.
17The coordinates of the data points in the principal component directions are not limited to the

interval [0, 1] but are, in general, real values.
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Figure 3.8: Leading nine principal components, v1, . . . ,v9 ∈ RNf=30, of the data set X(asym)

represented in the feature space spanning x = (f1, . . . , fNf
), cf. Eq. (3.11). The f1, . . . , f30

features are listed along the horizontal axis and represent the order parameters used to evaluate
X(asym) from the structural database of the asymmetric Wigner bilayer system from literature [62–
64]; the respective i = 1, . . . , 30 elements of the principal components, vj , related to the directions
of fi (i.e., to which we refer to as feature weights) are presented via the color-coding specified
by the colorbar: large positive (negative) values of feature weights are emphasized by dark purple
(orange) coloring and values close to zero by white coloring.

in the (η,A)-plane of the ground state phase-diagram depicted in the left panel of
Fig. 3.9. We can see that the phase boundaries suggested in Ref. [62–64] again nicely
correlate with the values of the principal components, but there also appear to be
regions in the (η,A)-plane which might require a closer inspection. The Ix region, for
instance, might have a more sophisticated phase behaviour than previously suggested
as indicated by the different values of v2 (green) and v3 (blue), a feature which we will
further investigate in the following Subsections.

We can see from the left panel of Fig. 3.9 that phase I can uniquely be identified (via
black colors of the [R, G, B]-scheme). Further, the leading three principal components
of structures II, IIx, H and Ix are clearly different to those of the pentagonal structures
P1, P2, P3 and S2. The former structures,II, IIx, H and Ix, exhibit large [G, B] values
(green and blue) associated to the second and third principal components, i.e., large
values of the latent space coordinates into the directions v2 and v3; the corresponding
bilayer structures have the property that when projecting their particles onto a single
plate a hexagonal monolayer is formed, respectively. The pentagonal structures are,
in general, more complicated to interpret18 but we can see that their symmetry (cf.
Fig. 3.8) is either dominated by the first principal component v1 (red) or by com-
binations of v1 and v2 (yellow, generated by adding red and green colors in [R, G,
B]-notation). Furthermore, structures in the Vx region show strong signals either from
the third principal component v3 (blue) or from combinations of v1 and v3 (red and
blue becomes magenta) and can in that way be distinguished from the (red and yellow)
pentagonal region in the phase-diagram depicted in the left panel of Fig. 3.9.

In the right panel of Fig. 3.9 we present a t-SNE [244] analysis (see Subsection 2.4.4) of
the data set X(asym) represented by the leading nine principal components. The corre-
18Notably, the region in the phase-diagram depicted in Fig. 3.9, where the latent space representation

of the related ground state structures are dominated by v1 or by combinations of v1 and v2, largely
corresponds to the unclassified white region in Fig. 3.2.
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Figure 3.9: Left: Zero temperature ground state phase-diagram in the (η,A)-plane in an [R, G, B]-
scheme similar to Fig. 3.3 based on the first three principal components v1,v2 and v3 of the data
set X(asym): for every (η,A)-pair we define the relative amount of red, green and blue color, [R,
G, B], of the corresponding pixel in the (η,A)-plane respectively by the coordinates, [vg1, vg2, vg3],
of the latent space data point, lg = (vg1, . . . , vgNl

), of the associated ground state configuration
of the asymmetric Wigner bilayer system from the literature database [62–64]; the values of the
coordinates in the [R, G, B]-scheme are truncated by [0, 1]. The light-gray lines indicate phase
boundaries from Ref. [62] as illustrated in Fig. 3.2. Phases from literature [62–64] are labeled
according to Table 3.1. Right: t-SNE [244] analysis (see Subsection 2.4.4), mapping the Nl=9-
dimensional latent space representation, L(asym), of all bilayer configurations from the literature
database [62–64] (also considering structures not corresponding to ground state configurations)
onto a two-dimensional t-SNE manifold spanned by “t-sne 1” and “t-sne 2”. Each point represents a
structure from the database embedded into the two-dimensional t-SNE plot and is colored according
to the labeling given by Table 3.1 (i.e., by rules from literature [62–64] on how to assign a phase
label to a structure via the related data point in the feature space, xi, defined by Eq. (3.11)); the
chosen colors are arbitrary.

sponding Nl=9-dimensional latent space representation of the data, L(asym), is mapped
onto a two-dimensional t-SNE manifold, i.e., onto two axes19 “t-sne 1” and “t-sne 2”. In
that way, similar data points (i.e., nearby data points in the Nl=9-dimensional latent
space L(asym)) are represented in clusters in the two t-SNE dimensions while different
clusters (of cluster-internally similar data point) are spatially separated by the t-SNE
analysis. We label the data points based on the classification scheme listed in Table 3.1
and color-code the respective phases in an arbitrary color-scheme (data points which
cannot be classified with the help of Table 3.1 are omitted here). This enables us to
visually distinguish parts of the Nasym ∼ 64000 structures available in the database in
a two-dimensional plot which represents another kind of structural “phase-diagram”.
Interestingly, some phases which appear to be neighbors in the phase-diagram (cf.
Fig. 3.2) appear to be located at very different positions in the t-SNE plot (cf. both
panels in Fig. 3.9). This suggests, that the corresponding principal components are
sufficiently expressive to distinguish between these clusters and may thereby indicate
a discontinuous phase transition between the involved phases.

19Note that the scales of the axes are arbitrary.
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Via the t-SNE analysis presented in the right panel of Fig. 3.9 we can clearly separate
several phases by eye: phase I, for instance, is represented as a single dot in the bottom
right corner of Fig. 3.9 which highlights the absence of structural variability within all
monolayer structures in the structural database from literature [62–64]. Phases II,
IIx, S1, S2 and P2 form well separated clusters in the two-dimensional t-SNE space
and thus can clearly be separated from the rest of the structures from the database.
Phases III, IV, V, H and P1 form well separated clusters in the t-SNE plot but each
cluster is, on its own, split into two spatially separated clusters suggesting additional
(possibly minor) structural variabilities of the structures that have been categorized
into these phases, respectively. The splitting of P1 in the t-SNE plot, for instance,
can be related to the splitting of the P1 phase into two regions in the phase-diagram
depicted in Fig. 3.2: besides of the large P1 region below phase III (i.e., at smaller
values of A) there is also a region in the vicinity of phase IIx at slightly larger values
of η which is assigned as phase P1. This splitting of phase P1 is reflected in the t-SNE
analysis shown in Fig. 3.9: one part of the P1 cluster of data points is embedded in
the IIx cluster (roughly at t-sne 1 ∼ −35 and t-sne 2 ∼ 0) while the other part of the
P1 cluster is located in the proximity of the larger III cluster (roughly at t-sne 1 ∼ 0
and t-sne 2 ∼ 20). Furthermore, the t-SNE mapping of the assigned phases Ix, P3 and
Vx is more difficult to interpret as compared to the other phases: data points which
are assigned to be members of Ix, P3 and Vx appear to be widely spread out in the
t-SNE embedding coordinates t-sne 1 and t-sne 2. When trying to categorize the two-
dimensional distribution of the data points in the t-SNE plot ( Fig. 3.9) corresponding
to the phases Ix, P3 and Vx by eye, several sub-clusters of the data points appear to
be present. We suspect that especially structures assigned as members of Ix and Vx

can be further subdivided into sub-families of the respective phases (see below).

The t-SNE analysis is a viable tool when trying to quantify the information content
of a data set, especially when the challenge is to categorise the data via unsupervised
clustering algorithms. In our case, the t-SNE analysis of the leading nine principal
components of X(asym) suggests, that the information content provided by the PCA is
(most likely) sufficient to identify the different ground state phases of the asymmetric
Wigner bilayer system suggested in literature [62–64] (and shown in Fig. 3.2). More-
over, we suspect that several new phases (possibly also sub-categories of existing ones)
can be related to certain values and boundaries of the order parameters and of the
principal component representation of the data.

3.1.4.5 k-means Clustering of Structural Data of the Asymmetric Wigner Bilayer
System

Both of the two investigations above based on PCA and t-SNE suggest that an addi-
tional, systematic analysis of the phase behaviour of the asymmetric Wigner bilayer
system is of high interest since new ground state families might be hidden in the incred-
ibly rich plethora of crystalline bilayer structures from literature [62–64]. In this thesis,
we try to achieve such a systematic analysis of the phase behaviour of the asymmetric
Wigner bilayer system by means of k-means clustering (see Subsection 2.4.2) of the nine
leading principal component representation of the data set X(asym) = (x1, . . . ,xNasym)
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of feature vectors xi, defined by Eq. (3.11), of the entire structural database of Refs. [62–
64] featuring Nasym ∼ 64000 different configurations.

However, there is one serious complication to the k-means clustering problem compared
to the symmetric case discussed in Subsection 3.1.4.3: we do not know the precise
number, K, of clusters, which is actually a parameter of the k-means algorithm. Since
this number of clusters is not known in advance, we performed independent k-means
clusterings, for K = 14 to K = 43 clusters20 and we use the concept of adjusted
mutual information [245, 246], IK(ki,kj) ∈ [0, 1] defined by Eq. (2.84), to compare
the results of different clusterings21, ki and kj (see Subsection 2.4.5 for details). Large
values of IK(ki,kj) (i.e., close to unity) indicate that two clusterings, ki and kj , are
similar (or perfectly match in case of IK(ki,kj) = 1) while smaller values of IK(ki,kj)
indicate deviations of the clusterings (i.e., that the assignment of data points from a
certain data set into specific clusters is performed qualitatively different by ki and kj).
Based on comparing commonly occurring information of different clustering results
(i.e., common cluster labels of structures) we aim at identifying a reasonable – ideally
the correct – number of clusters which represent the different structural families of the
system.

At this point another comment is in order: for the k-means algorithm the choice of the
initial location of the total number ofK different clusters (here in theNl=9-dimensional
latent space of the data L(asym)) is usually arbitrary. However, the final k-means
clustering result may depend on the particular choice of the initial cluster coordinates
and on the initial assignment of the different data points to the clusters. This choice of
the initial conditions of the k-means algorithm was not an issue for the symmetric case
above since the problem appears to be well-behaved. For more complicated tasks, such
as the current one, it is good practise to apply k-means clustering several times with
independent initial conditions. The results of these independent clusterings, k1, k2, . . . ,
can then be analysed for frequently occurring solutions or similarities in the labeling
of structures. Also for this purpose we can use the concept of the adjusted mutual
information, IK(ki,kj), as described in Subsection 2.4.5, in order to identify the most
common clustering results, first for a fixed value of the number of clusters, K, and
later to compare clustering results with different numbers of clusters.

To simplify the k-means clustering problem of the data set X(asym) we can make use of
the following considerations: there is no structural variability of hexagonal monolayer
structures, I, in the database from literature [62–64] and we can clearly identify phase
I via the composition x = N2/N = 0. In turn, phase I structures can easily be treated
separately from the rest of the structures in the database. We can manually assign
all hexagonal monolayer structures, I, in the data set X(asym) and further only need
to consider the remaining structures in the k-means clustering based phase classifica-
tion scheme which we employ below. We thus define the reduced data set X(∗) which
covers all data points of X(asym) except for the feature vectors of hexagonal monolayer
structures with x = 0; in what follows, quantities which are based on the data set X(∗)

are also emphasized by an asterisk. As shown in Fig. 3.7 performing a PCA on X(∗)

20K = 14 clusters represent the 14 phases listed in Table 3.1 and K = 43 is already a quite large
number of different phases.

21A clustering uniquely maps a structure via its feature vector to a cluster (or to a label) and assigns
it thereby to a structural family, see Subsection 2.4.2 and cf. Subsection 3.1.4.3.
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instead of X(asym) has only minor consequences on the explained variance of the prin-
cipal components of the entire database. However, working with the data set X(∗) has
the advantage that the k-means clustering will not be biased by the phase I structures,
which represent a large portion of the entire phase-diagram. Henceforward, we refer to
the specific k-means clustering of the data set X(∗) as “k∗-means clustering”, where we
manually label all data points xi in X(asym) which correspond to phase I with ci = 1;
the labeling of the remaining data with the cluster labels 2, . . . ,K is then performed
by k-means clustering of the leading nine principal component representation of the
data set X(∗).

In Fig. 3.10 we present the adjusted mutual information, IK(k∗i ,k
∗
j ), of i, j = 0, . . . , 39

independent clustering results, k∗i and k∗j , of the k∗-means clustering algorithm for
a total number of K = 14 and K = 32 clusters, respectively. Henceforward, we
refer to ki and k∗j also as clustering samples of the k-means and k∗-means algorithm,
respectively.

Figure 3.10: Adjusted mutual information score, IK(k∗
i ,k

∗
j ) defined by Eq. (2.84), of i, j =

0, . . . , 39 different, randomly initialized k∗-means clustering results, k∗
i ,k

∗
j , with a total number

of K = 14 (left) and K = 32 (right) clusters, respectively. Values of I(k∗
i ,k

∗
j ) close to unity

(bright, yellow regions) suggest large overlap between the different clusterings, k∗
i and k∗

j , while
smaller values I(k∗

i ,k
∗
j ) ≈ 0.8 (black and purple) indicate different results. Note that IK(k∗

i ,k
∗
j ) =

IK(k∗
j ,k

∗
i ) is symmetric.

For smaller numbers of clusters (such as K = 14) the algorithm is more stable: many
different samples, k∗i and k∗j , exhibit a perfect score of IK(k∗i ,k

∗
j ) = 1 of the adjusted

mutual information (cf. yellow pixels in the left panel of Fig. 3.10) which indicates
that the algorithm has identified the same results several times. For larger numbers
of clusters (such as K = 32) the situation is more complicated since the number of
possible clustering results grows rapidly with the number of clusters. In general, for
large numbers of clusters the adjusted mutual information becomes larger by construc-
tion rendering it in principle harder to define a quality measure to compare different
results [245, 246].
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In both cases, i.e., using K = 14 or K = 32, there appears to be qualitatively different
clustering results to the clustering problem as depicted in Fig. 3.10. In Fig. 3.11
we present histograms of the adjusted mutual information score, IK(k∗i ,k

∗
j ), depicted

in Fig. 3.10 for selected clustering samples, some of which share little information
with other clustering results (dark regions in Fig. 3.10 and orange distributions in
Fig. 3.11) and others with a more similar clustering (bright regions in Fig. 3.10 and
green distributions in Fig. 3.11).

Figure 3.11: Left: Column-wise histogram of the adjusted mutual information score, IK(k∗
i ,k

∗
j )

defined by Eq. (2.84), of clustering samples k∗
i=15 (blue), k∗

i=29 (orange) and k∗
i=31 (green) for the

K = 14 clustering results shown in the left panel of Fig. 3.10. Right: Column-wise histogram of the
adjusted mutual information score, IK(k∗

i ,k
∗
j ), of clustering samples k∗

i=0 (blue), k∗
i=1 (orange)

and k∗
i=38 (green) for the K = 32 clustering results shown in the right panel of Fig. 3.10.

In order to compare the quality of different clustering results we present in Fig. 3.12
the column-wise average value, i.e., 〈IK(k∗i ,k

∗
j )〉j =

∑Nc
j=0 IK(k∗i ,k

∗
j )/Nc, and the me-

dian (analogously defined) of the adjusted mutual information score of each clustering
sample, k∗i , with all other clusterings, k∗j=0,...,39, and we mark both the maximum of
the mean and the median. For K = 14 the clustering sample i = 31, i.e., k∗31, seems
to be a good choice for the final clustering result (cf. left panels of Figs. 3.10 to 3.12).
However, for a larger number of clusters, e.g. K = 32, it is harder to decide what
the optimal clustering could be: both samples, i = 0 and i = 38, appear to have
qualitatively similar traits as can be seen in the right panels of Figs. 3.10 to 3.12.

However, there is another ingredient we can include into our analysis to bias the ad-
justed mutual information score into a physically motivated direction: the ground state
solutions of the symmetric Wigner bilayer system also show up in the phase-diagram
of the asymmetric Wigner bilayer system at A = 1. We can identify the fraction of the
data points in the data sets X(asym) which correspond to the ground state solutions of
the symmetric Wigner bilayer system and collect them in a separate data set X(sym).
We assign all data points in X(sym) to the phases I through V following Table 3.1 [146,
147] and collect the corresponding phase labels in the set w(sym). Analogously, we
collect in the set k

(sym)
i the particular clustering labels from the clustering result ki

(performed on the full data set X(asym) after PCA) which correspond to the data points
in X(sym). Hence, the adjusted mutual information score IK(w(sym),k

(sym)
i ) quantifies

the overlap between the clustering result k
(sym)
i and the analytically known labeling

w(sym) (i.e., the amount of commonly labeled data points) of the data set X(sym) of the
feature vectors of the ground states of the symmetric case. We now define the biased
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adjusted mutual information score, S(ki,kj |w(sym)), as

S(ki,kj |w(sym)) = IK(ki,kj)×
√
IK(w(sym),k

(sym)
i )

√
IK(w(sym),k

(sym)
j ), (3.12)

which weights the adjusted mutual information, IK(ki,kj), of different k-means (or
analogously k∗-means22) clustering results, ki and kj , with the square root of the
respective adjusted mutual information scores of k

(sym)
i and k

(sym)
j with w(sym).

In our case, the biased adjusted mutual information score, S(ki,kj |w(sym)), is an im-
portant measure for the quality of the clustering results ki and kj since we demand
of a corresponding labeling to be as accurate as possible, especially for the fraction of
the data, X(sym), that can be labeled analytically via w(sym). In Fig. 3.13 we present
the biased adjusted mutual information score, S(k∗i ,k

∗
j |w(sym)), of the same selected

samples as used in Fig. 3.11 and we also present the corresponding mean and median
values of all biased sample scores (i.e., S(ki,kj |w(sym))) as we have already shown for
the unbiased case (i.e., IK(k∗i ,k

∗
j )) in Fig. 3.12.

Figure 3.12: Mean (blue) and median (orange) of the adjusted mutual information score,
IK(k∗

i ,k
∗
j ), for each of the i = 0, . . . , 39 randomly initialized clustering samples, k∗

i , with re-
spect to all other clustering samples, k∗

j=1,...,39 shown in Fig. 3.10 for K = 14 (left) and K = 32
(right) clusters (i.e., column-wise average and mean of the data shown in Fig. 3.10). Maxima of
the mean and median of the adjusted mutual information score, IK(k∗

i ,k
∗
j ), as a function of the

sample indices i = 0, . . . 39 are indicated by filled circles which emphasize clustering results which
potentially share the most information with other results on average (or represent the maximum
median thereof).

By comparing the biased, S(k∗i ,k
∗
j |w(sym)), and the unbiased scores, IK(k∗i ,k

∗
j ), we see

that in general scaling the adjusted mutual information according to Eq. (3.12) leads
to smaller values of the S(k∗i ,k

∗
j |w(sym)) score compared to IK(k∗i ,k

∗
j ). Especially

the diagonal terms, S(k∗i ,k
∗
i |w(sym)), whose adjusted mutual information scores are

IK(k∗i ,k
∗
i ) = 1 by definition (cf. Fig. 3.10), are now weighted by IK(w(sym),k

(sym)
i ) ≤ 1,

accounting for the quality of the clustering result with respect to the labels of the
ground states of the symmetric case. Consequently, the scaling of the adjusted mutual
information score, I(k∗i ,k

∗
j ), via Eq. (3.12) also causes an additional bias to larger

values of the S(k∗i ,k
∗
j |w(sym)) score for clustering results with large respective overlaps

between k
(sym)
i ,k

(sym)
j and w(sym) (i.e., commonly labeled ground states of the sym-

metric case); results with corresponding smaller overlaps of k
(sym)
i ,k

(sym)
j and w(sym)

22Also for k∗-means clustering we rely on the set of analytically labeled data, w(sym), of the entire data
set, X(asym), which correspond to the ground state solutions of the symmetric case, A = 1, in the
evaluation of S(k∗i ,k

∗
j |w(sym)), given by Eq. (3.12): we respectively compare in S(k∗i ,k

∗
j |w(sym))

the labels w(sym) with k
(sym)
i and k

(sym)
j , i.e., the fraction of the samples k∗i and k∗j which respec-

tively corresponds to the known ground state structures of the symmetric Wigner bilayer system.
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Figure 3.13: Top row and bottom row: same as Fig. 3.11 and Fig. 3.12, respectively, but for the
biased adjusted mutual information score, S(k∗

i ,k
∗
j |w(sym)), defined in Eq. (3.12), cf. Fig. A.2 in

Appendix A.1.1.

are biased towards smaller values of S(k∗i ,k
∗
j |w(sym)) (cf. right most bins of sample 0

and sample 38 in the top right panel of Figs. 3.11 and 3.13).

We now assume that “good” clustering results, which are biased towards large values
of the S(ki,ki|w(sym)) score by labeling the symmetric part in the data set as good
as possible, occur frequently and perform similarly in terms of the overall quality
of the clustering. For such good clusterings also the mean (and the median) of the
S(ki,ki|w(sym)) scores are biased towards larger values, while being biased towards
smaller values for qualitatively poor clustering results. We define the mean value, k̄i,
of the biased adjusted mutual information score, S(ki,ki|w(sym)), of the i, j = 1, . . . , Nc

different clustering samples (cf. Figs. 3.10 and A.2), by

k̄i =
1

Nc

Nc−1∑
j=0

S(ki,kj |w(sym)). (3.13)

With k̄i we have a reasonably good measure for comparing different clustering results
for one given number of clusters, K: we here rely on k̄i to quantify the quality of
a clustering result, k∗i , of assigning the total number of K clusters correctly, given
Nc independent clustering results (cf. Fig. 3.11). We evaluate k̄i separately for all
independent k-means and k∗-means clusterings for several different values of K = 14
to K = 43: for a given value of K the one sample from the respective i = 0, . . . , Nc−1
clusterings with the maximum value of k̄i, given by Eq. (3.13), is considered as best
clustering results.

We now redraw in Fig. 3.14 the zero temperature ground state phase-diagram of the
asymmetric Wigner bilayer system [62–64] (cf. Fig. 3.2) with the phase labeling sug-
gested by the best clustering results of several k-means (left panels) and k∗-means (right
panels) clustering procedures, evaluated for different numbers of clusters K; note that
the color-coding is arbitrary. By careful inspection of Fig. 3.14 we find that the best
K∗=32-means clustering result (central right panel in Fig. 3.14) is, indeed, reasonably
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

representative for the phase-diagram of the asymmetric Wigner bilayer system as com-
pared to the data from literature: several different phases identified in Refs. [62–64]
(such as I through V, IIx, H, P1, P3 and S2) can be resolved very accurately by the
best K∗=32-means clustering, while some regions (such as the Ix or Vx phases) are
subdivided into much greater detail. We will continue this discussion below and in
detail in the following Subsections.

After identifying the sample, ki, with the largest average biased adjusted mutual infor-
mation score, k̄i defined by Eq. (3.13), independently for different numbers of clusters,
K ranging from 14 to 43, we now want to compare the best clusterings for different
numbers of clusters, Ki and Kj , some of which are depicted in Fig. 3.14. Applying
the same strategy as above Fig. 3.15 presents the adjusted mutual information score,
IK(ki,kj) defined by Eq. (2.84), for the best k-means clusterings compared to the
results of all other best clustering results for different numbers of clusters, Ki and Kj ;
Fig. 3.16 shows the same analysis for k∗-means clusterings.

For both adjusted mutual information scores of k-means and k∗-means clusterings we
see that the mean and median of IK(ki,kj) have maxima between K = 31 and K = 35
numbers of clusters, see top panels in Figs. 3.15 and 3.16.

Furthermore, we find that both k-means and k∗-means clustering results nicely corre-
late when evaluating the adjusted mutual information scores between the k-means and
k∗-means clusterings, i.e., IK(ki,k

∗
j ) as can be seen in Fig. 3.17. Again we evaluate the

mean and median of the adjusted mutual information score of each clustering ki with
respect to all other clusterings k∗j (row-wise) and, analogously, of each clustering k∗i
with all other clusterings kj (column-wise). The maxima of the corresponding mean
and the median values are located between a number of K = 32 and K = 36 clusters in
the row-wise and column-wise cases which suggests that a reliable guess of a reasonable
number of clusters lies within that range.

In this thesis, our choice for the number of clusters (and thus the final clustering result)
is K∗=32, i.e., the best clustering result for a total number of K=32 clusters identified
by the k∗-means algorithm (see central right panel of Fig. 3.14), for two reasons:

1. We can uniquely label the data points in X(asym) corresponding to phase I by
identifying all data points which feature a value of x=0 before we employ the
k-means clustering procedure to the data set X(∗). It turns out that working
with the reduced data set X(∗) instead of X(asym) removes a large part of the un-
certainty of the k∗-means clustering procedure compared to k-means clustering.

2. Overall, there seems to be good agreement between the K∗=32-means clustering
results with the different samples from k-means clustering (see Fig. 3.17).

Henceforward, we refer to the best K∗=32-means clustering result (which categorizes
the data set of asymmetric Wigner bilayer structures from literature [62–64]) as k∗32-
clustering results and to the c = 1, . . . , 32 different clusters (i.e., to the different cate-
gories of structural families) as k∗c32 families, respectively.

We conclude this rather technical part of Subsection 3.1.4 by replacing in Fig. 3.18
the zero temperature phase-diagram of the asymmetric Wigner bilayer system from
Refs. [62–64] (cf. Fig. 3.2) with a phase-diagram based on the k∗32-clustering results.
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Figure 3.14: Ground state labeling of Ref. [63] structures into 14 (top row), 32 (middle row) and
42 (bottom row) families by k-means (left) and k∗-means (right) clusters (see inset texts). The
color-scheme follows no particular order, thick white lines indicate Ref. [63] phase boundaries.
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

Figure 3.15: The bottom panel shows the adjusted mutual information score, IK(k, l) defined by
Eq. (2.84), for k-means clustering results with different numbers of clusters, K and L ranging from
14 to 43. Every considered k-means clustering result was optimized to maximize Eq. (3.13) over
an ensemble of independent runs for the respective number of clusters (details in the text). The
top panel shows the (column-wise) mean and the median of the mutual information score of each
k-means clustering; maxima are indicated by filled circles.
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Figure 3.16: Same as Fig. 3.15 but with k∗-means clustering of the data set X(∗), which covers
all data points of X(asym) except for phase I structures with x = 0. In the clustering results, k∗

i ,
all data points of X(asym) are addressed by cluster labels, but all data points which correspond to
phase I structures are manually labeled. The remaining data, X(∗), is then subject to k-means
clustering and the corresponding, additional cluster labels are collected in k∗

i .
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Figure 3.17: Similar to Figs. 3.15 and 3.16 but showing the cross relation of the adjusted mutual
information score, IK(k,k∗) defined by Eq. (2.84), for the best k-means and k∗-means clustering
results; the number of clusters, K and K∗, range from 14 to 43 in both cases. The mean and
median values of the adjusted mutual information scores, IK(ki,k

∗
j ) and IK(k∗

i ,kj), for each
clustering result, ki=14,...,43 and k∗

i=14,...,43, with respect to all other clustering results, k∗
j=14,...,43

and kj=14,...,43, are depicted in the right panel (row-wise mean and median, kk∗) and the top panel
(column-wise mean and median, k∗k), respectively.
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Indeed, the c = 1, . . . , 32 families of structures, k∗c32, suggested by the k∗32-clustering
reveal several new structural ground states of the asymmetric Wigner bilayer system.
For each of the 32 identified k∗c32 families (except for phases I through V, cf. Fig. 3.4,
and H, cf. Fig. 3.2) we present in Fig. 3.18 typical examples of bilayer structures which
form the ground state of the asymmetric Wigner bilayer system at different system
parameters. To better emphasize the respective (η,A)-regions where the different k∗c32

families represent the ground state of the system, we split up the presentation of
the phase-diagram into four qualitatively different parts, i.e., into panels (a)-(d) in
Fig. 3.18:

(a) Panel (a) highlights the region in the phase-diagram of the asymmetric Wigner
bilayer system which gives rise to the phases Ix, II, IIx and H at small to medium
values of 0 < η . 0.4 and medium to large values of 0.4 . A ≤ 1. The ground
state structures in this region have in common that they form a hexagonal mono-
layer if all particles were projected into the same layer. We will discuss the k∗32-
clustering results of this region in the parameter space in detail in Subsection 3.1.6
(cf. Fig. 3.39).

(b) In panel (b) we collect structural families which feature pentagonal tiles in layer
one, i.e., configurations that belong to the broader family of pentagonal struc-
tures. Suggested ground states candidates of the asymmetric Wigner bilayer
system which fall into this category are P1, P2, P3 and S2 and the associated
range of the system parameters can roughly be given by 0.3 . η . 0.7 and
0.4 . A . 0.9. We will discuss the k∗32-clustering results corresponding to this
region in the parameter space in Subsection 3.1.7 (cf. Fig. 3.56).

(c) Via panel (c) we address k∗c32 families which are related to the dodecagonal type I
family: these structures feature tilings in layer one that are similar to the snub-
square structure, S1, which, in turn, can potentially give rise to ground state
configurations of the asymmetric Wigner bilayer system with global twelvefold
symmetry [252, 254, 255]. We will discuss these k∗c32 families, which form ground
states of the asymmetric Wigner bilayer system in the parameter range 0.4 .
η . 0.7 and 0.4 . A . 0.75, in detail in Subsection 3.1.5 (cf. Fig. 3.23).

(d) In panel (d) we present k∗32-clustering results which can be related to the Vx

region in the parameter space of the asymmetric Wigner bilayer system, i.e., at
large plate separation distances η & 0.7 over a large range of A (cf. Fig. 3.2).
We will discuss the k∗32-clustering results corresponding to this region in the
parameter space in Subsection 3.1.7 (cf. Fig. 3.60).

We refrain here from any further discussion of the phase-diagram depicted in Fig. 3.18
but rather refer to Figs. 3.23, 3.39, 3.56 and 3.60 in Subsections 3.1.5 to 3.1.7 where
the respective panels (a)-(d) are discussed in more detail.

In Appendix A.1.2 we present for each k∗c32 family the characteristic values and bound-
aries of the corresponding features, x = {f1, . . . , fNf } defined by Eq. (3.11), in Figs. A.3
to A.6, which explicitly describe the symmetries of the corresponding structural fam-
ilies. Characteristic values and boundaries of the corresponding principal component
representation of the structural families identified by the k∗32-clustering procedure are
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Figure 3.18: Ground state phase-diagram of the asymmetric Wigner bilayer System [62–64] in the
(η,A)-plane as identified by the K∗=32-means clustering algorithm; the respective c = 1, . . . , 32
families of structures, k∗c

32, are color-coded in gray scale in all four panels, (a)-(d), starting at k∗1
32

(white) and ending at k∗32
32 (black). We subdivided the presentation of the ground state families

of this phase-diagram into four (η,A)-panels, (a)-(d), by symmetry features of the respective
occurring ground states (see bullet-points (a)-(d) in the text above). In each panel we highlight
the respective parameter regions in bright colors (cyan, yellow, green, orange, red, magenta or
purple in no particular order) where certain k∗c

32 families form the ground state and we present
archetypical structures of the respective k∗c

32 families as insets. In each panel, respectively, the inset
structures are labeled by “c∗” to address their association to a certain family k∗c

32 with i = 1, . . . , 32.
The insets are further color-coded in the same way as the ground state regions of the respective
k∗c
32 family in the phase-diagram. Particles in the bottom (top) layer are always colored blue (red)

and connections between nearest neighbors in each layer are drawn. Special tiles and features
of the different structures are highlighted by colored shapes and the respective unit cell of each
structure is emphasized by a thick black frame. The phase-boundaries from literature [62–64]
(cf. Fig. 3.2) are indicated by opaque white lines in each panel and, correspondingly, the phases
from literature are labeled which are associated to the considered parameter region of the different
panels; colored labels indicate, that archetypical structures of the corresponding k∗c

32 families are
presented as insets in the respective panels, gray colored labels I through V and H with indicate,
that the corresponding structures are not shown (although the phases have been identified by the
k∗
32-clustering algorithm). Characteristic values and boundaries of the order parameters and of

the corresponding principal component representation of all structural families k∗c
32 are collected in

Appendix A.1.2.
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presented in Figs. A.7 and A.8 (see Fig. 3.8 for a representation of the principal com-
ponents in the feature space).

3.1.4.6 New Insights to the Wigner Bilayer System from Unsupervised Learning

A comparision of the identified phases of the asymmetric Wigner bilayer system via
methods from literature [62–64] (i.e., with the phase classification scheme given by
Table 3.1, cf. Fig. 3.2) and via labeling by unsupervised k∗32-clustering techniques
(cf. Fig. 3.14) show very good agreement for several structural families, see Fig. 3.18:
phases from the symmetric case, I through V, but also more complex configurations
such as IIx, H, S1, S2, P1, P2 and P3 can be identified. Phases such as Ix and Vx are,
however, subdivided into many categories by the K∗=32-means clustering approach
(see Fig. 3.18(a,d), respectively).

As shown in Fig. 3.14 varying the numbers of clusters has a major impact on the
final k-means or k∗-means clustering results. Already for only 14 clusters (top row
of Fig. 3.14) most of the phases from literature [62–64] can be correctly identified via
clustering. Phases I through V are clearly identified with (almost) correct boundaries
(first order boundaries are correctly described) and also the honey-comb phase H, phase
IIx as well as phase P3 are identified essentially correctly. Also the phase boundary of
the Vx phase is resolved with good accuracy. As illustrated by the top-left and rop-
right panels of Fig. 3.14 a total number of K=14 or K∗=14 clusters seems, however,
too small to correctly resolve the phases S1, S2, P1 and P2 all at once. The results from
the K=14-means or K∗=14-means clustering algorithms rather suggest to subdivide
phases Ix and Vx.

Taking the results from the clustering approach seriously, especially for K∗=32 (see
Fig. 3.18), we can indeed identify a rich phase variety in the Ix region which is correlated
with the dodecagonal Ψ

(4)
12 “hole” BOOP as already discussed above (cf. blue region

within the Ix phase near the respective boundary to H in Fig. 3.3 and the k∗29
32 family

in Fig. 3.18(a) emphasized by cyan color).

Also, the whitish region in the [R, G, B] plot of the Ψ
(2)
10 , Ψ

(4)
5 and Ψ

(1)
6 order parameters

shown in the bottom left panel of Fig. 3.3 within the P3 phase can be related to a more
complex phase behaviour near phase P3. The k∗14

32 and the k∗27
32 families, but also the

S2 configuration illustrated by the k∗32
32 family in Fig. 3.18(b) form similar patterns

in layer two(distorted rectangles and triangles organizes in a distorted snub-square
vertex). However, the decoration of the layer two tiles with particles in layer one
becomes increasingly complex (i.e., more particle of layer one are involved per layer
two tile) the closer we are to phase I in the parameter space. We will discuss these
families of structures in Subsection 3.1.7 in more detail.

Also, the previously [62–64] unclassified structures in the (η,A)-regions in the vicinity
of S1 and S2 (cf. Fig. 3.2) are classified into several different structural families by
the k∗32-clustering algorithm as illustrated by Fig. 3.18(c). The structures depicted in
Fig. 3.18(c) have in common that their basic tiles (such as equilateral triangles and
squares arranged in a snub-square vertex), with whom their layer one structure is com-
posed, may indicate the existence of a quasicrystalline state with global dodecagonal
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symmetry [252, 254, 277]; Subsection 3.1.5 is dedicated to the families of structures
illustrated in Fig. 3.18(c).

Even in the Vx region in the phase-diagram some interesting new structural families
are identified by the k∗32-clustering procedure, as can be seen in Fig. 3.18(d) and as
further discussed in Subsection 3.1.7. Characteristic values and boundaries of the
order parameters and of the corresponding principal component representation of all
structural families k∗c32 depicted in Fig. 3.18, which provide information about the
symmetries of these structural families, are collected in Appendix A.1.2.

In general, with this phase-classification tool at hand we can systematically extract
information which was previously hidden in the zoo of structures in the database of
Refs. [62–64]. Owed to the way the structural data in Ref. [62] was generated (see dis-
cussion at the end of Subsection 3.1.3) it was, for instance, rather difficult to faithfully
identify energetically competing structures with respect to the ground state at a certain
(η,A)-phase point: at a given value of η solutions of the evolutionary algorithm for
different numbers of particles per unit cell, N and N ′, but with the same composition,
x = N2/N = x′ = N ′2/N

′, may end up at (virtually) the same structures with de-
generate energies but with different unit cells. Correctly identifying all of the relevant
structures in the database from literature [62–64] faithfully by hand can be a tedious
task. Via the k∗32-clustering based labeling of the structural database of Refs. [62–
64] such degenerate configurations are automatically covered by one structural family.
By only considering different structural families we then directly have access to any
properties of energetically competing families of structures for any (η,A)-pair.

In Fig. 3.19 we present, for instance, the energy offset of the structures from the second
best family (according to the results from the k∗32-clustering) to the corresponding
ground state candidate23 energies of the asymmetric Wigner bilayer system suggested
by Refs. [62–64] in the (η,A)-plane. Fig. 3.19 highlights regions in the ground state
phase-diagram of the asymmetric Wigner bilayer system where structures belonging
to different k∗c32 families exhibit very close values of the internal energy per particle
(dark areas), a feature which is especially pronounced at phase boundaries (quantified
by the black and purple color coding in Fig. 3.19). Orange to yellow areas in Fig. 3.19
indicate a large energetic gap between the ground state and competing structures in
the (η,A)-plane.

Fig. 3.20 shows the number of k∗c32 families that lie within specified energy intervals,
∆E∗/N , above the ground state candidate energies suggested by Refs. [62–64] in the
(η,A)-plane. Both, Figs. 3.19 and 3.20, highlight the energy accuracy required for
comparing competing structures for the ground state of potentially very different unit
cell sizes and shapes: energy differences of ∆E∗/N ≈ 10−8 to ≈ 10−6 (cf. Figs. 3.19
and 3.20) are still very relevant for typical values of E∗/N ≈ −1, defined by Eq. (3.9).

As this point we want to stress that, in general, clustering of structural data using prin-
cipal component analysis (PCA) and k-means clustering (or any other, suited clustering
23Although most of the suggested ground state candidates identified by the evolutionary algorithm

in Refs. [62–64] are very likely to represent the ground state configurations of the asymmetric
Wigner bilayer system at the respective system parameters, there is no rigorous proof that they
are, indeed, the ground states. Thus, whenever we write “ground state solutions” in Section 3.1 we
really refer to “ground state candidate solutions” of the asymmetric Wigner bilayer system.
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Figure 3.19: Difference, ∆E∗
GS/N = (E∗/N − E∗

GS/N), between the energy (per particle),
E∗/N , of the energetically most favorable structure amongst all non-ground state structural family
of the k∗

32-clustering results to the suggested ground state energy (per particle), E∗
GS/N , of the

asymmetric Wigner bilayer system from literature [62–64] at every respective (η,A)-pair. Opaque
white lines indicate phase boundaries from literature, cf. Fig. 3.2. In the proximity of the H and Ix
phase boundary (within the Ix region) we observe an energetically nearly-degenerate region in the
(η,A)-plane with ∆E∗

GS/N ≈ 10−7 to 10−6 where ground state candidates exhibit large values of
the twelvefold symmetric order parameter Ψ

(4)
12 (cf. bottom left panel of Fig. 3.3). This nearly-

degenerate region corresponds to the newly identified ground state candidate family k∗29
32 illustrated

by the top left inset structure and cyan emphasized area in the (η,A)-plane of Fig. 3.18(a); this
family of structures is further discussed in Subsection 3.1.6.

algorithm or classification algorithm) provides us with an additional feature: PCA is a
linear transformation from feature space to latent space and k-means is a mapping of
a data point in latent space to a cluster label. Once the clustering algorithm is trained
(i.e., once it has converged) it can be used as a classification model24 and we can ask

24Nowadays it is easily possible to train a neural network in a supervised way with the objective of
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Figure 3.20: Number of k∗c
32 families that exhibit an energy offset of at most ∆E∗/N to the

ground state candidates of the asymmetric Wigner bilayer system (suggested by Refs. [62–64]) in
the (η,A)-plane. ∆E∗/N , ranging from 10−7 to 10−2, is chosen differently for each panel (see
texts in panels). Regions of gray color emphasize situations where only one structure (i.e., the
k∗c
32 ground state) is present within the respective ∆E∗/N -interval; the colors from red to purple

and black (see colorbar) emphasize the level of “∆E∗/N -degeneracy” at a given pair of the system
parameters, i.e., the number of k∗c

32 families which exhibit an energy difference to the ground state –
at a given (η,A)-pair – of at most ∆E∗/N . Phase boundaries from literature [62–64] (cf. Fig. 3.2)
are emphasized by white lines.

the following questions for any structure: “what family does it belong to?”, “where does
it appear in the phase-diagram” and “what are its characteristic features?” (see Ap-
pendix A.1.2 for numerical details on the characteristic features of the here employed
k∗32-clustering classification scheme of the structural data from Refs. [62–64]).

In conclusion of this Subsection we can say that the clustering tools discussed here
may be of great help in understanding complex phase-diagrams like the one of the
asymmetric Wigner bilayer system. When comparing the different clustering results
in Fig. 3.14 it is apparent that especially first order transitions with clear jumps in
the order parameters of different phases can be resolved accurately. However, second
order phase transitions, such as those between phases II → III and III → IV (cf.

performing classification tasks [119]. For our purposes, such a task would be to classify structural
data into a number of K different categories (identified, for instance, by unsupervised clustering)
which would allow as to directly classify a structure from its geometric, structural data, e.g. via
coordinates and lattice vectors [278]. The output of the classifier would then be the probability
of a structure falling into any of the K clusters or families (when using “softmax” activation in
the output layer of the neural network and “categorical cross entropy loss” during training [119]),
which may give additional insight when comparing competing structures.
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Subsection 3.1.4.3), represent a major challenge for these kinds of algorithms.

Notably, uncertainties in the results of clustering algorithms especially at phase bound-
aries indicate that the feature vectors (which are abstract representations of a structure)
may not provide sufficient information to the clustering algorithm to uniquely resolve
the involved different phases – and thereby can teach us about important symmetries
of the investigated physical systems. To improve the reliability of clustering algorithms
it is therefore important to identify so-far missing features which are necessary to de-
scribe a family of structures or to describe the transition between different families of
structures (this is usually not an easy task).

On the other hand, if certain data points of a structural data set are frequently labeled
qualitative differently by the different results of similar clustering algorithms25 (or by
other classification methods) – i.e., frequent deviations which cannot be related to
noise in the data – this can have physical implications: a persistent uncertainty in
the clustering results of a certain sub-set of a data set might indicate the proximity of
a continuous phase transition between structural families with respect to the system
parameters that are related to this specific sub-set of the structural data [279].

25By similar clustering algorithms we here mean either differently initialized or slightly differently
parametrized clustering algorithms which are conceptually similar (i.e., which are expected to
perform the categorization of the data in a conceptually similar way).
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3.1.5 Towards Dodecagonal Order: Metastable Super-Structures

At certain values of the plate separation η and the plate-asymmetry A, i.e., in the
vicinity of η = 0.55 and A = 0.67, a novel snub-square ground state configuration
emerges: the S1 phase [64], see Fig. 3.1(b,d) and Fig. 3.2. The structure in layer one
of S1 features equilateral triangles and squares arranged in a snub-square tiling [255]
(cf. second panel in Fig. 3.21) whose vertices are the charge positions. The tiling of
layer of S1 is a perfect square tiling whose vertices are located at the geometric centers
of the square tiles of layer one projected to layer two.

The snub-square tiling is known to be a precursor for dodecagonal quasicrystalline
ordering for certain two-dimensional systems (of structures tiled by squares and equi-
lateral triangles) [252, 254, 273, 277]. To investigate the possible emergence of do-
decagonal ordering in the asymmetric Wigner bilayer system, we investigate in this
Subsection a family of structures which are solely tiled by squares and triangles in
layer one and whose vertices in layer two are placed at the projected geometric centers
of the squares of layer one (following the above mentioned decoration scheme of S1 in
layer two). We refer to the family of thereby generated structures (or tilings) as the
dodecagonal type I (DI) family26 and to the corresponding structures as DI structures;
the respective decoration scheme for generating a DI structure from an arbitrary square
triangle tiling in layer one is referred to as DI decoration scheme.

In Subsection 3.1.5.1 we first briefly discuss some basic, yet general geometric relations
of square-triangle tilings and then provide in Subsection 3.1.5.2 an overview of zero
temperature structural ground states of the asymmetric Wigner bilayer system which
are structurally related to S1, i.e., which feature (distorted) square-triangle tilings
and traits related to dodecagonal tilings in general. We then present the Stampfli-
inflation scheme in Subsection 3.1.5.3 which will allow us to generate ever larger DI
structures which gradually, i.e., by increasing the size of the structures, approximate
dodecagonal quasicrystalline ordering. We will then introduce an efficient optimization
scheme in Subsection 3.1.5.4 to identify DI configurations which minimize the energy
(per particle) in the configuration space of DI tilings with a certain unit cell size. After
that, we present and discuss in Subsection 3.1.5.5 DI ground state configurations for
different DI configuration spaces (each defined by fixed lattice vectors and by a fixed
number of particles in the unit cell) and we investigate the mechanical stability of
these structures in Subsection 3.1.5.6. Eventually we compare in Subsection 3.1.5.7
the identified DI ground state configurations with the zero temperature ground state
structures, suggested by Refs. [62–64].

3.1.5.1 Square-Triangle Tilings: Vertices and Defects

A square-triangle tiling is a two-dimensional tesselation solely composed (i.e., tiled) by
two different geometric shapes, i.e., by squares and equilateral triangles, fully covering
the plane without overlaps and without gaps.

26S1 is, for instance, a member of the DI family.
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Triangular Snub-Square
Elongated 
Triangular Square

Figure 3.21: Four possible local environments (formed by squares and equilateral triangles) of
vertices (emphasized by filled blue circles) of any square-triangle tiling [255]. To obtain 360◦ degrees
around a vertex with regular polygons with opening angels of 90◦ (squares) and 60◦ (equilateral
triangles) an even number of squares (i.e., zero, two or four) is required. Similarly, the possible
number of triangles forming such a vertex can only be six, three or zero. Hence the four depicted
vertices are the only geometrically allowed ones. If not combined (and when properly rotated)
these four vertices can give rise to (from left to right) a triangular–, a snub-square–, an elongated
triangular– and a pure square–tiling [255]. Hence we here label the four vertices according to their
associated tiling as triangular vertex, snub-square vertex, elongated triangular vertex and square
vertex.
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Figure 3.22: Transformation of a hexagon to a shield to a triangle tile (thick black shapes from left
to right); fixed vertices (1), (2) and (3) are labeled and color-coded. A perfect shield tile (central
panel) is composed by three interlocked squares (see color coded squares) with a relative angle of
30◦ to each other.

In general, every square-triangle tiling can be classified into four local environments
which we list and illustrate in Fig. 3.21. We here label these four vertices according
to the tiling they are associated to as triangular vertex, snub-square vertex, elongated
triangular vertex and square vertex : a triangular tiling only features triangular vertices,
a snub-square tiling only consists of snub-square vertices (in two possible orientations
which are related by 90◦), an elongated triangular tiling is composed by two types of
elongated triangular vertices (related by a 180◦ rotation) and a square tiling is solely
composed of square vertices [255].

A well known defect in the tesselation of otherwise perfect square-triangle tilings are so
called shield tiles [254, 255] (or shields, in shorthand notation), which can be thought
of as being composed of three interlocked squares as shown in the central panel of
Fig. 3.22. Shield tiles are deformed hexagons whose small opening angles (indicated
by the numbered corners in Fig. 3.22) can continuously be varied between 120◦ and
60◦ to form an intermediate tile between a regular hexagon, a perfect shield tile and
an equilateral triangle as depicted in Fig. 3.22. Perfect shields can also represent valid
tiles in dodecagonal quasicrystals additional to squares and equilateral triangles [253,
280] but we explicitly omit shield tiles in our investigations of the DI family in Sub-
section 3.1.5.

Other tiles which frequently emerge in dodecagonal quasicrystals are 30◦-rhombi with
the same side-lengths as the squares and equilateral triangles of the basic square-
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triangle tile-set (not shown here); we do not consider such motives to be part of the
tiling in layer one in DI structures in our investigations.

3.1.5.2 Snub-Square (S1) and Related, Clustered Phases in the Asymmetric
Wigner Bilayer System

To gain a deeper understanding of the problem of studying dodecagonal ordering in
the asymmetric Wigner bilayer system and to exploit competing structures of the DI
family, we present in Fig. 3.23 the structural families identified by the k∗32-clustering
approach27 (see Subsection 3.1.4) which are structurally similar to S1 (or DI), i.e.,
families of structures featuring (defective and distorted) square-triangle tilings in layer
one (see also Fig. 3.18(c)). We highlight the respective regions in the (η,A)–phase
diagram where the corresponding k∗c32-families represent the ground state candidates
of the system. The different structure families are referred to as k∗c32, where the index
c = 1, . . . , 32 represents the unique (yet arbitrary) family-labels identified by the k∗32-
clustering algorithm.

Via the structural family k∗15
32 (emphasized in red in Fig. 3.23) the clustering approach

identified the S1 (snub-square) structure. As already mentioned above, the layer one
structure of S1 is a realization of a square-triangle tiling where two squares and four
triangles compose the irreducible unit cell of the configuration. The corresponding
structure in layer two also forms a special realization of a square triangle tiling, namely
a pure square tiling whose vertices, i.e., whose charge positions, are located at the
geometric centers of the squares in layer one. The side length of the squares and
equilateral triangles (or equivalently the tiling length of the square-triangle tiling)
in layer one is given by a1 and the tiling length of the square tiling in layer two is
a2 = a1 · (1 +

√
3)/2.

We find that k∗30
32 (emphasized in yellow in Fig. 3.23), k∗732 (green) and k∗24

32 (cyan) are
distorted square triangle tilings but still resemble S1: while k∗30

32 maintains in layer two a
(slightly distorted) square tiling, the square-triangle tiling in layer one is distorted such
that certain square-triangle pairs may be interpreted as admittedly strongly distorted
pentagons (highlighted by green tiles in the k∗30

32 sub-panel of Fig. 3.23). Structures
from the k∗732 family also represent a distorted version of a square-triangle tiling in layer
one and the tesselation in layer two is formed by tiles resembling rhombi. Interestingly,
the corresponding structure in layer one features an approximately regular yet incom-
plete dodecagon (cf. blue emphasized area in the k∗732 sub-plot of Fig. 3.23) hosting
two distorted pentagons (emphasized by green tiles in the k∗732 sub-plot of Fig. 3.23).
The k∗24

32 family features a distorted square-triangle tiling in layer one and the tiling
27The k∗32-clustering approach introduced in Subsection 3.1.4 relies on unsupervised k-means cluster-

ing (see Subsection 2.4.2) of the database of structural ground state candidate configurations of
the asymmetric Wigner bilayer system identified in Refs. [62–64] (or better of the data set of order
parameters of the structural database, which we additionally subjected to principal component
analysis, see Subsection 2.4.1). Via information-theoretical measures based on the adjusted mu-
tual information score between different clustering results (see Subsection 2.4.5), we could identify
a reasonable “guess” for a total number of K∗=32 different structural families in the structural
database; the asterisk emphasizes that we manually assigned all uniquely defined hexagonal mono-
layer configurations of the structural database as a family and excluded the corresponding data
points from the k-means clustering procedure of the remaining data.
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Figure 3.23: Refined zero temperature ground state phase diagram of the asymmetric Wigner
bilayer system from literature [62–64] (left) and corresponding archetypical structures which are
related to the S1 configuration (right) based on the k∗c

32 structural families which were identified
by the K∗=32-means clustering (cf. Subsection 3.1.4) subjected to all structural data considered
in Refs. [62–64]. The opaque, white lines in the left panel correspond to the phase boundaries
from literature [62–64], cf. Fig. 3.2. The associated ground state regions of all c = 1, . . . , 32 k∗c

32

structural families are emphasized in gray scale in the left panel (each gray scale value – not shown
here – represents one family). Representative structures of the k∗c

32 families, which are related to
the S1 phase (see top left structure of the k∗15

32 family which is emphasized in red) and, more
generally, to the dodecagonal type I family, are explicitly depicted in the right part of the plot;
special tiles emphasizing the tiling of a structure are highlighted by opaque colors and the respective
unit cells are indicated by thick black frames. The different k∗c

32 families are highlighted by different
background colors and the associated region in the phase-diagram (left), where the depicted k∗c

32

families represent the ground states of the asymmetric Wigner bilayer system, are appropriately
color coded. We see that most of the depicted tilings exhibit a (distorted) square triangle tiling
in layer one or even feature shield-like tiles. Many tiles of the structures presented here may give
rise to dodecagonal motives. For all depicted configurations, the layer two configuration features a
very uniform structure composed either of pure squares but also of triangles or (slightly distorted)
rhombic tiles. See Appendix A.1.2 for details on characteristic values and boundaries of the order
parameters and principal components for the k∗

32-clustering families of structures.
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in layer two (emerging from vertices placed at the geometric centers of the distorted
squares of layer one) features rhombi rather than squares.

Two interesting structural families are presented in Fig. 3.23 by k∗23
32 (emphasized in

orange in Fig. 3.23) and k∗232 (magenta): k∗23
32 is composed of one (close-to-triangle)

shield tile (cf. Fig. 3.22) and six adjacent, equilateral triangles (also counting periodic
images of the two triangles present in the unit cell). The geometric center of the
shield tile is decorated by a charge in layer two which thereby forms a triangular
tiling. The layer one tiling of the more complex presented structure of the k∗232 family
is composed of one equilateral triangle, one (close-to-triangle) shield tile and three
distorted pentagonal tiles arranged almost in a triangle (emphasized with green color).
The shield and pentagonal tiles are decorated at their geometric center with a charge
in layer two such that a (slightly distorted) triangular tiling emerges in layer two.
The different tiles of the k∗232 structure are arranged in an almost self-similar pattern,
forming a larger, more complex cluster of tiles resembling a large triangle.

The perfect and distorted square-triangle tilings in layer one of the DI-related ground
state structures of the asymmetric Wigner bilayer system can be quite versatile for
different system parameters. However, we find that the corresponding structures in
layer two appear to be highly uniform: we identify square tiles, triangular tiles and
(slightly distorted) rhombic tiles. A mixture of squares and triangles in layer two of
ground state candidate configurations of the asymmetric Wigner bilayer system has
not yet been reported in literature [62–64].

3.1.5.3 Systematic Stampfli-Inflation

Dodecagonal quasicrystals composed of squares and triangles represent infinitely large
structures which feature never repeating patterns of squares and triangles and thereby
exhibit global dodecagonal rotational symmetry [252–254, 277]. In an effort to system-
atically approximate aperiodic dodecagonal quasicrystalline order with DI structures
(or DI approximants) in the asymmetric Wigner bilayer system, we here introduce a
way to increase the complexity of the unit cell of square-triangle tilings using so-called
Stampfli-inflation [252] (explained in detail below). Stampfli-inflated square-triangle
tilings represent a series of finite sized approximants to a dodecagonal quasicrystal:
global dodecagonal rotational symmetry is successively approximated via repetitive
Stampfli-inflation. Inflating a tiling is a purely geometrical process and in the Subsec-
tions to follow we will address the question if large Stampfli-inflated DI structures –
more closely approximating a quasicrystal – do (or do not) have energetic advantages
compared to smaller, more crystal-like structures in the asymmetric Wigner bilayer
system.

During Stampfli-inflation each vertex of a square-triangle tiling is replaced by a regular
dodecagon composed of equilateral triangles and squares of side lengths a1/(2 +

√
3);

a1 being the tiling length of the initial square-triangle tiling. In order to avoid overlaps
these dodecagons can be assigned to the vertices of the initial square-triangle tiling in
two different ways which are related by rotations of 30◦, see Fig. 3.24. During Stampfli-
inflation this rotation angle is chosen at random with 50% probability [254]. Holes
between the dodecagons are filled with appropriate square-triangle motives. Eventually,
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the lattice vectors of the structure are rescaled by a factor of (2 +
√

3) and thereby
a Stampfli-inflated square-triangle tiling with a tiling length of a1 is generated. Via
periodic stacking of the unit cell, i.e., by extending the unit cell to its neighboring
periodic images along the positive x and y directions, we can additionally quadruple
the size of the unit cell. In that way Stampfli-inflation allows us to generate ever
larger square-triangle tilings: each inflation step scales the number of particles in the
irreducible unit cell by a factor of (approximately) (2 +

√
3)2, while stacking increases

the number of particles by an additional factor of four (cf. Fig. 3.25).

30°

Figure 3.24: Schematic representation of Stampfli-inflation of a single vertex of a square-triangle
tiling (indicated by blue filled circles, cf. Fig. 3.21) by a regular dodecagon (twelve outer vertices
are highlighted by magenta circles) composed by equilateral triangles and squares. Every vertex
of the inflated dodecagon represents (in our case) the position of a charge in layer one in the
Stampfli-inflated tiling. There are two valid variants of dodecagons in the inflation procedure (left
and right) which are related by a rotation of 30◦. During Stampfli-inflation both variants are
used at random with 50% probability [254]. In this thesis, we employ the following color-coding:
dodecagons with a “horizontal” triangular vertex in the center, i.e., a central hexagon composed of
triangles which exhibit one side which is parallel to the horizontal axes) are filled blue (left), those
with an additional 30◦ rotation are filled green.
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Figure 3.25: Schematic representation of Stampfli-inflation and stacking of type 0 (hexagonal
lattice, left), of type 1 (square lattice, middle) and of type 2 (S1 or snub-square tiling, right). In
each type-specific sub-plot (left to right) the inflation procedure is indicated horizontally (from left
to right) and stacking is performed vertically (from top to bottom). The inflated dodecagons have
two allowed orientations with a respective angle of 30◦ to each other, which is indicated by blue
and green filling of dodecagons; periodically replicated dodecagons are not filled. Notably, that the
tiles in the snub-square type of approximants are additionally rotated by 15◦ with respect to type
0 and type 1.

By assigning the vertices of Stampfli-inflated square-triangle tilings to particles in layer
one of a Wigner bilayer structure and performing DI decoration in layer two we cover
DI structures with 6, 22, 82, 306, 1142 and 1224 particles per unit cell28. Notably, the
number of equilateral triangles and squares of a square-triangle tiling with fixed periodic
28The unit cell is scaled in the x and y directions – without the loss of generality [62] – such that the

in-plane particle density is constant throughout all configurations considered in this thesis.
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boundary conditions (which are determined by the Stampfli-inflation procedure) is also
fixed [252, 254]. Consequently, the inflation procedure fixes the number of particles in
layer one, N1, and layer two, N2, and thus the composition, x = N2/N .

We consider three qualitatively different families of structures which are suitable start-
ing configurations to systematically approximate dodecagonal quasicrystalline order
via Stampfli-inflation: the hexagonal lattice (type 0 ), the square lattice (type 1 ) and
the snub-square or, equivalently, S1 structure (type 2 ), see Fig. 3.25. These different
families represent three different types of approximants to a dodecagonal quasicrystal
with different symmetries, periodic boundary conditions and compositions. To distin-
guish between different Stampfli-inflated square-triangle tilings of the dodecagonal type
I family, i.e., DI, we introduce the shorthand notation

DI
(T )
I,S , (3.14)

where the superscript (T ) specifies the type of the approximant of the initial square-
triangle family (left to right in Fig. 3.25), the left index, I, specifies the inflation order
and the right index, S, the stacking number [254]. With this notation, the original
lattices depicted in Fig. 3.25 can be identified as DI

(0)
0,1 (hexagonal lattice), DI

(1)
0,1 (square

lattice) and DI
(2)
0,1 (snub square structure). Tilings which are inflated once (top right

panels of respective types, T , in Fig. 3.25) can be addressed by DI
(T )
1,1 . Zero inflated,

once stacked lattices (bottom left panels for respective types, T , in Fig. 3.25) can be
written as DI

(T )
0,2 and once inflated and once stacked lattices (bottom right panels of

respective types, T , in Fig. 3.25) are written as DI
(T )
1,2 .

Note that each particular Stampfli-inflation procedure – via choosing T , I and S –
gives rise to a respective configuration sub-space of DI

(T )
I,S structures which is related

to the particular choice of the fixed periodic boundary conditions.

3.1.5.4 Ground State Identification by “Zipper” Annealing and Parallel Tempering

In the Subsection above we have introduced a strategy to generate ever larger square-
triangle tilings (or better DI structures) through Stampfli-inflation and stacking. Here,
we introduce a way how to efficiently explore the configuration space of DI structures for
the respective ground state which minimizes the energy per particle, E∗/N → min .

In a first step of structure optimization we aim at identifying the best DI configura-
tion (featuring a square-triangle tiling in layer one and following the DI decoration
scheme in layer two) with a fixed number of particles in the unit cell and with fixed
periodic boundaries29 which is all determined by the specific choice of the inflation
procedure, i.e., by the specific choice of T , I and S in DI

(T )
I,S . In general this is a

sampling problem in a discrete yet potentially huge configuration space of equilateral
square-triangle tilings in layer one where layer two is, again, always appropriately dec-
orated. To perform the required structure optimization for a given Stampfli-inflated
29I.e., with fixed lattice vectors, with a fixed compositions x = N2/N and, notably, with a fixed

number of squares and triangles in the unit cell of layer one.
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DI configuration we perform specifically implemented simulated annealing and paral-
lel tempering (or replica exchange Monte-Carlo30) methods described below (see also
Subsection 2.2.3).

In order to efficiently sample the configuration space of square-triangle tilings (of
fixed composition and periodic boundary conditions) we here rely on so called zip-
per -moves [254]. A zipper-move randomly reshuffles a square-triangle tiling according
to the following protocol (see Fig. 3.26):

(f) Full Zipper Move(a) Creation

(c) B-type flip

(b) A-type flip

(d) Bounce

(e) Annihilation

Figure 3.26: Visualization of all basic steps (a-e) between the creation (a) and annihilation (e) of
a complete zipper-move (f). This figure is a combination of two recreated figures from Ref. [254],
however, in panel (f) we omit all square and triangle tiles which are shuffled by the propagating
rhombi (according to panels(a-e)) and we only present the rhombi which represents the entire
zipper move in blue color. Panel (f) poses one elementary update move (i.e., a sweep) in the
Monte Carlo based sampling procedures discussed in the text.

1. Starting from a special type of local environment composed of one equilateral
triangle and one square, i.e., a so-called house (see Fig. 3.26(a)), two rhombi and
one triangle are created. Each rhombus is assigned with an outwards pointing
arrow labeling its direction of propagation during each step of the zipper move.

2. While the rhombi propagate through (and thereby reshuffle) the square-triangle
tiling they can encounter four possible local environments (i.e., the vertices their
respective arrows point to) which specify how the rhombi propagate through the
tiling via updates of the local environments.

2.1 If the rhombi encounter one of the three local environments illustrated in
Fig. 3.26(b,c,d) updates to these environments are performed which are
labeled A-type flip, B-type flip31 and Bounce and the rhombi propagate
through the tiling.

30Although simulated annealing is a viable tool, the complexity of larger configurations and the asso-
ciated dramatic increase in computational costs (especially when evaluating long-ranged Coulomb
interactions as accurate as possible) limits its applicability which is why we turned to parallel
tempering.

31The B-type flip can be performed in two possible ways, which is chosen at random in the algorithm.
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2.2 If the two rhombi meet again in a local environment which is illustrated by
Fig. 3.26(e) they annihilate into a house and the zipper-move is complete.
Otherwise updates according to step 2.1 are performed until the rhombi
eventually annihilate.

A complete zipper-move32 is schematically depicted in Fig. 3.26(f). Such a zipper-move
connects different square-triangle tilings from the same configuration space ergodically,
i.e., any square-triangle configuration can be transformed into any other from the same
configuration space by a sequence of zipper-moves.

One complete zipper-move of the square-triangle tiling in layer one and the appropriate
DI decoration in layer two together represent an elementary update move, i.e., a sweep,
in the sampling procedure of both, simulated annealing and replica exchange Monte
Carlo. Such a zipper-induced sweep is evaluated according to the standard Metropolis
Hastings [191] acceptance criterion: the sweep is accepted if a uniform random number
r ∈ [0, 1] ≤ min (1, exp (−∆E∗/T ∗i )) and rejected otherwise; here, ∆E∗ = E∗′ − E∗
is the energy difference between the updated sample (or, equivalently, configuration)
with an energy of E∗′ and the original sample with an energy of E∗, defined per
particle N in Eq. (3.6), and T ∗i = kBTi/(

√
ρe2) is the dimensionless temperature of

the current annealing step or the respective replica exchange Monte Carlo sample.
Either by cooling down the temperature of a simulated annealing sample slow enough
or by applying replica exchange Monte Carlo over a sufficiently long time-span (cf.
Subsection 2.2.3) we explore the respective configuration space of DI

(T )
I,S structures

(determined by the composition and the periodic boundaries) for the best structures
which minimize E∗.

3.1.5.5 Self-Similar Super-Structures

In Fig. 3.27 we present results for the structural ground state search executed with
simulated annealing for a N = 82 particle type 2 approximant (i.e., a Stampfli-inflated
snub-square approximant which we can label DI

(2)
1,1) which we perform at a plate separa-

tion of η = 0.68 and A = 0.5. We start the energy minimization from a random square
triangle tiling by applying 100 zipper moves prior to any optimization. The cooling
of the sample subject to the simulated annealing procedure happens in 85 equidistant
temperature steps starting from Nβ∗ = N/T ∗ = 0 and ending at Nβ∗ = N/T ∗ = 4000.
At each temperature we apply ten zipper induced sweeps to equilibrate the sample.

When analysing the corresponding evolution of the sample energy over the process of
annealing (i.e., at the end of each equilibration phase of successive annealing steps)
depicted in Fig. 3.27 we see that there appear to be nearly discrete jumps in the sample’s
energy (especially for low energy configurations at small values of the temperature).
This indicates that only very few configurations are competitors to the ground state,
a feature which we will discuss in detail below. The final structure is highly ordered
such that four regular dodecagons emerge in layer one (two of each kind of the allowed
orientations as depicted in Fig. 3.24). Furthermore, when connecting the centers of
32The zipper-move got its name from its apparent resemblance to opening and closing a zip fas-

tener [254].
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Figure 3.27: Left: Energy per particle, E∗/N , at the end of each equilibration phase of a zipper
based simulated annealing procedure in order to identify the ground state for the DI

(2)
1,1 family

of structures (cf. Eq. (3.14)) with N = 82 particles in the unit cell as a function of Nβ∗ =
N/T ∗ ∈ [0, 4000] for the system parameters η = 0.59 and A = 0.68; the temperature decreases
from left to right in 85 steps. Due to the zipper update moves in layer one particles in layer one
(blue dots) always form vertices of equilateral square-triangle tilings and particles in layer two (red
dots) are placed, according to the DI decoration scheme, at the projected geometric centers of
squares in layer one in each step of the simulation. Right: Unit cell of the highly ordered ground
state structure which minimizes E∗/N for the DI

(2)
1,1 family. Connecting the centers of neighboring

dodegacons in layer one (thick gray lines) reveals a super snub-square tiling on a length scale of
d1 = (2 +

√
3)a1; a1 is the tiling length of layer one. The value of the optimized energy per

particle, E∗
opt/N = −1.424, has to be compared to the ground state energy from literature [63,

64], E∗
GS/N = −1.433 (which corresponds to the S1 structure), at the same system parameters.

the dodecagons (i.e., the central triangular vertices) a super -structure of equilateral
squares and triangles emerges on a larger length scale of d1 = (2 +

√
3)a1: a super

snub-square structure; a1 is the tiling length of layer one and d1 is the short diameter
of the dodecagons. The particles in layer two form either squares (as in S1) but –
necessarily by following the dodecagonal pattern in layer one – also form triangles
and large hexagons which are centered (in projection) in the dodecagons of layer one.
The pattern in layer two could be described by another, perfect square-triangle tiling
on a length scale of a2 = a1 · (1 +

√
3)/2 if the centers of the dodecagons were also

considered as vertices in layer two. However, pulling out the central triangular vertex
of each dodecagon of layer one to form a triangular vertex in layer two at the center of
the hexagonal tile is energetically less favorable as compared to the structure depicted
in Fig. 3.2733. The associated optimal energy E∗opt/N = −1.424 (of the DI

(2)
1,1 ground

33During the course of this thesis we also systematically investigated this idea of pulling triangular
vertices at the centers of dodecagons in layer one into layer two during Monte Carlo sampling and,
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state identified at the system parameters η = 0.59 and A = 0.68) is slightly higher
compared to the ground state value from literature [62–64], E∗GS/N = −1.433, which
corresponds to the S1 structure.

For now, we focus on the structural properties of configurations emerging during the
zipper-annealing and tempering procedures (see below) for DI approximants of differ-
ent sizes and symmetries. The effects of subsequent relaxation of the emerging DI
ground state structures and a comparison of the relaxed energies of the corresponding
configurations with respect to each other and with respect to data from literature [62–
64] are discussed in detail below.

Fig. 3.28 depicts the energies and temperatures along a replica exchange Monte Carlo
(REMC) run for a N = 306 particle DI

(1)
2,1 approximant (cf. Eq. (3.14)) where an

original square lattice (type 1 approximant) is inflated twice. After inflation but prior
to any optimization the tiling is randomized by 1000 zipper moves. We define a (fixed)
range of NT = 16 temperatures covering several magnitudes such that sample diffusion
between neighboring temperatures is possible (see top panel in Fig. 3.28). For this setup
we perform ≈ 500 tempering steps with 20 zipper induced sweeps in between for sample
equilibration at each temperature. Again, the final ground state configuration, now for
the DI

(1)
2,1 family, exhibits a highly regular structure which features several dodecagons

in layer one: when connecting triangular vertices which form the centers of dodecagons
in layer one we can again identify emerging super-squares and super-triangles on a
length scale of d1. Here, clusters of four super-squares and four super-triangles give
rise to yet another super square-triangle structure on a length-scale of 2 × d1, i.e.,
of twice the diameter of a layer one dodecagon, as emphasized by the cyan colored
areas in the ground state inset of Fig. 3.28. The super tiling on the 2 × d1 length
scale appears to be a defective super-stacked square-triangle tiling which also features
distorted, magenta-colored pentagons as additional super tiles.

An inspection of the entirety of samples generated in the simulated annealing and
replica exchange Monte Carlo procedures, respectively depicted in Figs. 3.27 and 3.28,
reveals that high-temperature random square-triangle tilings34 order at low tempera-
tures into self-similar super square-triangle structures on both plates, and on several
length scales. We would like to stress that this is not a unique property of the two
approximants depicted in Figs. 3.27 and 3.28. We moreover perform analogous opti-
mization procedures for a variety of differently Stampfli-inflated structures – always
starting from perfect but randomized DI structures of the corresponding DI

(T )
I,S families

– and the respective ground state solutions (which could be identified) all show this
remarkable emergence of highly ordered self-similar super square-triangle tilings. In
Fig. 3.29 we explicitly present self-similar ground state configurations of several DI

(T )
I,S

families, each evaluated at a fixed composition and with fixed periodic boundaries as
determined by the specific choice of the Stampfli-inflation. Note that this analysis is

alternatively, before relaxation. Throughout all investigated configurations this turned out to be
energetically less favorable as compared to the respective original DI structures (and even turned
out to be unstable).

34We will discuss the relevance of random square-triangle tilings below when we investigate the stabil-
ity of DI configurations with respect to relaxation of all planar particle coordinates and the lattice
vectors.
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Figure 3.28: Replica exchange Monte-Carlo (REMC) energy minimization of a N = 306 vertices
DI

(1)
2,1 approximant (cf. Eq. (3.14)). The top panel shows REMC temperature trajectories, T ∗

i , as
functions of the tempering steps associated with all i = 0, . . . , 15 samples, used in the sampling
procedure, at the end of each equilibration phase between parallel tempering steps: samples are
successively swapped between neighboring temperatures in tempering steps and are, respectively,
depicted by a unique color throughout the simulation. The bottom panel shows the energy per
particle at the end of successive tempering steps for all 16 samples simultaneously, same color
coding as top panel. High energy random configurations encountered at high temperatures (top
inset) give rise to ground state solutions with self-similar super-tilings at low temperature (see
black-dashed trajectory resulting in bottom inset solution). The super tiling (gray lines in top inset
and colored areas in bottom inset) is drawn by connecting neighboring centers of regular hexagons
in layer one. Note that high energy random tilings are not stable with respect to gradient descent
minimization.
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performed for an entire range35 in η ∈ [0.01, 1.4]/
√

2 but still – and practically ir-
respective of η – all ground state configurations exhibit self-similar behavior in their
structural configuration.

In the first row of Fig. 3.29 we present ground state configurations of hexagonal (type
T = 0) approximants of the DI

(T=0)
I,S family which are inflated once (i.e., DI

(0)
1,1 withN =

19, left panel) and inflated and stacked once (i.e., DI
(0)
1,2 with N = 76, middle and right

panels). We see that in the left two panels in layer one non-overlapping dodecagons
composed of equilateral squares and triangles emerge whose centers form a hexagonal
lattice with a lattice constant of d1 (i.e., a super-triangular tiling). Furthermore,
in this case the vertices in layer two describe a rhombitrihexagonal tiling [255], i.e.,
overlapping, dodecagons (on a hexagonal lattice) with a central hexagonal tile (instead
of a triangular vertex) and otherwise composed of squares and triangles with a tiling
length of a2 = a1 · (1 +

√
3)/2. In the top right panel of Fig. 3.29 we rotated (by hand)

the central dodecagon by 30◦ with respect to the top central panel (destroying the
rhombitrihexagonal tiling in layer two) which results in a small energy penalty (and
also an increased instability against relaxation, as we will see later).

In the second row of Fig. 3.29 we present ground state configurations of different
DI

(T=1)
I,S approximant families that are based on Stampfli-inflation of a square lattice

(type 1), i.e., which are inflated once (i.e., DI
(1)
1,1 with N = 22, left panel), inflated

and stacked once (i.e., DI
(1)
1,2 with N = 88, middle) and inflated twice (i.e., DI

(1)
2,1 with

N = 306, right). In the left most panel we see that a single dodecagon emerges in
the irreducible unit cell in layer one giving rise to super-square tiles (cf. green area)
on a square lattice, i.e., a super-square tiling. In contrast to all other tilings depicted
in Fig. 3.29 two neighboring squares in layer one (indicated by red area) form two
elongated triangular vertices (cf. Fig. 3.21). Such a square-square pair in layer one
represents a defect in the otherwise uniform hexagon-square-triangle tiling in layer
two (i.e., a tiling composed of hexagons, squares and triangles) of the respective DI
structure. Henceforward, we refer to such square-square neighbors in layer one as
atomic defects and to structures which do not feature atomic defects as defect free
structures. Stacking of the unit cell (as performed so from the left to the central panel
in the second row in Fig. 3.29) enables the parallel tempering minimization to resolve
this atomic defect simply by properly (re)orienting neighboring dodecagons in DI

(1)
1,2

compared to DI
(1)
1,1: the ground state structure of the DI

(1)
1,2 family is composed of four

dodecagons in the unit cell – their central triangular vertices forming a super-square
tiling – whose orientations alternate by 30◦ (cf. Fig. 3.24) on the corners of the same
edges of square tiles, thereby avoiding square-square pairs in layer one. The specific
orientation of the dodecagons on the edges of the super-squares gives rise to yet another
length-scale of a super square-triangle tiling: a super snub-square tiling emerges in layer
two with a tiling length of 2× a2 = (1 +

√
3)a1 as indicated by the yellow and orange

colored areas in the DI
(1)
1,2 panel in Fig. 3.29. The right most panel in the second row of

Fig. 3.29 shows the ground state configuration of the DI
(1)
2,1 family, which has already

been discussed above (cf. Fig. 3.28 and text): no atomic defects are present here and

35I.e., on the same grid η ∈ [0.01, 1.4]/
√

2 in steps of ∆η = 0.01/
√

2 as in Ref. [62].
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Figure 3.29: Ground-state configurations of several DI
(T )
I,S families (see structure labels, cf.

Eq. (3.14)) evaluated at their respective periodic boundaries and composition by zipper based
energy-minimization in a range of η ∈ [0.01, 1.4]/

√
2 [62]) for approximant types T = 0 (hexag-

onal lattice), T = 1 (square lattice) and T = 2 (snub-square structure) in the upper, middle and
bottom row, respectively; particles in layer one (two) are colored blue (red) and the respective
unit cells are indicated by thick black frames. The complexity of the unit cells increases from
left to right via inflation, I, and stacking, S. All ground states, for the respective DI

(T )
I,S families

show self-similar behavior (large colored squares, triangles and dodecagons) on several length scales
when connecting centers of dodecagons in layer one. Top row: The ground state solutions of the
hexagonal approximants show a closest packing of non-overlapping dodecagons in layer one and
of overlapping dodecagons in layer two (indicated by magenta areas; i.e., a rhombitrihexagonal
tiling [255]). The central dodecagon in the right panel is rotated (by hand) by 30◦ as compared to
the middle panel. Large blue-filled triangles indicate the triangular super-tiling. Middle row: The
ground state solutions of the different square approximants show dodecagons which are typically
arranged on a super-square lattice (green tiles in the left and central panel, cyan square in the right
panel). The super tiling of the right most structure is defective (as indicated by the magenta pen-
tagons) and the left most structure features neighboring squares in layer one (red colored squares
indicating an elongated triangular vertex, cf. Fig. 3.21). Bottom row: The left most structure
(i.e., S1), is the most stable one in the S1 region [62–64]. The ground states of the next larger
approximants (bottom center and right panels) form self-similar super snub-square tilings when
connecting dodecagon-centers in layer one; super tiles are again indicated by colored areas.
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super tiles are formed although the d1 = (2+
√

3)a1 super square-triangle tiling as well
as the 2× d1 “double”-super tilings are defective.

The last row of panels in Fig. 3.29 shows results for the ground state search performed
for different snub-square based (type 2) DI

(T=2)
I,S families of approximants, specifically

for DI
(2)
0,1 (left panel, N = 6), for inflated snub-square approximants DI

(2)
1,1 (middle panel,

N = 82) and for inflated and stacked approximants DI
(2)
1,2 (right panel, N = 328).

The ground state depicted in the left most panel is equivalent to the S1 structure
itself36 featuring a snub-square tiling in layer one and a pure square tiling in layer two
with respective tiling lengths of a1 and a2. The next larger family of approximants,
DI

(2)
1,1, already exhibits N = 82 particles in the unit cell and we already discussed the

results of the related ground state search via Fig. 3.27 above: similar to the ground
state configuration of the related square type of approximants, DI

(S=1)
1,2 (with N = 88

particles in the unit cell), the centers of the four dodecagons in the irreducible unit cell
are located on the corners of a super-square tile (green colored areas with an edge length
of d1) with 30◦ alternating orientations on the corners of the same edges of the super-
tiles, thereby avoiding square-square pairs in layer one. Here, however, two different
super-square tiles are present in the unit cell which are rotated by ±15◦ as compared
to DI

(1)
1,2. This additional rotations of the super-square tiles further give rise to four

super-triangle tiles (blue areas) in the ground state configuration of the snub-square
based DI

(2)
1,1 family. The entire structure then eventually forms the observed super

snub-square tiling when connecting the central triangular vertices of all dodecagons
across periodic directions of the square unit cell. In the right most panel of the last
row in Fig. 3.29 we also present the results for a ground state search for the DI

(2)
1,2

family: the additional stacking of DI
(2)
1,1 has only little effect on the final pattern and a

periodically stacked super snub-square phase emerges.

We also investigated larger approximant families, i.e., the snub-square tiling based
DI

(2)
2,1 family with N = 1142 particles in the unit cell and the square lattice based DI

(1)
2,2

family with N = 1224 for their ground state configuration with REMC and we present
the results in Fig. 3.30. For this family of already considerably complex structures the
optimization procedure turned out to be numerically rather demanding such that even
after ten days of independent REMC procedures (performed for different values of η
on 20 nodes on the Vienna Scientific Cluster [281]; each node being equipped with
sixteen cores) the optimization did not terminate for any of the simulations. How-
ever, we also observe for these families a clear trend to form low energy configuration
with self-similar super-tilings. For the (so far) best solution of the snub-square family
approximants shown in the left panel of Fig. 3.30 we see the emergence of regular super-
super-dodecagons, composed of super-square and super-triangle tiles. Furthermore, the
centers of the super-super-dodecagons are arranged on super-super-square and super-
super-triangle tiles and thereby form a super-super-snub-square tiling (although some
super-super-dodecagons are defective and atomic defects are present in the structure).

36Notably, the smallest variant of the type 2 approximant families, i.e., DI
(2)
0,1, is the smallest square

triangle tiling presented in this thesis with a non-trivial configuration space composed of two
geometrically different configurations, namely of the snub-square tiling and the elongated triangular
tiling (cf. Fig. 3.21).
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The (so far) best configuration for the square family approximants depicted in the right
panel of Fig. 3.30 suggests, that the final pattern exhibits large clusters of (at least)
triply stacked super-squares and triangles37 on a length-scale of 3× d1.

DI(2)2,1

N=1142

DI(1)2,2

N=1224

Figure 3.30: The presented tilings are the result of zipper-energy minimization (no relaxation)
for approximants with N = 1142 (DI

(2)
2,1, left) and N = 1224 (DI

(1)
2,2, right) particles in the unit

cell (indicated by thick, black, square frames). After ten days of independent parallel tempering
simulations on 20 nodes (each equipped with 16 cores), no better results were obtained (both shown
configurations are unstable with respect to relaxation). Left: The minimization of the N = 1142
approximant is performed directly from the Stampfli-inflated structure without initial randomization
(in contrast to the right panel); no energetically more favorable results could be obtained when
starting from a random tiling. The magenta area marks a super-super-dodecagon, the orange star
marks a defect in the super-super-snub-square structure, which would emerge when connecting all
super-super-dodecagonal centers. Right: The blue triangle and green square mark triple-stacked
super-triangle and super-square tiles.

For sampling a configuration space of square-triangle tilings (or in our case DI struc-
tures) for large, highly ordered, self-similar ground states zipper moves turn out to be-
come increasingly inefficient the larger configuration. Operating on the atomic length
scale (i.e., reshuffling the square-triangle tiling in layer one) only very few, very specific
zipper moves, such as full rotations of d1–sized dodecagons, may effectively decrease
the energy of highly ordered structures at low temperatures while other, much more
probable random zipper moves will result in an energy penalty. In fact, for tilings
such as presented in Fig. 3.30 the majority of update moves at low temperatures is
rejected since the probability of random, zipper induced sweeps to lower the energy of
the sample is quite low; a “to-be-accepted” zipper induced sweep for an already highly
ordered structure would have to be related to correctly reorienting or translating entire
clusters of super-tiles which are composed of dodecagons. Notably, the symmetry of
the self-similar super-structures is very low, resembling the symmetry of the original
seed lattice used in the inflation procedure.

37In fact, only after observing the large block of super-triangles in the DI
(1)
2,2 approximant we became

aware of the type 0 approximant family: in the code written by Oxborrow et al. [254], which we
used in this project, Stampfli-inflation and zipper sampling is only implemented for type 1 and
type 2 approximants and, naturally, we only considered the later types in the beginning of the
project.
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Ground states of the different DI
(T )
I,S families display a tendency to solely form trian-

gular and snub-square vertices in layer one and thereby avoid to form atomic defects
(i.e., elongated triangular and square vertices, cf. Fig. 3.21) – wherever this is geo-
metrically possible. The observed triple stacking of dodecagons in super-squares and
super-triangles in the right panel of Fig. 3.30 hints at a phase separation of super-square
and super-triangular tilings which are here combined to one structure through stacked
super-squares and super-triangles with a perfect interface (i.e., without defects). Based
on this idea we may circumvent the problem of numerically sampling the entire con-
figuration space for highly ordered configurations: in Appendix A.1.5 we propose an
inflation scheme of square-triangle tilings (properly combining Stampfli-inflation and
stacking) to avoid square-square neighbors on the atomic length scale. This provides
us with a mechanism to generate large self-similar super-structures from scratch – if
this is geometrically possible. To this end, further investigations are required and for
now – and in what follows – we will focus on the structures presented in Fig. 3.29.

We conclude the discussion of the zipper-minimized ground state structures by em-
phasizing that, given the periodic boundaries and compositions, the symmetries of the
ground state super-structures strongly resemble the symmetry of the initially used type
of approximants, i.e., of the hexagonal lattice (type 0), the square lattice (type 1) or
the snub-square tiling (type 2). We interpret this result based on the uniformly repul-
sive and long-ranged Coulomb interaction, that favors essentially identical structures
at different length-scales on the two plates. In contrast, the plate-to-plate interac-
tion locks square-triangle arrangements of the two planes into self-similar super-tiles,
characteristic of a well-ordered quasicrystal state [45].

3.1.5.6 Relaxation, Noise and Stability

In this Subsection we will investigate the mechanical stability of the DI
(T )
I,S ground state

structures identified in Fig. 3.29 via relaxation of the corresponding perfect DI con-
figurations – exhibiting a perfect square-triangle tiling in layer one and DI decoration
in layer two – as well as of slightly distorted versions thereof. This will allow us to
relate the nearly discrete jumps in energy of DI structures during zipper annealing
and tempering (cf. Figs. 3.27 and 3.28) with certain, local environments38 of the DI
configurations.

We test if a configuration represents a (local) energy minimum with respect to all
(in-plane) particle positions and the lattice vectors via relaxation at a given set of
the system parameters, η and A. To be more specific, we numerically minimize
E∗(rN ;A, η)/N defined by Eq. (3.6) via gradient-descent minimization39: the gradient-
descent minimization of E∗(rN ;A, η)/N is performed under the variation of all (in-
plane) particle positions in the xy-directions and under the variation of the (in-plane)
lattice vectors for a given DI

(T )
I,S bilayer structure, while respecting the following con-

straints: (i) the z-positions of all particles are fixed (fixing thereby the composition

38I.e., the already mentioned square-square neighbors (or equivalently atomic defects.) in layer one.
39Following Ref. [62] we usually employ the limited memory [170] Boyden-Fletcher-Goldfarb-Shanno

algorithm [171–174] in its bounded variant [175] (L-BFGS-B) for the gradient-descent based energy
minimization of structures of the asymmetric Wigner bilayer system.
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x), (ii) the plate separation η is fixed and (iii) the unit cell area is kept constant. We
refer to a structure with a vanishing gradient of E∗(rN ;A, η)/N with respect to the
(in-plane) particle positions and lattice vectors – under consideration of the constraints
(i) to (iii) – as relaxed configuration.

A DI structure is called stable if the relaxed configuration is not (significantly) different
from the original (DI) structure and does not transform into a topologically different
configuration (i.e., if neither the square-triangle tiling in layer one nor the DI decoration
in layer two are destroyed). We here quantify the similarity between original structures
and relaxed structures by comparing all N particle positions of a configuration before,
r̃N = (r̃1, . . . , r̃N ), and after relaxation, rN = (r1, . . . , rN ). For that purpose, we define
the average positional displacement, 〈∆xy〉, between an initial and the corresponding
relaxed structure which is given by

〈∆xy〉 =
1

N

N∑
i=1

|r̃i − ri|. (3.15)

To further investigate the mechanical stability of the class of DI structures, we (poten-
tially) subject all configurations listed in Fig. 3.29 to noise prior to relaxation by adding
uniform, random displacements to the in-plane particle positions in the xy-directions,
i.e., r̃i → r̃i + ξ, with ξ = (δx, δy, 0) in the interval −δxy/2 ≤ δx, δy ≤ δxy/2; we refer
to δxy as noise-level. A structure is called mechanically stable up to a noise level of
δxy if the average deviation40 is insignificant, i.e., 〈∆xy〉 ≈ 0.

Note that before evaluating 〈∆xy〉 in practice we also correct for a possible global
shift, 〈r̃N 〉 6= 〈rN 〉 of the mean particle positions before, 〈r̃N 〉 =

∑N
i=1 r̃i/N , and

after relaxation, 〈rN 〉 =
∑N

i=1 ri/N , via r̃N → r̃N − 〈r̃N 〉 and, analogously, rN →
rN − 〈rN 〉. In that way, we ensure that 〈r̃N 〉 = 〈rN 〉 = (0, 0, xd) where x = N2/N is
the composition and d the plate separation distance.

First, we apply the relaxation procedure to all tilings shown in Fig. 3.29 for a range
of the relevant41 system parameter η ∈ [0, 1]. We identify all of the self-similar super-
structure ground states of the different DI

(T )
I,S families – except for DI

(1)
1,1 depicted in the

central left panel of Fig. 3.29 – to be stable in the vicinity of the S1 phase (cf. noise level
δxy = 0 in Fig. 3.31). We refer to the region in η where a specific DI configuration is
stable as respective stable region in η (i.e., respective to that configuration). Notably,
also in the stable region in η the symmetry of the perfect square tiles in layer one
is slightly broken due to relaxation and squares in layer two are transformed into
rectangles with an aspect ratio close to unity (see Fig. 3.35 below) which is the reason
for the small yet finite values of 〈∆xy〉 throughout the entire η range of all structures
presented in Fig. 3.31. The structural properties of the relaxed configurations outside
of the respective stable η-regions strongly depend on the value of the composition, x,
of the respective configurations and on the precise value of η. Both structures shown
40In Appendix A.1.3 we present in an analogues manner the effects of relaxation and noise on the

maximum deviation, max (∆xy) = max(|r̃i − ri|).
41Note that the value of A does not affect structural properties of a given bilayer structure [62] and

consequently does not need to be considered during relaxation. It is, however, important when
comparing energies of different structures at a given (η,A)-pair, cf. Eq. (3.9).
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Figure 3.31: The average positional displacement, 〈∆xy〉 defined by Eq. (3.15), in xy-directions
between the relaxed and the original ground state configurations of the respective DI

(T )
I,S families,

depicted in Fig. 3.29, as a function of η ∈ [0, 1]; the panels here are arranged in the same way as
in Fig. 3.29. Prior to relaxation the in-plane positions of all particles of the different structures are
subject to uniform, random noise, r̃i → r̃i +ξ with a noise-level of δxy/a1 ∈ [0, 0.4]; a1 is the tiling
length in layer one and the results are color coded with respect to the noise-level (see inset). Note
that all structures (except for the DI

(1)
1,1 ground state configuration which features atomic defects

in layer one, cf. central left panel) have a broad range of stability in the S1 related η-region (i.e.,
near η ≈ 0.5) even for noise levels of δxy = 0.3a1.

in Fig. 3.30, i.e., DI
(2)
2,1 with N = 1142 and DI

(1)
2,2 with N = 1224, are unstable in the

entire η range, hence we do not show the results of the stability analysis of these two
structures here.

Next, we apply different noise-levels between δxy = 0 and δxy = 0.4 a1 to all configu-
rations presented in Fig. 3.29 prior to relaxation and we collect the respective average
positional displacement, 〈∆xy〉, as a function of η ∈ [0, 1] in Fig. 3.31; a1 is the tiling
length of the square-triangle tiling in layer one. We see that in the vicinity of the
S1-region (most of) the highly uniform super-structures are mechanically stable up to
a noise-level of δxy = 0.3 a1, that is 30% of the tiling length in layer one, over a broad
range of η. This remarkable mechanical stability of some DI configurations can be
related to the constant composition we assumed during our calculations: if we consider
a self-similar super-structure in layer one usually also layer two forms an interlocked
super-structure featuring equilateral triangles, squares and hexagons (except for tilings
such as DI

(1)
1,1 which feature atomic defects). As long as the motives of the self-similar

DI configurations are present topologically (after being subject to noise) relaxation
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guides the structures back to the original self-similar structure (in most cases).
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Figure 3.32: The energy difference, ∆E∗
R/N = E∗/N − E∗

R/N , of the energies per particle,
E∗/N , of perfect DI tilings, i.e., of the ground states of the respective DI

(T )
I,S families, and the

corresponding energies after relaxation, E∗
R/N , as a function of η arranged in the same panel

ordering as in Figs. 3.29 and 3.31. Note, that the energy, E∗/N , of a perfect DI structure as a
function of η is continuous. Consequently, the collapse of the square-triangle tiling in layer one
(and/or the collapse of the perfect DI decoration scheme) at the boundaries of the respective stable
η-regions is a first order transitions as indicated by the jump of the relaxed energies; this holds for
all investigated structures except for DI

(2)
0,1 ≡S1.

To emphasizes the energy scales related to relaxation of different, perfect DI tilings we
compare in Fig. 3.32 the energies prior to (i.e., E∗/N) and after relaxation (i.e., E∗R/N)
of the self-similar ground states of the respective DI

(T )
I,S families shown in Fig. 3.29 by

evaluating ∆E∗R/N = E∗/N − E∗R/N as a function of η ∈ [0, 1]. There appears to be
a distinct value of η ≈ 0.68 where the perfect S1 structure (i.e., the smallest possible
type 2 approximant whose results are depicted in the bottom left panel of Fig. 3.32) is
particularly stable as indicated by the small change in energy of ∆E∗R/N ≈ 4× 10−4.
All other approximants analysed in Fig. 3.32 undergo minor structural changes in the
respective stable η-regions (also see Fig. 3.31) and, moreover, relaxation is accompanied
by rather large changes in energy of the order ∆E∗R/N & 2.4 · 10−3 for the self-similar
super-structures. However, and most importantly, the square-triangle tiling in layer
one is not destroyed in the stable η-region of defect free super-structures, i.e., for
neither of the configurations presented in Fig. 3.29 except for the DI

(1)
1,1 ground state

(cf. central left panel of Figs. 3.29, 3.31 and 3.32): being intrinsically unstable also
causes a larger energy difference of ∆E∗R/N & 4 · 10−3. Notably, this also sets the
energy scale related to relaxation of the other unstable structures shown in Fig. 3.30,
as we will see below.
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By carefully analysing unstable configurations – with respect to relaxation – we can
identify the main source of instability for all DI structures of the DI

(T )
I,S approximant

families: the unstable ground state of the DI
(1)
1,1 family (cf. central left panel of

Figs. 3.29, 3.31 and 3.32) and the energetically most favorable, yet unstable config-
urations of the DI

(2)
2,1 and DI

(1)
2,2 families we could identify (cf. Fig. 3.30) all exhibit

square-square pairs in layer one that share a common edge. The related DI decorated
particles in layer two (placed at the projected geometric centers of layer one squares)
are separated by a distance of a1, i.e., by the tiling length of layer one. This distance
is smaller than the usual layer two interparticle separation of a2 = a1 · (1 +

√
3)/2

of all stable DI configurations which feature either a square tiling (S1) or hexagon-
square-triangle tilings in layer two. Consequently, the corresponding particles in layer
two that are separated by a distance of a1 experience larger repulsive forces (owed
to the repulsive Coulomb interaction between the particles) as compared to the other
particles which are typically separated by a distance of a2. In that way atomic defects
cause instabilities in the related defective DI structures since these larger forces can
usually not be compensated by the other particles in the structure. We empirically
find that neighboring square-square pairs in layer one give rise to an energy penalty
in (random42) DI tilings which scales approximately linear with the number of atomic
defects in the unit cell of the related structures, as can be seen in Fig. 3.33. This en-
ergy penalty also explains the discrete energy-jumps of the low energy configurations
of the simulated annealing procedure depicted in Fig. 3.27: during the annealing pro-
cedure the super snub-square structure is encountered several times but is occasionally
destroyed by a zipper move leading to a small number (usually one or two) of square-
square pairs in the unit cell in layer one thereby causing the discrete jumps in energy
observed in Fig. 3.27.

The type 0 approximants (first line in Figs. 3.29 and 3.31) with their closest packed,
overlapping dodecagons in layer two appear to be mechanically stable in a wide η range.
In the right most structure shown in Fig. 3.29 the central dodecagon in layer one is ro-
tated by 30◦ as compared to the structure depicted in the top central panel of Fig. 3.29,
breaking thereby the rhombitrihexagonal tiling [255] in layer two. In fact, the structure
in layer two changes such that square-square neighbors in layer two emerge (while layer
one remains defect free). Comparing the top central and top right panels of Figs. 3.31
and 3.32 suggests that such layer two square-square neighbors may be interpreted as
second order defects43 (inspired by the naming atomic defect for square-neighbors in
layer one) since the respective stable η range is reduced compared to the original,
rhombitrihexagonal layer two tiling based configuration: second order defects appear
to be an additional source of instability when relaxing the corresponding structure – al-
though not as drastic as atomic defects. Also defects in the super-structure such as the
distorted pentagons indicated by magenta areas in the central right panel of Fig. 3.29
appear to affect the range of η-stability compared to the other, fully self-similar super
tilings but to this end further work is required.

As a consequence of the instability caused by atomic defects, relaxation of virtually all

42I.e., in random square-triangle tilings in layer one which are DI decorated.
43This is valid only if also triangles are present in the tiling of layer two since the layer two tiling of

the current ground state candidate, i.e., S1, is only composed of squares.
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Figure 3.33: Energy per particle E∗/N as a function of square-square neighbors (or, equivalently,
atomic defects) in layer one (x-axis) for all configurations encountered in a parallel tempering run
of a N = 1142 particle approximant (DI

(2)
2,1, cf. left panel in Fig. 3.30); the data are collected from

simulations at η = 0.5869 and A = 0.67 of an initially (i.e., not randomized) Stampfli-inflated
DI

(2)
2,1 structure (blue) and from an initially randomized one (orange). The initially not randomized

configuration performs better in energy since it avoids, by construction, from the beginning square-
square neighbors in layer one. We see a largely linear scaling of E∗/N with the number of atomic
defects present in the structure. This suggests that the final ground state of this approximant,
although we could not identify it via simulations, is preferably highly ordered and defect free –
if this is geometrically possible. A least means square fit of E∗/N ≈ kx + d (black dashed line)
indicates a constant energy penalty of k = ∆E∗

ssn/N ≈ 6×10−5 for square-square neighbors in layer
one and the hypothetical ground state energy of the perfect square-triangle tiling can be evaluated
to d = E∗

0/N ≈ −1.428; the global ground state energy (related to S1) is given by E∗
GS/N−1.4357

at this (η,A)-state point. However, the predictive power of this fit is rather low since this analysis
does not account for relaxation which poses a significant η-dependent contribution to the energy of
the order of ∆E∗/N ≈ 10−4 − 10−3 and is (at least) one order of magnitude larger as the related
square-square penalty.

random DI structures (i.e., DI structures based on random square-triangle tilings in
layer one) will destroy the perfect (yet random) square-triangle tilings in layer one and,
consequently, the symmetry inherent to the DI structures. Only defect free self-similar
super-structures are mechanically stable in the vicinity of the S1-region. Focusing
now on the S1-region in the phase diagram and on related regions which also feature
ingredients to form dodecagonal motives (cf. Fig. 3.23) the system rather tends to
distort – via relaxation – the perfect square-triangle tiling in layer one of random DI
structures to form a layer two tiling which is as uniform as possible (such as a square
tiling or a triangular tiling). Hence, what at first sight seems to be a phase separation
of random DI structures at high temperatures and highly ordered low-temperature
super-structures in Fig. 3.28, depicting the results of a REMC structure optimization
procedure, is only an apparent one: with almost certainty random DI structures will
not appear at finite values of temperatures in the asymmetric Wigner bilayer system
due to their large internal energies and forces associated with atomic defects.

We can therefore draw an important conclusion: we do not expect a random DI tiling
would contribute toward entropic stabilization of a highest-symmetry phase quasicrys-
tal [167, 168] at finite temperatures in the quasi-two dimensional Wigner bilayer system
governed by pure repulsive, long-ranged Coulomb interaction. In the vicinity of the
S1-region of the phase diagram potential ground state structures appear to exhibit
highly uniform tilings in both layers with minimal sets of commensurate tiles (i.e.,
only featuring squares or squares and triangles). A possible quasicrystalline ground
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state of the dodecagonal type I family would therefore also need to be highly ordered
and highly uniform. The energetically best DI super-structures we identified above are,
on the one hand, highly ordered due to their self-similarity features but, on the other
hand, the uniformity criterion of the ground states of the asymmetric Wigner bilayer
system is violated by the additional hexagonal tile necessary in layer two.

3.1.5.7 Metastable Region of Super-Tilings

Within this project we identified an entire family of self-similar super-structures of
the so-called dodecagonal type I family and we can provide an explicit series of finite
sized quasicrystalline approximants in Fig. 3.29 which are mechanically stable in an
extended range of η (cf. Fig. 3.31). If the energies per particles of larger approximants
is lower compared to smaller ones, quasicrystals – with their self-similarity property –
could potentially have an extra energetic advantage relative to approximants. Here we
will address the question if the asymmetric Wigner bilayer system can potentially give
rise to a zero temperature DI ground state structures of quasicrystalline order within
the ensemble of the dodecagonal type I family. For that purpose we further need to
compare the energies of the related self-similar DI approximants to the ground state
energies of the system [62–64] in the relevant (η,A)-proximity of S1.

Henceforward, we use the shorthand notation DI
(T )
I,S , which basically addresses the

entire configuration space of DI structures for a given triple of the approximant type
T , the inflation number I and the stacking number S, only to address the self-similar
ground state structures of the respective periodic boundary conditions of the DI

(T )
I,S

configuration space, i.e., to directly address the ground state structures depicted in
Fig. 3.29.

We find that the dodecagonal type I family does not seem to provide new candidates
for global ground states in the asymmetric Wigner bilayer system as can be seen in
Fig. 3.34: here we respectively present the offset, ∆E∗GS/N = (E∗

DI
(T )
I,S

/N − E∗GS/N),

in the (η,A)-plane of the energies, E∗
DI

(T )
I,S

/N , of all relaxed DI
(T )
I,S structures shown in

Fig. 3.29 to the ground state energies, E∗GS/N , currently suggested by literature [62–
64]. Especially in the extended region around S1 all DI

(T )
I,S configurations seem to

be energetically less favorable compared to the current ground state energies by a
significant amount of ∆E∗GS/N ≈ 10−3 − 10−2. The exception is DI

(2)
0,1 which actually

represents the S1 (≡ DI
(2)
0,1) ground state (indicated by white regions44 emphasizing

∆E∗GS/N = 0 in the bottom left panel of Fig. 3.34).

Note that outside of the respective stable η-regions, corresponding to each DI
(T )
I,S struc-

ture45 (see Figs. 3.31 and 3.32) the system gains energy via relaxation by deforming
44 Notably, S1 and H (see Fig. 3.2) exhibit the same composition, x = N2/N = 1/3. Relaxing the

S1 structure in the H region may end up in an H configuration. This behavior is reflected by the
offset to the ground state energies of ∆E∗GS/N ≈ 0 of the relaxed DI

(2)
0,1 configurations in the H

region depicted in the bottom left panel of Fig. 3.34.
45The η-dependent first order transition of the DI

(T )
I,S structures in the vicinity of S1 is accompanied by

jumps in the energies after relaxation, cf. Figs. 3.31 and 3.32, which can be observed in Fig. 3.34.
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Figure 3.34: Smallest energy offset of all DI
(T )
I,S structures presented in Fig. 3.29 (relaxed at

the respective values of η and A) to the (suggested) ground state candidates of the asymmetric
Wigner bilayer system in the (η,A)-plane. Especially in the S1 region there seems to be an overall
offset of the energies of the relaxed DI

(T )
I,S structures to the (suggested) ground state energies from

literature of ∆E∗
GS/N ≈ 10−4 − 10−3 (cf. vertical, shadow-like regions which correspond to the

respective stable η-regions of the different structures); no energetically more favorable solutions
could be found within the respective DI

(T )
I,S families of structures. The cyan lines indicate the phase

boundaries from Ref. [62].

(i.e., destroying) the perfect square triangle tilings in layer one. For large values of
η & 0.7, especially large relaxed structures such as DI

(2)
1,2 with N = 328 and N1 = 224

(or DI
(1)
1,3 with N = 352 and N1 = 240, not shown here) exhibit energies comparable to

the suggested ground state energies from literature [62–64] in a narrow region around
A ≈ 0.6. However, due to relaxation the perfect square-triangle tilings transform into
structures of the Vx family (see Fig. 3.2) and now feature hexagonal bilayers at the
relevant η & 0.7 and A ≈ 0.6 combinations. These structures potentially outperform
solutions of the evolutionary ground state search [62], the later being restricted to
structures with a maximum number of N ≤ 40 particles per unit cell due to numeri-
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

cal reasons. In fact, the relaxed DI
(1)
1,3 structure represents a new global ground state

candidate at η & 0.7 and A ≈ 0.6.

We empirically find that the hexagonal tiles in layer two46 of DI
(T )
I,S structures are

responsible for the large energy penalties in comparison to S1 in the surrounding (η,A)-
regions of the S1 phase (cf. Fig. 3.23). We demonstrate this by directly comparing
the energies of the perfect DI

(0)
1,1 structure with the energies of the perfect S1 structure

in the (η,A)-plane. Notably, DI
(0)
1,1 features exactly one layer two hexagon in the unit

cell. Hence, the energy difference ∆E∗S1
/N = (E∗

DI
(0)
1,1

/N − E∗S1
/N) of DI

(0)
1,1 and S1 as

a function of η and A quantifies the energetic cost (or benefit) of maintaining exactly
one layer two hexagon compared to the more uniform square tiling in layer two of S1.
The results are present in the left panel of Fig. 3.35.

Relaxed

DI(0)
1,1

Relaxed Original
Original

s(R) s(O)

10 5

10 1

10 5

10 1

< 

< 

A

Figure 3.35: Left: Energy differences in a logarithmic scale of the perfect (original, non-relaxed)
DI

(0)
1,1 and the perfect S1 structure; no other structures are considered. Purple areas indicate regions

where DI
(0)
1,1 is less favorable in terms of E∗/N compared to S1; in the blue region the situation is

reversed and forming layer two hexagons becomes energetically beneficial. The yellow lines indicate
the phase boundaries from literature [62–64]. Right: DI

(0)
1,1 structure relaxed at η = 0.66468 (solid

red and blue circles) on top of perfect, original DI
(0)
1,1 structure (faint red circles – at the corners

of the gray hexagon – and faint blue circles – not visible). While the particle positions in layer
one remain virtually the same before and after relaxation (solid blue circles which indicate relaxed
vertices completely cover faint blue circles which represent the original vertices), the hexagon in
layer two shrinks from the grey emphasized area (with a regular side length of s(O)) to the red area
(with a regular side length of s(R)) by a factor of (s(R)/s(O))2 = 0.899.

We can see that the value of ∆E∗S1
/N can be positive or negative depending on η and

A. However, in the (extended) proximity of the S1 ground state region the energetic
cost of maintaining layer two hexagons is rather large. In the right panel of Fig. 3.35 we
compare the perfect DI

(0)
1,1 structure with another DI

(0)
1,1 ground state configuration that

has been relaxed at η = 0.66468 (i.e., exactly where DI
(0)
1,1 is most stable, cf. Figs. 3.31

and 3.32). The vertices of the relaxed DI
(0)
1,1 configuration exhibits the same topology as

the perfect DI
(0)
1,1 structure and especially the square-triangle tiling in layer one remains

46The hexagons in layer two are locked to the squares of the dodecagon in layer one.
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virtually unchanged. We can see in Fig. 3.35 that the system reduces the internal
energy via relaxation of the DI

(0)
1,1 configuration (quantified by Fig. 3.32) by slightly

compressing the area of the hexagonal tile in layer two which thereby destroys the
square-triangle symmetry in layer two: the square tiles in layer two are deformed into
rectangular tiles (although with an aspect ratio that is close to unity). We empirically
find that the side length of the regular hexagon after relaxation, s(R), is shorter than
the tiling length in layer two of the original structure, s(O) = a2, by a relative amount
of s(R)/s(O) = 0.948 for the situation depicted in Fig. 3.35. The corresponding relative
change of the area of the hexagon du to relaxation is (s(R)/s(O))2 = 0.899.

In the (η,A)-proximity of the S1 region the asymmetric Wigner bilayer system ener-
getically favors structures featuring a layer two tiling which is as uniform as possible,
i.e., tilings which rely on a tile-set with as few tiles as possible (such as solely square–,
triangular– or rhombic tiles, cf. Fig. 3.23). In contrast, the DI

(T )
I,S ground states all

feature three types of tiles in layer two, namely an equilateral triangle, a square and a
regular hexagon. Especially the energy penalty related to maintaining hexagonal tiles
near the S1 region cannot be compensated through relaxation of the different DI

(T )
I,S

structures, as we have already shown in Fig. 3.34. As a consequence, the DI
(T )
I,S family

of dodecagonal structures remains metastable versus competing structures known from
literature [62–64] such as S1 (see also other structures in Fig. 3.23) by a finite amount
of energy.

We will now only focus on the family of DI
(T )
I,S structures, i.e., on the self-similar ground

states of the respective periodic boundary conditions of the different DI
(T )
I,S families, and

ignore the fact that other structures perform, admittedly, far better in terms of the
internal energy per particle throughout the (η,A)-plane. To compare the energies of
the different DI

(T )
I,S structures we introduce the standard deviation, σDI, of all related

structures by

σDI =

√√√√〈(E∗
DI

(T )
I,S

/N

)2
〉

[T,I,S]

−
〈
E∗

DI
(T )
I,S

/N

〉2

[T,I,S]

, (3.16)

where we take the average 〈·〉[T,I,S] with respect to all available DI
(T )
I,S structures, omit-

ting unstable ones such as DI
(1)
1,1. We evaluate σDI for the original, perfect DI

(T )
I,S

structures as well as for the relaxed DI
(T )
I,S structures in the (η,A)-plane and we present

the results in the left and right panel of Fig. 3.36, respectively. We find that for both
situations σDI extends over several orders of magnitudes, between σDI ≈ 10−5 and
≈ 10−1, depending on the values of η and A.

For the original structures (left panel of Fig. 3.36) we see that the minimal value of
σDI ≈ 10−5 is obtained over an entire (curve-like) region in the (η,A)-plane emphasizing
parameter combinations where all perfect DI

(T )
I,S structures are energetically close47:

apparently, for certain combinations of the system parameters, η and A, where σDI ≈
47Notably, the extended region of energetically close DI

(T )
I,S structures shown in the left panel of

Fig. 3.36 correlates with the results shown in the left panel of Fig. 3.35
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Figure 3.36: Standard deviation σDI, defined by Eq. (3.16), of all available DI
(T )
I,S structures of the

original, perfect DI
(T )
I,S structures (left) and of the relaxed DI

(T )
I,S structures (right) in the (η,A)-

plane (except defective structures such as DI
(1)
1,1, cf. central left panel in Fig. 3.29); the cyan lines

indicate the phase boundaries from literature [62–64]. For the original structures we observe a
curve of σDI ≈ 10−5 (orange/yellow curve, cf. colorbar) which indicates an extended region of
combinations of η and A where perfect DI

(T )
I,S structures are energetically very similar. For the

relaxed case (right) we find a sharp minimum of σDI ≈ 10−5 (orange/yellow horizontal line) in
the vicinity of η ≈ 558614 and A ≈ 0.585 indicating a region of energetically similar, mechanically
stable DI

(T )
I,S tilings. The vertical dashed cuts in the left panel correspond to special values of

η for which we present a detailed analysis of the involved structures in Fig. 3.37 and Fig. 3.38,
respectively.

10−5 (see yellow curve in the left panel of Fig. 3.36) only very little energetic cost is
necessary to transform one perfect DI

(T )
I,S structure into another one.

The effects of relaxation destroy this feature of the perfect DI
(T )
I,S structures (as we

interpret σDI ≈ 10−5) for most of the (η,A)-plane as we show in the right panel
of Fig. 3.36. We observe, however, a narrow yet extended region in the vicinity of
η ≈ 558614 and A ≈ 0.585 which draws our attention (see short, horizontal, yellowish
or orange line in the right panel of Fig. 3.36): here, the relaxed DI

(T )
I,S structures are (a)

mechanically remarkably stable up to a noise level of 30% of the layer one tiling length
a1 (cf. Fig. 3.31) and (b) exhibit a sharp minimum of σDI and are thus energetically
very similar.

To present a clearer picture of the involved energy scales related to the energy offset
of the DI

(T )
I,S structures to the previously suggested [62–64] ground state candidates of

the asymmetric Wigner bilayer system we present in Figs. 3.37 and 3.38 E∗GS/N as a
function of A for certain, selected values of η (indicated by vertical cuts in the right
panel of Fig. 3.34).

In Fig. 3.37 we present the energy difference between the energies of all DI
(T )
I,S structures

relaxed at η = 0.66468 (which is where DI
(0)
1,1 is most stable, cf. Fig. 3.35) and the
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(suggested) ground state energies from literature [62–64]. We find that, indeed, none of
the DI

(T )
I,S structures (except for S1, of course) has reasonably small values of the internal

energy per particle, E∗/N , to be considered as a serious competitor to the global ground
state of the asymmetric Wigner bilayer system in the proximity of the S1 phase. In
the bottom panel of Fig. 3.37 we also present the challenger ranking: we sort all DI

(T )
I,S

structures, embedded in the ground state candidate database from literature [62–64],
in ascending order48 by E∗/N and we assign integer values to the structures thereby
labeling their rank starting with rank 0 for the lowest energy configuration, rank 1 for
the energetically second most favorable structure, and so on.

Interestingly, at this particular value of η ≈ 0.66468 (cf. Figs. 3.31 and 3.37) large
DI

(T )
I,S structures are energetically more favorable than S1 for A . 0.6175 and they

occupy ranks between 2 to 14 for A ≈ 0.6. However, due to relaxation the majority of
DI

(T )
I,S configurations deform into structures similar to k∗30

32 and k∗732 (cf. Fig. 3.23). In

fact, only the DI
(2)
0,1 ≡S1 and DI

(0)
1,1 structures are stable here.

In Fig. 3.38 we present the same analysis as in Fig. 3.37 but for a value of η = 0.558614

which is located inside of the stable region of all DI
(T )
I,S structures shown in Fig. 3.29.

Here all DI
(T )
I,S structures remain virtually unchanged after relaxation49, except for the

unstable DI
(1)
1,1 structure. Comparing the energies of the unstable and stable DI

(T )
I,S

structures depicted in top panels of Figs. 3.37 and 3.38, respectively, emphasizes the
energy the system gains through deformation of the perfect self-similar square-triangle
tilings into configurations similar to k∗30

32 and k∗732 (cf. Fig. 3.23). Yet, no serious
competitor for the global ground state can be identified in Fig. 3.38.

In Fig. 3.38 we further identify the point η ≈ 0.558614 and A ≈ 0.585 where the
energies of all DI

(T )
I,S structures (except for DI

(1)
1,1) are very similar, i.e., σDI ≈ 10−5.

This nearly-degeneracy behaviour is also reflected in the bottom panel of Fig. 3.38
which shows the E∗/N sorted ranking of all DI

(T )
I,S challenger structures embedded in

the literature database [62–64]. We see that all DI
(T )
I,S structures occupy ranks between

5 and 15 at A ≈ 0.585; their ranks are completely reordered as a function of A at this
transition point. A ground state transition in the DI

(T )
I,S family from S1 over DI

(1)
1,3, i.e.,

a singly inflated, doubly stacked square approximant with N = 352 particles per unit
cell, to DI

(0)
1,1 occurs in the vicinity of A ≈ 0.585 with decreasing A.

Summarizing, in this entire Subsection of investigating the dodecagonal type I family
we demonstrate the emergence of self-similar super-structures from the DI

(T )
I,S family

which are mechanically remarkably stable. Although we do not expect to find a new
global ground state structure of this family near the S1 region (or anywhere else in
the phase diagram of the asymmetric Wigner bilayer system) we report a region in
the vicinity of η ≈ 558614 and A ≈ 0.585 where DI

(T )
I,S structures are metastable. The

interesting feature of the energetically similar, mechanically stable DI structures in
the proximity of η ≈ 0.558614 and A ≈ 0.585 suggests that this region may indeed
48The entire database [62] was analysed with the K∗=32-clustering approach presented in Subsec-

tion 3.1.4 and only the best realization of a family of structures at a given value of η and A is
considered in the rank sorting procedure.

49Except, of course, for the slightly deformed hexagons as put forward in Fig. 3.35.
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give rise to a self-similar, atomic-defect free DI quasicrystal in the ensemble of DI-
decorated square-triangle tilings (still neglecting all other possible structures). To this
end further investigations are necessary to prove the existence of such a metastable
quasicrystalline state in this restricted configuration space of the asymmetric Wigner
bilayer system.
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Figure 3.37: Top panel: Energy offset, ∆E∗
GS/N , of relaxed DI

(T )
I,S configurations (solid lines,

same color-coding in top and bottom panels, labels in bottom panel) to the ground-state energies
suggested by Ref. [62] evaluated at η = 0.66468 (where DI

(0)
1,1 is most stable, cf. Fig. 3.35)

as a function of A. Also the energy offset of the best four challenger families (with respect
to the K∗=32-means clustering approach introduced in Subsection 3.1.4) from the literature-
database [62], db1− db4 (dashed lines) are presented at the respective (η,A)-pairs. Bottom panel:
Challenger ranking (i.e., E∗/N -sorting, see text) for all indicated DI

(T )
I,S structures embedded in

the entire literature-database of structural data from Ref. [62] for relevant (η,A)-pairs.
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Figure 3.38: Same as Fig. 3.36 but evaluated at η ≈ 0.558614 where all DI
(T )
I,S structures are

mechanically stable (cf. Fig. 3.31). We see that for A ≈ 0.585 a ground state transition in the
DI

(T )
I,S family from S1 to DI

(1)
1,3 (double stacked square approximant with N = 352) occurs, but the

energies of all DI
(T )
I,S structures become very similar in the vicinity of this (η,A)-pair as shown in

Fig. 3.36 (except for the unstable DI
(1)
1,1 configuration, which has a finite energy penalty compared

to the rest).
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3.1.6 Towards a Bilayer-Modulated Hexagonal Wigner Quasicrystal

In the proximity of the phase-boundary between the regions of stability of the tri-
hexagonal- (Ix) and the honeycomb-structure (H) [255] in the parameter space of the
asymmetric Wigner bilayer system we report strong signals of the twelve-fold sym-
metric bond orientational order parameter in layer two, Ψ

(2)
12 (see top right panel of

Fig. 3.3). With the help of the k∗32-clustering approach50 introduced in Subsection 3.1.4
we could relate this characteristic feature of the ground state candidates of the system
(as suggested by Refs. [62–64]) with a family of structures, i.e., the k∗29

32 family (de-
picted as inset in Fig. 3.18(a) and, equivalently, in Fig. 3.39). The k∗29

32 family is related
to both the Ix and the H structures but, moreover, features rectangular tiles in layer
two. By mixing the basic motives of the Ix and the H structures (i.e., a large, Tl, and a
small, ts, equilateral triangle) and a corresponding rectangular tile, R, the k∗29

32 family
allows the formation of pseudo-dodecagonal clusters – in contrast to the square-triangle
based dodecagonal clusters in Subsection 3.1.5. Interestingly, the Ix, the H and the
k∗29

32 families of structures can be considered as modulations of the hexagonal mono-
layer configuration where selected particles are vertically displaced from layer one to
layer two, such that tiling like patterns are formed in layer two. In this Subsection we
will investigate ground state configurations of the asymmetric Wigner bilayer system
related to the k∗29

32 family.

This part of the thesis is organized as follows: in Subsection 3.1.6.1 we introduce
the rectangle-large–triangle-small–triangle (RTlts) family of structures and introduce
a related decoration scheme of the rectangular and the two types of triangular tiles.
We then discuss general geometric features related to the RTlts family and its re-
lation to modulations of the hexagonal monolayer and to square-triangle tilings in
Subsection 3.1.6.2. We continue with investigating ground state configurations of the
RTlts families with the help of a specifically implemented replica exchange Monte
Carlo (REMC) procedure. In that way we can identify RTlts super-structures which
are composed of rectangular and/or triangular super-tiles. In an effort to rationalize
the emerge of RTlts super-structures we construct in Subsection 3.1.6.4 an effective
tile-Hamiltonian [282, 283] for the RTlts family; based on tile-tile interactions we can
explain why the related RTlts super-structures have a clear energetic advantage com-
pared to other, random RTlts configurations. In Subsection 3.1.6.5 we then construct
a list of RTlts super-structures from scratch by transforming self-similar DI based
square-triangle tilings from above into RTlts super-structure configurations. Some of
these RTlts super-structures outperform current ground state configurations of the
asymmetric Wigner bilayer system at certain regions in the (η,A)-plane [62–64] as we

50The k∗32-clustering approach introduced in Subsection 3.1.4 relies on unsupervised k-means cluster-
ing (see Subsection 2.4.2) of the database of structural ground state candidate configurations of
the asymmetric Wigner bilayer system identified in Refs. [62–64] (or better of the data set of order
parameters of the structural database, which we additionally subjected to principal component
analysis, see Subsection 2.4.1). Via information-theoretical measures based on the adjusted mu-
tual information score between different clustering results (see Subsection 2.4.5), we could identify
a reasonable “guess” for a total number of K∗=32 different structural families in the structural
database; the asterisk emphasizes that we manually assigned all uniquely defined hexagonal mono-
layer configurations of the structural database as a family and excluded the corresponding data
points from the k-means clustering procedure of the remaining data.
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demonstrate in Subsection 3.1.6.6. We investigate inflation rules of the RTlts super-
structure family in Subsection 3.1.6.7 and present the energy offset of two specific
inflated configurations with N = 1444 and N = 1452 to the previously [62–64] sug-
gested ground state candidates of the asymmetric Wigner bilayer system.

3.1.6.1 The Rectangle-Large–Triangle-Small–Triangle (RTlts) Family with
Pseudo-Dodecagonal Traits

To begin with, we present in Fig. 3.39 all structural families identified by the K∗=32-
means clustering procedure put forward in Subsection 3.1.4 (cf. Fig. 3.18(a)) which
occur in the vicinity of the (η,A)-regions of the II, IIx, H and the Ix phases (the
relevant phases from literature [62–64] are labeled; phases II and H are not explicitly
shown in Fig. 3.39, see Fig. 3.2).

II

I

H

IIx

Ix

k32
*8

k32
*17

k32
*21

k32

*10

k32

*3
k32

*20

k32
*29

Figure 3.39: Same as Fig. 3.23 but for structures related to the rectangle-large–triangle-small–
triangle family (cf. Fig. 3.18(a)). Special features and tiles in the structures shown in the right are,
again, highlighted with faint colors and regions in the (η,A)-plane in the left panel where members
of the k∗c

32 structure-families from the right form the ground states are appropriately colored in
bright green, orange, red, magenta, yellow, purple and cyan color. The remaining k∗c

32 families are
colored in gray-scale (see also Fig. 3.18). We do not explicitly present the structural families related
to H and the II which were reliably identified by the k∗

32-clustering procedure; they are illustrated
in Fig. 3.2. See Appendix A.1.2 for details on characteristic values and boundaries of the order
parameters and principal components for the k∗

32-clustering families of structures.

Via the families k∗832 (green area) and k∗17
32 (orange area) the K∗=32-means algorithm

identified different variants of the IIx structures while the k∗10
32 family (red area) poses

a mixture of the IIx and the H phase. The k∗15
32 family (magenta area) represents

the archetypical Ix structure (i.e., a trihexagonal tiling in layer one) which occupies
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the largest fraction of the phase-diagram in the previously identified [62] Ix region:
starting from a hexagonal monolayer, i.e., phase I, at η = 0 and from the symmetric
case A = 1 the Ix phase (and related structures) extends from regions of small, yet
finite to modest values of the plate separation of 0 < η . 0.4 and asymmetry values of
1 > A & 0.4 between the H and the I regions. We can see in Fig. 3.39 that the K∗=32-
means clustering approach suggests to subdivide the Ix region into geometrically more
complex sub-families of structures: depending on the actual value of η and A the tiling
in layer two can take quite different and rather complex forms, a situation which we
illustrate in Fig. 3.39 by presenting selected structures associated to the k∗32-clustering
families k∗332, k∗20

32 and k∗29
32 (respectively emphasized by yellow, violet and cyan color

coding).

In Fig. 3.39 we show two selected configurations of the k∗29
32 family which represents the

ground states at different positions in the (η,A)-plane: the smallest configuration from
the k∗29

32 family with N = 7 particles per unit cell forms the ground state, for instance,
at η = 0.2262 and A = 0.77 and the largest one with N = 39 particles at η = 0.2475
and A = 0.735. Another structural realization of this family is a so-called [255, 276]
Ix-Cairo type of tiling depicted in Fig. 3.40(a,b) which represents the ground state
candidate of the asymmetric Wigner bilayer system in the vicinity of η = 0.106 and
A = 0.878 (or also at η ≈ 0.226 and A = 0.765 [276] suggesting an entire range of
stability).

The layer two tilings of the structures from the k∗29
32 family feature rectangular tiles and

two types of equilateral triangular tiles, whose respective longer, l = 2 a1 and shorter
side lengths, s =

√
3 a1, correspond to the two different edge lengths of the rectangular

tile (see Fig. 3.40(c); a1 is the tiling length in layer one). A unique decoration scheme
of particles in layer one given for the rectangular and two type of triangular tiles can
be given as follows (see Fig. 3.40(c) for an illustration):

• Long edges of triangles and rectangles in layer two are always decorated mid-edge
in layer one.

• Small triangles are decorated in the geometric center.

• Short rectangle sides are decorated off-edge in the rectangles’ interior at a dis-
tance of a1/2 to the center of the edge orthogonal to the edge.

Henceforward we will refer to this decoration scheme as rectangle-large–triangle-small–
triangle (RTlts) decoration scheme and to structures following the RTlts decoration
scheme (as for instance the entire k∗29

32 family) as RTlts structures. Notably, for RTlts
structures the two types of triangles always appear in pairs of possible orientations
which are related by rotations (or flips) of 90◦. As a matter of convenience we here
define the flip-type F = 0 of a structure where small triangles have one side parallel to
the horizontal axis51 and flip-type F = 1 if the small triangles are rotated (or flipped)
by 90◦. Notably, the above introduced decoration scheme of a quasi-2D layer geometry

51The Ix-Cairo configuration is related to the type 2 approximant (S1) structures from Subsection 3.1.5
whose squares in layer one are additionally rotated by ±15◦ compared to type 0 and type 1.
Regarding the flip-type convention (F=0,1) we consider the (horizontal) reference axis for the
RTlts-decoration scheme for such approximant type 2 based structures to be rotated by 15◦.
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Figure 3.40: Ix-Cairo type of tiling identified as ground state candidate configuration of the
asymmetric Wigner bilayer system at η ≈ 0.106 and A = 0.878 [276]. Panel (a) shows the Ix-
Cairo structure itself (with Delaunay triangulation used to connect the vertices in layer 2, i.e., red
particles). The Ix-Cairo configuration is related to S1 but here a snub-rectangular rectangle-large–
triangle-small–triangle (RTlts) based tiling can be identified in layer two rather than the perfect
snub-square tiling in layer one of S1 and here the decoration in layer one is performed according
to panel (c). Panel (b) shows the Voronoi diagram [223, 224] (cf. Subsection 2.3.1) of the layer 2
vertices and thereby highlights the four (almost undistorted) pentagonal tiles which form a Cairo
type of tiling [255]. The irreducible unit cell in panel (a) and (b) are emphasized by the black
square frames, respectively. Panel (c) emphasizes the RTlts based decoration scheme of the tiles
in layer two: the Ix-Cairo configuration is composed of rectangles and two types of equilateral
triangles whose short edges of length s =

√
3 a1 (dotted lines) are always off-edge decorated (see

text) whose long edges of length l = 2a1 (dashed lines) are mid-edge decorated; a1 is the layer
one tiling length. In that sense, Ix-Cairo perhaps is more similar to S2 rather than S1: S2 can
be interpreted as distorted rectangle-triangle tiling in layer two with only off-edge decorated edges
as layer one vertices (see Fig. 3.2). The mid-edge and off-edge decoration of RTlts tilings (when
following the flip-type convention, see text) guarantees that when projecting layer one and two
onto the same plate a hexagonal monolayer with a tiling length of a1 emerges.

has great resemblance with the decoration scheme of three-dimensional Frank-Kasper
phases [253, 261].

Structures related to the k∗29
32 family represent the ground state candidates in the

above mentioned (η,A)-region with strong signals of the Ψ
(2)
12 bond orientational order

parameter which can be related to the corresponding tiling in layer two: with the two
types of triangles and the corresponding rectangular tile it is geometrically possible
to construct pseudo-dodecagons. A central triangular vertex formed either by small
or by large triangles is surrounded by a ring of six rectangles respectively sharing an
edge with the central triangles (appropriately oriented to match the side length of
the triangles). Six properly oriented triangles of the other kind (large or small) as
those forming the central triangular vertex of the pseudo-dodecagon (small or large)
fill the voids between the rectangles by sharing two edges with neighboring rectangles
to complete the ring around the central vertex of the pseudo-dodecagon. Indeed, the
N = 39 particle configuration from the k∗29

32 family depicted in the bottom right panel
of Fig. 3.39 exhibits such pseudo-dodecagonal traits where two pseudo-dodecagons are
“glued together” at short rectangle sides (see faint magenta colored tiles in the right
most k∗29

32 family inset structure in Fig. 3.39).
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3.1.6.2 Approximate Square-Triangle Tilings with Bilayer Modulations of the
Hexagonal Monolayer

In general, we find that the vertices of RTlts configurations of both layers one and two
form a (possibly slightly distorted) hexagonal monolayer if all particles are projected
onto the same plate, a feature which also holds true for II, IIx. The vertices of layer
two, which form tiling like patterns for associated families of structures, can thus be
seen as vertical displacements of particles from a hexagonal monolayer to the other
plate – or as a bilayer modulation of the hexagonal monolayer.

Figure 3.41: Schematic visualization of modulations of a hexagonal monolayer towards hexagonal
quasicrystalline structures [264, 274, 284] (only the central pseudo-dodecagons formed by the red
vertices are shown). Different, possible choices for the basic RTlts tile-sets are shown from left to
right with ever larger R, Tl and ts tiles formed by the red particles (and emphasized in the bottom
panels). The aspect ratio of short (s) and long side lengths (l) of the rectangles in the RTlts tilings
approach unity, s/l ≈ 1, (i.e., a square-triangle tiling) in the limit of large tiles: 5/(3

√
3) ≈ 0.96,

7/(4
√

3) ≈ 1.01, 1000/(577
√

3) ≈ 1.0006.

In the limit of nearly touching plates, i.e., for η ≈ 0, the Wigner bilayer structure is
essentially hexagonal (as in the monolayer case) but modulated by patterns of particle
displacements from layer one to layer two. Therefore, depending on the value of A,
the particles on layer two will form super-structures on the hexagonal lattice with
a hexagon-triangle tiling on the denser populated layer. The structure on layer two
(i.e., on the sparsely populated layer) follows a maximum uniformity criterion (i.e.,
particles are distributed as uniform as possible on layer two) and will prefer tiling-like
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patterns composed of the smallest possible set of tiles (i.e., triangles for H and Ix,
rectangles for II, rectangles and triangles for IIx, etc.). For sufficiently large values of
A – or equivalently for sufficiently sparse super-lattices in layer two – the ground state
structure will always obtain the most uniform triangular super-lattice. However, in the
limit of large A – with comparable nearest-neighbor inter-particle distances across both
layers – pure triangular super-lattices allow only discrete values for the side lengths
of a set of tiles in layer two due to inter-vertex separations on the triangular lattice:√

3 a1, 2 a1, . . . , a1 being the tiling length of the hexagonal lattice. In this limit of
large values of A and almost touching plates, smoothly varying the value of A opens a
window of possibilities for yet another family of structures, in which super-lattices can
approximate square-triangle tilings, by providing sets of tiles with intermediate side
lengths in between possible pure-triangle super-tilings.

The geometric idea behind the construction of uniform super-lattices on a triangular
tiling proceeds by first approximating square tiles by a rectangle, R, with an aspect
ratio, s/l, close to unity – apparently the first obvious good choice is l = 2 a1 and
s =

√
3 a1. The particular choice of R forces a split of the triangle tile into two

equilateral triangles, Tl and ts, whose sides have lengths l and s, respectively, and
whose orientations are related by rotations of 90◦ against each other. Some other
geometrically possible choices for the side lengths are s = a1 and l =

√
3 a1, s = 3

√
3 a1

or l = 5 a1, l = 1000 a1 and s = 577
√

3 a1 (see Fig. 3.41 for an illustration). Apparently
there is a parameter, s/l, (i.e., the aspect ratio of R) which describes how well a square-
triangle tiling is approximated by an RTlts configuration. Examples of possible values
for the aspect ratios, some of which are illustrated in Fig. 3.41, are s/l = 1/

√
3 ≈ 0.577

for s = a1, s/l ≈ 0.866 for s =
√

3 a1 and l = 2 a1 and s/l ≈ 1.0006 for s = 577
√

3 a1

and l = 1000 a1.

In the top panels of Fig. 3.41 we further demonstrate that basic dodecagonal motives
– related to dodecagons composed of squares and equilateral triangles – can be trans-
formed into modulated hexagonal configurations, i.e., into RTlts tilings, with any size
of the rectangular R, large triangular Tl and small triangular ts tiles; henceforward
we refer to this transformation as RTlts transformation. Furthermore and more gen-
erally, we find that all possible vertices of a square-triangle tiling (i.e., the triangular
vertex, the snub-square vertex, the elongated-triangular vertex and the square vertex,
cf. Fig. 3.21) can be transformed analogously into modulated hexagonal configura-
tions, again with any size of the R, Tl, ts tiles. We demonstrate this transformation
for l = 2 a1 and s =

√
3 a1 tiles in Fig. 3.42 by providing an explicit list of possible

mappings of the square-triangle vertices into two different variants, i.e., in two flavours
determined by the involved triangles, of RTlts vertices which we refer to as loose (top
row) and dense RTlts vertices (bottom row):

• a triangular vertex (related to the triangular vertex of a square-triangle tiling),

• a snub-rectangular vertex (related to the snub-square vertex ),

• an elongated-rectangular vertex (related to the elongated triangular vertex) and

• a rectangular vertex (which comes only in one flavour and is related to the square-
vertex).
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We also label all possible local edge environments by edge (1) through edge (6) which
connect two separate RTlts tiles: edge (1) connects two ts tiles, edge (2) connects ts
and R tiles, edge (3) connects two R via a short edge, edge (4) connects two Tl tiles,
edge (5) connects Tl and R tiles via a long edge and edge (6) connects two R tiles via
a long edge.
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Figure 3.42: Left: schematic visualization of applied transformation rules of the four possible
vertices in a square-triangle tiling (i.e., a triangular, a snub-square, a elongated-triangular and a
square vertex, cf. Fig. 3.21) to seven different vertices possible for RTlts tilings, namely loose (top
row) and to dense (bottom row) triangular vertices, loose and dense snub-rectangular vertices,
loose and dense elongated-rectangular vertices and a rectangular vertex on the specific example
of l = 2 a1 and s =

√
3 a1. Different local edge environments of the RTlts vertices are labeled

by edge (1) through edge (6) and indicated by thick black lines. Right: Basic RTlts tiles formed
by red vertices in layer two and decorated by blue vertices in layer one; overlapping or duplicated
vertices are deleted, the thin black lines illustrate the triangular tiling when projecting all particles
onto one plate.

Obviously, the RTlts transformation is valid for tilings without common square-square
edges since: all squares are surrounded by triangles and an RTlts transformation into
two Tl, two ts and one R tile maintains the position of the geometric center of the as-
sociated local environment. The absence of common square-square edges also implies
that triangles are either arranged in a triangular or a snub-square vertex and are sur-
rounded either by three other triangles or by three rectangles; also for these motives the
geometric centers are symmetric with respect to the RTlts transformation. For all of
these situations an RTlts transformation results in a scaling of the local square-triangle
environment. This argument also holds true for transforming four squares of a square
vertex into a rectangular vertex. Whenever squares are side by side they cannot always
be transformed into parallel rectangles without moving mass centers and a transforma-
tion of the unit cell might be necessary for certain structures. A geometrically rigorous
proof if any square-triangle tiling can be transformed into an RTlts configuration is
yet to be given and to this end further investigations are required.

Still, the transformation of all possible local environments of a square-triangle tiling
into RTlts vertices of two flavours (governed by the two types of triangles) suggests that
not only dodecagonal motives can be transformed into RTlts structures but there is a
one to one mapping of any random square-triangle tiling and RTlts tilings. This claim
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is supported by an alternative algorithm for performing the RTlts transformation put
forward in detail in Appendix A.1.4 where the topology of a square-triangle tiling is
never changed when the transformation is executed. We provide a proof by exhaustion
for the general validity of RTlts transformations by performing (explicitly for l = 2 a1

and s =
√

3 a1) REMC simulations with RTlts transformed square-triangle tilings –
randomized via zipper-moves – with certain periodic boundaries, see below. In other
words – and from this point on we assume our claim to be valid and use it as a
lemma – any square-triangle tiling can be turned into an RTlts tiling simply by scaling
and decorating all tiles appropriately (following the flip-type convention defined in
Subsection 3.1.6.1). Thus – purely geometrically speaking – there also exist hexagonal
RTlts quasicrystals as super-lattices of the triangular lattice formed by appropriate
RTlts transformations of dodecagonal square-triangle quasicrystals, a concept closely
related to metallic mean52 quasicrystals [264, 274].

Notably, also here, the two types of triangles always appear in pairs of possible orien-
tations related by rotations of 90◦ and we emphasize that deciding on the orientation
of one triangle in the RTlts transformation fixes the above introduced flip-type of the
entire tiling (i.e., F = 0 or F = 1). While for structures with real twelve-fold sym-
metry (such as dodecagonal quasicrystals) 90◦ flips of local motives do not have an
effect on the structure itself the situation can be different for finite-size approximant
structures: quasicrystalline approximants always break twelve-fold symmetry in some
way and changing the flip-type of such a structure can result in a change of composi-
tion, x = N2/N , since the composition of the large and small triangles are, themselves,
different.

For l = 2 a1 and s =
√

3 a1 we find for the related Ix and H structures (which are
themselves composed only of large or small triangles) a composition of x=1/4 for Ix
(cf. dense triangular vertex in Fig. 3.42) and x=1/3 for H (cf. loose triangular vertex
in Fig. 3.42). The values of x=1/4 and x=1/3 of the Ix and the H structures give,
respectively, the composition per large and small triangle Tl and ts. The composition
of a rectangle tile with l = 2 a1 and s =

√
3 a1 is – equivalent to the composition of

large triangles composing Ix– given by x = 1/4 (cf. rectangular vertex in Fig. 3.42).

Although the RTlts transformation discussed here and the sampling procedure elabo-
rated in the next Subsection are not limited to any specific values of l and s, we will
restrict our discussion from now on the case of l = 2 a1 and s =

√
3 a1 – which is related

to the k∗29
32 family of structures. Henceforward we will use the term rectangle-large–

triangle-small–triangle (RTlts) synonymously for l = 2 a1 and s =
√

3 a1 structures.

3.1.6.3 Zipper -Inspired Sampling of RTlts Configurations

The one-to-one mapping of square-triangle tilings to RTlts configurations allows us
to efficiently sample the configuration space of RTlts structures to find the RTlts
configurations that minimize the internal energy of the system at certain values of the
system parameters.
52The irrational numbers φk = (k +

√
k2 + 4)/2 form the metallic mean family [284] which give the

golden, the silver and the bronze mean for k = 1, 2, 3, respectively, and represent the inflation
factor for metallic mean quasicrystals [264].
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More specifically, the topological equivalence of the tiling in layer two of RTlts config-
urations to square-triangle tilings allows us to use zipper -moves to efficiently update
the vertices in layer two: by sampling square-triangle tilings and subsequently sub-
ject them to the RTlts transformation we can perform zipper-induced replica exchange
Monte Carlo (REMC) sampling for RTlts structures of fixed periodic boundary con-
ditions. Analogously to sampling DI structures (cf. Subsection 3.1.5) also here one
zipper move updates the tiling and the RTlts decoration53 defines the rectangle-large–
triangle-small–triangle structure and together they represents one sweep in the REMC
procedure54. Henceforward we refer to the update moves of the vertices in layer two
of RTlts structures that are based on zipper–moves as pseudo-zipper–moves.

Similar to the zipper based REMC simulations performed for DI structures we present
in Figs. 3.43 and 3.44 the results of pseudo-zipper based REMC structure optimizations
at η = 0.1061 and A = 0.8778 – where the Ix-Cairo structure represents the ground
state candidate [62–64] – for two particular choices of periodic boundary conditions
which are inspired by Stampfli-inflation: in Fig. 3.43 we subject a Stampfli-inflated
snub-square type of dodecagonal approximant (i.e., a type 2 approximant) to the RTlts
transformation which results in a N2 = 52 (N = 209) particle RTlts approximant to a
hexagonal quasicrystal [45]. In Fig. 3.43 the same analysis is performed for a Stampfli-
inflated and stacked square based approximant (i.e., based on a dodecagonal type 1
approximant) with N2 = 60 (N = 224) particles per unit cell. The corresponding best
energy from sampling of the N2 = 52 approximant is E∗RTt/N = −1.76084604 and
thereby clearly outperforms the current ground state from literature [62–64], i.e., the
Ix-Cairo configuration with E∗GS/N = −1.76084577, by ∆E∗GS/N = −2.7× 10−7. The
corresponding best energy from sampling the N2 = 60 approximant yields E∗RTt/N =
−1.76084631 and outperforms the Ix-Cairo ground state energy by ∆E∗GS/N = −5.4×
10−7.

Since both of the ground state energies of the two RTlts REMC sampling procedures
outperform the current Ix-Cairo ground state candidate configuration at η = 0.1061
and A = 0.8778 we can at least be fairly sure the global ground state of the Wigner bi-
layer system at this particular region of system parameters belongs to the RTlts family.
However, we need to address the question which RTlts configuration really represents
the ground state of the system – and how we can find it. In practice the pseudo-zipper
based RTlts transformation is performed according to Appendix A.1.4 which includes
relaxation of configurations in each MCMC sampling step (cf. Subsection 2.2.3). This
makes the REMC procedure numerically still rather costly such that effectively only
small systems – as compared to larger quasicrystalline approximants – can be inves-
tigated. In fact, REMC optimization of larger Stampfli based approximants as the
ones discussed in Figs. 3.43 and 3.44 are numerically prohibitively costly; we could not
reliably identify ground state configurations in ten days of simulation on the Vienna
Scientific Cluster [281]. To follow up on the idea of identifying global ground states
53Here, special care has to be taken to employ the correct flip-types F = 0 or F = 1 during the

decoration procedure to assure a constant number of particles in the system during simulation.
54We do not claim that sampling the Wigner bilayer system with these specialized, modified zipper

moves will provide us with proper thermodynamics. However, sampling the space of rectangle-
large–triangle-small–triangle configurations for ground states is much more efficient using modified
zipper moves than relying on Monte Carlo simulations with particles that can move freely in the
xy-plane.
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Figure 3.43: Results of REMC simulation (similar as Fig. 3.28) using pseudo-zipper moves to
sample layer two of a N2 = 52 (N = 209) particle snub-square based RTlts approximant at
A = 0.8778 and η = 0.1061; the i = 0, . . . , 11 sample trajectories in the β∗

i = 1/T ∗
i range

versus tempering steps are presented in the top left panel and the corresponding energies E∗
i /N

of all samples versus tempering steps are presented in the bottom left panel; each sample has an
associated color and we highlight the trajectory of sample 0 via a thick, black-dashed line which
transients from medium over high to low values of E∗

i=0/N . The right three panels (emphasized in
green, red and blue) indicate qualitatively different configurations experienced during the REMC-
evolution of sample 0 and the corresponding energies are emphasized with square symbols and
indicated by correspondingly colored arrows. At large values of the temperature high energy con-
figurations emerge which may obtain self-similar features (note the triple stacked clusters of squares
and triangles forming super-rectangles (orange area) and super-triangle-like tiles (yellow areas) in
the green-emphasized structure panel) but the vast majority of high temperature configurations
represent random RTlts configurations (cf. red-emphasized structure panel). Low energy configu-
rations, again, feature self-similarity and a super snub-square configuration emerges as ground state
when connecting the central loose and dense triangular vertices of pseudo-dodecagons (cf. col-
ored tiles in the blue-emphasized structure panel) – the main difference to configurations at larger
temperatures (and of larger energies) is the absence of rectangular vertices and dense elongated-
rectangular vertices in the ground state. The corresponding best energy from sampling of the super
snub-rectangular approximant evaluates to E∗

RTt/N = −1.76084604 and clearly outperforms the
current ground state from literature, i.e., Ix-Cairo with an energy of E∗/N = −1.76084577 by
∆E∗

GS/N = −2.7× 10−7. All structures encountered during the pseudo-zipper based REMC sam-
pling depicted here deviate in energy by a maximum of ∆E∗

RTt/N ≈ 1.5×10−5. Strictly speaking,
the literature database does not cover precisely this value of η = 0.1061: the ground states from the
literature data [62–64] are available for η = 0.15/

√
2 and η = 0.16/

√
2 and are given, respectively,

by Ix-Cairo (at η = 0.15/
√

2 with E∗
GS = −1.76090251) and by H structures (at η = 0.16/

√
2

with E∗
GS/N = −1.74931247; the energy of Ix-Cairo here evaluates to E∗/N = −1.74917621).

At η = 0.15/
√

2 we find that the best REMC structure (with a respective value of the internal
energy per particle of E∗

RTt/N = −1.76090248) is outperformed by the Ix-Cairo structure by
∆E∗

GS/N = 3 × 10−8. Such close values (and minor changes) of the internal energies of com-
peting structures at the same (and similar) values of the system parameters highlight the delicate
numerical sensitivity necessary when searching for ground state configurations in the asymmetric
Wigner bilayer system.
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Figure 3.44: Same as Fig. 3.43 but for a N2 = 60 (N = 224) particle square based RTlts
approximant at A = 0.8778 and η = 0.1061. Again, we can see that random RTlts tilings at high
temperatures order into self-similar (here) super-square configurations at low temperatures which
do not feature rectangular and dense elongated-rectangular vertices; in contrast to Fig. 3.43 the
super-square tiling only features dense and no loose triangular vertices here. Special tiles and super-
tiles are highlighted in color. Note the structure encountered at large values of the temperature
featuring a super pseudo-dodecagon (highlighted by the magenta area) in the green-emphasized
structure panel: the super pseudo-dodecagon is composed of double stacked super-tiles (which
are colored yellow and orange); the vast majority of high temperature configurations represent,
again, random RTlts configurations (cf. red-empasized structure panel). The corresponding best
energy from sampling yields E∗

RTt/N = −1.76084631 and outperforms the energy of the currently
suggested [62–64] Ix-Cairo ground state candidate configuration by ∆E∗

GS/N = −5.4× 10−7. At
η = 0.15/

√
2 we find E∗

RTt/N = −1.760903106811 for the best REMC structure (again relaxed
at this value of η) which outperforms the Ix-Cairo structure by ∆E∗

GS/N = −6× 10−7.

within the infinitely many RTlts structures we first investigate the geometric properties
of the respective RTlts ground state structures of the two REMC energy minimization
procedures. We will further try to analyse the entirety of the encountered structures
during REMC for geometric properties such as local environments which govern trends
in the ground state structure formation.

Both optimization procedures depicted in Figs. 3.43 and 3.44 lead us to the remark-
able conclusion that the ground states form super-triangular and super-rectangular
tiles (cf. colored areas in bottom right, blue emphasized inset structures in Figs. 3.43
and 3.44, respectively): when connecting centers of triangular vertices – or, equiva-
lently, of pseudo-dodecagons – we find super-rectangular tiles that have a long and a
short side length of l = 7 a1 and s = 4

√
3 a1 (i.e., with an aspect ratio of s/l ≈ 0.99)

and two super equilateral triangular tiles of side lengths l = 7 a1 and s = 4
√

3 a1,
respectively. For the energetically most favorable N2 = 52 particle RTlts configuration
depicted in the bottom right panel of Fig. 3.43 we find that the periodic boundaries
allow the formation of a super snub-rectangular tiling. Furthermore, the system in-
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deed favors the formation of four pseudo-dodecagons in the unit cell – one with a
central loose, three others with central dense triangular vertices – which are exactly
arranged in a super snub-rectangular configuration. As depicted in bottom right panel
of Fig. 3.44 the ground state of the N2 = 60 particle RTlts configuration space forms
a super-rectangular tiling – with only one type of pseudo-dodecagons in the unit cell
with central dense vertices.

We would like to stress that both of the above discussed ground state structures emerge
from randomized RTlts configurations. We highlight in Figs. 3.43 and 3.44 the respec-
tive sample trajectories which give rise to the respective ground state structures at
low temperatures by thick, black-dashed lines. These trajectories show a transient be-
haviour through the entire range of energies encountered during the respective structure
optimization procedure. We can thus also identify the most common and, interestingly,
also the energetically least favorable RTlts configurations (see green and red empha-
sized insets in Figs. 3.43 and 3.44) of the respective RTlts configuration spaces at this
particular (η,A)-pair: the most common structures (see red emphasized sub-panels in
Figs. 3.43 and 3.44) exhibit random RTlts tilings55 in layer two at a vanishing cost in
energy of ∆E∗/N ≈ 10−6 to 10−5 as compared to the RTlts ground state structures.
The energetically least favorable structures (see green emphasized insets in Figs. 3.43
and 3.44) also appear to exhibit large super-tiles. However, these specific “super-tiles”
of the energetically least favorable structures can be understood as grains of (phase
separated) pure structures (H, Ix and pure rectangles), constraint by the sizes of the
respective unit cells and by the corresponding periodic boundary conditions.

We thus conjecture that at this particular (η,A)-pair the system energetically favors
mixing the available RTlts basic tiles rather than forming clusters (or grains) of pure
phases with interfaces between these grains. Furthermore, we observe that in the
ground state configurations depicted in the respective bottom right panels of Figs. 3.43
and 3.44 neither dense elongated-rectangular nor rectangular vertices are present; the
structures are largely composed of both flavours of triangular and of loose elongated-
rectangular vertices.

3.1.6.4 Effective Tile-Hamiltonian

In this Subsection we investigate, if it is possible to construct an effective model, a
so-called tile-Hamiltonian [282, 283], which is capable of predicting the internal energy
of RTlts configurations solely based on local tiling objects (i.e., local environments such
as edges, vertices, cells, etc.). By linearly assigning a particular set of energy coeffi-
cients to certain tiling objects present in a configuration a tile-Hamiltonian may (or
may not) provide an effective model for both, short and long-ranged interactions of the
tiling objects in a system [282, 283]. Thereby, such an effective approach circumvents,
in principle, the problem of explicitly evaluating the internal energy of configurations
with many positional degrees of freedom – which can quickly become numerically ex-
pensive.

55For all configurations during the REMC simulations the RTlts transformation was applicable.
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

We explicitly try to identify a tile-Hamiltonian (or, equivalently, an effective model) for
the energy per particle of RTlts configurations for the system parameters η = 0.1061
and A = 0.8778 for the following three qualitatively different sets of tiling objects: for
(a) the number of different vertices, Nv(X ), defined as

Nv(X ) = (Nv, NTrl , NTrd , NSNl
, NSNd

, NERl
, NERd

, NR), (3.17)

(b) the number of different edges, Ne(X ), given by

Ne(X ) = (Ne, Ne1 , Ne2 , Ne3 , Ne4 , Ne5 , Ne6 , Ne7) (3.18)

and (c) the number of vertices and edges combined, Nc(X ), i.e.,

Nc(X ) = (Nc, NTrl , . . . , NR, Ne1 , . . . , Ne7), (3.19)

that are present in layer two of the unit cell of a particular realization, X , of an RTlts
bilayer structure; note that for simplicity we dropped the argument X for all quantities
on the right-hand side of Eqs. (3.17) to (3.19). To be more specific, we collect in Nv(X )
the total number of vertices, Nv, the number of loose and dense triangular vertices,
NTrl and NTrd , the number of loose and dense snub-rectangular vertices, NSNl

and
NSNd

, the number of loose and dense elongated-rectangular vertices, NERl
and NERd

,
and the number rectangular vertices, NR, in layer two of the unit cell of X . In Ne(X )
we collect the total number of edges, Ne, the number Nei of edge (1) through edge (6)
and the total number of rectangles, Ne7 , in layer two of the unit cell of X . In Nc(X )
we collect the total number of vertices and edges, Nc = Nv + Ne, and the number of
the remaining tiling objects counted by Nv and Ne (as given by Eq. (3.19)) in layer
two of the unit cell of a particular realization, X , of an RTlts structure.

To predict the internal energy of an RTlts configuration X we define three different
tile-Hamiltonians, i.e., three different linear models E∗v(X ), E∗e (X ) and E∗c (χ), by

E∗v(χ) = εv ·Nv(χ), (3.20)
E∗e (χ) = εe ·Ne(χ) and (3.21)
E∗c (χ) = εc ·Nc(χ), (3.22)

where we introduced the sets of linear coefficients εv = (εv, . . . , εR), εe = (εe, . . . , εe7)
and εc = (εc, . . . , εe7) corresponding energies associated to the three sets of tiling
objects Nv(χ), Ne(χ) and Nc(χ) defined by Eqs. (3.17) to (3.19), respectively. We
demand from the tile-Hamiltonians E∗p=v,e,c(χ) given by Eqs. (3.20) to (3.22) to re-
produce the “true” Coulomb energies of RTlts structures as accurately as possible. As
reference data for such “true” energies (to which we also refer to as target energies) we
here rely on all i = 1, . . . , NREMC configurations Xi and the associated energies E∗(Xi)
obtained during the REMC procedures discussed above (see Figs. 3.43 and 3.44). For
the three models defined by Eqs. (3.17) to (3.19) we quantify, respectively, the devi-
ation of the predicted energies, E∗p=v,e,c(Xi), from the corresponding target energies,
E∗(Xi), of the RTlts configurations, Xi, encountered during the REMC procedures via
the least-squares error, Lp=v,e,c, given by

Lp =

NREMC∑
i=1

∣∣E∗p(Xi)− E∗(Xi)
∣∣2 . (3.23)
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Figure 3.45: Target energies, E∗/N , versus predicted energies, E∗
p/N (via models E∗

p=v,e,c/N
defined by Eqs. (3.20) to (3.22) in columns (a), (b) and (c), respectively), for samples encountered
during pseudo-zipper based REMC sampling of RTlts configurations at the system parameters
η = 0.1061 and A = 0.8778: each symbol represents a sample from the REMC simulation for
a N2 = 52 (N = 209) particle RTlts transformed snub-square-based approximant (circles, cf.
Fig. 3.43) and for a N2 = 60 (N = 224) particle RTlts transformed square-based approximant
(squares, cf. Fig. 3.44). In column (a) we use the number of different vertices, Nv (cf. Eq. (3.17)),
to parametrize the effective linear model, E∗

v/N , given by Eq. (3.20). In column (b) we use the
number of edges, Ne (cf. Eq. (3.18)), to parametrize the effective linear model, E∗

e/N , given
by Eq. (3.21). In column (c) we use the number of vertices and edges, Nc (cf. Eq. (3.19)), to
parametrize the effective linear model, E∗

c /N , given by Eq. (3.22). For each column all rows depict
the same results of the linear regression with different color-coding: the colors and the sizes of the
symbols correspond to the number of loose triangular vertices, NTrl , (top row), the number of
dense triangular vertices, NTrl ,and the number of rectangular vertices, NR, of the corresponding
RTlts configurations as indicated by the respective row-wise legends.
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

Figure 3.46: Similar to Fig. 3.45 column (c) but with a color-coding based on the number of
snub-rectangular vertices, NSNx

, (left) and the number of elongated-rectangular vertices (right)
NERx

; x = l, d labels either the loose (top) or dense (bottom) flavours of the vertices. Again,
each symbol represents a sample from REMC simulations (i.e., the same as discussed in Fig. 3.45)
for a N2 = 52 (N = 209) particle RTlts transformed snub-square approximant (circles) and for a
N2 = 60 (N = 224) particle RTlts transformed square approximant (squares). Left: The symbols
in the top and bottom panels are colored and scaled according to the number of loose and dense
snub-rectangular vertices NSNl

and NSNd
, respectively. Right: The symbols in the top and bottom

panels are colored and scaled according to the number of loose and dense elongated-rectangular
vertices NERl

and NERd
, respectively.

We then fit the linear effective models given by Eqs. (3.17) to (3.19) by minimizing Lp
as a function of the coefficients εp via linear regression [285] for p=v, e, c, respectively.

The target energies E∗/N versus the predicted energies E∗v/N , E∗e/N and E∗c /N (per
particle) of all configurations56 obtained by “sample 0” in the REMC procedure depicted
in Fig. 3.43 and by “sample 10” in the REMC procedure depicted in Fig. 3.44 are
presented in Figs. 3.45 and 3.46.

When evaluating a tile-Hamiltonian such as defined by Eqs. (3.20) to (3.22) in principle
one also has to analyse the tiling objects for possible (linear) dependencies57 – which
are definitely present here. Some dependencies related to summation rules of the tiling
objects58 may be easier to detect. Others, however, are more difficult to identify: for
structures with many accumulated rectangular vertices (such as the highest energy

56From now on we again drop the argument of the energies.
57The occurrence of some of the different tiling objects counted via Eqs. (3.17) to (3.19) may not be

independent quantities for RTlts structures of a given configuration space: increasing the number
of one particular type of vertex, Ni, of a configuration may, for instance, require to reduce the
number of another type of vertex, Nj . The corresponding energy coefficients, εi and εj may then
be correlated and may display unphysical values after minimizing Eq. (3.23) via linear regression.

58A certain number of one particular tiling object may imply a certain number of other tiling objects.
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configurations depicted in Figs. 3.43 and 3.44) also the number of triangular vertices of
both flavours must be large since the number of rectangles and triangles (of each type)
is constant in our simulations. Numerous similar, non-obvious constraints are taking
place for the here investigated RTlts family which require to be analysed carefully in
a further study. Thus, we here refrain from explicitly showing the numerical values
for the coefficients of Eqs. (3.20) to (3.22) used in the results depicted in Figs. 3.45
and 3.46.

Nevertheless, our analysis shows that the energies of the structural data – based on
long-ranged Coulombic energies in a bilayer lattice geometry – can be explained just
by counting local tiling objects: we see that the predictions E∗v/N and E∗e/N depicted
in columns (a) and (b) of Fig. 3.45 show relatively good agreement with the target
data E∗/N . However, the fit in (a) does not correctly resolve low energy values and
the fit in (b) shows a larger variance over the entire energy range as compared to
(a). By combining the tiling objects Nv and Ne in the fit depicted in (c) we find
that E∗c /N quite accurately predicts the target energies E∗/N with a lower bias and
with higher precision as compared to (a) and (b). Hence, we proved that a reasonable
tile-Hamiltonian exists59.

What is left to do is trying to understand what actually forces the formation of RTlts
super-tiles in the ground state bilayer configurations at this particular combination
of the system parameters. For that purpose we explicitly analyse the occurrence of
the involved vertices in the configurations which give rise to the predicted energies
presented in Figs. 3.45 and 3.46: we report an almost strictly positive correlation of
the number of rectangular vertices, NR, with E∗/N , a trend which is also present
for the number of loose triangular vertices, NTrl (although not as clearly). Low and
medium densities of loose triangular vertices can be observed over a large E∗/N range
and the number of dense triangular vertices, NTrd , is largely independent of E∗/N .
In the left panels of Fig. 3.46 we observe a negative correlation of loose and dense
snub-rectangular vertices, SNl and SNd, and E∗/N , i.e., the system tries to maximize
the number of these vertices in low energy configurations. The right panels of Fig. 3.46
show that the number of loose elongated-rectangular vertices, NERl

, does not seem to
be strongly correlated with E∗/N , i.e., changing NERl

is possible without significantly
changing E∗/N (omitting possible correlations to other types of vertices here). We
see a clear positive correlation of the number of dense elongated-rectangular vertices,
NERd

, and E∗/N indicating an energy penalty for this type of vertices (which is also
related to the penalty associated to rectangular vertices). We therefore conclude that
rectangular neighbors are allowed in low energy configurations but tend to avoid sharing
a short edge, i.e., edge (5).

For the particular choice of the system parameters η = 0.1061 and A = 0.8778 the
analysis above allows us to explain the emergence of the RTlts super-structures by
the system’s tendency of avoiding two specific local environments – namely the rect-
angular and the dense elongated-rectangular vertices – rather than by maximizing the
number of favorable tiles as in cluster-covering approaches [286–288]. For this (η,A)-
combination – and for others which favor RTlts super-structures, see below – the

59Fixing all necessary, linear independent parameters based on physically meaningful motivations will
(most likely) also provide a physically meaningful tile-Hamiltonian.
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internal energy of an RTlts configuration is minimized by forming pseudo-dodecagonal
clusters with central triangular vertices which are encircled by snub-rectangular ver-
tices. The energy is minimized by always explicitly avoiding local environments where
four rectangle corners meet at a vertex, or where rectangular tiles share a common short
edge in general. neighboring pseudo-dodecagons in low energy configurations can share
common snub-rectangular or loose elongated-rectangular vertices and thereby can form
triangular and/or rectangular super-tiles.

With our present numerical tools we cannot perform REMC simulations for larger
RTlts configurations due to prohibitively long computational times. Finding a reliable
effective model based on local environments for the RTlts family would greatly reduce
computational costs – especially because the different kinds of vertices can directly
be associated to vertices of different flavours (i.e., loose or dense) of a square-triangle
tiling60 which would make the zipper-based sampling quite efficient. Already at this
stage the tile-Hamiltonian defined by Eq. (3.22) is, in principle, suitable to sample
different RTlts configuration spaces for low energy configurations with reasonable ac-
curacy without involving actual, numerically expensive interactions [282, 283]. Only
when comparing qualitatively different structures, especially when they are not of the
RTlts family, the precise values of the corresponding energies of the configurations
become important again.

However, the linear model introduced here would need to be fitted for every particular
value of η (when exploiting the symmetry of E∗/N in A, cf. Eq. (3.7)) to be applicable
on a wider range of parameters, a task from which we refrain in this thesis. Using
other, more flexibly models such as (properly adjusted) artificial neural network po-
tentials [289] which can additionally include system parameters (η,A) as model input
parameters could potentially circumvent this problem. Furthermore, if the local envi-
ronments of the entire asymmetric Wigner bilayer system are exhaustive (at least for
ground state configurations) a model sensitive to the possible local environments could
potentially comprehend the entire physics of the system (or at least significant portion
thereof) solely based on local motives61.

3.1.6.5 Super-Tilings from RTlts Transformation of Self-Similar DI Structures

As we discussed above, sampling of configurations of the rectangle-large–triangle-small–
triangle family is numerically quite involved in our present setup. However, we find
that the ground state configurations of the RTlts family – for their respective periodic
boundary conditions – form pseudo-dodecagonal based super-tiles62 whose emergence
we can relate to penalties of specific local environments of the RTlts family. This
tendency of forming super-structures provides us with important information about
the RTlts ground state structure formation strategies of the system and allows us to
continue our investigations in a different way: nothing prevents us from investigating
60The loose or dense vertex flavours are governed by the flip-type, F = 0, 1, cf. Fig. 3.40(c).
61Probably, also the symmetry of the underlying lattice of a bilayer configuration needs to be taken

into account somehow in a faithful model.
62In Fig. 3.39 we can see that pseudo-dodecagonal motives (cf. k∗2932 ) have already been present in the

structural database in Refs. [62–64] of ground state candidates of the asymmetric Wigner bilayer
system but have not been reported yet.
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RTlts structures solely composed of super-tiles, such as super-triangles (of one or both
kinds as identified above in Fig. 3.43) or to form larger structures composed of super-
triangles and super-rectangles in very specific setups.

To (semi-)systematically explore possible new candidate structures for the global ground
state of the RTlts family featuring super-triangular and rectangular tiles – without
explicitly performing REMC sampling – we here rely on all self-similar DI

(T )
I,S super-

square-triangle ground state configurations found in Subsection 3.1.5 (see 3.29). These
DI structures form super-triangles and squares by avoiding common edge squares in
layer one and further – if triangular vertices in layer one are considered as vertices
in both layers – feature square-triangle tilings on both layers. To perform the RTlts
transformation on these structures we proceed as follows:

• For each DI
(T )
I,S structure we can identify two square-triangle tilings, one for each

layer, which we assign as layer two vertices of two different, to-be-generated
rectangle-large–triangle-small–triangle configurations (to which we refer to as
layer one and layer two based structures);

• these are then subject to the RTlts transformation in the two possible ways63,
i.e., with flip-type F = 0 and with F = 1.

We want to emphasize that the super-triangular configuration DI
(T=0)
I=1,S=0, for which we

visualized the RTlts transformation scheme in Fig. 3.47, thereby gives rise to four super-
triangular structures. We define the layer one based loose and dense super-triangular
RTlts configurations64, TL

2 and TD
2 (see bottom middle and bottom right panels of

Fig. 3.47) whose super-tiles are, respectively, either all small or all large triangles with
a respective side length of s = 4

√
3 a1 and l = 7 a1. The other two configurations are

layer two based and feature overlapping loose and dense pseudo-dodecagons in layer
two (see top left and top middle panels of Fig. 3.47) with super-triangles of side length
l = 5 a1 and s = 3

√
3 a1, respectively. We refer to the latter two structures as loose

and dense overlapping super-triangular configurations, TOL
2 and TOD

2 , respectively.

Note that for the dodecagonal square and snub-square DI approximants (types T = 1
and T = 2) we obtain via the RTlts transformation variants of the super snub-
rectangular and the super-rectangular configurations discussed above, see Figs. 3.43
and 3.44; variants whose pseudo-dodecagons are oriented in a way such that the
structures also lack loose elongated-rectangular vertices and thereby do not exhibit
rectangle-rectangle pairs which share a common edge. Since these structures mix loose
and dense triangular vertices in the pseudo-dodecagonal based super-tiling as uniform
as possible we refer to the structures as medium density configurations and label them
by M (instead of L and D).

63Depending on the symmetry of the initial DI
(T )
I,S structure the decoration with F = 0 and F = 1

may be symmetric as is the case for type 1 (square) and type 2 (snub-square) approximants.
64Here we use the terms loose and dense according to the central triangular vertex of the pseudo-

dodecagons.
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Figure 3.47: Visualization of layer one (bottom panels) and layer two (top panels) based RTlts
transformations of DI configurations on the example of DI

(0)
1,1 (see Eq. (3.14) for notation and

cf. top left configuration in Fig. 3.47 for the structure in the central panel here). From the
DI

(0)
1,1 structure four RTlts structures can be constructed via RTlts transformation: Two config-

urations, i.e., the loose overlapping super-triangular structure (top left, flip-type F = 1) and the
dense overlapping super-triangular structure (top middle, flip-type F = 0), are generated based
on the layer two tiling of DI

(0)
1,1. The two different super-triangular tiles are colored light-blue and

the overlapping pseudo-dodecagons are colored light-purple. The other two structures, i.e., the
loose super-triangular structure (bottom middle, F = 0) and the dense super-triangular structure
(bottom right, F = 1), are based on layer one of DI

(0)
1,1. The two different super-triangular tiles

(colored light-blue) are larger compared to the layer two based structures; the pseudo-dodecagons
(colored light-purple) are of the same kinds but arranged non-overlapping. Notable we can geomet-
rically relate the TOD

2 structure with adatom super-lattices on (Si,Ge,Sn)-111 diamond-structure
surfaces [290].
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3.1.6.6 New RTlts Ground State Candidate Super-Structures: The Phase
Diagram Refined

In Table 3.3 we list (and label) all qualitatively different RTlts transformed structures
which have good chances of being assigned as ground state configuration of the system
at certain, selected combinations of η and A and we explicitly present their relaxed
energies at η = 0.15/

√
2 ≈ 0.1061 and A = 0.8778. At the specified (η,A)-phase

point several RTlts super-structures outperform the Ix-Cairo structure, which is the
respective ground state candidate suggested by literature [62–64] and we also provide
information about the Ix, Ix-Cairo and the H structures. We report a clear energetic
advantage of RTlts super-tilings as compared to pure structures which are solely com-
posed of the three basic tiles (i.e., Ix, Ix-Cairo and H) for the particular values of the
system parameters of η = 0.106066 and A = 0.8778 of the Wigner bilayer system.

RTlts structure name Label N E∗/N + 1.76090 ∆E∗GS/N to Ix-Cairo

Dense super-rectangular (from REMC Fig. 3.44) RD
2 56 -3.11×10−6 −5.9× 10−7

Dense super-triangular TD
2 49 -3.05×10−6 −5.3× 10−7

Medium super-triangular TM
2 192 -2.92×10−6 −4× 10−7

Super-rectangular (deco. from DI Fig. 3.29) RM
2 224 -2.59×10−6 −7.2× 10−8

Super-snub-rectangular (deco. from DI Fig. 3.29) SRM
2 209 -2.56×10−6 −4.9× 10−8

Ix-Cairo – 15 -2.51×10−6 –
Super-snub-rectangular (from REMC Fig. 3.43) SRD

2 209 -2.48×10−6 3.6× 10−8

Trihexagonal tiling (only large triangles) Ix 4 -2.47×10−6 4.3× 10−8

Loose super-triangular TL
2 48 -2.00×10−6 5.1× 10−7

Dense overlapping super-triangular TOD
2 27 -1.32×10−6 1.2× 10−6

Loose overlapping super-triangular TOL
2 25 +3.52×10−6 2.9× 10−6

Honeycomb (only small triangles) H 3 +1.16×10−2 1.16× 10−2

Table 3.3: List of RTlts super-structures, corresponding label, number of particles per (irre-
ducible) unit cell, energies per particle at η = 0.15/

√
2 ≈ 0.1061 and A = 0.8778 (note the

offset of −1.76090 for the given energies, E∗/N) and energy penalty to the current ground state
configuration from literature at this combination of η and A, i.e., to the Ix-Cairo structure. The
table is sorted by E∗/N in ascending order.

Notably, in the database of ground state configurations of the asymmetric Wigner
bilayer system from literature [62–64] only structures of up to N = 40 particles per
unit cell are considered due to numerical reasons65. Hence, neither of the two TD

2

structures with N = 196 (which can be reduced to N = 49 in the irreducible unit
cell), the RD

2 configuration with N = 224 (which can be reduced to N = 56 in the
irreducible unit cell) or SRD

2 (N = 209) and SRM
2 (N=209) could have been identified

by the evolutionary algorithm in Ref. [62];

We now want to address the question how pseudo-dodecagon based RTlts super-tilings
perform at other locations in the (η,A)-plane. For that purpose, all of the RTlts
transformed DI structures as well as the results from REMC are now relaxed in an
extended (η, A)-range which is relevant for the rectangle-large–triangle-small–triangle
family of structures. In Fig. 3.48 we present the corresponding offset, ∆E∗GS/N =
(E∗GS/N − E∗RTt/N), of the lowest energy, E∗RTt/N , of all available relaxed RTlts

65The evolutionary algorithm (cf. Subsection 2.2.4) used in Ref. [62] to identify ground state con-
figurations of the asymmetric Wigner bilayer system failed to converge in a reasonable amount of
time for structures larger than N = 40.
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

Figure 3.48: Left: Energy offset, ∆E∗
GS/N , in log-scale of the (available) energetically most favor-

able relaxed RTlts super-structures to the ground state candidates (as suggest by Refs. [62–64]) of
the asymmetric Wigner bilayer system in the (η,A)-plane. Right: Positive values of −∆E∗

GS/N in
log-scale in the (η,A)-plane highlighting regions in phase-space where RTlts super-structures are
energetically more favorable than ground state candidates from literature [62–64] (see yellow and
orange areas in the left panel and colored regions in the right panel): wherever −∆E∗

GS/N > 0
super-structures appear to have an energetic advantage over pure Ix, H or even Ix-Cairo tilings
and represents new global ground state candidates of the asymmetric Wigner bilayer system. Solid
gray lines indicate phase boundaries from literature [62–64]. Vertical dashed lines correspond to
special values of η = 0.106066, η = 0.226 and η = 0.403 which give rise to qualitatively different
new ground state candidates of RTlts super-structures (at the respective values of A, see text).

super-structures to the currently suggested ground state energy66, E∗GS/N , from liter-
ature [62–64] in the (η,A)-plane.

The bright yellow region in the left panel of Fig. 3.48 emphasizes where (some of)
the RTlts super-structures are either energetically degenerate (i.e., ∆E∗GS/N ≈ 0, cf.
bright orange area) or even energetically more favorable (∆E∗GS/N ≈ −10−5) than
current ground state candidates from literature, labeling thereby new ground state
candidate configurations of the asymmetric Wigner bilayer system as compared to
Refs. [62–64]. Moreover, this region corresponds to the above mentioned (η,A)-region
with strong signals of the Ψ

(2)
12 bond orientational order parameter (cf. top right panel

in Fig. 3.3 and Fig. 3.39) which already hosts – in the literature database [62–64] –
competing structures of nearly degenerate energies (cf. Fig. 3.19).

To further highlight the improvements made to the ground state phase-diagram by the
RTlts super-tiling family in the (η,A)-plane we show in the right panel of Fig. 3.48
a heat-map of −∆E∗GS/N in the (η,A)-plane in log-scale thereby only emphasizing
regions in the parameter space where E∗RTt/N < E∗GS/N , i.e., where RTlts super-
structures are energetically more favorable than literature data. The related energy
66All energies are always given for a certain structure at a given (η,A)-pair which we neglect as

arguments of the energies for simplicity.
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scales range from −∆E∗GS/N ≈ 10−13 to 10−5 which on the one hand indicates that
several RTlts super-tilings (or at least variants thereof) have already been present
in the database [62–64] wherever −∆E∗/N ≈ 10−13 and on the other hand clearly
suggests new ground state candidate configurations with −∆E∗/N ≈ 10−7 to 10−5.

In Fig. 3.49 we present a refined phase-diagram for zero temperature ground state
candidate configurations of the asymmetric Wigner bilayer system with special focus
on the RTlts super-structures. We can see, that the region in parameter space where
the RTlts super-structures represent the ground state candidates of system is rather
narrow in A and we want to stress that the resolution in η is imposed by the literature
data [62–64].

Special values of η = 0.106066 and η = 0.226 are highlighted in Fig. 3.48 via vertical
dashed lines where RTlts super-structures with qualitatively different super-tiles rep-
resent the ground state (at the respective A values), see details below. Furthermore,
there appears to be another, distinct region in the phase diagram in the vicinity of
η ≈ 0.403 and A ≈ 0.66 where the relaxed RTlts super-tilings are energetically as
favorable (or even slightly more favorable) compared to the data from literature [62–
64]. Here, relaxation of the RTlts transformed super-tilings leads to a deformation of
the hexagon-triangle tiling in layer one while the pseudo-dodecagonal rectangle-large–
triangle-small–triangle topology in layer two remains intact for some RTlts structures.
We will discuss this special region – which can be related to the rectangle-large–triangle-
small–triangle family via a modified RTlts decoration scheme – below.

At plate separation η = 0.106066 we can identify an A-range featuring new TD
2 and

TOD
2 ground states with, respectively, up to 196 particles and 100 per unit-cell. At

η = 0.106066 and 0.8778 ≤ A ≤ 0.8782 we find that the TM
2 with N = 192, the TD

2

with N = 196 and the RD
2 with N = 224 configurations improve67 (at slightly different

values of A) the former Ix-Cairo type of ground state candidate by −∆E∗GS/N ≈
×10−7. The smaller version of TD

2 with N = 49 (see bottom right panel in Fig. 3.47)
is energetically de facto degenerate compared to theN = 196 stacked TD

2 configuration,
i.e., ∆E∗/N ≈ 10−13 depicted in Fig. 3.49. Similarly, also the N = 224 particle RD

2

structure shown in Fig. 3.49 can be reduced to N = 56 particles per irreducible unit
cell at a vanishing cost in energy. The N = 192 particle TM

2 structure on the other
hand is already represented in Fig. 3.49 with its irreducible unit cell. In the range
0.8782 ≤ A ≤ 0.88 (and at η = 0.106066) the TOD

2 configuration forms the ground
state with N = 100 particles per unit cell which is a stacked version of the N = 25
particle TOD

2 configuration (which both obtain a vanishing energy difference) depicted
in the top middle panel in Fig. 3.47. TOD

2 has already been present in the database
used to generate the phase diagram [62–64] but has not been reported yet. The newly
discovered TM

2 , TD
2 , RD

2 and TOD
2 ground states are framed by Ix for A . 0.8778

and H for A & 0.88 at η = 0.106066. All of these newly identified ground state
candidate configurations favor dense over loose triangular vertices in the centers of
pseudo-dodecagons which themselves form either (exclusively) super-rectangles with

67Although an energy penalty as small as ∆E∗/N ≈ 10−7 seems like a vanishingly small number, the
numerical accuracy of the Ewald summation technique used here, cf. Subsection 2.1.3, is of the
order of 10−13 with the current set of cutoff parameters.
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Figure 3.49: Refined phase diagram of zero temperature ground state candidate configurations of
the asymmetric Wigner bilayer system including RTlts structures which represent newly discovered
ground state candidates at selected regions in the (η,A)-plane, see labeled insets (cf. Table 3.1):
colored regions indicated by equally colored arrows mark the ground-state regions of several RTlts
related structures presented as insets which are also correspondingly color-coded. The unit cells
of the different structures are indicated by thick black frames and special tiles or motives are
highlighted by faint colors: different super-triangles are colored blue, super-rectangles are colored
green and dense/loose pseudo-dodecagons are colored purple/blue. The TPH1D2 and the TOM

2

structures do not qualify as members of the RTlts family but are closely related. The TPH1D2

structure features triangles, pentagons and hexagons in layer one and pseudo-dodecagon in layer
two, hence the naming. The TOM

2 somehow interpolates between TOD
2 , TOL

2 and the TPH1D2

structures by mixing loose and dense overlapping pseudo-dodecagons, thereby necessarily creating
small distortions with respect to the RTlts family. Notably, for some of the structures which are
identified as the ground state candidate configurations smaller versions exist with “unstacked” unit
cells – i.e., with N → N/4 particles in the irreducible unit cell, see text. The sizes of the irreducible
unit cells which we here identify as ground state candidates are given by N = 25 for TOD

2 and
TPH1D2, N = 27 for TOL

2 , N = 49 for TD
2 , N = 56 for RD

2 , N = 100 for TOM
2 and N = 192

for TM
2 .
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a long side of l = 7 a1 and a short side of s = 4
√

3 a1 in RD
2 or (again exclusively)

super-triangles of side length l = 7 a1 in TD
2 and TM

2 or s = 3
√

3 a1 in TOD
2 .

Now we turn to the specific value of η = 0.226 for the plate separation. For A ≤ 0.751
we here find the Ix structure to be the ground state candidate (in the Ix region) and
for A & 0.765 we are in the H phase. Between the regions of stability of Ix and H we
report for 0.759 < A ≤ 0.765 a Ix-Cairo phase. Further, in the range 0.752 ≤ A ≤ 0.759
the stacked loose overlapping super-triangular structure, labeled TOL

2 , with N = 108
particles per unit cell represents the ground state candidate configuration; the smaller,
“unstacked” TOL

2 variant with N = 27 particles in the unit cell – see Fig. 3.47 – is,
again, energetically virtually degenerate. The corresponding configuration to TOL

2

with N = 27 (N1 = 7 and N2 = 20) seems to be missing in the database [62–64]
and we cannot directly compare the results from the evolutionary algorithm for this
particular structure68. At η = 0.226 and A = 0.752 we find that the TOL

2 structure
is energetically more favorable than the direct competitor and former ground state
candidate, Ix, by −∆E∗GS/N = 1.3× 10−6. In comparison, the related TOD

2 structure
is here energetically less favorable by a significant amount of ∆E∗/N = 3×10−4 which
demonstrates that at this region in the phase diagram loose triangular vertices are
clearly favored over dense ones in the centers of the pseudo-dodecagons; the super-
triangle tiles of TOL

2 have a side length of l = 5 a1.

As already mentioned above, there appear to be vanishingly small differences in the
energies of the relaxed super-triangular RTlts structures and the previously suggested
ground state candidates from literature [62–64] in the proximity of η ≈ 0.403 and
A ≈ 0.66. Here, a novel phase emerges with a very special kind of geometry as
illustrated in the bottom right inset of Fig. 3.49. Via relaxation of a stacked TOL

2

configuration at the respective, relevant (η,A)-pairs a structure emerges which features
(close-to-square) rectangles and (close-to-equilateral) triangles in layer two which are
approximately but exclusively mid-edge decorated by layer one particles. This structure
represents the ground state candidate in the proximity of η ≈ 0.403 and A ≈ 0.66. The
tiling in layer two can be described by overlapping, pseudo-dodecagons that are placed
on a hexagonal lattice which are composed of approximate squares and equilateral
triangles. The truly interesting feature of this structure are the tiles in layer one:
starting in the center of the pseudo-dodecagon in layer two we find the particles in
layer one to be arranged in a hexagon (blue emphasized tile in the bottom right inset
of Fig. 3.49) with six adjacent triangles, a motive which is similar to the Ix phase.
However, the triangles are then framed by six (only slightly distorted) pentagons with
layer two particles placed in their geometric centers. This inner ring of six pentagons
in layer one is surrounded by an outer ring of twelve distorted layer one pentagons69,
again with layer two particles placed in their geometric centers which thereby form the
outer vertices of the pseudo-dodecagon in layer two. Henceforward, we refer to this
structure as TPH1D2 due to the triangular, pentagonal, hexagonal tiles in layer one
and the pseudo-dodecagonal arrangement of particles in layer two.
68Consequently, we see the relatively large improvements in energy of −∆E∗/N ≈ 10−5 of these

structures compared to the previously suggested ground state values from literature in Fig. 3.48
in the proximity of η ≈ 0.226 and A ≈ 0.752.

69Groups of three or four neighboring pentagonal tiles of these two rings of pentagons form super-
tiles reassembling distorted triangles (or rather shield-like tiles) or rectangles, respectively, see red
indicated motives in the bottom right inset of Fig. 3.49.

158



3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

We note that the TPH1D2 structure with N = 100 particles in the unit cell can be
reduced toN = 25 particles in the irreducible unit cell which has already been identified
by the evolutionary algorithm in Ref. [62] but has not been reported. We also stress the
close connection of the decoration scheme of the layer two tile-set of (close-to-square)
rectangles – with an aspect ratio of s/l ≈ 0.99 – and triangles by particles in layer
one with the RTlts decoration scheme: starting from a perfect square-triangle tiling
in layer two the decoration scheme here is a variant of the RTlts decoration scheme
introduced in Subsection 3.1.6.1 with the modification that particles in layer one are
only placed at the projected mid-edge positions of all layer two tiles (with subsequent
relaxation of the entire structure). A triangular vertex in layer two thereby generates
hexagonal tiles in layer one and snub-square vertices70 in layer two automatically give
rise to pentagonal motives in layer one.

Another type of newly discovered RTlts based ground state candidate structure at
η ≈ 0.339 and A ≈ 0.698 is given by the medium density overlapping super triangular
structure which we label TOM

2 (with N = 100 particles in the irreducible unit cell, not
listed in Table 3.3). The TOM

2 structure slightly violates the RTlts decoration scheme
and somehow interpolates between TOD

2 , TOL
2 and the TPH1D2 structures by mixing

loose and dense triangular centers in two distorted overlapping pseudo-dodecagons on
an approximate super-triangular tiling. Thereby the TOM

2 structure necessarily creates
deviations and small distortions with respect to RTlts structures (cf. Fig. 3.49).

Summarizing, the loose TOL
2 , the dense TOD

2 and the dense TD
2 and RD

2 structures
with N = 25, N = 27, N = 49 and N = 56 (or with N = 100, N = 108, N = 196 and
N = 224 in their stacked versions), respectively, as well as the TPH1D2 configuration
withN = 25 (N = 100 when stacked) represent newly reported ground state candidates
of the asymmetric Wigner bilayer system for special (η,A)-regions. Furthermore, also
the medium density TOM

2 and TM
2 configurations with N = 100 and N = 192 in the

respective irreducible unit cell, represent new ground state candidates, see Fig. 3.49:

• TOL
2 and TPH1D2 have already been present in the literature database [62–64]

but have not been reported.

• TOD
2 has apparently been missed in Ref. [62] (although the evolutionary al-

gorithm could have identified it) and we report a new structural ground state
candidate of the asymmetric Wigner bilayer system which improves previously
suggested solutions by −∆E∗GS/N ≈ 10−5 in parts of the phase diagram.

• TM
2 , TD

2 , RD
2 and TOM

2 are completely new structures as compared to the ones
in the literature database [62–64] and improve previously suggested solutions by
−∆E∗GS/N ≈ 10−7 to 10−6 in parts of the phase diagram.

All of the RTlts super-structures are based on RTlts modulations of the hexagonal
monolayer – or exhibit slight modifications thereof, cf. TPH1D2 and TOM

2 – and are
either twofold (for RD

2 and TOM
2 ) or sixfold rotationally symmetric. They feature

super-rectangular and/or two types of differently sized super-triangular tilings when
connecting the centers of their layer two pseudo-dodecagons. The emergence of these
complex super-structure ground state candidates is truly remarkable for a system whose
70Snub-square vertices are composed of three triangles and two squares, i.e., five tiles.
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physics is governed solely by long ranged Coulomb interaction between charged parti-
cles which are confined to two oppositely charged plates.

3.1.6.7 Inflated RTlts Super-Structures

The basic tile-set of the RTlts decoration scheme highlights the simplest possible struc-
tures that can be generated with these three tiles, namely the H phase, the Ix phase and
a configuration of pure rectangles. From the high energy results of the REMC simula-
tions (cf. green emphasized structure insets in Figs. 3.43 and 3.44) we find, that phase
boundaries of grains of such pure structures – restricted by the respective periodic
boundary conditions and depending on the values of η and A – are energetically unfa-
vorable; the basic tiles rather mix and thereby form super-tiles such that the ground
states of the RTlts family tend to form super-structures. Which kind of super-tiles are
realized in the end is dictated by the kind of triangular vertices that are favored by the
system at specific values of η and A as central motives of the pseudo-dodecagons in
layer two. The newly discovered global RTlts super-tiling ground state candidates (see
Fig. 3.49) all exhibit such super-tiles but, respectively, only one kind of these super-
tiles is usually present in these configurations: either small or large super-triangles or
super-rectangular tiles. In this Subsection we investigate larger, more complex super-
structures of the RTlts family which uniformly mix dense and loose central vertices
of non-overlapping pseudo-dodecagons. We then compare these structures against the
previously suggested [62–64] ground state candidates of the asymmetric Wigner bilayer
system for different values of the system parameters.

In Table 3.4 we see that the SRD
2 structure obtained from REMC is energetically

slightly less favorable than Ix-Cairo while SRM
2 (which is based on a super-snub-square

DI structure) is energetically more favorable. SRD
2 and SRM

2 are related by exactly
one rotation of a pseudo-dodecagon in the unit cell: SRD

2 only has one loose and three
dense triangular vertices while SRM

2 has two of each kind in the irreducible unit cell
and thereby eliminates not only all rectangular but also all snub-rectangular vertices
in the tiling in layer two. Here we follow up on this idea of completely avoiding
rectangular neighbors in layer two which share a common edge since avoiding atomic
defects in Subsection 3.1.5 provides us a unique construction scheme for super-tilings
based on pseudo-dodecagons in layer two: in Appendix A.1.5 we present design rules
based on square-triangle tilings how to construct large Stampfli-inflated self-similar
super-structures from scratch, simply by avoiding neighboring squares at the smallest
length-scale. The method itself is straightforward but somehow lengthy and feels out
of place here, which is why we moved it to the Appendix. The key ingredient is not
only to inflate a square-triangle lattice but also to perform the stacking correctly, i.e.,
we do not simply periodically stack the unit cell but stack the tiles instead. In that way
Stampfli-inflated dodecagons are inscribed – notably with a very particular sequence
of orientations – to stacked super-tiles, six to a stacked triangle and nine to a stacked
square.

Here we used a square-triangle structure depicted in Fig. A.16 and subjected it to RTlts
transformations, once with F = 0 and once with F = 1, which results in two possible,
rectangle-neighbor-free quasicrystalline approximants with N = 1444 and N = 1452
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N=1444 N=1452

Figure 3.50: The left and right panel show super-stacked RTlts configurations with N = 1444
(flip-type F = 0) and N = 1452 (flip-type F = 1) particles per irreducible unit cell, respectively.
Both structures are based on the defect-free inflated square-triangle structure shown in Fig. A.16
which we subjected to RTlts transformations. The initial square-triangle structures both exhibit a
hexagonal lattice (black, rhombic unit cells) with overlapping dodecagons inscribed into the unit
cells in a first inflation step (green colored dodecagon composed of black framed rectangles with
an aspect ratio of s/l = 8

√
3/14 ≈ 0.99 and two types of triangles). An additional stacking of the

inflated rectangles and triangles (indicated by thick red lines) mark the vertices which are decorated
with non-overlapping, pseudo-dodecagons of the RTlts family (see thin red lines).

particles per unit-cell (see Fig. 3.50). We label the N = 1444 particle approximant by
IpDL (for hexagonal–pseudo-dodecagonal) and the N = 1452 approximant by IpDD.

After relaxing the IpDL and IpDD approximants in the (η,A)-range relevant to the
RTlts family (at 0 ≤ η . 0.4 and 0.6 . A ≤ 1) we can compare the energies of
the two structures, i.e., E∗1444/N and E∗1452/N , with the previously suggested ground
state energies from literature [62–64], E∗GS/N . Similar to Fig. 3.48 we present in
Fig. 3.51 the energy offset ∆E∗GS/N = (E∗IpD′/N − E∗GS/N) in the (η,A)-plane for a
very fine grid in A, where E∗IpD′/N = min(E∗1444/N,E

∗
1452/N) for a given pair of η and

A. Stunningly, we find that the IpDL structure is energetically more favorable than
previously suggested [62–64] ground state candidate configurations by ∆E∗GS ≈ 10−7

to 10−6 in selected, very narrow η and A regions (IpDD is energetically always slightly
more unfavorable than IpDL). The right panel of Fig. 3.51 emphasizes the system
parameters where the IpDL approximant’s energy is below the previously suggested
ground state energies from literature [62–64] and the improvements to these previously
suggested ground state energies are color coded.

To improve the readability of the energy offset, ∆E∗GS/N , depicted in Fig. 3.51 in the
(η,A)-plane – and to emphasize the delicate, narrow parameter range where IpDL is
energetically more favorable than the current ground state candidates from literature –
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Figure 3.51: Same as Fig. 3.48 but only for the N = 1444 and N = 1452 particle IpDL and IpDD

approximants depicted in Fig. 3.50.

we present ∆E∗GS/N in Fig. 3.52 separately for each available value71 of η as a function
of A. We can see that for selected values of 0.084 ≤ η ≤ 0.141 very narrow72 minima
of ∆E∗GS/N emerge as a function of A.

However, we also need to compare the newly discovered IpDL configurations against the
rest of the RTlts super-tiling family, since the TD

2 , TOD
2 , RD

2 and TM
2 (cf. Fig. 3.49) are

serious competitors for the structural ground state in the (η,A)-region where the IpDL

structure is energetically more favorable than the suggested ground state candidates
from literature. We thus investigate the energy offset ∆E∗GS′/N = (E∗1444/N−E∗GS′/N)
of the IpDL structure to the suggested extended ground state energies E∗GS′/N which
now also includes the N = 25 (N = 100), N = 49 (N = 196), N = 56 (N = 224) and
N = 192 particle super-tilings TOD

2 , TD
2 , RD

2 and TM
2 . Evaluating the energy offsets

of IpDL to all of these structures on the same grid as in Fig. 3.52 reveals, that the
smaller configurations always win by approximately ∆E∗/N ≈ 10−7 to 10−6 (which
still is remarkably close). Since the minima of ∆E∗GS/N in Fig. 3.52 are so narrow
we explicitly search for the optimal values of A(opt) which minimize ∆E∗GS′(A; η)/N
for all relevant (fixed) values of η by functional optimization using the SciPy-optimize-
minimize framework [176]. The optimized value73, A(opt), as a function of η is presented
in the left panel of Fig. 3.53 and we present the associated minimal energy offset
∆E∗GS′(A(opt); η)/N in the respective right panel. For the matter of completeness,

71The literature database structures [62] were generated on a grid in η ×
√

2 = [0., 2.] in steps of
∆η = 0.01/

√
2. Extending the database to a finer grid in η was out of scope of this thesis.

72The ground state phase diagrams presented in Refs. [62–64] are evaluated on a grid in A with a step
size of ∆A = 0.01 which would not allow us to identify the sharp minima of ∆E∗GS/N in Fig. 3.52.

73Notably, we did not consider the results obtained by REMC (RD2 and SRD2 ) in the minimization of
the extended energy offset ∆E∗GS′/N of IpDL and IpDD presented in Fig. 3.53, but since neither
of the two structures seems to be energetically more favorable than the rest of the RTlts super-
structures (especially TD

2 , TM
2 and TOL

2 , cf. Fig. 3.49) this is also not necessary.
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Figure 3.52: The energy offset ∆E∗
GS/N = (E∗

1444/N − E∗
GS/N) of the N =1444 approximant,

IpDL, to the suggested ground state candidates from literature [62–64] for every available value
of the plate separation η (color-coded according to the legend at the top) as a function of A. The
(η,A)-combinations where IpDL is energetically more favorable than the ground state candidates
from literature are indicated and the related energy offsets are given (see colored arrows and
boxes at the bottom). Note that the small values of ∆E∗

GS/N for η ≤ 0.035 corresponds to the
condensation of the bilayer system into a hexagonal monolayer configuration.

we also minimize ∆E∗GS′/N for the N = 1452 particle IpDD approximant (which is
energetically less favorable than IpDL) and present the results in Fig. 3.53.

We can see that for the N = 1444 structure (IpDL) the minimal value of ∆E∗GS′/N
is obtained near η ≈ 0, which corresponds to a condensation of layer two and layer
one into a hexagonal monolayer. The smallest value of the offset ∆E∗GS′/N apart
from η ≈ 0 occurs at η(opt) = 0.15/

√
2 ≈ 0.1060066 and A ≈ 0.87784427, where a

local minimum with ∆E∗GS′(A(opt); η(opt))/N ≈ 10−7 can be identified. Thus, IpDL is
energetically less favorable compared to the smaller, competing RTlts super-structures
which, respectively, feature only one type of super-tile in the unit cell, see Fig. 3.49.

Given the size of the N = 1444 approximant the energy differences of ∆E∗GS′/N ≈ 10−7

appears to be vanishingly small and numerical accuracy – although the here employed
Ewald summation method is highly reliably and in principle exact [92] – might become
an issue when comparing the energies of structures of such vastly different complexities
of the unit cells. At this point we would like to mention that we used the same Ewald
cutoff parameters74 as were also used in Ref. [62] for all structure evaluations in the
74Specifically, we use a real space cutoff of rc = 15, a reciprocal space cutoff of kc = 10 and an Ewald

parameter of α = 0.4 which are defined as unit-less quantities by fixing the volume (or better the
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Figure 3.53: The optimal value of A(opt) (left) minimizing ∆E∗
GS′(A; η)/N for different values of

η and the corresponding minimal value of ∆E∗
GS′(A; η)/N (right) for the N = 1444 (blue) and

N = 1452 (orange) IpDL and IpDD approximants (cf. Fig. 3.50). A(opt) is evaluated separately
for IpDL and IpDD by minimizing ∆E∗

GS′/N(A; η)) with respect to A at fixed values of η.

manuscript. Notably, also the spacing in η is relatively coarse for our purposes of
investigating RTlts ground state configurations (i.e., the step size in η as used by
Ref. [62] is ∆η = 0.01/

√
2). We find that small changes in η can have a crucial

impact on the ground state structure formation of the asymmetric Wigner bilayer
system. However, refining the η-grid to ∆η = 0.001/

√
2 did not significantly improve

the energy offset of IpDL and IpDD to the other RTlts super-structures75.

Indeed, the minimal value of the energy offset ∆E∗GS′/N which we identified in Fig. 3.53
for the N = 1444 particle approximant η× ≈ 0.1060066 and A× ≈ 0.87784427 is a
promising point in the phase diagram to investigate the possible emergence of qua-
sicrystalline order in the asymmetric Wigner bilayer system. In the remaining part of
this Subsection we will perform our analysis solely for this point in the phase-diagram
to which we refer to as IpD× = (η×, A×).

In an effort to gain a better understanding of the energy landscape at the IpD× =
(η×, A×) phase-space point we present in Figs. 3.54 and 3.55 the (extended) energetic
offset of all ∼ 401 corresponding, previously identified structures in the database of
Refs. [62–64] and of all RTlts super-tiling structures introduced above (see Figs. 3.43
and 3.49) to the current ground state candidate RD

2 (at IpD×). Detailed information
about several relevant structures is listed in Table 3.4.

In Fig. 3.54 we present the (extended) energy offset ∆E∗GS′/N for all competing struc-
tures sorted by the internal energy E∗/N of each configuration in ascending order. In

area) per particle to unity, see also Subsection 2.1.4.
75Notably, there is no data for the ground state energies from literature [62–64] for other (relevant)

η-values than listed in Fig. 3.52. Performing an evolutionary ground state search for the additional
values of η is out of the scope of this thesis.
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Figure 3.54: (Extended) energy offset E∗
GS′/N of all structures from the database (gray, labeled

“Lit. Structures”) and all RTlts super-structures (black) to the newly discovered RD
2 ground

state candidate at η = 0.15/
√

2 and A ≈ 0.8778447 sorted by ascending energy values E∗/N
(from “best” to “worst”) along the horizontal axis (labeled “structure ranking”). This (η,A)-point
corresponds to the smallest encountered value of the extended energy offset of the N = 1444
particle IpDL structure at (significant) finite values of η (cf. Fig. 3.53). Special structures are
indicated via color-coding of the symbols and are partly depicted as insets (see Figs. 3.49 and 3.50
for the larger RTlts configurations, numerical details are listed in Table 3.4). The unit cells of the
structures are indicated by thick black frames and special tiles and motives related to the RTlts
decoration scheme or to deviations thereof are emphasized.

Fig. 3.55 we present the (extended) energy offset ∆E∗GS′/N for all competing struc-
tures as a function of the composition x = N/N2 of the respective structures. The
pure structures solely composed of the three basic RTlts tiles, i.e., Ix, Ix-rect. and H,
are presented as insets in Fig. 3.54 and also selected structures such as Ix-Cairo (and
an elongated version thereof which we label elongated Ix-Cairo) and an archetypical
defective structure are indicated in this figure. Other visual representations of relevant
RTlts structures are collected in Figs. 3.49 and 3.50.

The newly suggested ground state candidate at IpD× is represented by the RD
2 struc-

ture. We can see that the direct competitors to the RD
2 structure are represented by the

TD
2 and TM

2 structure (which perform slightly worse than TD
2 by ∆E∗/N ≈ 10−11).

The next competitor to the RD
2 structure with an energy penalty of ∆E∗GS′/N ≈

10−7 is indeed the N = 1444 particle RTlts super-stacked-structure which we labeled
IpDL. Also the Ix-Cairo tiling, the N = 1452 particle IpDD approximant, and other
layer one based RTlts transformed structures exhibit only minute energy penalties of
∆E∗GS′/N < 10−6 (see Table 3.4 for details). The above introduced elongated Ix-Cairo
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Figure 3.55: Similar to Fig. 3.54 but here ∆E∗
GS′/N is shown as a function of the composition

x = N2/N . Black and gray crosses mark unlabeled RTlts structures and solutions from the
evolutionary algorithm from literature [62–64] (labeled “Lit. Structures”) for η = 0.15/

√
2 and

A ≈ 0.87784427, respectively. Colored circles mark the same structures that are also emphasized
in Fig. 3.54. The vertical red line indicates the composition of the RD

2 ground state candidate.

structure, the pure Ix structure and layer two based RTlts transformed structures ex-
hibit slightly larger energy penalties of ∆E∗GS′/N ≈ 10−6. A configuration purely
composed of RTlts rectangles (here labeled Ix-rect.) as well as the honeycomb phase
H already display a larger energy penalty of ∆E∗GS′/N ≈ 10−4 but are still composed
of the basic rectangle and small triangle tiles of the RTlts family. For energetically
less favorable structures than the honeycomb phase defects start to emerge where the
symmetry of the RTlts family is lost at a cost of ∆E∗GS′/N > 10−4.

From Fig. 3.55 we can learn that at the IpD× = (η×, A×) phase-space point the system
appears to prefer a very particular composition of x = N2/N = 15/56 ≈ 0.268 which
is realized by RD

2 . The three pure structures, Ix, Ix-rect. and H, mark in Fig. 3.55 the
numerical boundaries of the allowed compositions for structures of the RTlts family,
that is x = 1/4 for Ix and Ix-rect. and x = 1/3 for H. Compositions of mixtures of the
RTlts tiles must lie between these boundaries and the sharp minimum of the (extended)
energy offset around x ≈ 0.268 can be related to the compositions of the RTlts tiles
which compose a pseudo-dodecagon in layer two: one such pseudo-dodecagon consists
of six large triangles and six rectangles, both with a composition of x = 1/4, and six
small triangles with x = 1/3, i.e., 18 tiles in total. The compositions of the RD

2 , TD
2

and TM
2 structures but also of IpDL and IpDD are almost perfectly framed by the

composition of such a “pseudo-dodecagonal mixture”, xmix. = (1/4 + 1/4 + 1/3)/3 =
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Rank Structure Labels N N1 N2 x E∗/N E∗GS′/N

0 RD
2 56 41 15 0.268 -1.76089838 –

1 TD
2 49 36 13 0.265 -1.76089826 1.2× 10−7

3 TM
2 192 140 52 0.271 -1.76089826 1.2× 10−7

4 IpDL 1444 1056 388 0.269 -1.76089797 4.1× 10−7

8 SRM
2 209 153 56 0.268 -1.76089784 5.4× 10−7

9 Ix-Cairo 15 11 4 0.26̇ -1.76089776 6.2× 10−7

13 IpDD 1452 1064 388 0.267 -1.76089770 6.8× 10−7

14 Elongated Ix-Cairo 22 16 6 0.273 -1.76089737 1.02× 10−6

16 TL
2 48 35 13 0.271 -1.76089735 1.03× 10−6

17 Ix 4 3 1 0.25 -1.76089733 1.06× 10−6

27 TOL
2 25 18 7 0.28 -1.76089689 1.5× 10−6

31 TOD
2 27 20 7 0.259 -1.76089468 3.7× 10−6

54 Ix-Rect. 8 6 2 0.25 -1.76083119 6.7× 10−5

69 H 3 2 1 0.3̇ -1.76077227 1.26× 10−4

84 Defective Ix 25 19 6 0.24 -1.76075042 1.48× 10−4

Table 3.4: Numerical details of labeled structures in Figs. 3.54 and 3.55 for the IpD× = (η×, A×)
phase-space point with η× = 0.15/

√
2 and A× ≈ 0.87784427; structures TD

2 and TM
2 have a

relative energy offset of 2.28× 10−11 per particle. The columns N = N1 +N2, N1 and N2 list the
total number of particles, the number of particles in layer one and the number of particles in layer
two in the unit cell of the respective structures, x = N2/N is the corresponding composition.

0.27̇, of the pure structures. Also the compositions of the other structures which are
serious competitors to the ground state are very close to xmix., see Table 3.4 for details.
However, some other configurations are close to the “optimal” composition but obtain
energies that are significantly larger compared to the configurations RD

2 , TD
2 and TM

2 ,
or even IpDL and IpDD; such large energy penalties are related to unfavorable local
environments of the structures (for the IpD× phase-space point, in particular). We
would like to stress that other possible super-structures similar to IpDL or IpDD which
potentially only host dense triangular vertices would also be reasonable candidates for
the structural ground state at the IpD× phase-space point.

In general, the RTlts structures discussed in this Subsection may all be interpreted as
realizations of an ensemble of random RTlts tilings with minute differences in energy
of the order ∆E∗GS′ ∼ 10−7 to . 10−4. Defects in RTlts configurations are penalized
with ∆E∗GS′/N > 10−4 and are energetically much less favorable especially compared
to RTlts super-tilings. Furthermore, we show that there is also an ensemble of RTlts
super-tilings composed of super-rectangular and super-triangular tiles which obtain
a vanishingly small energy offset of ∆E∗GS′ ∼ 10−7 to 10−6. This suggests that at
small finite temperatures of the order of 1/β∗ ∼ 10−7 to 10−6 the most probable state
the system will attain will be a random RTlts super-tiling configuration. However,
such a “random-tiling” scenario [167, 168] which stabilizes the highest-symmetry phase
quasicrystal via entropic contributions of arbitrary random RTlts (super-)tilings does
not seem physically plausible: the considerable size of the super-tiles would presumably
make such entropic contributions to the finite-temperature stability marginal.
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3.1.7 Miscellaneous

In this Subsection we discuss miscellaneous topics encountered during our investi-
gations of the asymmetric Wigner bilayer system. We present the current state of
our research related to pentagonal and Vx-based ground state candidate solutions of
the asymmetric Wigner bilayer system and we provide relations between some of the
ground state candidate structures to three-dimensional phases from intermetallics and
to adatom based surface structures.

Pentagonal Structures: Parallels to Intermetallics

There is a whole family of zero temperature ground state structures of the asym-
metric Wigner bilayer system which is dominated by (distorted) pentagons, filling as
much space as possible in the densely-populated layer one (cf. green highlighted area
in Fig. 3.1(d)). Amongst this wider range of structural families featuring pentagonal
motives in layer one are, for instance, the P1, P2, P3 and S2 configurations known
from literature [62–64] (cf. Fig. 3.2). Depending on the actual value of η and A the
particles of layer two arrange themselves in some sort of uniform configuration simi-
lar to triangular, square or square-triangle tilings but even layer one structures that
are intermediate between triangular and square tilings are possible. Since (regular)
pentagons cannot fill the two-dimensional plane without gaps or overlaps, the energet-
ically most favorable structures which feature pentagonal tiles either complement these
motifs with triangles or deform pentagons to the point that they are more similar to
hexagons (or a square plus two more triangles).

In Fig. 3.56 we present the structural ground state families identified by the k∗32-
clustering procedure76 put forward in Subsection 3.1.4 which qualify as members of the
wider range of (layer one) pentagonal structures (see also Fig. 3.18(b)). The situation
here seems to be even more complicated and versatile as compared to the DI and
RTlts structures discussed in the previous Subsections 3.1.5 and 3.1.6 and certainly
requires a comprehensive study on its own. Hence, we refrain here from discussing every
structural family identified by the k∗32-clustering algorithm in detail, but will emphasize
instead special features of the respective configurations whenever it is necessary or
helpful for the discussion in this Subsection.

We first investigate a structure inspired by Pt7Zn12 [291], a three-dimensional structure
well-known from intermetallics. Pt7Zn12 can be related to a bilayer configuration whose
vertices in layer one form as many pentagons as possible such that particles in layer two,
which are placed at the projected geometric centers of the pentagons of layer one, form
76The k∗32-clustering approach introduced in Subsection 3.1.4 relies on unsupervised k-means cluster-

ing (see Subsection 2.4.2) of the database of structural ground state candidate configurations of
the asymmetric Wigner bilayer system identified in Refs. [62–64] (or better of the data set of order
parameters of the structural database, which we additionally subjected to principal component
analysis, see Subsection 2.4.1). Via information-theoretical measures based on the adjusted mu-
tual information score between different clustering results (see Subsection 2.4.5), we could identify
a reasonable “guess” for a total number of K∗=32 different structural families in the structural
database; the asterisk emphasizes that we manually assigned all uniquely defined hexagonal mono-
layer configurations of the structural database as a family and excluded the corresponding data
points from the k-means clustering procedure of the remaining data.
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3.1 Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

Figure 3.56: Same as Figs. 3.23 and 3.39 but for structural families identified by the k∗
32-clustering

procedure (cf. Subsection 3.1.4) which feature pentagonal motives in layer one. In the left panel
the phase boundaries from literature [62–64] are emphasized by faint white lines, the gray scales
indicate the regions of stability of all c = 1, . . . , 32 structural families, k∗c

32. The particular k∗c
32-

families related to pentagonal structures are highlighted with bright colors and certain representative
configurations of the families that represent the ground state candidates of the system at certain
combinations of the system parameters are depicted in the right (cf. k∗c

32-labels); the structures
are color-coded according to the color-scheme in the (η,A)-panel. Faintly colored areas in the
right panels emphasize special motives and tiles of the structures and thick black frames indicate
the respective unit cells. See text for a discussion of (some of) the highlighted structures. See
Appendix A.1.2 for details on characteristic values and boundaries of the order parameters and
principal components for the k∗

32-clustering families of structures.

an approximate triangular lattice there (cf. inset in the left panel of Fig. 3.57). In the
left panel of Fig. 3.57 we present the energy offset ∆E∗GS between the Pt7Zn12-inspired
bilayer configuration and the suggested ground state solutions from literature [62–64]
in the (η,A)-plane. Remarkably, such a configuration – after relaxation in the relevant
(η,A)-region – directly represents a ground state candidate solution of the system in
the proximity of η ≈ 0.396 and A ≈ 0.775 where ∆E∗GS ≈ 0.

In the right panel of Fig. 3.57 we investigate a variant of the S2 structure which is
inspired by yet another structure well-known from intermetallics, namely the BRuSc-
structure [272] (see inset in the right panel of Fig. 3.57). In the right panel of Fig. 3.57
we present the energy offset of the BRuSc-inspired bilayer configuration (after relax-
ation) to the suggested ground state energies from literature [62–64] in the (η,A)-plane.
The smallest energy offset is indeed obtained in the vicinity of the S2 phase at smaller
values of A (see bright yellow area in the right panel of Fig. 3.57) but only evaluates
to ∆E∗GS ≈ 10−4. The BRuSc-inspired structure is thus no competitor to the ground
states of the asymmetric Wigner bilayer system.
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Figure 3.57: Energy offset ∆E∗
GS of two bilayer configurations inspired by the three-dimensional

Pt7Zn12-structure (left, see inset) and the BRuSc-structure (right, see inset), both well-known
from intermetallics, to the ground state candidate solutions of the asymmetric Wigner bilayer
system suggested by Refs. [62–64] in the (η,A)-plane; the Pt7Zn12- and BRuSc-inspired bilayer
configurations were relaxed at the respective η and A values. The Pt7Zn12-inspired structure indeed
represents a ground state candidate of the system near η ≈ 0.396 and A ≈ 0.775 (indicated by
arrow) while the BRuSc-inspired structure is no serious competition at any values of η and A (see
color-bar). The phase boundaries from Refs. [62–64] are emphasized by gray lines.

Figure 3.58: Bilayer configurations which represent approximants to a decagonal quasicrystal in
layer two related to the S2 phase and the BRuSc-inspired structure (left to right: T29, T47, T76).
The structures are unstable although some pentagonal motives may survive relaxation (relaxed
structures not shown here). Particle indices in the structures are indicated by numbers.

Both, the S2 and the BRuSc-inspired structure have a remarkable geometry: local pen-
tagonal symmetry in layer one coexists with motives that could potentially give rise to
global decagonal symmetry, i.e., a decagonal quasicrystal in layer two. We also started
investigating decagonal quasicrystalline approximants related to S2 and BRuSc – fea-
turing their own inflation rules [272] – through structures which we labeled T29, T47,
T76 (cf. Fig. 3.58) and we compared them against current ground state candidates
of the system known from literature [62–64]. However, none of these three configu-
rations are stable, although some local pentagonal motives in layer two – so-called
stars or flowers – may survive a relaxation procedure (relaxed structures are not shown
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here). Thus, neither of the T29, T47, T76-structures represent serious competitors to
existing ground state structures of the system. To this end, further investigations are
required: to stabilize these structures other decoration schemes of the tiles in layer two
by particles in layer one seem necessary.

Pentagonal Holes in the Hexagonal Monolayer: a Relation to RTlts

As can be seen in Fig. 3.56, the k∗32-clustering algorithm identified S2 as part of the
k∗32

32 family whose smallest (i.e., N = 12) and whose largest structure (i.e., N=40)
are depicted in Fig. 3.56 and emphasized with cyan color. Also the TPH1D2 struc-
ture discussed in Subsection 3.1.6 and depicted in Fig. 3.49 classifies as a member
of this family. Interestingly, we may also interpret the k∗32

32 family to feature (dis-
torted) rectangles and triangles in layer two and, furthermore, we can relate k∗32

32 to
the rectangle-large–triangle-small–triangle (RTlts) decoration scheme discussed above
in Subsection 3.1.6:

S2, for instance, can be considered as being composed of two distorted, RTlts-decorated
rectangles (related by a ≈ 60◦ rotation) and four distorted triangles which are now
purely center decorated. Thereby, the splitting into the two types of triangles related
to the RTlts structures, i.e., a large Tl and a small ts triangle, is avoided; all triangles
are basically of one kind (i.e., ts triangles), but are slightly distorted.

Furthermore, the TPH1D2 structure (see Subsection 3.1.6) and the N=40 realization
of the k∗32

32 family (see Fig. 3.56) are composed of (close-to-square) rectangles and
(close-to-equilateral) triangles in layer two which are purely mid-edge decorated (i.e.,
Tl triangles). Via relaxation in the respective stable (η,A)-region in the proximity of
η ≈ 0.403 and A ≈ 0.66 (cf. Subsection 3.1.6) these structures obtain small deviations
of the purely mid-edge decorated particle positions compared to perfect RTlts struc-
tures. In that way, the aspect ratio of every rectangle approaches unity, s/l ≈ 0.99, for
both the TPH1D2 and the N=40 particle k∗32

32 configurations such that almost perfect
squares are realized.

We would like to stress that the TPH1D2 structure exhibits remarkable geometry in
which triangular, pentagonal and hexagonal tiles in layer one coexists with (approxi-
mate) dodecagons in layer two which are composed of approximate squares and equi-
lateral triangles. Notably, the pentagonal motives enter the situation through snub-
rectangular vertices in layer two (cf. Fig. 3.42): a snub-rectangular vertex is formed
by two squares and three equilateral triangles (i.e., five tiles) which are arranged as
rectangle-triangle-triangle-rectangle-triangle. A pure mid-edge decoration of the edges
of the neighboring tiles forming this vertex (as well as a pure center decoration of
the corresponding tiles) leads automatically to a distorted pentagonal motive in layer
one [62]. Also this class of structures requires further investigation.

Through Fig. 3.56 we see that when we decrease the value of A the k∗32
32 family (cyan)

transforms into the k∗14
32 family (magenta) and eventually into the k∗27

32 family (purple)
which are related to phase P3. For k∗14

32 the structure formation in layer two is quite
similar to S2: we identify distorted rectangles and triangles as can be seen by the
emphasized layer two motives of the left k∗14

32 structure inset shown in Fig. 3.56 (which

171



3 Systems

is, in fact, a prototype configuration of phase P3). The corresponding structure in
layer one resembles a defective hexagonal lattice with pentagonal holes around layer
two vertices, a feature which is also valid for the k∗27

32 family77 (highlighted by green
areas in the respective inset of Fig. 3.56).

Since reducing A lowers the particle density in layer two and (consequently) increases
the particle density in layer one, the transition from S2 to P3 is not completely surpris-
ing. However, there are notable parallels of the k∗32

32 , the k∗14
32 and the k∗27

32 families to
the RTlts modulation of the hexagonal monolayer discussed in Subsection 3.1.6.2 (cf.
Fig. 3.41): a decreasing value of A is accompanied by sparser population in layer two
whose vertices form ever larger (distorted) triangular, rectangular or even rhombic-
like tiles (cf. k∗14

32 and k∗27
32 from left to right in Fig. 3.56). In contrast to the RTlts

modulations of the hexagonal monolayer via vertical displacements of particles from
one to the other layer, here, vertices in layer two give rise to pentagonal holes in layer
one and thereby locally break the hexagonal symmetry. In the limit of very sparse
population of layer two there are many discrete possibilities to form tiles which may
even give rise to (approximate) local pentagonal symmetry in layer two78. Closely
studying the decoration scheme of the k∗14

32 and k∗27
32 families could help to stabilize

the structures depicted in Fig. 3.58. Thus, an interesting, open issue is to investigate
the possible emergence of global decagonal symmetry, i.e., decagonal quasicrystals in
the asymmetric Wigner bilayer system based on a modulated hexagonal lattice in the
proximity of the I–P3 phase boundary.

More Parallels to Intermetallic Phases: Yb-Based Structures, Penta-Graphene
and Shield-Tilings in the Low Coupling Regime of the Vx-region

The k∗12
32 family of configurations shown in Fig. 3.56 (emphasized in orange) can be

related to the P2 phase (which we use synonymously for k∗12
32 from now on). Taking

a closer look at the lattice in layer two reveals an emerging shield tile (cf. Fig. 3.22)
with six adjacent equilateral triangles. Each vertex in layer two is surrounded with a
pentagonal hole in layer one.

Interestingly, the P2 structure can be found in three-dimensional YbInPd -based sys-
tems [280]: inspired by the so-called HP9 structure [280] we define the HP9Yb

InPd bilayer
configuration where Yb atoms of the HP9 structure are used to form the lattice in
layer two and In and Pd -atoms form the pentagonal holes in layer one79. In the left
panel of Fig. 3.59 we present the energy offset of the HP9Yb

InPd configuration to the
current ground state candidates of the asymmetric Wigner bilayer system suggested
by Refs [62–64]. Indeed, in the parameter range where P2 is stable this structure
represents a ground state candidate of the asymmetric Wigner bilayer system, i.e.,
∆E∗GS/N = 0, as indicated by the bright yellow area in the left panel of Fig. 3.59.

77Different structures of the k∗1432 and the k∗2732 families should therefore be characterized by strong
signals in Ψ

(2,4)
5 and Ψ

(1)
6 as can indeed be seen by the bright, whitish/green signal in bottom left

panel in Fig. 3.3 in the P3 region, see also Fig. A.6.
78The distorted rhombi featured in the right configuration of the k∗1432 family in Fig. 3.56 exhibit a small

opening angle of αP̃ ≈ 76◦which is close to perfect pentagonal symmetry of αP = 360◦/5 = 72◦.
79Without loss of generality we assume layer two to sit above layer one, hence the super– and sub-script

notation of HP9Yb
InPd.
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Figure 3.59: Same as Fig. 3.57 but for the S2P1 structure (left inset) relaxed at all relevant
(η,A)-pairs before evaluating the respective energy offset to the ground state candidates of the
asymmetric Wigner bilayer system suggested by Refs. [62–64]. The arrow corresponding to the
S2P1 structure marks the S2P1 ground state region. Note the relation to the Cairo tiling type of
Voronoi diagram of the Ix-Cairo structure shown in Fig. 3.40(b). The right inset shows the S2P1

structure after relaxation at larger values of η (as compared to the respective ground state region)
giving rise to a herringbone pattern in layer one; the respective arrow indicates the associated
ground-state region of the depicted structure in the phase diagram.

Another quite interesting structural family is given by k∗13
32 (cf. green emphasized top

right panel in Fig. 3.56). Here, the tiling in layer two is similar to S2 but with a distorted
rectangle-triangle tiling that is even more distorted80 as for S2. The interesting part
about this structure, which we label S2P1, is the tiling in layer one which is purely
composed of distorted pentagons such that a (sheared) Cairo type of tiling [255] emerges
in layer one which reassembles the structure of penta-graphene [292]. This type of
tiling can be generated by placing particles in layer one at the geometric center of both
the distorted triangles and rectangles in layer two of the S2 configuration. Another
physical realization of S2P1 can again be found in YbInPd -based systems through the
so-called TP10 structure [280]: again, Yb atoms represent the layer two vertices of
a corresponding bilayer structure and In and Pd atoms form the respective lattice
in layer one. We label the respective bilayer configuration TP10Yb

Pd and present in the
right panel of Fig. 3.59 the energy offset of the S2P1 (or equivalently TP10Yb

Pd) structure
to the ground state candidates of the asymmetric Wigner bilayer system suggested by
Refs [62–64]. We see that this structure represents the ground state candidate of the
asymmetric Wigner bilayer system in the proximity of η ≈ 0.5 and A ≈ 0.81. For
larger values in η the structure deforms – via relaxation – such that layer one exhibits
a herringbone pattern [255] (see right insets in the right panel of Fig. 3.59) which
represents the ground state candidate structure in an adjacent region to the S2P1

phase in the phase diagram.

To fully complete the analysis of the K∗=32-means clustering put forward in Sub-
80In fact, layer two of the k∗1332 family more closely resembles a distorted triangular lattice.
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section 3.1.4 we conclude this Subsection by showing in Fig. 3.60 the associated k∗32-
clustering families of the zero temperature ground state structures of the asymmetric
Wigner bilayer system suggested by Refs. [62–64] in the Vx region (related to hexagonal
bilayer structures) of the parameter space (see also Fig. 3.18(d)). Similar to Figs. 3.23,
3.39 and 3.56 we can see, that several new structural details can be differentiated as
compared to earlier investigations [62–64] which we briefly discuss below.

Figure 3.60: Same as Figs. 3.23, 3.39 and 3.56 but for structural families related to the Vx phases
identified by k∗

32-clustering (cf. Subsection 3.1.4) based on all structures considered in Refs. [62–
64]. See text for a discussion of (some of) the highlighted structures. See Appendix A.1.2 for
details on characteristic values and boundaries of the order parameters and principal components
for the k∗

32-clustering families of structures.

The structural family k∗31
32 (emphasized in red in Fig. 3.60) exhibits a herringbone

pattern in layer one and an approximate hexagonal lattice in layer two. The k∗432

(emphasized in cyan in Fig. 3.60) and the k∗18
32 families (green) show hexagonal bilayers

with different particle densities in layer two. Interestingly, we can identify through the
structural families k∗632 (magenta), k∗11

32 (purple) and k∗26
32 (yellow) different types of

shield-tilings in layer one: vertices in layer two force the hexagonal layer one to open
up shield-like holes whose densities are determined by the tiling length of the hexagonal
layer two.

In Fig. 3.60 we present two archetypical configurations of the k∗632, one with N=4 and
another one with N=40, which represent the ground state candidates of the system
at different values of system parameters. Both configurations display close-to-triangle
shield-like tiles in layer one and a hexagonal lattice in layer two (with layer two vertices
centered at the projected geometric centers of the shield-like tiles of layer one). How-
ever, the density of the shield-like tiles for the N=4 structure is much larger compared
to the N=40 configuration. The two structures certainly exhibit similar features but
may also be considered as different types of structures, unless polymorphs of this family
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with different densities of the shield-like tiles can be associated to the values of the com-
position, x, similarly as previously suggested for the Vx structures [62–64]. Moreover,
as can be seen from Figs. 3.23 and 3.60 the k∗23

32 family and the N=4 particle variant of
the k∗632 family topologically describe the same structure, only the angles of the shield-
like tiles vary as a function of η (from close-to-square for η ≈ 0.45 and close-to-triangle
for η ≈ 1). This clearly shows, that the predictions of the clustering approach discussed
in Subsection 3.1.4 need to be considered with caution (cf. also family k∗32

32 depicted in
Fig. 3.56 which comprises the S2 and the TPH1D2 structures). Nevertheless, the clus-
tering approach introduced in this thesis allowed us to efficiently identify particularly
interesting regions in the parameter space of the asymmetric Wigner bilayer system
and, in general, represents a valuable tool for studying complex phase diagrams.

Notably, also the N=4 shield-tiling structure of the k∗632 and k∗23
32 families has a physical

realization in the above mentioned HP9 structure [280]: by inverting the assignment
of the Yb atoms from layer two (cf. left panel of Fig. 3.59) to layer one and con-
sidering all positions of In atoms located in the geometric center of the shield-like
arranged Yb atoms as particle locations in layer two (hence, the labeling HP9In∗

Yb ) we
can construct the N = 4 shield-tiling of the k∗632 and the k∗23

32 families. Eventually, we
present in Fig. 3.61 the respective energy offset of this configuration (after relaxation)
to the ground state candidates of the asymmetric Wigner bilayer system suggested
by Refs. [62–64] in the (η,A)-plane. We can identify an extended parameter range
of 0.5 . η . 0.72 and A ≈ 0.6 where this kind of shield-tiling forms a ground state
candidate of the asymmetric Wigner bilayer system.

Figure 3.61: Same as Fig. 3.57 but for the N=4 shield-tiling of the k∗6
32 family (see insets).

The bright yellow area marks the associated region in parameter space where this configuration
represents the ground state candidate of the asymmetric Wigner bilayer system and the cyan arrow
indicates the successive (continuous) deformation (via relaxation) with increasing η of an initially
almost perfect shield tile (left inset, cf. Fig. 3.22) to a nearly triangle shaped shield tile variant
(see right inset).
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3.1.8 Conclusions and Outlook

In Ref. [62] an evolutionary algorithm was employed to systematically identify ground
state configurations of the Wigner bilayer system and has proven to be a highly reliable
and very general framework for identifying trends in the structure formation process of
this physical system. The analysis in Ref. [62] provides a solid foundation for further,
in-depth studies of structure formation processes of very specific families of structures,
i.e., for specialized problems which need to be treated with great precaution. In this
thesis, we investigated the asymmetric Wigner bilayer system for possible zero temper-
ature quasicrystalline ground state solutions related to the snub-square (S1) structure
and the trihexagonal phase (Ix), a fruitful yet delicate endeavor. In general, specialized
problems usually require tailored approaches which are capable of efficiently exploring
the problem specific, yet usually still considerably large configuration space. We there-
fore employ specifically implemented simulated annealing and replica exchange Monte
Carlo methods which rely on specialized update moves related to the geometry of the
investigated sub-families of structures.

Revisiting the Complex Phase Diagram with Unsupervised Learning

We propose a new scheme based on k-means clustering [239–242] of order parameters
of structural data of the asymmetric Wigner bilayer system [62–64] in order to classify
and group families of related structures. Indeed the different phases in Refs. [62–64]
could be resolved by this very simple unsupervised machine learning approach which,
moreover, provides us with a deeper insights into the structural-landscape of ground
states of the asymmetric Wigner bilayer system. Especially in the proximity of the S1,
pentagonal, Ix and the Vx ground state regions, but also along phase boundaries in
general we could identify an even richer phase-behaviour as previously reported [62–
64]. This clustering tool of structural data further allowed us to identify sweet spots
in the phase-diagram which may give rise to structures with dodecagonal or decagonal
symmetries.

Towards Dodecagonal Order: Metastable Super-Structures

We systematically investigate the snub-square (S1) region of the phase diagram for
possible new square-triangle based ground states which successively approximate a do-
decagonal quasicrystal. For that purpose we repetitively employ Stampfli-inflation [252]
to square-triangle tilings and perform specifically implemented simulated annealing and
replica exchange Monte Carlo simulations based on so-called zipper-moves [254] to ex-
plore the configuration space of inflated square-triangle tilings for optimal solutions
to the structural ground state. By applying this procedure to different configuration
spaces of quasicrystalline approximants with different (unit cell) complexities a cascade
of ground states emerges – one ground state for every configuration space determined
by the specific choice of the inflation – which all exhibit self-similar super-square-
triangle-tilings on multiple length scales.
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However, this family of structures seems to be energetically less favorable compared to
S1 – or other global ground state candidates of the asymmetric Wigner bilayer system
in general. Especially the large hexagonal tiles – in addition to an otherwise perfect
square-triangle tiling – emerging in layer two of the related self-similar super-structures
have proven to cause energy penalties as compared to the uniform layer two square
tiling of the S1 structure.

We report a metastable phase of nearly-degenerate self-similar super-structures.

Towards a Bilayer-Modulated Hexagonal Wigner Quasicrystal

We report a remarkable ordering of rectangle-large–triangle-small–triangle (RTlts) con-
figurations into super-structures which represent global ground state candidates of the
asymmetric Wigner bilayer system. Between the regions of stability of the trihexago-
nal phase (Ix) and the honeycomb phase (H) we observe emerging pseudo-dodecagonal
motives in layer two – composed of RTlts tiles and arranged to form different super-
triangular and super-rectangular tiles – which can be interpreted as vertical modula-
tions of the hexagonal monolayer in layer one. The modulated hexagonal monolayer
structures have direct geometric connections to metallic mean quasicrystals [274] but
also to dodecagonal, square-triangle based quasicrystals [252, 254]. The discrete possi-
bilities of the side lengths, l and s, of the rectangular and the large and small triangular
tiles are dictated by the hexagonal lattice but the ratio l/s is a free parameter for these
kind of structures and in the limit of l ≈ s dodecagonal order can be approximated by
hexagonal RTlts structures. In this thesis, we focused on l = 2a1 and s =

√
3a1, where

here a1 is the tiling length of the hexagonal (equilateral triangular) lattice.

Inspired by the close connection of RTlts structures and square-triangle tilings we
implemented a replica exchange Monte Carlo structure optimization algorithm which
employs modified zipper-moves to reshuffle the RTlts tiling instead of a square-triangle
tiling. We observe, that ground state realizations of the RTlts family in the asymmetric
Wigner bilayer system have a tendency of avoiding specific local environments, namely
four rectangle corners meeting at a vertex, or rectangular tiles sharing a common edge in
general. We conjecture that the emergence of super-tiles and large pseudo-dodecagonal
cluster motifs among low energy RTlts super-structures is a consequence of the sys-
tem’s tendency to avoid these types of local environments, rather than to maximize
the number of favorable motifs as in cluster-covering approaches [287]. If the particle
decorations of the super-tiles were matching at the edges such that adjoining tiles (RTl
or Rts) did not lead to conflicts by edge-sharing, vanishingly small energy differences
of ∆E∗GS′ ∼ 10−7 to 10−6 between arbitrary random RTlts tilings would contribute
toward entropic stabilization of the highest-symmetry phase quasicrystal [167, 168] at
elevated (small) values of the temperature. The super-tile decorations can also be used
to define an “inflation rule” and consequently prove that a perfect quasicrystalline state
is possible, although we point out that the geometric feasibility of such an inflation pro-
cedure does not warrant that the process minimizes the energy. Instead, the so called
“energetic scenario” explains the emergence of quasicrystals in physical systems as a
consequence of so-called matching rules [293] or even appropriate cluster-motif maxi-
mization [286], but neither of these scenarios seems to be in action in Wigner bilayer
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system. Similarly, the “random-tiling” scenario does not seem physically plausible due
to the size of the super-tiles, that would presumably make such entropic contribution
to the finite-temperature stability marginal.

In this thesis, we solely observe RTlts crystalline ground state candidates which exhibit
exclusively super-triangular or super-rectangular motives, either formed by overlapping
or by non-overlapping pseudo-dodecagons. We could identify newly discovered global
ground state candidate RTlts super-structures with 25, 49, 56, 100 and 192 particles per
unit cell in the here investigated Wigner bilayer system. However, “true” ground states
of this family are increasingly hard to identify via simulations due to the existence of
energetically almost degenerate competing structures of vastly different complexity –
which, moreover, cannot easily be transformed into each other.

General Remarks on the Super-Structure Formation

The emergence of quasicrystals or even of finite sized quasicrystalline approximants es-
pecially in soft-matter systems [43, 50, 273, 294, 295], is often justified by inter-particle
potentials which exhibit distinct features, either in real or in reciprocal space. For in-
stance, a suitably parametrized pair-potential [44, 49, 264, 273, 296] may favor particle
arrangements of very specific nearest neighbor and second nearest neighbor separations
– usually two characteristic length-scales are involved. Together with three body inter-
actions between particles such systems may trigger the formation of a quasicrystal [42,
43, 49, 297].

In contrast, the physics of the here investigated asymmetric Wigner bilayer system
is fully determined by featureless long-ranged, purely repulsive Coulomb interaction
between the particles which are confined between two oppositely charged plates. Hence,
we find it truly remarkable that this system can give rise to such complex metastable
DI or ground state RTlts super-structure arrangements which we observed for very
specific values of the system parameters.

The ground state assembly of the asymmetric Wigner bilayer system is geometrically
guided by the specific choice of the plate separation distance and the charge ratio of
the two plates. The purely repulsive Coulomb potential of the point-charges leads to
lateral, tiling-like particle arrangements which are distributed as uniform as possible on
the two oppositely charged, co-planar layers. Thereby, different, interlocked, tiling like
patterns on both layers are formed with minimal tile-sets in general, a process which is
apparently able to trigger the formation of the here observed complex super-structures
for certain combinations of the system parameters.

Parallels to Intermetallics and Atomistic Structures

A very interesting physical analogy to the RTlts super-structures is given by adatom
superlattices on (Si,Ge,Sn)-111 diamond-structure surfaces [290], which realize exactly
the kind of super-structures on the hexagonal lattice as we observe in this thesis. We
hypothesize, that structures of the RTlts family may be able to explain the BaTiO3

on Pt(111) surface, which obtain dodecagonal quasicrystalline order on a perfectly
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hexagonal surface [298]. However, especially the absence of a second layer makes
this analogy with adatom based surface structures not obvious but rather interesting:
a physically motivated hypothesis of this connection might be that the asymmetric
Wigner bilayer system might represent an effective, geometrically inspired model for
special kinds of vertical phonon excitations of the adatoms on (111) surfaces.

In the pentagonal regions of the phase diagram of the asymmetric Wigner bilayer
system the structure formation is less clear compared to the here investigated do-
decagonal type I and rectangle-large–triangle-small–triangle families, but we identified
routes towards understanding the structure formation of configurations featuring dis-
torted pentagonal tiles. We report a remarkable relation of pentagonal ground state of
the asymmetric Wigner bilayer system with three-dimensional structures from inter-
metallics, such as BRuSc [272] and the Pt7Zn12 structures [291], which can be mapped
to bilayer structures. Furthermore, we report analogies of ground state configurations
of the asymmetric Wigner bilayer system with Yb-based structures [280] and even with
penta-graphene [292].

All in all it is quite remarkable, how many parallels can be drawn from ground state
configurations of the asymmetric Wigner bilayer system to three-dimensional atomistic
structures known from intermetallics.
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3.2 Supramolecular Ordering of Complex Molecules under
Electrochemical Conditions

The contents of this Section is largely based on Ref. [86], a work entitled “Reliable
Computational Prediction of the Supramolecular Ordering of Complex Molecules under
Electrochemical Conditions”, which emerged during the course of this thesis and is
modified – wherever necessary – to align with the scope of this document.

3.2.1 Introduction

Supramolecular chemistry deals with intermolecular interactions and structure forma-
tion beyond individual molecules, and as such lies at the basis of many nano- and
mesoscopic structures found in biology. In recent decades, impressive progress in the
experimental branches of this field have resulted in at least two Nobel Prizes in chem-
istry. By contrast, the theoretical understanding and especially the in silico prediction
of supramolecular ordering has lagged behind somewhat. This is easily understood
if one considers the sheer size of the systems under study, requiring in many cases
consideration of a solid substrate, a sufficiently large number of molecular building
blocks or tectons, and a condensed matter medium (i.e., a solvent or electrolyte solu-
tion). The interaction of these three components, each with their intrinsic properties,
and with optional extrinsic steering (e.g., by light, heat, electric field), will determine
the observed supramolecular structures and govern the transitions between them [21,
22].

In this thesis, we propose a theoretical framework to predict supramolecular ordering of
complex molecules at an electrochemical solid–liquid interface. The calculations were
inspired by a recent experimental work [83] in which particularly clear-cut transitions
between supramolecular structures were observed as a function of the applied electric
field at a metal-electrolyte interface. The target molecules whose supramolecular or-
dering is considered constitute an organic salt that consists of a large, disc-shaped poly-
aromatic cation (PQP+) and a much smaller, inorganic anion (perchlorate, ClO−4 ) [81,
84, 85].

The concept of choice to investigate these scenarios would rely (i) on a faithful descrip-
tion of the properties of the system (notably a reliable evaluation of its energy) via
ab initio simulations and (ii) in a subsequent step the identification of the optimized
(ordered) arrangement of the molecules on the substrate by minimizing this energy
via efficient and reliable numerical tools; this optimization has to be performed in a
high dimensional search space, spanning all possible geometries of the unit cell and
all possible coordinates and orientations of the molecules within that cell. Both these
approaches, considered separately from each other, are conceptually highly complex
and from the numerical point of view very expensive, which precludes the application
of this combined concept even for a single set of external parameters (such as temper-
ature, density, and external field); it is thus obvious that systematic investigations of
the self-assembly scenarios of such systems are definitely out of reach.
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In an effort to overcome these limitations we propose the following strategy: in a
first step we map the ab initio based energies onto the energy of a related classical
model (or classical force field), where the atomistic units of the molecules are featured
as spherical, charged units with Lennard-Jones type interactions and where the elec-
trolyte is treated as a homogeneous, dielectric medium; the interaction between the
atomic entities and the metallic surface is modeled by a classical, perfectly conductive,
Lennard-Jones like wall potential. The as yet open parameters of the resulting force
field (energy- and length scales, charges, etc.) are fixed by matching the ab initio
energies of the system with the related energies of this force field: this is achieved
by considering archetypical configurations of the system’s building blocks (molecules
and surface) and by systematically varying characteristic distances between these units
over a representative range. These ab initio energies were then fitted along these “tra-
jectories” by the parameters of the classical force field: the energy- and length-scales
of the involved interatomic Lennard-Jones or Mie potentials as well as the atom-wall
interaction parameters.

It turns out that this force field is indeed able to reproduce the ab initio based energies
along these “trajectories” faithfully and with high accuracy. Even though the emerging
force field is still quite complex (as it features both short-range as well as long-range
Coulomb interactions and involves mirror charges) it is now amenable to the afore-
mentioned optimization techniques which thus brings systematic investigations of the
self-assembly scenarios of these molecules under the variations of external parameters
within reach (see Fig. 3.62 for a schematic visualization of our approach).

Figure 3.62: Schematic visualization of our theoretical approach [86] to investigate supramolecular
self-assembly scenarios at metal surfaces on the example of the PQP-ClO4 system on Au(111) [83].

As a benchmark test for our approach we have considered the above mentioned system,
studied in recent experimental investigations: the cation is PQP+ (9-phenylbenzo[1,2]
quinolizino[3, 4, 5, 6-fed] phenanthridinylium, a disk-shaped polyaromatic molecule),
while the anion is perchlorate, ClO−4 ; the self-assembly of these ions on a Au(111)
surface under the influence of an external electric field was studied. The high accuracy
with which the ensuing energies calculated from the force field reproduce the ab initio
simulation data make us confident about the applicability of the force field for the
subsequent optimization step: using an optimization technique which is based on ideas
of evolutionary algorithms we have then identified the self-assembly scenarios of the
ions on the Au surface, for a given set of external parameters (temperature, density,
and external field). These first results provide evidence that our approach is quite
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promising. This concept is furthermore completely flexible as it can easily be extended
to other organic molecules of similar (or even higher) complexity. The computational
cost of this optimization step is still substantial. Therefore, a detailed, quantitative
and, in particular, systematic investigation of the self-assembly scenarios of the PQP+

and the ClO−4 ions on the Au surface for a broad range of external parameters is out
of the scope of this thesis. Instead we demonstrate in this Section for selected sets of
parameters that our approach is indeed able to reproduce several of the experimentally
identified self-assembly scenarios.

In this context it has to be emphasized that such a type of optimization problem is
highly non-trivial since the huge number of possible local minima in the potential en-
ergy surface (embedded in a high-dimensional parameter space) increases exponentially
with the number of particles (and their degrees-of-freedom) of the system [96]; thus
exhaustive search strategies hit the computational limits or even exceed the capacities
of present day supercomputers. Yet another complication in structure prediction algo-
rithms is caused by the fact that different polymorphs of a system can be kinetically
trapped and a vast number of other minima, having values of the internal energy com-
parable to the global minimum may also play an important role in structure formation
processes [89, 96].

At this point we owe an explanation to the reader why we have chosen the possibly
unconventional approach. Of course, it is obvious that an optimization of the molecu-
lar configurations on the basis of full ab initio calculations is from the computational
point of view by far out of reach. However, one can argue that suitable force fields
(available in literature) or machine-learning potentials such as high-dimensional neu-
ral network potentials [289, 299–304], kernel-based ML methods [305] (such as Gaus-
sian approximation potentials [247, 306–309]) or more specialized, effective potentials
for selected molecular motives used by, for instance, the SAMPLE approach [54, 89,
90] might represent a more conventional strategies to tackle this problem (note that
the field of machine-learning potentials is rapidly growing and the above list is far
from comprehensive). With such machine-learning potentials the computational cost
to faithfully evaluate force fields related to atomistic or molecular systems can be re-
duced by orders of magnitude compared to ab-initio calculations while maintaining the
high precision as well as the high flexibility of ab-initio based models) [302]; even the
formation and breaking of chemical bonds between atoms can be described with these
machine-learning based approaches. Hence, such arguments represent fully legitimate
objections against our approach.

The problem we are addressing in this part of the thesis is however a non-standard
problem and thus requires to be treated with a custom force field: the justification
for our strategy is that we wanted to endow the atomic units of the molecules with
“real” physical properties (such as “size” or “charge”), which will help us to perform
the second step in our structural search that we have envisaged (and that we are
currently working on): as the computational costs of our approach are still considerably,
large scale investigations are still prohibitively expensive. In an effort to overcome
these limitations we plan to proceed to even more coarse-grained models which grasp,
nevertheless, the essential features of our complex molecules. On the basis of such
models we would then be able to identify with rather low computational costs first

182



3.2 Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

trends in structural identification processes. Investigations along this direction are
topic of future works.

Finally we point out that we are well aware of the limitations and deficiencies of our
present model. Features such as the response of the metallic electronic distribution of
the gold surface due to the presence of an external bias, variable electrostatic properties
of the molecular species (allowing thus for polarization effects), or a space dependent
permittivity cannot be included in our concept. However, at this point it is fair to say
that, to the best of our knowledge, none of the aforementioned alternative approaches
(such as the use of conventional force fields or machine learning frameworks) are able
to take all these effects faithfully into account, either.

This part of the thesis is organized as follows: In Subsection 3.2.2 we describe the
essential features of the experimental setup, introduce an ab initio and a classical
representation thereof and discuss the mapping procedure between those different in-
stances. In Subsection 3.2.3 we put forward the adaptation and parametrization of the
memetic optimization procedure based on ideas of evolutionary algorithms (see Subsec-
tion 2.2.4) in order to identify ordered ground state configurations of complex molecules
under electrochemical conditions and in Subsection 3.2.4 we present selected numeri-
cal results which demonstrate a semi-quantitative agreement with the experimentally
observed self-assembly scenarios of PQP+ and ClO−4 ions on an Au(111)-electrolyte–
interface under the influence of an external electrostatic field. We conclude our findings
in Subsection 3.2.5.

3.2.2 The System and its Representations

3.2.2.1 System

Both the DFT calculations and the related force field are based on a framework that
mimics the essential features of the experimental setup, put forward (and discussed)
in [83]; this framework is schematically depicted in Fig. 3.63: PQP+ and ClO−4 ions
are immersed into an electrolyte (aqueous 0.1M perchloric acid). From below, the
system is confined by a Au(111) surface, which in the experiment serves as the solid
substrate for adsorption. An electric field, Ez, can be applied between a reference
electrode located within the electrolyte and the Au surface. The PQP+ and the ClO−4
ions are first treated via DFT based ab initio calculations (see Subsection 3.2.2.2). The
calculated energies are then used to fix the force fields of classical particles (notably
their sizes, energy parameters, and charges) which represent the atomic entities of the
respective ions; the interaction between the atomic entities and the Au(111) substrate
is described by means of a classical wall-particle force field (see Subsection 3.2.2.3).
Throughout the electrolyte molecules are not considered explicitly. The electrolyte is
rather assumed to be a homogeneous effective medium with a permittivity of water,
i.e., εr = 78.36, at T = 25◦C [310–312], corresponding to the temperature at which the
experiments by Cui et al. [83] were carried out and assuming that the low concentration
of perchloric acid does not change the value of εr substantially [313–316]. Hence, in this
Section we use “electrolyte” as synonym for “solvent” unless explicit use is required.
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We emphasize at this point that in the experiment, an exact specification of the electric
field strength is not possible: as detailed in the supplementary information of Ref. [83],
the authors of the related experimental investigations have estimated rather the degree
of charge compensation on the Au surface by the adsorbed PQP+ ions as a function of
their changing coverage, which does not allow to estimate the electric field directly. This
fact limits the degree of quantitative comparison between experiment and theory.

Figure 3.63: Schematic visualization of the experimental setup to control the pattern formation
of PQP+ (and ClO−

4 ) molecules (structure formulas given in top right insets) close to a Au(111)-
surface: two Au-layers are explicitly shown, the golden, shiny area represents the conductive Au-
bulk, the black dashed line marks the surface of the electronic density which we interpret as
mirror-plane. The ions are immersed into an electrolyte (gray, shaded region), which is considered
as an effective, homogeneous medium. In the region close to the Au surface (red to blue shaded
areas) a homogeneous, electrostatic field Ez (bold, colored arrow), oriented in the z-direction,
features the electrostatic potential drop between the Au-surface and the reference-electrode inside
the electrolyte. The colors of the atoms in the electrolyte correspond to their type, while the color
of the mirror-atoms (located in the Au-bulk) specify their partial charges, quantified by the colorbar
(see bottom right) in units of the electron charge, e.

3.2.2.2 Ab initio Simulations

The density functional theory calculations81 were performed with the software pack-
age GPAW [317, 318] and the structures handled by the atomic simulation environ-
ment [319]. The electronic density and the Kohn-Sham orbitals were represented within
the projector augmented wave method [320], where the smooth parts were represented
on real space grids with grid spacing of 0.2 Å for the orbitals and 0.1 Å for the elec-
tron density. The exchange-correlation energy is approximated as proposed by Perdew,
81The calculations and contents of Subsection 3.2.2.2 is largely based on Ref. [86] and were primarily

conducted by our collaborators O. Brügner, S. Sharma and M. Walter.
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Burke and Ernzerhof (PBE) [321] and weak interactions missing in the PBE functional
are described as proposed by Tkatchenko and Scheffler (TS09) [322]. The TS09 ap-
proximation assumes that long range dispersive contributions are absent in the PBE
functional, such that these can be applied as a correction. The total energy which is
written as

E = EPBE + wSEvdW (3.24)

where EPBE is the PBE energy and EvdW is the TS09 correction. A weight factor
wS was introduced that will allow to incorporate electrolyte effects into the dispersive
contributions as discussed below. For interactions in vacuum wS = 1. The presence of
the aqueous environment on the electronic and nuclear degrees of freedom included in
EPBE is modeled by a continuum solvent model [323].

Molecular interactions are studied on simulation grids with Dirichlet (zero) bound-
ary conditions. Neumann (periodic) boundary conditions were applied in x- and y-
directions in the surface plane for simulations involving the gold surface, while zero
boundary conditions were applied in the perpendicular z-direction. The simulation
grid was chosen such that at least 4 Å of space around the position of each atom in
the non-periodic directions was ensured. The Au(111) gold substrate was modeled
by two layers of 54 atoms, each using the experimental lattice constant of fcc gold of
a = 4.08 Å. These settings result in a rectangular unit cell of 26.0 × 15.0 Å2. The
Brillouin zone was sampled by 3× 3 Monkhorst-Pack [324] distributed k-points in the
periodic directions.

Potentials are scanned by fixing all gold atoms and a central atom of PQP+ (the
nitrogen atom) and/or of ClO−4 (the chlorine atom) to given positions while all other
atoms were allowed to relax without any symmetry constraints until all forces were
below 0.05 eV/Å.

The interaction of two perchlorate anions in dependence of their distance is shown
in Fig. 3.64 for different approximations for the total energy in Eq. (3.24). As ex-
pected, the potentials follow the screened electrostatic repulsion [ε∞(0)RCl−Cl]

−1 for
large distancesRCl−Cl, where ε∞(0) = εr is the static relative permittivity of water.
There is a slight attractive part in the potential around RCl−Cl ' 5.2 Å already in the
PBE potential which leads to a very shallow local minimum. The main reason for this
minimum is the decrease in the effective surface ∆A when the solute cavities (the sol-
vent excluded regions) begin to overlap. This decreases the energetic cost to form the
surface due to the effective surface tension γ = 18.4 dyn cm−1 (γ also contains attrac-
tive contributions and is therefore much lower than the experimental surface tension of
water [323]). Subtracting γ∆A nearly removes all of the minimum as demonstrated in
Fig. 3.64. Including the full dispersion contribution [ε∞(ωopt) = 1] this local minimum
substantially deepens and becomes the total minimum of the potential. An attractive
contribution to the potential is not to be expected for the interaction of two anions and
needs further discussion. An overestimation of dispersion interactions is suspected if
these are treated as in vacuum and no screening through the electrolyte is considered.

The aqueous environment influences the van der Waals (vdW) interactions as these
are of Coulombic origin [325]. In order to derive an approximate expression for the
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Figure 3.64: The relative energy of two ClO−
4 anions as a function of the distance between their

chlorine atoms, RCl−Cl, where the separated anions define the energy reference; ε(ωopt) = 1 with
full van der Waals (vdW) corrections and ε(ωopt) = 1.7 with scaled vdW corrections. The dash-
dotted line shows the PBE energy where the energy contribution of effective surface tension γ∆A
is subtracted (see text).

screened vdW interaction of two molecules A and B at distance R inside the electrolyte,
the C6 coefficient defining the vdW energy C6/R

6 is expressed by the Casimir-Polder
integral [322, 326]

C6 =
3

8π2ε0

∫ ∞
0

α∗A(iξ)α∗B(iξ)φ(iξ) dξ (3.25)

where α∗A,B are the polarizabilities of the interacting molecules and φ is determined by
propagation of the electric field through the embedding medium [326] with φ = 1 in
vacuum. Both α∗A,B and φ are modified relative to vacuum in solution. In the simplest
model [326] φ(iξ) = ε−2

∞ (iξ) may be written with the frequency dependent relative
permittivity of the electrolyte ε∞. The effects of the electrolyte on the polarizabilities
α∗A,B should, at least partly, already be included in the TS09 description through
the effective atomic polarizabilities derived from the self-consistent electron density
calculated within the electrolyte. What is left is the effect of the permittivity entering
through the function φ(iξ) in Eq. (3.25). It is assumed that the main contribution
of φ(iξ) is at the resonance frequencies of α∗AB, which are in the optical region for
usual molecules. It is further assumed that ε∞(ωopt) is approximately constant in
this frequency region, such that φ = [ε∞(ωopt)]

−2 may be pulled out of the integral.
This factor scales the C6 coefficient and therefore the vdW contribution. In other
words, the weight ws = [ε∞(ωopt)]

−2 is applied in Eq. (3.25) with the experimental
permittivity of water in the optical region of ε∞(ωopt) = 1.7, see Ref. [327]. This
approach reduces considerably the depth of the suspiciously deep minimum as seen in
Fig. 3.64 such that only a shallow local minimum remains similar to the PBE potential.
The reduction obtained is quite strong in respect of the small contributions of Axilrod-
Teller-Muto interactions commonly assumed [328, 329]. The quantitative connection
between the screening of dispersive interactions in polarizable media and the many-
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body effects neglected in TS09 [330] are not immediately clear and is certainly worth
further investigation. In what follows the same scaling for all the vdW contributions
of the DFT potentials is used.

3.2.2.3 Force Field Model

In this Subsection we describe how we cast our setup into force fields where the atoms
in the molecular constituents are described as spherical particles, each of them carrying
a charge. The mapping is guided by the energies obtained via the ab initio simulations
detailed above.

The Au(111) surface is modeled as a flat and perfectly conducting surface involving
mirror charges as detailed below. However, we note, that the position of the corre-
sponding surface in the DFT calculations does not coincide with the position of the
atoms. Before proceeding the following comment is in order: in this mapping pro-
cedure the distance of a point-charge to a metallic surface is unambiguously defined
through the electrons leaking out of the potential defined by the nuclei [331, 332].
This feature can explicitly be seen in jellium models [333], but emerges also in im-
plicit calculations [334] where electrons spill out of the surface of metal clusters [335].
From the latter study we estimate an effective spill out of the surface of 0.5 Å, a value
that agrees qualitatively with estimates from the jellium models, extrapolated to large
structures [332]. This value will be used in the following for our problem.

3.2.2.4 The Atomistic Model

In our atomistic model the molecules are represented as rigid entities composed of
atomistic constituents. The molecules are immersed into a microscopic electrolyte,
which is treated as a continuous medium of given permittivity. From below the system
is confined by a conducting Au(111)-surface (which is assumed to extend in the x-
and y-directions), an external field (with respect to the electrolyte) can be applied
in z-direction, i.e., perpendicular to the surface (or wall). Fig. 3.63 schematically
depicts all details of this atomistic model for the PQP+ ClO−4 system, confined by the
Au-surface.

In order to specify the different entities of the system and their force fields we use the
following notation:

(i) Each of a total number of N molecules is uniquely labeled by capital Latin indices
I : for each of these units this index is assigned to its center-of-mass (COM)
position vector, RI , to a vector PI , specifying its orientation within the lab-
frame in terms of the angle-axis framework [336, 337] (see Appendix A.2.1.2 for
more details), and to the set of coordinates, rNI , of the respective NI atomistic
constituents of the molecule in its COM-frame (to which we also refer as its
blueprint). The set of COM-positions and orientation-vectors of all N molecules
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are denoted by RN and PN . The set of all n =
N∑
I=1

NI atom positions in the lab-

frame is given by rn, and the position of each atom in the lab-frame is uniquely
defined by a vector ri, labeled with Latin indices (i = 1, . . . , n).

(ii) Between all atoms we consider long-range Coulombic interactions (index ’C’),

U (C)(rij) =
1

4πε0εr

qiqj
rij

i 6= j (3.26)

with the inter-atomic distance rij = |ri − rj | and charges qi and qj of the units
i and j; the dielectric constant ε0 and the relative permittivity εr specify the
implicit electrolyte. Further, we introduce short-range force fields (index ’S’) for
which we have considered two options: first, a Lennard-Jones potential (index
’LJ’), i.e.,

U (LJ)(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

; (3.27)

for the energy- and length-parameters, εij and σij , we have opted for the standard
Lorentz-Berthelot mixing rules [338], i.e., σij = 1

2(σi + σj) and εij =
√
εiεj ,

respectively.

Alternatively, we have also considered for the short-range interactions the Mie
potential [339] (index ’Mie’), which can be considered as a generalization of the
LJ interaction; its functional form is given by

U (Mie)(rij) = Cijεij

(σij
rij

)γ(R)
ij

−
(
σij
rij

)γ(A)
ij

 ; (3.28)

and allows for a variation of the exponents of the repulsive and attractive con-
tributions to the potential, γ(R)

ij and γ
(A)
ij , respectively. εij and σij are again

parameters for the energy- and the length-scales. The Cij are defined as func-
tions of the exponents [339]:

Cij =

(
γ

(R)
ij

γ
(R)
ij − γ

(A)
ij

)(
γ

(R)
ij

γ
(A)
ij

)( γ
(A)
ij

γ
(R)
ij
−γ(A)
ij

)
; (3.29)

for the exponents we apply arithmetic mixing laws, i.e., γ(R)
ij = 1

2(γ
(R)
i + γ

(R)
j )

and γ(A)
ij = 1

2(γ
(A)
i + γ

(A)
j ).

(iii) We assume the Au-surface to be perfectly conductive, consequently we need to
explicitly consider mirror-charges in our model; when further assuming z = 0 as
the plane of reflection, the Coulombic interaction becomes

U ′ (C)(rij) = U (C)(rij) + U (C)(rij′) + U (C)(ri′j) + U (C)(ri′j′) (3.30)
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with the mirror charges qi′ = −qi and their positions ri′ = (xi′ , yi′ , zi′) =
(xi, yi,−zi).

(iv) We describe the solid–liquid interface in terms of a slab-geometry with a lower
confining wall, i.e., we assume periodicity in the x- and y-directions, but a finite
extent, d, of the geometry in the z-direction which is chosen such that no restric-
tion in the orientation of any molecule occurs, thus d ≈ 1.2−2 nm, given their size
and the slab-width. We define the (orthorhombic) lattice vectors, a1 = (a11, 0, 0),
a2 = (a21, a22, 0), and a3 = (0, 0, d), which, without the loss of generality, define
the volume of the unit cell, V = a11 a22 d, and which we collect within the matrix
B = (a1,a2,a3). Together with the molecular basis, given by RN , PN and all N
(rigid) molecular blueprints, rNI , we now define the supramolecular lattice82

X = X (RN ,PN ,B) = {RN ,PN ,B}, (3.31)

which gives rise to all atomic coordinates in the lab-frame, rn, i.e., the molecular
crystal structure of the system (see Appendix A.2.1.2).

(v) The force field between the atomic entities and the Au-surface is described via
an LJ-type wall potential [340],

U (wall)(zi) = 2πεwi

[
2

5

(
σwi

zi

)10

−
(
σwi

zi

)4

−
√

2σ3
wi

3(zi + (0.61/
√

2)σwi)3

]
; (3.32)

in the above relation, zi is the height of atom i above the surface, σwi and εwi
are the length- and energy-parameters of the interactions of each atom i with the
wall, respectively.

(vi) Finally, we express the electrostatic interfacial potential between the electrode
and the Au-surface by an external, homogeneous electrostatic field, Ez (i.e., ori-
ented perpendicular to the surface): we account for this potential via U (field)(zi) =
zi qiEz [341].

Thus and eventually the total potential energy of our model is given by the expression

U(rn,B;Ez) =

n∑
i 6=j

∗ [
U ′ (C)(rij) + U (S)(rij)

]
+

n∑
i=1

[
U (wall)(zi) + U (field)(zi)

]
, (3.33)

with ’S’ standing for ’LJ’ or ’Mie’; we recall that rn is the set of all n atomic positions
ri in a lattice with slab-geometry (defined by the unit cell B). If not present (and not
explicitly addressed) the electric field will be dropped in the argument list of Eq. (3.33),
that is U(rn,B;Ez = 0) ≡ U(rn,B). The notation ’

∑∗’ indicates that summation is
only carried out over atoms, labeled with Latin indices i and j, which belong to different
molecules I and J (with I 6= J); molecules being labeled with capital indices. The
82Although, strictly speaking, we here refer to a supramolecular crystal structure but we adopted the

naming convention from Ref. [82].
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energy given in Eq. (3.33) and the corresponding force fields are efficiently evaluated
using the software-package LAMMPS [93].

To evaluate the long-range Coulomb term,
∑n

i 6=j
∗ U ′ (C)(rij) in the given slab-geometry

we use numerically reliable and efficient slab-corrected 3D Ewald-summation tech-
niques [92, 148, 149] (see also Section 2.1). The other terms in Eq. (3.33) are evaluated
via direct lattice summation techniques.

3.2.2.5 Parametrizing the Classical Model via Ab-Initio Calculations

In our approach, the blueprint of each molecule rNI is obtained from electronic struc-
ture calculations based on density functional theory (DFT), using dispersion corrected
ab initio structure optimization [321, 322], as described in Subsection 3.2.2.2. The
partial charges of the atoms, qi, are parametrized via a Bader analysis [342] and are
collected in Tables A.2 and A.3 in Appendix A.2.1.3. These charges are directly trans-
ferred to the atomic entities. We repeat that throughout the electrolyte molecules have
not been considered explicitly: instead, we treat within the force field the electrolyte
as an effective, homogeneous medium, introducing the electric permittivity of water
εr.

In order to fix the remaining model parameters that specify the interactions in Eq. (3.33)
we search for each atomistic entity (labeled i) the set of atomistic model parameters
(specified below) which reproduces via Eq. (3.33) the ab initio energies as good as
possible. On one side we consider either the length- and the energy parameters of the
LJ-potential (denoted by L = {σi, εi}) or the length- and the energy parameters to-
gether with the exponents of the Mie-potentials (denoted byM = {σi, εi, γ(R)

i , γ
(A)
i }),

as well as the wall parameters, W = {σwi, εwi}. To fix these parameters we proceed as
follows:

(i) We first perform ab initio structure optimization for different, characteristic
molecular configurations, specified below. Here, molecules are either positioned
next to each other (without considering the wall) or above the Au-surface: in
the former case we fix the positions of two selected atoms belonging to different
molecules, the atoms being separated by rij ; in the latter case we keep the height,
zk, of one selected atom above the surface constant. Relaxation of all other de-
grees of freedom leads in the ab initio simulations to spatially and orientationally
optimized molecular structures; they are denoted by dn(rij) and dn(zk), respec-
tively, with corresponding energies UDFT (dn(rij),B) and U (wall)

DFT (dn(zk),B); they
are, themselves, functions of the inter-atomic distance, rij , and the atom-wall
separation, zk, of the selected atoms.

(ii) For every optimized ab initio structure, dn(rij) and dn(zk), obtained in this
manner we define a corresponding molecular configuration rn(rij) and rn(zk),
which is based on the above introduced atomistic model via the rigid molecular
blueprints rNI (with the index I running now over all N molecules present in
the respective DFT structure). To this end we synchronize the COM-positions of
each molecule I in the ab initio simulation with the corresponding COM-positions
RI of its classical counterparts and align their orientation PI accordingly.
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3.2 Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

(iii) Finally we evaluate the corresponding energies with the help of the force field via
Eq. (3.33) at zero electric field, i.e., UL/M (rn(rij),B) and U

(wall)
L/M,W (rn(zk),B).

We search for the best set of parameters L (or M) and W via simultaneously
minimizing

FL/M =
∑
{rij}

∣∣UDFT (dn(rij),B)− UL/M (rn(rij),B)
∣∣2 (3.34a)

F (wall)
L/M,W =

∑
{zk}

∣∣∣U (wall)
DFT (dn(zk),B)− U (wall)

L/M,W (rn(zk),B)
∣∣∣2 . (3.34b)

Of course, in the model the same unit cell, B, and the same number of particles, n,
as in the respective ab initio simulations have to be used. Note that in Eq. (3.34a)
the wall-term included in Eq. (3.33) is obsolete since the surface atoms are not
considered.

These fits are based on five particularly chosen, archetypical configurations, to be dis-
cussed in the following. In the panels of Fig. 3.65 we display schematic sketches of
these configurations of the PQP+ and ClO−4 molecules; these panels show the cor-
responding energy curves obtained from the force field, with parameters based on a
fitting procedure to the ab initio energy profiles.

(a) Tail-to-tail configuration (see inset of in panel (a) in Fig. 3.65): We have con-
sidered a series of ab initio structure optimizations at constant, but successively
increasing nitrogen-nitrogen distances, rNN, in the x-direction (while keeping
yNN and zNN constant) of an anti-parallel oriented pair of PQP+ molecules; both
cations are vertically decorated with a ClO−4 molecule. The aromatic parts of
the PQP+ molecules lie flat in the x- and y-directions such that their tails face
each other.

(b) Face-to-face configuration (see inset in panel (b) in Fig. 3.65): In this case we con-
sider anti-parallel oriented, but vertically stacked PQP+ molecules (both being
horizontally decorated by ClO−4 molecules) under the variation of the nitrogen-
nitrogen distance, rNN, in z-direction (while now keeping xNN and yNN constant).
Again, the aromatic parts of the PQP+ molecules lie flat in x- and y-directions;
however, and in contrast to case (a) these units face each other.

(c) ClO−4 –ClO
−
4 configuration (see inset in panel (c) in Fig. 3.65): Here two ClO−4

molecules are considered, varying the chlorine-chlorine x-distance, rClCl, while
keeping yClCl and zClCl constant.

(d) Face-to-wall topped configuration (see inset in panel (d) in Fig. 3.65): In this
case a single PQP+ molecule, lying flat and parallel to the (x, y)-plane, is located
above two layers of Au and is vertically decorated by a ClO−4 molecule. The cell
geometry is assumed to be periodic in the x- and y-directions and finite along
the z-axis; in an effort to scan along the z-direction, we have performed a series
of ab initio based structure optimizations for selected fixed values of zN, i.e.,
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the z-position of the nitrogen in PQP+ above the Au-surface. The LJ 10-4-3
potential [340] has been used between the Au(111) surface and the molecules.

(e) Face-to-wall beside configuration (see inset in panel (e) in Fig. 3.65): In contrast
to case (d), the PQP+ cation is now horizontally decorated by the ClO−4 anion
such that both molecules are adsorbed on the Au-surface. Again, the LJ 10-4-3
potential [340] defined in Eq. (3.32) has been used between the Au(111) surface
and the molecules.

Figure 3.65: Energies as obtained in ab initio simulations (black crosses) and fitted data, using
the force field (involving an LJ interactions – open blue circles – or Mie interactions – open orange
diamonds), see Subsection 3.2.2.4; also shown are – with labels (a) to (e) – five schematic sketches
of the five archetypical configurations of the molecules (along with their relative displacements,
schematically indicated via the arrows as the distances vary along the abscissa); the related energy
curves are used to fit the parameters of the force field, as outlined in the text; the labels correspond
to the itemization (a) to (e) used in Subsection 3.2.2.5. Panel (f): PQP+ and the ClO−

4 molecules,
drawn to scale and using the Mie force field for the short-range interactions: atomic entities are
shown as transparent spheres with their diameters fixed by their respective optimized σi-values and
their Bader charges (see color code).

In practice we first optimize FL/M, given in Eq. (3.34a), involving thereby all inter-
atomic force field parameters; their values are listed in Table 3.5 for the LJ and the Mie
models. These parameters are then kept fixed and are used in the subsequent calcula-
tions to optimize the wall force field parameters via optimizing F (wall)

L/M,W , specified in
Eq. (3.34b); the emerging parameters are listed in Table 3.6. In panel (f) of Fig. 3.65
we present a visualization of the molecules PQP+ and ClO−4 , using these optimized
parameters and providing information about the charge of the atomic entities via the
color code.
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σH σC σN σO σCl εH εC εN εO εCl

L 2.243 3.658 3.743 2.865 5.953 3.052 1.204 3.311 7.396 0.172
M 2.236 3.703 3.328 2.428 4.956 3.999 0.946 2.021 11.481 5.289

γ
(R)
H γ

(R)
C γ

(R)
N γ

(R)
O γ

(R)
Cl γ

(A)
H γ

(A)
C γ

(A)
N γ

(A)
O γ

(A)
Cl

L 12 12 12 12 12 6 6 6 6 6
M 6.263 7.136 8.659 8.743 15.455 7.500 12.299 13.854 17.193 4.684

Table 3.5: Numerical results for the optimized LJ and Mie parameters, L = {σi, εi} and
M = {σi, εi, γ(R)

i , γ
(A)
i }, for each element i, for the results depicted in the Fig. 3.65 (σi in Å

and εi in meV). Reference values from the literature are listed in Table A.1.

σw[H,C,N] σw[O,Cl] εw[H,C,N] εw[O,Cl]

W(LJ) 3.197 3.625 3.741 15.781
W(Mie) 3.208 3.630 3.698 20.167

Table 3.6: Top row: Numerical results for LJ-length and well-depth parameters, σwi in Å and
εwi in meV, between the wall and each element i = [H,C,N] and j = [O,Cl], grouped by the
molecules they belong to (PQP+ and ClO−

4 ), for intermolecular short-range LJ parameters listed
in Table 3.5. Bottom row: corresponding σwi and εwi parameters for intermolecular short-range
Mie-parameters also listed in Table 3.5.

3.2.3 Identifications of Self-Assembly Scenarios

With the classical force field for the PQP+ and ClO−4 molecules introduced in Subsec-
tion 3.2.2.4 at hand we are now ready to identify the ordered ground-state configura-
tions of these molecules as they self-assemble on the Au-surface – immersed into an
electrolyte and exposed to an electric field. While we leave a more comprehensive and
systematic investigation of these self-assembly scenarios to future studies, we focus in
this thesis on the technical details of our approach and on a few selected sets of external
parameters (i.e, the electric field strength and the particle density).

Our overall objective is to find for our system the global minimum of the total free
energy, F , at T = 0 K as a function of the positions and orientations of all molecules
per unit cell for a given value of cell volume and Ez; at T = 0 this task reduces to the
minimization of the internal energy U .

Since the experimental observations [83, 85] provide evidence of a structural organiza-
tion of the molecules into supramolecular lattices, the center-of-mass coordinates of the
molecules, RN , and their orientations, PN , as well as the parameters defining the unit
cell, B, (see Subsection 3.2.2.4 and Fig. 3.63 for details), are the variables which have to
be optimized for the search of ground-state configurations: we minimize U(rn,B;Ez),
defined in Eq. (3.33), with respect to RN , PN , and B, keeping the number of molecules
N , the unit cell volume V (with fixed slab width d), and the electrostatic field strength
Ez constant.

The energy minimum has to be found in a huge-dimensional parameter space, spanning
the positions and orientations of the molecules and by the parameters specifying the
unit cell. To be more specific, the dimensionality is set by the number of parameters
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to be optimized, which read 64, 76, and 88 for five, six, and seven molecules per unit
cell, respectively.

For this purpose we use a memetic evolutionary algorithm [139] which combines the
search strategies of evolutionary algorithms (EA) [63, 104–109] and local, steepest
gradient descent procedures (LO) [169, 176] following Subsection 2.2.4: initially, a total
(fixed) number of i = 1, . . . , NEA different lattice-configurations, Xi = (RN

i ,P
N
i ,Bi)

as defined in Eq. (3.31), is generated, mostly at random83. This population is exposed
to concepts of natural (or, rather, artificial) selection.

At every iteration step of the EA a new configuration Xi⊕j , i.e., an offspring, is cre-
ated via a crossover operation between two selected parent configurations, Xi and Xj ,
from existing configurations of the most recent population (the index i⊕ j emphasizes
the respective crossover operation). This new offspring configuration, Xi⊕j , is then
subjected to mutation operations of the different variational attributes of Xi⊕j (always
under the restrictions of fixed system parameters N , V , Ez and d and within predefined
numerical boundaries).

Subsequently, the (potentially mutated) offspring configuration is subjected to an LO,
an operation which represents by far the most time consuming task in our algorithm
and is thus performed in parallel84 using the “mpi4py“ framework [214, 215, 219]. The
relaxed configurations Xi⊕j are gathered85 by the algorithm which then decides – via
a criterion primarily based on the respective internal energy of the configurations –
whether the new relaxed molecular arrangements are accepted as new members of the
population or if they are rejected.

In this acceptance or rejection stage of the algorithm, we employ the energy-nichening
operation (see Subsection 2.2.4), i.e., we discard offspring configurations which are
too close in energy to any configuration of the most recent population. However,
this procedure alone cannot cope with “degenerate” configurations, i.e., if structurally
distinct configurations have essentially the same energy values (within the specified
nichening tolerance). In our approach we allow configurations to enter the population
only if their structures differ significantly from those of the competing, degenerate
configurations. In order to quantify the structural difference between configurations
we associate a feature vector, xi (i.e., a set of order parameters), which collects a set of
order parameters pertaining to configuration Xi (see Appendix A.2.2.2 for details). The
degree of similarity between two configurations, Xi and Xj , is then evaluated by taking
the Euclidean distance between the corresponding feature vectors, i.e., ∆ij = |xi−xj |;
similar configurations will have a small distance, while unlike configurations will have
a large distance. If ∆ij is above a certain threshold value, the offspring configuration,
Xi⊕j , will not be discarded by the energy-nichening operation.

83Among those configurations we have also intentionally included as “educated guesses” molecular
configurations, inspired by the experimental self-assembly scenarios identified in Ref. [83]. However,
it should be emphasized that a tentative configuration is only available for the PQP+ ions as the
experiment does not provide any information about the locations of the perchlorate ions.

84For an optimal load-balance we additionally spawn a master-thread on one of the MPI-processes
to asynchronously distribute optimization tasks of offspring configurations among all idle MPI-
processes, basically following the “work-stealing” philosophy.

85The gathering of relaxed configurations is performed asynchronously by the master-thread.
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Summarizing, the complexity of the problem at hand forces us to use all the above listed
advanced optimization tools, including a basin hopping memetic approach combining
the heuristic nature of evolutionary strategies with deterministic local gradient descent
algorithms. The gradient descent method86 deterministically evaluates every local
minimum of the basin with high accuracy (which is additionally sped up by the ”basin
dropping” procedure, see Subsection 2.2.4) while the evolutionary search gradually
adapts its population towards the energetically most favorable solution. In that way
the algorithm explores the search space for the global optimum, i.e., for the best
molecular arrangement, Xopt, which minimizes the energy U(rnopt,Bopt;Ez) for a given
set of system parameters.

For a more detailed description of the memetic evolutionary algorithm (i.e., EA+LO)
we refer to Subsection 2.2.4.

From a computational point of view we want to stress that a large portion of efforts was
dedicated to implementing a faithful binding of the software package LAMMPS [93] to
our evolutionary algorithm. LAMMPS provides a large number of different force fields
– partly implemented to be executable on GPUs – many of which can be combined,
i.e., hybridized, to simulate a physical system. We are dealing with a non-standard
problem requiring a tailored force-field, which in our case is realized by a combination
of Coulomb and Mie interactions in a rigid body setup of the molecules, using mirror
charges which have to be “dragged along” with their associated atoms, including a wall
potential and an electric field, all that in an orthorhombic slab geometry (only acces-
sible via triclinic cells in LAMMPS ). To the best of our knowledge LAMMPS cannot
handle such a setup directly in a molecular dynamics simulation and this combination
of force fields and geometric constraints does not allow GPU support. However, our
approach is completely flexible and other interactions may simply be included, opening
the way for both directions of further investigation: (i) to reduce the complexity of the
system even more by using coarse grained potentials as further addressed at the end of
this Section and (ii) going to more detailed descriptions of the physics of the system;
the latter strategy may involve using neural network potentials [289] (which do have a
LAMMPS binding [343]) or similar machine learning approaches to gain accuracy and
flexibility.

To round up this Subsection it should be noted that a variety of techniques has been
used in literature for related optimization problems; among those are: Monte Carlo
or molecular dynamics-based techniques such as simulated annealing [97, 98], basin-
hopping [99–101], minima hopping [102, 103], and evolutionary approaches such as
genetic algorithms [63, 104–115]. The decision on the method of choice relies on the spe-
cific problem: for instance, Hofmann et al. used the SAMPLE technique (see Refs. [54,
89, 90]), relying on a discretization of the search space into limited, archetypical, inter-
molecular motives and elaborate data fitting of emerging force fields to describe inter-
molecular interactions of supramolecular monolayers87. To the best of our knowledge,
this promising approach has neither been applied to supramolecular systems beyond
monolayer configurations, so far, nor has it been used in combination with charged

86Energy- and gradient-evaluations of this Section rely on calculations using the open-source software
package LAMMPS [93].

87Also commensurability measures of the supramolecular lattice and the substrate are considered.
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molecules, with systems featuring multiple components or with an external control pa-
rameter, such as an electric field. In general, the fact that the number of archetypical
inter-molecular motives grows rapidly with the increasing size of the molecules bears
the risk of hitting very soon the limits of computational feasibility. However, suitable
adaptations of this strategy and/or a combination with evolutionary search strategies
or with reinforcement learning [123, 124] – which has, for instance, very successfully
been applied to protein folding problems [126] in a similar way as AlphaGo [125] was
able to master the infamous board game – might represent a viable route to circumvent
the aforementioned limitations. Thus, future investigations of such intricate problems
as the complex monolayer to bilayer transition, as addressed in this thesis, might come
within reach.

3.2.4 Results for the PQP-ClO4 System

3.2.4.1 General Remarks and System Parameters

In the following we present selected results for self-assembly scenarios of PQP+ and
ClO−4 molecules on an Au(111)-electrolyte–interface under the influence of an external
electrostatic field, as obtained via the algorithm presented in the preceding Subsections.
Our choice of parameters is guided by the experimentally observed molecular configu-
rations [83]. We demonstrate that our proposed strategy is indeed able to reproduce on
a semi-quantitative level the experimentally observed self-assembly scenarios [83]. As
a consequence of the still sizable costs of the numerical calculations a more detailed in-
vestigations (where we systematically vary the system parameters) and a quantitative
comparison of our results with the related experimental findings [83] is out of scope of
this thesis and requires further investigations.

To be more specific we have used the following values for the (external) system param-
eters:

• an indication for the number of molecules per unit cell is provided by the ex-
periment [83]: we have considered unit cells containing ten, twelve, and 14 pairs
of PQP+ and ClO−4 molecules. These numbers in molecules include, of course,
also the related mirror molecules and correspond to 630, 636, and 742 atomic
entities per unit cell, respectively (which interact via short-range and long-range
potentials, which are subject to particle wall interaction and which are sensitive
to an external electrostatic field);

• also the actual values of the surface area A is motivated by estimates taken from
experiment [83]: we have varied A within the range of 6.5 nm2 to 12.25 nm2,
assuming a step size of typically 0.5 nm2; systems will be characterized by the
surface density of the PQP+ molecules, defined as σPQP = NPQP/A, NPQP being
the number of PQP molecules per unit cell;

• the range of the experimentally realized values for the electrostatic field strength
Ez is, however, difficult to estimate since the major drop in voltage occurs near
the negatively charged Au-surface and the nearby layers of cations [341], which
is not directly accessible in experiment. Therefore we have covered – at least
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in this first study on this topic – several orders of magnitude in the value for
Ez within a range that extends (on a logarithmic grid) from Ez = −1 V/nm
to Ez = −10−3 V/nm; in addition, we have also performed calculations at zero
electrostatic field.

It should be mentioned that we have used in all these calculations the Mie potential
within the classical model, since the related LJ model is not able to fit the ab initio data
with a comparable and sufficient accuracy (see also discussion in Subsection 3.2.2.4).

We have covered in total approximately 176 combinations of these parameters (that
is the unit cell volume V with a constant slab width d, the number of molecules N ,
and the electrostatic field strength Ez); for each of these we performed independent
evolutionary searches with a population size of typically NEA = 40 configurations
(which are successively updated during the evaluation of the algorithm).

In order to offer the reader an insight into the computational complexity of the EA+LO
based energy minimization of this Section we outline via a few characteristic numbers
the computational limitations: the bottleneck of the identifications of self-assembly
scenarios are (i) the huge number of calls of energy-evaluations in the optimization
steps. As an example, we have at least 104 calls of the energy kernel per generation.
For each state point we need at least 104 generations, which leads to an absolute
minimum of 108 calls of the energy kernel for one (!) set of system parameters. (ii)
The optimization of the energy is performed in a high dimensional search space (as
specified above), spanning ∼ 60 to 90 degrees of freedom, depending on the number
of molecules. It is a particular strength of our optimization algorithm (as detailed
in the following) to identify in an efficient and reliable manner minima in such high
dimensional search spaces. More details about the numerical costs of our calculations
can be found in Appendix A.2.3.1.

3.2.4.2 Lateral Particle Arrangements

In this Subsection we discuss the lateral self-assembly scenarios of the PQP+ and of
the ClO−4 molecules. Selected results for our numerical investigations are presented in
Fig. 3.66 and in – on a more quantitative level – in Table 3.7. The actual values have
been chosen in an effort to reproduce – at least on a qualitative level – the results ob-
tained in the experimental investigations. Indeed, the sequence of the obtained ordered
ground state configurations (shown in panels (a) to (c)) clearly indicates the transition
from a stratified bilayer configuration (identified at a rather strong electrostatic field
strength of Ez = −0.3 V/nm), over an auto-host–guest mono-layer structure (obtained
by reducing the field down to Ez = −0.1 V/nm), and eventually to an open-porous
configuration (identified at Ez = −0.01); similar observations have been reported in
the related experimental study [83] as we illustrate in Fig. 3.67.

From the results of our investigations (which are shown only selectively) we learn that
an electrostatic field strength of Ez = −0.3 V/nm always leads to bilayer configu-
rations, similar to the one shown in panel (a) of Fig. 3.66. This stratified bilayer
configuration represents the energetically most favorable one as we vary at fixed Ez
the volume of the unit cell and the number of molecules within the respective ranges,
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.66: Results for the ground state configurations of PQP+ and ClO−
4 molecules, adsorbed

on a Au(111) surface under the influence of an external electrostatic field Ez, as they are obtained
via the numerical procedure, as specified in Subsection 3.2.3 and Subsection 2.2.4; calculations
are based on the classical model for the molecules, involving the Mie potential (for details see
Subsection 3.2.2.4). In the main panels configurations are shown in a periodically extended view
as projections onto the (x, y)-plane and in the respective insets as projections onto the (y, z)-
plane; in the main panels the respective unit cells are highlighted by thick black lines. Results are
shown for different values of the number of PQP+ molecules, the surface density σPQP and the
electrostatic field Ez: see labels in the different panels and Table 3.7 for details. The red shaded
areas, framed with dashed lines, in panel (a) and (d) emphasize PQP+ molecules which sit on top
of other cations, starting to form a bilayer structure. The dashed, shaded, magenta rectangular and
green square areas in panel (b) represent tilings formed by perchlorate molecules within the dense
PQP+ monolayer configuration. The dashed, shaded, cyan circles in panel (c) and (e) emphasize,
quantitatively, the porous and auto-host–guest motives identified in experiment (see Fig. 4A and
Fig. 4C in Ref. [83], respectively, cf. Fig. 3.67).
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Figure 3.67: Comparison of our numerical findings (top row) as presented in panels (c), (e) and (a)
of Fig. 3.66 with, respectively, scanning tunneling microscope (STM) images of experimental results
(bottom row) presented in panels (A), (C) and (E) of Fig. 2 in Ref. [83] (copyright Wiley-VCH
GmbH, reproduced with permission). The labeling in the top-row panels corresponds to those in
Fig. 3.66, the labels in the bottom row to the ones in Fig. 2 in Ref. [83]; the respective electrostatic
field strength at which the supramolecular configurations shown in panels (c), (e) and (a) have
been identified are listed in Table 3.7. Black (yellow) frames in the panels of the top (bottom)
row indicate the respective unit cells of the supramolecular lattices. The cyan shaded areas in the
panels (c) and (e) indicate the qualitative porous and auto-host–guest motives formed by the PQP+

molecules identified by our two-stage approach (cf. tentative molecular configurations shown in
panels (A) and (C), respectively). The shaded red area in panel (a) indicates a bilayer arrangement
of PQP+ molecules which is in qualitative agreement with the stratified bilayer configurations found
in the experiment (cf. red colored PQP+ molecules in panel (E)).

specified in the preceding Subsection; the numerical data of the related internal energy
are compiled in Table 3.7.

As we proceed to Ez = −0.1 V/nm we observe self-assembly scenarios as the ones
depicted in panels (b) and (d) of Fig. 3.66, which correspond to auto-host–guest con-
figurations observed in experiment [83]; for the data presented in these panels two
different values for NPQP (and hence for σPQP) have been considered: the mono-layer
configuration shown in panel (b) has a slightly lower value for the internal energy (per
molecule) than the rhombohedral bilayer configuration shown in panel (d). However,
as can be seen from Table 3.7 the energy differences are very tiny: differences of the
order of 10−4eV correspond to values where we hit the numerical accuracy of the ab
initio based energy values.

Eventually, we arrive at the so-called open-porous structures, observed in experi-
ment [83]: the ground state configurations depicted in panels (c), (e), and (f) of
Fig. 3.66 are evaluated at the same electrostatic field strength of Ez = −0.01 V/nm,
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assuming different values for NPQP and σPQP; the open-porous pattern emerging in
panels (c) is the most favorable one in terms of energy per molecule (see Table 3.7 for
the numerical details). There are, however, several serious competing structures with
minute energy differences at this value of the electric field strength: another open-
porous structure, depicted in panel (f), with an energy penalty of less than 8.1 meV
per PQP+ molecule compared to case (c) and a considerably denser configuration, de-
picted in panel (e), with an internal energy value worse by only 11.3 meV compared to
case (c) and by 3.2 meV compared to case (f).

From the numerical point of view the following comments are in order: for a fixed state
point, the energy differences of competing structures attain values which hit the limits
of the accuracy of the ab initio based simulations, which can be estimated to be of
the order of 0.1 eV to 0.01 eV per molecule for dispersive interactions [322, 344–346].
These values set the limits of our numerical accuracy. For completeness we note that
for the results for the energies obtained via the classical force field (which are based on
LAMMPS calculations) we estimate that our results are numerically reliable down to
∼ 10−6 eV per atom; within the range of such minute energy differences no competing
structures have been found in our investigations – although the physical relevance of
such tiny energy differences given the considerably larger uncertainties in the DFT
data raises valid concerns. In general we observe that the energy differences for the
energetically optimal ground state configurations become smaller as the electrostatic
field tends towards zero. Even though the optimization algorithm (as outlined in Sub-
section 2.2.4) has turned out to be very efficient and reliable, we observe (in particular
for smaller values of the external field) that new configurations are included in the
population of the best individuals even after a large number of optimization steps.

Ez U/NPQP NPQP A NPQP/A
[Vnm−1] [eV] [nm2] [nm−2]

(a) -0.30 -1.5804 6 8.5 0.705882
(b) -0.10 -1.7276 6 11.75 0.510638
(d) -0.10 -1.7274 5 8.0 0.625000
(c) -0.01 -1.6445 6 11.25 0.533333
(f) -0.01 -1.6364 6 12.25 0.489796
(e) -0.01 -1.6332 7 11.75 0.595745

Table 3.7: Results of evolutionary ground-state search for different electric field strengths, Ez,
for different unit cell areas, A and number of PQP+ molecules, NPQP, each line represents a
evolutionary search. The respective structures are presented in Fig. 3.66.

3.2.4.3 Vertical Particle Arrangements

In Fig. 3.68 we present in separate panels the height distributions of PQP+ and ClO−4
as functions of the electrostatic field, Ez (which is binned for the six different values
of Ez that were investigated); along the vertical axis we count (for a given value
of Ez) the occurrence of the respective molecules in bins of one Å, and normalize
by the total number of all considered configurations identified by the evolutionary

200



3.2 Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

algorithm, which are located within an interval of at most 1kBT (or 43 meV) above
the configuration with the best energy, which are of the same order of magnitude as
the values presented in Table 3.7 for different electric field strengths, Ez. Note in this
context that the distance of the first layer of PQP+ molecules can be directly estimated
by the vertical equilibrium position of carbon atoms, z(eq)

C = 3.166Å , obtained by
minimizing Eq. (3.32) for a single carbon atom with σ

(Mie)
wC = 3.208Å, taken from

Table 3.6.

For the high values of the field strength (i.e., for Ez = −10 V/nm and −1 V/nm)
the PQP+ ions are preferentially adsorbed onto the gold surface as a closely packed
monolayer (see left panel of Fig. 3.68), while the perchlorate anions are strongly dis-
sociated and assemble as far from the gold surface as possible (corresponding in our
investigation to the numerical value of the slab height, which we fixed to 12 Å) – see
right panel in Fig. 3.68. This situation represents an extreme case in the sense that
neither the Coulomb nor the short-range Mie interactions between ions and anions can
compensate for the strong negative surface potential.

Decreasing now the magnitude of the electrostatic field to the more moderate value of
Ez ∼ −0.3 V/nm reveals the emergence of a bilayer structure, formed by the PQP+

molecules, with pronounced peaks located at z(1)

PQP+ ∼ 3Å and z
(2)

PQP+ ∼ 7Å , with
relative weights of 72% and 21%, respectively. Such stratified bilayer configurations
(as depicted in panel (a) of Fig. 3.66) are in competition with structures similar to ones
shown in panel (d) of Fig. 3.66. Note that in parallel a far more complex height distri-
bution of the perchlorate molecules sets in as soon as the now moderate electrostatic
field allows them to proceed towards the interior of the slab: now, more than half of
the ClO−4 anions are located “in between” the PQP+ “layers”, trying on one side to
compensate the charges of one or several PQP+ “partners” in the slab region and “fill-
ing spatial holes” wherever they can, on the other side. A large portion of perchlorate
ions is even allowed to adsorb on the surface at a distance of z(1)

ClO−4
∼ 4.074Å ; note

that these COM positions above the interface are larger than the minimal height of
the PQP+ cations due to two reasons: if one face of the oxygen tetrahedron is oriented
towards the interface (i.e., parallel to the gold surface), the COM of the ClO−4 ion is
increased by a value of zCl − zO ≈ 0.492Å with respect to the oxygen atoms. These
atoms themself have an equilibrium distance to the surface of z(eq)

O ≈ 3.582Å(evaluated
by minimizing Eq. (3.32) for a single oxygen atom with σ(Mie)

wO = 3.630Å, cf. Table 3.6),
summing up to the presented minimal COM distance of the adsorbed ClO−4 molecules
from the interface. Note that the height distribution of the ClO−4 ions is now rather
broad (see Fig. 3.69), which is definitely owed to their relatively smaller size and their
considerably higher mobility, as compared to their cationic counterparts (see also dis-
cussion below); these features make a conclusive interpretation of the roles of the ClO−4
ions in the structure formation of the entire system rather difficult. Our interpretation
is that the perchlorate ions are – due to their small spatial extent and their high mo-
bility – able to compensate for local charge mismatches and to act as spatial spacers
between the cations.

Decreasing further the magnitude of the electrostatic field down to Ez ∼ −0.1 V/nm
and Ez ∼ −0.01 V/nm provides unambiguous evidence that the formation of the PQP+
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ions into bilayer structures become energetically more and more unfavorable, as the
upper peak in the height distribution of the cations vanishes gradually. Concomitantly,
an increasing number of perchlorate molecules approach the gold surface and are pre-
dominantly located there; possibly they act as a space filler on the surface itself while
at the same time the small values of the electrostatic field keep the PQP+ molecules
near to the surface. In this context it should be noted that decreasing the electrostatic
field is equivalent to decreasing the surface potential; thus and in combination with
the adsorbed perchlorate molecules a transition from an auto-host–guest to a porous
structure is plausible.

Eventually, at zero electric field the system exclusively gains energy from intramolecular
interactions and adsorbtion on the gold surface. Since the perchlorate molecules are
rather spherical in their shape they can efficiently adsorb onto the gold surface (in an
orientation explained above), while the PQP+ molecules are able to efficiently stack,
especially without a guiding electrostatic field.
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Figure 3.68: Height-distribution of PQP+ (left) and ClO−
4 (right) molecules as functions of the

considered values of the electrostatic field, Ez, normalized by the number of respective molecules
(see colour code at the right hand side of the panels: a value of one means, that all respective
molecules in all considered configurations are counted in one specific bin), see text for the energy
considered in this analysis. Along the vertical axes the binning is performed in steps of one Å:
z = 0 marks the position of the gold surface, the slab width amounts to 12Å.

3.2.4.4 The Role of the Perchlorate Anions

We come back to the above mentioned volatility of the perchlorate ions: in Fig. 3.69
we present results from yet another evolutionary analysis: we now fix the positions and
orientations of PQP+ molecules as well as the extent and the shape of the unit cell
of some optimized configuration (as, for instance, depicted in panel (a) of Fig. 3.66)
and vary only the degrees of freedom of the perchlorate anions. Fig. 3.69 shows –
for fixed cell geometry and fixed PQP+ positions and orientations – four structurally
different perchlorate arrangements whose energy ranges within an interval of 38 meV
(per PQP+–ClO−4 pair): the fact that we obtain completely different configurations
of the perchlorates (with essentially comparable energies) undoubtedly indicates the
high mobility of the ClO−4 ions. Changes in the structure, as one proceeds from left
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to right, are highlighted by respective circles (specifying the position of the “moving”
perchlorate ion) and related arrows. The ClO−4 molecules exhibit a remarkable freedom
in their rotation without (or only marginally) changing the energy of a configuration;
this fact has rendered the minimization of the energy very difficult. However, it should
also be noted that even translations can be performed without a substantial change in
energy.

We emphasize that the analysis of these different structures was achieved by using a
so-called t-SNE [244] analysis on the leading five principal components of a principal
component analysis [238] of order parameters of all configurations identified by the
evolutionary algorithm; for more detailed information on this rather technical issue we
refer to Subsections 2.4.1 and 2.4.4 and Appendix A.2.3.2.

Figure 3.69: Four structurally different configurations of perchlorate ions (framed by gray, dashed
lines and differently shaded areas) at an optimized, fixed cell geometry (indicated in the bottom
left corner by the black, dashed line) and optimized, fixed positions and orientations of the PQP+

ions. The energies of these four configurations range within an interval of 38 meV (per PQP+–
ClO−

4 pair), as obtained in an evolutionary search procedure for the energy minimizing configuration
under the variation of the degrees of freedom of the ClO−

4 ions only, starting from the configuration
depicted in Fig. 3.66(a). Changes in the structure as one proceeds from left to right are highlighted
by respective circles (specifying the position of the “moving” and “rotating” perchlorate ion) and
arrows.

3.2.5 Conclusions and Outlook

The prediction of supramolecular ordering of complex molecules at a metal–electrolyte
interface using DFT based ab initio calculations is in view of the expected gigantic
computational costs, and despite the availability of peta-scale computers, still an elusive
enterprise.

In Section 3.2 we have proposed a two-stage alternative approach: (i) DFT-based
ab initio simulations provide reference data for the energies introduced in a classical
model for the molecules involved, where each of their atomic entities are represented
by a classical, spherical particle (with respective size, energy parameters, and charges).
We modeled the interaction between the atomic entities and the metallic surface by a
classical, perfectly conductive, Lennard-Jones like wall potential; the electrolyte was
treated as a homogeneous, dielectric medium. The inter-particle and particle-wall
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(a) (b)

Figure 3.70: Panel (a): atomistic model of the PQP+ molecule as used in this thesis (white:
hydrogen atoms, grey: carbon atoms, and blue: nitrogen atom), see also Fig. A.20 in the Appendix
A.2.1.3; panel (b): related coarse-grained model in a hierarchy of ever simpler models, using, e.g.,
Gay-Berne potentials [347] to account for the van der Waals interaction of all atoms in the specific
rings and a multi-pole expansion to second order (monopole as coloured points, dipole moments
as small arrows) for the electrostatic interaction.

parameters were obtained via the following procedure: considering archetypical config-
urations (involving pairs of ions and/or ions located close to the surface) DFT energies
were fitted by the related energy values of the classical model. (ii) The second step
identifies the ordered ground state configurations of the molecules by minimizing the
total energy of the now classical system. This optimization is based on evolutionary al-
gorithms, which are known to operate efficiently and reliably even in high dimensional
search spaces and for rugged energy surfaces.

Our new two-stage strategy overcomes the hitherto prohibitive computational cost of
modeling the full system, while reproducing the key observations of a well-documented
experimental system consisting of disc-shaped PQP+ cations and ClO−4 anions: as a
function of increasing electric field at the metal–electrolyte interface, the molecular
building blocks are seen to self-organize into an open porous structure, an auto-host–
guest pattern and a stratified bilayer. Future work will focus on verifying the extent of
predictive power of our method towards molecular self-assembly under electrochemical
conditions, and on strategies to further streamline and reduce the computational cost
of our approach, without sacrificing the reliability of the predicted results.

In view of the high computational costs and the conceptual challenges encountered
in our investigations we have pondered the question if the complexity of the current
model (which – as a classical model – is comprehensive in the sense that it contains
all atomistic features) could possibly be further reduced, avoiding thereby conceptual
and computational bottlenecks. The idea behind this strategy is to develop – starting
from the present model – a hierarchy of ever simpler models where, for instance, larger
sub-units of the molecule (such as aromatic rings) are replaced by disk-shaped units
carrying higher electrostatic moments, as schematically visualized in Fig. 3.70. Such
a model might provide a first, semi-quantitative prediction of the self-assembly of the
PQP+ and of the ClO−4 ions at considerably reduced costs and might help to pre-screen
possibly promising portions of the huge parameter space for subsequent investigations
of the full model. Efforts in this direction are currently pursued.
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In this thesis, we investigated the ground state self-assembly of different physical sys-
tems composed of particles or molecules featuring long-range Coulomb interactions
which are confined to quasi–two-dimensional bilayer geometries or to slab geometries
near solid–liquid-interfaces under electrochemical conditions. Our studies were con-
ducted with the help of specifically implemented numerical tools based on simulated
annealing, replica exchange Monte Carlo, and evolutionary algorithms.

In this Chapter, we first present in Section 4.1 general conclusions of our findings of
Sections 3.1 and 3.2. We then discuss in Section 4.2 possible future directions of inves-
tigations related to the numerical studies of the asymmetric Wigner bilayer system and
of the supramolecular ordering of complex molecules at solid–liquid interfaces under
electrochemical conditions. Eventually, we present in Section 4.2 a brief outline of two
projects which emerged during the course of this thesis (and which are related to the
topics of this document), namely the self-assembly of ionic liquid crystals into smectic
phases and reinforcement learning of self-navigation strategies for active microswim-
mers.

4.1 General Conclusions

Towards Quasicrystalline Order in the Asymmetric Wigner Bilayer System

As identified by Antlanger et al. [62–64] the asymmetric Wigner bilayer system features
an incredibly rich plethora of ordered crystalline ground state configurations – forming
tiling like patterns – in a parameter space spanned by the plate separation distance
and the ratio of the uniform charge densities of the two plates. In Section 3.1 we
studied the possible emergence of dodecagonal and hexagonal quasicrystalline order in
the asymmetric Wigner bilayer system.

In an effort to gain a deeper understanding of the ground state phase behavior of
the asymmetric Wigner bilayer system we employed in Subsection 3.1.4 unsupervised
clustering algorithms (based on principal component analysis [238] and k-means clus-
tering [239–242]) to categorize all available ground state candidate configurations of
the system known from literature [62–64] into families of structures. We demonstrated,
that our clustering approach is indeed able to relate the different ground state candi-
dates to the different phases identified in literature with high accuracy. Moreover, with
the clustering approach, we found new structural families of ground state candidates
of the asymmetric Wigner bilayer system which have not been reported previously and
we were able to identify promising system parameters at which quasicrystalline order
may be favored in the asymmetric Wigner bilayer system.
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We further investigated the regions of stability of the snub-square (S1) and the tri-
hexagonal (Ix) structures in the parameter space of the asymmetric Wigner bilayer
system in Subsections 3.1.5 and 3.1.6 for quasicrystalline ground state configurations
with, respectively, global dodecagonal and hexagonal (pseudo-dodecagonal) symmetry.
We used specifically implemented numerical tools based on simulated annealing and
replica exchange Monte Carlo, utilizing so-called zipper -update moves [254] to reshuffle
the respective tilings to efficiently conduct the structural ground state searches for the
different structural families at the corresponding relevant system parameters.

We realized in Subsection 3.1.5 that the S1 structure is a representative of an en-
tire family of square-triangle structures in which the local motives are almost exactly
squares and equilateral triangles, but global ordering may plausibly lead to an ordered
state without translational symmetry, i.e., a dodecagonal quasicrystal. (Note: gener-
ically, the local motives in Wigner bilayer structures do not have such a “discrete”
regular character.) We discovered the S1 structure generalizes to a special subset of
square-triangle tilings, such that square-square assembly is energetically disfavored.
The remaining, energetically more favorable local square-triangle-based motives still
allow the formation of qualitatively different square-triangle tilings which may feature
dodecagonal clusters and super-clusters, important precursors of aperiodic quasicrys-
talline ordering. Strikingly, when special dimensions of the unit cell were chosen such
that self-similar super-tilings are geometrically possible, the latter indeed represent the
ground state for that particular choice of the periodic boundary conditions. However,
this family of self-similar super-structures, which we labeled the dodecagonal type I
(DI) family, remains metastable with respect to the S1 structure and other, quali-
tatively different ground state candidates of the asymmetric Wigner bilayer system
known from literature [62–64].

Similarly, in Subsection 3.1.6 we identified a series of new ground state candidate super-
structures featuring rectangles, R, and two different types of corresponding equilateral
triangles, Tl and ts, as basic tiles, i.e., the RTlts family of structures. For certain sys-
tem parameters, these basic RTlts tiles are found to be arranged in pseudo-dodecagonal
clusters (i.e., clusters composed of RTlts tiles rather than of squares and equilateral
triangles) which form super-structures in low energy configurations of the RTlts family.
Complex super-triangular and super-rectangular RTlts structures with 25, 49, 56, 100
and 192 particles per irreducible unit cell are seen to be energetically more favorable
than ground state candidates suggested in Refs. [62–64] (with at most 40 particles per
unit cell) for certain combinations of the system parameters.

For both the DI and the RTlts families of structures we conjecture that the emergence
of super-tiles and large (pseudo-)dodecagonal cluster motifs among the low energy DI
and RTlts super-structures is a consequence of the system’s tendency to avoid certain
types of local environments of the respective basic tile-sets, rather than to maximize
the number of favorable motifs as in cluster-covering approaches [287].

We emphasize, that the emergence of the here identified, considerably complex meta-
stable DI and ground state candidate RTlts super-structures is the more remarkable
as the physics of the asymmetric Wigner bilayer system is governed by repulsive long-
ranged Coulomb interactions between the charged particles. The ground state self-
assembly of the system is guided by the delicate interplay between the commensura-
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bility of the attained configurations in both layers and charge neutralization of the
long-range Coulomb interaction [64]. In comparison, the emergence of quasicrystals
is often linked to several (usually two) pronounced length scales in the interparticle
potentials of a system in the presence of three-body interactions [42, 43, 49].

For a more detailed conclusion of Section 3.1 we refer to Subsection 3.1.8.

Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

In recent experiments conducted by Cui et al. [83] the spontaneous and reversible
transition between two- and three-dimensional self-assembly scenarios of a supramolec-
ular system (PQPClO4) at a solid–liquid interface under electrochemical conditions
[Au(111) in 0.1 M HClO4] has been identified and thoroughly discussed. By a sim-
ple variation of the interfacial potential it was possible to selectively organize the
disc-shaped PQP+ cations (a polyaromatic molecule entitled 9-phenylbenzo[1,2] quino-
lizino[3, 4, 5, 6-fed] phenanthridinylium) in an open porous pattern, to fill these pores
to form an auto-host-guest structure or to stack the building blocks in a stratified bi-
layer. In Section 3.2 our complementary theoretical investigations were dedicated to
rationalize these experimental observations.

We proposed a computationally lean, two-stage approach to computationally predict
the supramolecular ordering of complex, charged molecules at a solid–liquid interface
under electrochemical conditions.

In the first stage, we used ab initio simulations which provided reference data to fit the
parameters of a conceptually much simpler and computationally less expensive model
of the molecules: classical, spherical particles represent the respective atomic entities, a
soft but perfectly conductive flat wall potential represents the metallic surface and the
electrolyte is treated as a homogeneous, dielectric medium. To obtain the inter-particle
and particle-wall parameters we considered archetypical configurations with ab initio
accuracy (involving pairs of ions and/or ions located close to the surface) and fitted
the energies evaluated via density functional theory with our classical model.

In the second stage, we then aimed at identifying ordered ground state configurations
of the molecules by minimizing the internal energy of the corresponding classical sys-
tem. This was achieved by employing specifically implemented optimization techniques
based on memetic evolutionary algorithms, which are known to operate efficiently and
reliably even in high-dimensional search spaces and for rugged energy surfaces.

Our two-stage strategy overcomes the hitherto prohibitively large computational cost
of describing the full supramolecular system by means of purely ab initio based models.
We were able to reproduce the key observations of the well-documented experimental
system mentioned above consisting of disc-shaped PQP+ cations and ClO−4 anions [83]:
as a function of increasing the electric field at the metal–electrolyte interface, the
molecular building blocks are seen to self-organize into an open porous structure, an
auto-host–guest pattern and a stratified bilayer.

Future work will focus on verifying the extent of predictive power of our method towards
molecular self-assembly under electrochemical conditions. Furthermore, we will pursuit

207



4 Conclusions and Outlook

strategies to further streamline and reduce the computational cost of our approach,
without sacrificing the reliability of the predicted results.

A more detailed conclusion of Section 3.2 can be found in Subsection 3.2.5.

4.2 Outlook and Future Work

The Asymmetric Wigner Bilayer System

Typically, identifying ground state candidates for the asymmetric Wigner bilayer sys-
tem is a challenging task. On the one hand the configuration space of possible ground
state candidates of the system is tremendously large and on the other hand the rela-
tive energy differences of competing structures in the sevenths or eights digit are very
relevant for ground state considerations of the system.

Investigating the emergence of quasicrystalline order in the asymmetric Wigner bilayer
system turned out to be a highly complex endeavor. On the one hand, we were able
to determine that structures related to the DI family (except for the S1 structure)
do not represent competitors for the global ground states of the system at any val-
ues of the system parameters. On the other hand, we were not able to conclusively
answer whether the RTlts super-structure ground states candidates identified in Sub-
section 3.1.6 represent all related RTlts based ground state candidates of the system
in the corresponding range in the parameter space, or if even more complex config-
urations need to be considered. For instance, we identified RTlts super-structures of
up to 1444 and 1452 particles per unit cell, which are energetically only slightly less
favorable compared to the less complex RTlts ground state candidate super-structures
with 49 or 56 particles per unit cell. It is left to future work to resolve this issue in
more detail.

We realized the RTlts family of structures can be interpreted as a bilayer-modulation
of a hexagonal monolayer structure: by vertically displacing selected particles (from
the hexagonal monolayer to the other plate) a tiling composed of rectangular, R, and
two different types of equilateral triangular tiles, Tl and ts, can be formed with a long
to short side-length ratio l/s that is governed by the discrete interparticle distances of
the hexagonal monolayer. We thus conjecture, that the RTlts family of structures –
giving rise to large pseudo-dodecagonal clusters and super-structures in the asymmetric
Wigner bilayer system – might be able to explain the BaTiO3 on Pt(111) surface,
which obtains dodecagonal quasicrystalline order on a perfectly hexagonal surface [298].
Further investigations are necessary to study this analogy more carefully.

As we briefly discussed in Subsection 3.1.7 there are promising regions in the parameter
space of the asymmetric Wigner bilayer system, where local pentagonal motives are
favored by the system. In turn, these parameter space regions might give rise to ordered
ground state configurations with global tenfold symmetry, i.e., decagonal quasicrystals.
An in-depth study of the related ground state self-assembly strategies in the asymmetric
Wigner bilayer system is topic of future work.
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In general, numerical tools based on Mont Carlo sampling or on memetic evolution-
ary algorithms [62–64] are legitimate approaches to explore the configuration space of
bilayer structures for ground states of the asymmetric Wigner bilayer system for the
entire parameter space of the system. For selected values of the system parameters
the relevant configuration space to draw ground state candidate structures from may
be geometrically highly restricted (as is the case for the DI and RTlts families). Very
general optimization strategies can then be rather inefficient and need to be fine-tuned
for the particular problem at hand. In Subsection 3.1.6 we demonstrated, that it is
possible to construct an effective model specifically for RTlts bilayer structures, which
is capable of predicting the internal energy of the related structures with high accuracy
and precision purely based on counting the occurrence of special local motives in the
configurations. A promising route to proceed with the search for ground states of the
asymmetric Wigner bilayer system could be to (i) identify important local motives of
the relevant bilayer structures at selected values of the system parameters and (ii) to
construct a (more) general effective model of the system, possibly relying on machine
learning potentials. (iii) Structural energy minimization procedures based on iden-
tifying the energetically most favorable combination of such local motives (at given
values of the system parameters) may then potentially go well beyond the capabilities
of existing numerical structure-optimization tools.

As a final remark, we want to emphasize that it is quite remarkable, how many parallels
can be drawn between ground state configurations of the asymmetric Wigner bilayer
system real-world atomistic structures known from literature (cf. Subsections 3.1.7
and 3.1.8). In general, modern data-driven machine-learning algorithms [209] might
be of great help to systematically investigate scientific literature for more similarities
between the ground state configurations of the asymmetric Wigner bilayer systems and
real-world atomistic structures.

Supramolecular Ordering of Complex Molecules under Electrochemical Conditions

As an obvious next step of our studies on the computational predictions of supra-
molecular ordering of complex molecules under electrochemical conditions discussed in
Section 3.2 we aim at performing a more quantitative analysis of the ground-state self-
assembly of the investigated PQPClO4 system. In an effort to significantly reduce the
computational costs of our approach, we will employ a further coarse-grained model
of the supramolecular system, which maintains the essential features of the complex
molecules: larger sub-units of the PQP+ molecules (such as the aromatic rings) are
approximated by disk-shaped units, or by oblate ellipsoids, carrying higher electrostatic
moments. With this, we hope to perform more efficiently global ground state searches
for a much finer grid of the system parameters as performed in Section 3.2. First
numerical experiments in this direction have already been conducted.

In the course of the above-mentioned improvements to the quantitative analysis of the
studies performed in Section 3.2, we also plan to extend our investigations to other,
related supramolecular systems that have already been investigated experimentally by
our collaborators in Refs. [82, 85]: the supramolecular ordering of polyaromatic cations
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PQPC+
6 (i.e., PQP+ molecules with an additional linear C6H13 tail) with organic- (ben-

zene sulfonate, BS−, and anthraquinone disulfonate, AQDSA2−) and inorganic-anions
(perchlorate, ClO−4 ) at the Au(111)/octanoic acid interface has previously been ex-
amined. With adequate (minor) adaptations our approach can directly be applied to
these other supramolecular systems. In contrast to the PQPClO4 system investigated
in Section 3.2 the (PQPC6)2AQDSA and the PQPC6BS systems have experimentally
largely been studied without modifications of the surface potential. Furthermore, espe-
cially the size of the AQDSA2− anions is comparable to the size of the PQPC+

6 cations
which makes these units better visible in the experimentally obtained scanning tun-
neling microscope images, as opposed to the highly mobile ClO−4 units. Consequently,
a comparison between the experiment and theory should be easier and may allow us
to exploit the predictive power of our approach to investigate the surface self-assembly
scenarios of these molecules at different values of the applied electric field.

Conceptually different yet very promising approaches to tackle global energy mini-
mization problems of supramolecular lattices at solid interfaces are based on machine-
learning and optimal design theory, such as Surface Adsorbate polyMorph Predic-
tion with Little Effort (SAMPLE ) [90] and Bayesian Optimization Structure Search
(BOSS ) [120, 121]. Quantitative investigations of such intricate problems as the com-
plex monolayer to bilayer transition of supramolecular lattices at solid–liquid interfaces
under electrochemical conditions, addressed in this thesis, might come within reach by
employing suitably adapted variants of these (or similar) methods to our problem.

Self-assembly of Ionic Liquid Crystals into Smectic Phases

During the course of this thesis, a related project together with R. Wanzenböck in the
scope of a diploma thesis emerged concerning the ground state self-assembly capacities
of ionic liquid crystals [213], i.e., of anisotropic, charged particles of ellipsoidal shape
in three-dimensional lattice geometries.

Such ionic liquid crystals have attracted a steadily increasing interest during recent
years both in academic and in industrial research. With their anisotropic shape and
their ability to carry charges, they combine properties of charged particles and liquid
crystals which are, for instance, reflected in their complex self-assembly capacities,
making them technologically highly interesting [217, 218]. Ionic liquid crystals often
form columnar or smectic phases and may consequently display high conductivity into
selective spatial directions. Thus, they are promising candidates for anisotropic elec-
trolytes in batteries [348–350] or for electrolyte constituents in solar cells [351, 352].

With this first study [213] on ordered ground-state structures of such complex particles
– where we employed and extended tools based on memetic evolutionary algorithms
(cf. Subsection 2.2.4) – we gained a better understanding of the ground state self-
assembly of these anisotropic, charged units. To this end, we tested and recorded the
impact of several model parameters on the self-assembly scenarios of these particles in
R. Wanzenböck’s diploma thesis; further investigations are envisaged.
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Reinforcement Learning of Self-Navigation Strategies for Active Microswimmers

Another very promising project concerning self-navigation strategies in active matter
systems [353] was initiated together with A. Zöttl and was elaborated together with
M. Hübl in the scope of a project and diploma thesis [354].

We considered a simple model of a biological (or artificial) microswimmer [355], con-
sisting of three concentrically aligned beads linked by two muscles in a hydrodynamic
environment. With the help of reinforcement-learning [123, 124], specifically, by em-
ploying the NeuroEvolution of Augmented Topologies (NEAT ) genetic algorithm [356,
357], we identified efficient swimming gaits, i.e., periodic, non-reciprocal contraction
and expansion patterns of the two muscles: a neural-network-based sense-response
machinery evolved via NEAT allowed the microswimmer to self-navigate in a com-
plex environment. A corresponding publication of our findings is currently under peer
review [207].

As a next step, we plan to investigate self-navigation strategies or collective phe-
nomenon of more complex microswimmer models compared to the one-dimensional
active microswimmer described in Ref. [207]. In general, this topic is fascinating and
challenging since it combines many aspects related to physics, chemistry, biology, com-
puter science and artificial intelligence.
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A.1 The Asymmetric Wigner Bilayer System

A.1.1 Unsupervised Clustering of Order Parameters

In a first attempt to automatically cluster the structural data of the asymmetric Wigner
bilayer system from Refs. [62–64] we applied the DBSCAN algorithm [243] described
in Subsection 2.4.3 on the data set of feature vectors X(asym) = (x1, . . . ,xNasym), with
xj ∈ RNf defined by Eq. (3.11), of all configurations in the literature database of the
asymmetric Wigner bilayer structures [62–64]. The DBSCAN algorithm is, in principle,
able to group data points, xj , into clusters of data points with similar feature vectors,
solely relying on local density measures of the data points of the data set X(asym) in
the feature space (i.e., on an ε-neighborhood of the data points, cf. Subsection 2.4.3)
spanned by the Nf = 30 features fi introduced via Eq. (3.11). A minimum number
of Nm data points needs to be specified which the DBSCAN algorithm recognizes
as a cluster. In contrast to k-means clustering [239–242] discussed in the main text
Subsection 3.1.4.5 the number of clusters does not need to be specified in advance for
the DBSCAN algorithm.

In Fig. A.1 we present the zero temperature ground state phase diagram of the asym-
metric Wigner bilayer system [62–64] in the (η,A)-plane with structure labels identified
via DBSCAN of the nine dimensional data points of the latent space representation
L(asym) of the data set X(asym) (corresponding to the leading nine principal component
directions [238] of X(asym), cf. Subsection 3.1.4.4). In total, 229 families of struc-
tures (for the DBSCAN parameters ε = 0.5 and Nm = 10) have been identified by
the DBSCAN algorithm, by far too many to present in a reasonable way in the scope
of this thesis. DBSCAN can be used as an additional tool for phase identification
purposes and can be put into relation with the results from k-means clustering (cf.
Figs. 3.14 and 3.18), but it is obvious that DBSCAN is not the method of choice for
our purposes.

Although the DBSCAN algorithm is able to resolve many phases correctly also many
so-called “noise points”, i.e., data points which cannot be associated to a cluster by the
algorithm – arise from this analysis, since DBSCAN is very sensitive to noise in the
data, especially if the feature space dimension is large; such a sensitivity to noise also
implies that data points near a second order transition, which is related to smoothly
varying order parameters or features of the respective data points, may (falsely) be
considered as noise points by the DBSCAN algorithm. DBSCAN is more reliable
when studying lower-dimensional data (e.g. a data set with two or three features)
which can be structured by local density measures in their respective frame of reference.
A combination of t-SNE analysis (cf. Subsection 2.4.4) and DBSCAN, similar to the
approach in the Supplementary Information of Ref. [86], could be a promising route to
tackle the phase classification scheme of the asymmetric Wigner bilayer system.

In this thesis, the method of choice to identify families of ground states of the asym-
metric Wigner bilayer system is given by k-means clustering in combination with the
concept of adjusted mutual information [245, 246] (see Subsection 3.1.4.5). In Fig. A.2
we represent the biased adjusted mutual information score, S(ki,kj |L(sym)) defined by
Eq. (3.12), for a total number of 40 independent K∗=14-means clustering results (left)
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Figure A.1: Zero temperature ground state phase diagram of the asymmetric Wigner bilayer system
in the (η,A)-plane [62–64] labeled (via color coding) by the results of a DBSCAN [243] analysis
of the nine dimensional data points of the latent space data set L(asym) (corresponding to the
nine principal component directions [238], cf. Subsection 3.1.4.4 of the data set X(asym)) of the
database of asymmetric Wigner bilayer structures from literature [62–64]. Several phases from
literature can be resolved (cf. Fig. 3.2) and new phases can be identified (such as the TPH1D2

region shown in Fig. 3.49, the S2P1 region depicted in Fig. 3.59 or the shield region highlighted in
Fig. 3.61) but there also appear to be many “noise points” (not shown here) within the DBSCAN
classification. A more careful analysis of all the emerging clusters is required but is out of the scope
of this thesis.

and K∗=32-means clustering results (right); this figure needs to be compared with
the adjusted mutual information scores, IK(ki,kj) defined in Eq. (2.84), of the same
clustering results shown in Fig. 3.10.

A.1.2 Ground State Symmetries of Clustering Results: Order
Parameters and Principal Components

In Subsection 3.1.4 we performed k-kmeans clustering [239–242] of the data set of
order parameters, X(asym) = (x1, . . . ,xNasym), which quantify the spatial symmetries
of asymmetric Wigner bilayer structures from a database of j = 1, . . . , Nasym different
configurations, Xj (cf. Eq. (3.5)), from literature [62–64].

Each feature vector xj = {f1(Xj), . . . , fNf (Xj)}, defined by Eq. (3.11), represents
a total number of i = 1, . . . , Nf features (or values of order parameters), fi(Xj), of a
particular structure, Xj , from the database. To be more specific, each feature vector xj
represents a set of values of different realizations of bond orientational order parameters
Ψ

(1,2,3,4)
[3,4,5,6,8,10,12](Xj), defined in Subsection 3.1.4.1 based on Eq. (2.62), of the composition
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Figure A.2: Same as Fig. 3.10 but showing the biased adjusted mutual information score,
S(ki,kj |L(sym)), defined by Eq. (3.12).

x(Xj) = N2(Xj)/N(Xj), defined by Eq. (3.8), and of the intralayer nearest neighbor
ratio order parameter gr(Xj), defined by Eq. (3.10), of a particular configuration Xj .

Via principal component analysis we projected the data set, X(asym), defined in the
Nf = 30-dimensional feature space onto an N∗l = 9-dimensional latent space. Each
data point lj ∈ RN∗l from the latent space representation, L(asym) = (l1, . . . , lNasym),
of the data thereby corresponds to a data point, xj ∈ RNf , in the data set X(asym)

and hence to a structure, Xj , in the database [62–64]. We then performed k-means
clustering on the latent space representation, L(asym), of the structural database [62–
64] in order to assign each structure from the database to one of a total number of K
clusters (see Subsection 3.1.4.5 for details).

In that way, we were able to identify a K∗=32-means clustering of the structural
database from literature [62–64] (see Fig. 3.18, for details on the “asterisk” notation
see Subsection 3.1.4.5). Thus, we could label each of the j = 1, . . . , Nasym structures
in the database with an identifier, cj ∈ 1, . . . , 32, and thereby algorithmically group
the Nasym ≈ 64000 different structures into 32 families of structures, which we refer to
as the k∗c=1

32 , . . . , k∗c=32
32 structural families, respectively.

Here we present in Figs. A.3 to A.6 characteristic values (mean, median, boundaries
and extreme values) of the order parameters related to each of the k∗c=1

32 ,. . . ,k∗c=32
32 fam-

ilies of structures of asymmetric Wigner bilayer configurations; in Figs. A.7 and A.8
we present characteristic values of the corresponding principal components of the
k∗c=1

32 ,. . . , k∗c=32
32 families.

In this way, we can relate each k∗c32 family of structures with characteristic symme-
tries.
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Figure A.3: Characteristic values of the order parameters, x = {f1, . . . , fNf
} defined by Eq. (3.11),

and of the system parameters, η and A, (all listed along the horizontal axis) of the ground state
configurations of the asymmetric Wigner bilayer system [62–64] associated with the k∗c

32 families
of structures (see text, Subsection 3.1.4.5 and Fig. 3.18) for c = 1 to c = 8 in eight corresponding
“boxplot”-panels from top to bottom. The labels of the k∗c

32 families are indicated on the right-hand-
side of each panel, respectively; whenever a k∗c

32 family coincides with a phase from literature [62–64]
(cf. Table 3.1 and Fig. 3.2) the corresponding k∗c

32 label is emphasized in green and extended with
the associated literature phase label. The median (horizontal orange lines), the mean (horizontal
blue lines), the first and third quartiles (black boxes) and the whiskers (black vertical lines) of the
different order parameters and of the related system parameters of all ground state configurations
associated with the k∗c

32 families of the asymmetric Wigner bilayer structures from the literature
database [62–64] are presented; the first and third quartiles describe the characteristic range of the
order parameters, i.e., the coordinate values of the corresponding feature space directions where
25% of all data points (i.e., the feature space representations of the corresponding ground state
structures) are located at smaller and at higher coordinate values, respectively. The whiskers
emphasize the minimum and the maximum values of the corresponding features.
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Figure A.4: Same as Fig. A.3 but for k∗c
32 families with c = 9 to c = 16 from top to bottom.
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Figure A.5: Same as Fig. A.3 but for k∗c
32 families with c = 17 to c = 24 from top to bottom.
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Figure A.6: Same as Fig. A.3 but for k∗c
32 families with c = 25 to c = 32 from top to bottom.
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Figure A.7: Similar to Fig. A.3, but showing the characteristic values of the leading nine principal
components v1, . . . ,v9 – instead of all 30 features – associated to the ground state configurations
of the asymmetric Wigner bilayer system [62–64] which are related to the k∗c

32 families of structures
for c = 1 to c = 16. The nine principal components – representing the frame of reference of
the latent space representation of the data, L(asym) – are visualized in Fig. 3.8 to emphasize the
directions they represent in the feature space (and thereby quantify the relation between order
parameters and a particular principal component direction). The characteristic values for η and A
for the different k∗c

32 families are presented in Figs. A.3 and A.4.
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Figure A.8: Same as Fig. A.7 but for the k∗c
32 families with c = 17 to c = 32. The characteristic

values for η and A for the different k∗c
32 families are presented via Figs. A.5 and A.6.
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A.1.3 Mechanical Stability of Super Square-Triangle Tilings

Similar to the average particle position deviation 〈∆xy〉, defined by Eq. (3.15), we define
here the maximum deviation, max (∆xy), of a relaxed structure of the asymmetric
Wigner bilayer system to the initial structure as

max (∆xy) = max(|r̃i − ri|) for i = 1, · · · , N, (A.1)

where the r̃i represent the i = 1, . . . , N particle positions within the unit cell of the
initial structure and ri the particle positions of the corresponding relaxed structure.
Similar to the presentation of 〈∆xy〉 in Fig. 3.31 we here illustrate in Fig. A.9 the
results of max (∆xy) related to the dodecagonal type I family of structures depicted in
Fig. 3.29.
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Figure A.9: Same as Fig. 3.31 but showing the maximum value, max (∆xy) defined by Eq. (A.1),
of the deviation of a relaxed asymmetric Wigner bilayer structure to the initial structure.
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A.1.4 Rectangle-Large–Triangle-Small–Triangle decoration

The rectangle-large–triangle-small–triangle (RTlts) decoration scheme introduced in
Subsection 3.1.6 can practically be employed on perfect square triangle tilings as follows
(see Fig. A.10):

• Start from an arbitrary square triangle tiling (such as, for instance, the layer one
or the layer two tiling of the DI structures1 shown in Fig. 3.29) and assign it
as layer two tiling of an otherwise empty bilayer structure (this initial layer two
configuration is refered to as seed tiling).

• Identify all triangles and squares in the seed tiling, considering periodic boundary
conditions.

• Separate triangles in the seed tiling into two types by following the flip-type
convention from the main text (cf. Subsection 3.1.6):

– For flip-type F = 0 label all triangles sharing one edge with the vertical axes
as tm and all remaining triangles as to (related to tm by 90◦ rotations).

– For flip-type F = 1 exchange the above labeling convention, tm ↔ to.

• Perform layer one decoration for all tm and to labeled triangles as follows:

– All triangles labeled tm are mid-edge decorated with layer one particles.

– All triangles labeled to are decorated off-edge: layer one particles are placed
at the projected geometric center of a to triangle and off-edge at the pro-
jected mirror positions of the geometric center with respect to every edge
of the triangle.

• Decorated squares in the following way:

– Two parallel edges of a square, labeled sm, are mid-edge decorated if one of
them is a common edge with a tm triangle; the respective orthogonal edges
of the square, labeled so, are off edge decorated by placing two particles at
a distance of a2/(2

√
3) from the mid-edge point of so inside and outside of

the square on a line orthogonal to so, a2 being the side length of the square.

– Two parallel edges of a square, labeled so, are off-edge decorated if one of
them is a common edge with a to triangle and the respective orthogonal
edges of the square, labeled sm, are mid-edge decorated.

– Neighboring squares are iteratively decorated according to their neighbor-
ing edge decoration, i.e., sm and tm decorated edges as well as so and to
decorated edges are respectively considered as equivalent.

– If no triangles are present an arbitrary square edge is assigned as sm which
uniquely defines the structure (which is symmetric with respect to F = 0
and F = 1).

1If the layer two tiling is used, we include central particles of dodecagons in layer one and assign
them as layer two vertices such that we start with a perfect square-triangle tiling.
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• Fold all decorated vertices back into the unit cell and remove multiply decorated
sites (keep only unique decorations at the same position).

• Scale the unit cell to satisfy the unit-area per particle constraint we are following
in this thesis (without the loss of generality [62]).

• Finally, relax the entire structure at η ≈ 0.226 and A ≈ 0.765, which deforms
all squares into rectangles with a long, |sm| → l, to short, |so| → s, edge-length
ratio of l/s = 2/

√
3 and which deforms the two types of triangles accordingly

such that |tm| → l and |to| → s.

Figure A.10: Left panel: Ix-Cairo ground state structure of the asymmetric Wigner bilayer system
at η ≈ 0.226 and A ≈ 0.765 [276]; red dots correspond to layer two particles, blue dots to layer
one particles. From second to left to right panel: Decoration scheme of layer two triangle tiles
and the rectangular tile (red vertices) from left to right: (i) mid-edge decorated triangle, tm, (ii)
center and off-edge decorated triangle, to, (iii) square with horizontal mid-edge decorated, sm,
and vertical off-edge decorated edges, so. The different edge decorations, tm and to as well as
sm and so, are additionally emphasized by dashed and dotted lines: neighboring tiles must have
matching edge decorations. Triangles which are related by rotations of 60◦ are equally decorated
in the entire tiling.

In Figs. A.11 and A.12 we present configurations where the above introduced decoration
scheme is applied for the REMC simulations discussed in Figs. 3.43 and 3.44, respec-
tively: the top panels show the decoration scheme applied on layer two square-triangle
tilings, the bottom panels show the relaxed RTlts configurations of the respective con-
figurations of the top panels (relaxed at η ≈ 0.1061 and A ≈ 0.8778). This supports our
claim that not only special square-triangle tilings which feature dodecagonal motives
(cf. Fig. 3.41) but also random square-triangle tilings can always be transformed into
RTlts structures. In fact, we never experienced square-triangle tilings in the REMC
simulations depicted in Figs. 3.43 and 3.44 which could not be transformed into RTlts
structures.
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Figure A.11: Top panels: Decoration scheme of configurations shown in Fig. 3.43 (with cor-
responding red, green, blue color coding) using a perfect square-triangle tiling in layer two (red
dots connected by orange lines indicating Voronoi nearest neighbors; layer one particles are col-
ored blue). Bottom panels: Relaxed RTlts configurations of the respective top panel structures
at η ≈ 0.1061 and A ≈ 0.8778. For the top panels also connections between hexagonal vertices
in layer two are drawn via thick gray lines, in the bottom row these lines are only shown for the
super-snub-rectangular structure in the bottom left panel.
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Figure A.12: Same as Fig. A.11, but for the configurations shown in Fig. 3.44.
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A.1.5 Towards Constructive, Defect-Free Inflation

For some square-triangle based DI approximants (such as DI
(1)
1,1 and DI

(2)
2,1 depicted in

Figs. 3.29 and 3.30 in Subsection 3.1.5) it is geometrically impossible, owed to symmetry
considerations with respect to the periodic boundary conditions and the composition
of layer one and two, to resolve all atomic defects of neighboring square-square pairs
with a common edge in layer one. For dodecagonal type I structures this leads to
mechanical instabilities, cf. the central left panels in Figs. 3.29, 3.31 and A.9.

Here we will investigate rules how to avoid such atomic defects directly during Stampfli-
inflation [252, 254]. As suggested in the discussion of DI

(1)
2,2, depicted in the right

panel of Fig. 3.30, a combination of Stampfli inflation and the stacking procedure (cf.
Fig. 3.25) is key to accomplishing our goal: for a tiling being entirely composed of non-
overlapping dodecagons which are, themselves, composed of equilateral squares and
triangles as depicted in Fig. 3.24, there is only two ways how neighboring dodecagons
can be arranged in order to avoid square-square neighbors, see Fig. A.13.

Figure A.13: The two possible ways to attach dodecagons defect free (without square-square
neighbors with a common edge) in an equilateral square-triangle tiling. Problematic environments
for inflation are colored in yellow and in purple, respectively.

This narrows down the number of possible vertices which are subject to Stampfli-
inflation. As can be seen in the left panel of Fig. A.13 triangles can easily be inflated.
The problem is decorating inflated squares with dodecagons: the orientations of such
dodecagons have to alternate by 30◦ on the corners of the same edges of a square. In
case of a environment composed of a central triangle with three neighboring squares
(yellow colored environment in Fig. A.13) this is not possible since at least two do-
decagons of the inflated triangle must have the same orientation, cf. left panel in
Fig. A.14. This can be resolved by additionally stacking the squares and triangles
directly (cf. Figs. 3.24 and 3.25) as we demonstrate in the second to left panel in
Fig. A.14. Now the corners of the central triangle can be decorated with dodecagons of
the same orientation and, consequently, the three neighboring squares can be inflated
by dodecagons of clockwise alternating orientation of 60◦ and 30◦.

The right two panels in Fig. A.14 depict a defect free and a defective inflation of a
pair of squares which share one corner and exhibit an relative angle of 60◦ (cf. purple
environment in the left panel of Fig. A.13). Note that the decoration with dodecagons of
the right two panels in Fig. A.14 are related by a simple 30◦ rotation of each dodecagon,
which are color-coded2 according to Fig. 3.24. The defective inflation in the right most

2Dodecagons with squares on the vertical axis (on top and bottom) are colored blue, those with
triangles on the vertical axis are colored green.
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Figure A.14: Left two panels show (from left to right) a (necessarily) defective square-triangle
environment (red squares) and a defect free square-triangle environment after Stampfli-inflation
when additional stacking is applied to the yellow square-triangle environment (cf. Fig. A.13). The
second to right panel shows the unique decoration of the purple environment (an inflated and
stacked pair of squares which share one corner under an opening angle of 60◦, cf. Fig. A.13) with
17 dodecagons which avoids atomic defects in the square-triangle tiling at the smallest length scale.
The right most panel demonstrates a defective inflation (see red squares) of the purple environment
depicted in Fig. A.13, although each purple square – for itself – is inflated defect-free.

panel of Fig. A.14 highlights that not all triangle decorations are possible in a defect-
free manner but depend on the orientation (i.e., 30◦ + n× 60◦ or n× 60◦, n being an
integer) of the triangles which are subject to inflation and of the orientations of the
inscribed dodecagons.

With the building-blocks shown in Fig. A.14 we can compose inflated and stacked
defect-free super-stacked dodecagons from scratch. We present in Fig. A.15 the two
possible ways (which we found to be possible) for constructing such super-stacked
clusters, which are themselves related by a rotation of 30◦.

Figure A.15: Super-dodecagon with 30◦ rotation (left and right) with unique inflation and stacking
procedure (except for the central dodecagon) thereby avoiding atomic defects by construction.
Dodecagons with squares on the vertical axis (on top and bottom) are colored blue, those with
triangles on the vertical axis are colored green; the central dodecagon is colored cyan, indicating
that no defects can emerge by rotating this particular dodecagon by 30◦. Stacked and inflated
super-tiles are indicated by thick gray lines in the background.
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In Fig. A.16 we present a square-triangle tiling with overlapping super-stacked do-
decagons on a hexagonal lattice. Note that this tiling cannot be described by the in-
troduced Stampfli-inflation above, which does not cover overlapping dodecagons. Here,
in an initial inflation step the unit cell of a triangular tiling is inflated by a factor of
(1 +

√
3) such that the inscribed neighboring dodecagons share one square (cf. black

lines in Fig. A.16); we label this structure DI
(0)
I=1.5,S=2. This tiling can directly be used

as potential candidate structure (after DI decoration) to compete for the ground state
of the asymmetric Wigner bilayer system in the S1 region (cf. Subsection 3.1.5). How-
ever, given the rather hopeless values of the energies of the DI structures investigated
in Subsection 3.1.5 with respect to the ground state energies of the asymmetric Wigner
bilayer system suggested in Refs. [62–64], we refrained form including this structure
into our analysis.

In Fig. A.17 we present a square-triangle tiling with non-overlapping super-stacked
dodecagons on a hexagonal lattice, which we label DI

(0)
2,2. Interestingly, it is not easily

possible to directly compose squares from super-stacked dodecagons without causing
defects on the atomic length scale such that we cannot present super-stacked square
nor snub-square configurations.

Figure A.16: Defect-free overlapping super-stacked dodecagons on a hexagonal type 0 lattice.
Black lines indicate the squares and triangles which are subject to inflation, red lines indicate
stacking. Dodecagons with squares on the vertical axis (on top and bottom) are colored blue,
those with triangles on the vertical axis are colored green; the central dodecagon of the super-
stacked dodecagons is colored cyan, indicating that no defects can emerge by rotating this particular
dodecagon by 30◦.
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Figure A.17: Same as Fig. A.16 but for a defect-free non-overlapping super-stacked dodecagon
on a hexagonal type 0 lattice.
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A.2 Predictive Supramolecular Self-Assembly

In the Appendix A.2 – which is largely based on the Supplementary Information of
Ref. [86] – we have collected relevant information which might considerably deteriorate
the readability of the main text Section 3.2 if it were placed there; still, the details
presented in this document might be of relevance for an interested reader of the main
text Section 3.2. For simplicity we have used in Appendix A.2 exactly the same Section-
headings as in the main text Section 3.2; this will hopefully help to establish the
appropriate association between the respective text passages.

A.2.1 The System and its Representations

A.2.1.1 Convergence of Theoretical Calculations

The DFT-based binding energies of the PQP+ and ClO−4 ions were calculated3 for
different numbers of gold layers with a constraint of fixed gold layers in an effort to
study the convergence of the results with respect to the number of layers that build up
the gold surface. The values for the binding energies, obtained for the different cases,
are specified below the respective panels of Fig. A.18; the panels themselves provide
schematic plots for the different types of gold layers. In the related DFT calculations
the van der Waals scaling is not considered, i.e., ωS ≡ 1 is chosen in Eq. (3.24) in
Section 3.2.

(a) BE = -2.69 eV (b) BE = -2.66 eV (c) BE = -2.71 eV

Figure A.18: Schematic views of PQP+ and ClO−
4 ions, located above gold surfaces built up by

different numbers of layers Below each panel the respective binding energies (BE) are specified.

The effect of fixing the gold atoms on the binding energy of PQP+ and ClO−4 ions to
the surface if further examined. Allowing the uppermost gold layer to relax changed
the binding energies to -2.73 eV, -2.69 eV and -2.73 eV for two, three and four layers,
respectively. These values are well in accordance with the previously calculated values
reported in Fig. A.18. One can therefore conclude that fixing the gold atoms has a
negligible effect on the binding energy obtained.

3The calculations and contents of Appendix A.2.1.1 (corresponding to Subsection 3.2.2.2 of the main
text) were primarily conducted by our collaborators O. Brügner, S. Sharma and M. Walter.
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The calculated values for the binding energy obtained for two, three, and four layers
of gold provide evidence that our choice for a two layer gold surface is sufficient to
proceed with our calculation of the self-assembly scenarios of PQP+ and ClO−4 ions
on this Au(111) surface. Local density of states were also plotted with respect to the
energies of the corresponding states relative to the Fermi-level. The plotted density
curves shows that the density of states for PQP+ and ClO−4 ions are quite similar
irrespective of the number of layers of gold surface.
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Figure A.19: Local density of states (LDOS) relative to Fermi-level. The Kohn-Sham energies
were projected on local atomic orbitals of Cl and O (ClO−

4 ), C, N and H (PQP), and on gold s+p
and d states, respectively.

Fig. A.19 compares the density of Kohn-Sham states projected on the atomic species
for the models depicted in Fig. A.18. While the density of states of the gold part
increases naturally with the number of gold layers, this has only marginal effects on
the positions of the PQP+ and ClO−4 related states.

A.2.1.2 Angle-Axis Framework Expressing Rigid Body Orientations

In the optimization procedure put forward in Subsection 3.2.3 of the main text we rely
on the angle-axis framework [336, 337] to express the orientation of rigid molecules
within the lab-frame: closely related to the descriptions of rotations based on unit-
quaternions [145, 358, 359], we introduce a three-component angle-axis vector, P =
(P1, P2, P3) = θ P̂, which defines an angle, θ =

√
P 1

1 + P 2
2 + P 2

3 , and a unit-vector, P̂,
which represents the axis of the molecule; both are sufficient to describe any rotation
of a rigid body in three dimensions. As discussed in Ref. [336] and following Rodrigues’
rotation formula, the 3× 3 rotation matrix T(P) associated with the angle-axis vector
P is given by

T(P) = I + (1− cos θ) P̃P̃ + (sin θ) P̃; (A.2)

here I is the 3× 3 identity matrix and P̃ is the skew-symmetric 3× 3 matrix obtained
from the components of the vector P̂ via

P̃ =
1

θ

 0 −P3 P2

P3 0 −P1

−P2 P1 0

 . (A.3)
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In order to transform the coordinates of an atom, r
(I)
m , defined in the center-of-mass

system of molecule I to its lab-frame position, rm, the following transformation needs
to be realized:

rm = RI + T(PI ) · r(I)
m ; (A.4)

here RI is the center-of-mass coordinate of molecule I and T(PI ) is the rotation matrix
associated with the angle-axis vector PI of molecule I , as defined above.

A.2.1.3 Short-Range Potentials and Parametrization

The short-range Mie potential, defined in Eq. (3.28) of the main text Subsection 3.2.2.4,
can be considered as a generalization of the Lennard-Jones (LJ) interaction [339]: if the
exponents of the repulsive and attractive parts of the potential are chosen as γ(R)

ij = 12

and γ(A)
ij = 6 the amplitude Cij , given by Eq. (3.29) of the main text, becomes Cij = 4

and the Mie-potential reduces to the well known LJ form.

During the fitting procedure put forward in Subsection 3.2.2.5 of the main text, it
occurred at some instances that γ(R)

i < γ
(A)
i . In such a case the defining equation for

the Cij (see Eq. (3.28) of the main text Subsection 3.2.2.4) guarantees that both the
repulsive and the attractive parts of the potential maintain their respective features.

In Fig. A.20 we depict the PQP+ and the ClO−4 ions using the actual values for the
fitted Mie length parameters, σi (listed in Table 3.5 of the main text), as van der Waals
radii. In Table A.1 we list – for comparison – also the LJ length parameters for the
atomic entities of the PQP+ and the ClO−4 molecules as they are commonly used in
literature.

σH σC σN σO σCl

Mendeleev 2.2 3.4 3.1 3.04 3.5
Alvarez 2.4 3.54 3.32 3.0 3.64
Bondi 2.4 3.4 3.1 3.04 3.5
Dreiding 3.195 3.8983 3.6621 3.4046 3.9503
mm3 3.24 4.08 3.86 3.64 4.14
uff 2.886 3.851 3.66 3.5 3.947
σ

(LJ)
i 2.243 3.658 3.743 2.865 5.953
σ

(Mie)
i 2.236 3.703 3.328 2.428 4.956

Table A.1: LJ length parameters σi (in Å) for hydrogen (H), carbon (C), nitrogen (N), oxygen (O),
and chlorine (Cl) from literature as defined in the mendeleev -python-module (ver. 0.5.1) and, as
comparison, model parameters σ(LJ)

i and σ(Mie)
i from Table 3.5 in the main text Subsection 3.2.2.4.
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Figure A.20: Schematic representation of a PQP+ and a ClO−
4 ion using the actual values of the

fitted Mie length parameters σ(Mie)
i for the short-range interactions introduced in Subsection 3.2.2.4

of the main text: atomic entities are shown as spheres with their diameters fixed by their respective
optimized σ(Mie)

i -values; these entities are colored according to the following scheme: hydrogen
(white), carbon (gray), nitrogen (blue), chlorine (green), and oxygen (red).

In Tables A.2 and A.3 we list the coordinates of all atomic units and their associated
partial charges (extracted via a Bader analysis [342, 360]) obtained from the relaxed
DFT-structures of the PQP+ and ClO−4 ions which serve as rigid molecular blueprints
in the main text Section 3.2. Since the PQP+ cation is built up by 48 atomic units
we have supplemented Table A.2 by Fig. A.21, indicating the labeling of the different
atomic entities. In contrast, as the ClO−4 molecule (see Table A.3) is only built up by
five atomic units, we have refrained in this case from a schematic presentation of the
molecule.

Table A.4 compares the Bader charges of single PQP+ and ClO−4 pairs in the gas phase
and on the gold surface. This analysis reveals that the local charges on the ions are
very similar in both environments and practically unaffected by the presence of the
metal surface.
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i element xi yi zi qi i element xi yi zi qi

1 C 0.1267 1.2051 -0.0253 0.3807 25 C -4.8220 0.0601 -0.0341 -0.0565
2 N -0.5941 0.0077 -0.0830 -1.1646 26 H -4.7122 -2.0727 -0.0499 0.1101
3 C -2.0123 0.0254 -0.0936 0.3949 27 C -2.7268 -3.7034 -0.1427 -0.0931
4 C 0.0988 -1.2077 -0.0664 0.4209 28 H 1.1435 -3.7411 -0.1704 0.1265
5 C -0.5685 2.4836 -0.0704 0.0642 29 C -0.6337 -4.9026 -0.1737 -0.1096
6 C 1.5102 1.1636 0.0881 -0.0066 30 H -3.7189 3.8240 -0.1608 0.0990
7 C -2.7073 1.2652 -0.0766 0.0497 31 C -1.9108 4.9519 -0.1507 -0.0561
8 C -2.7389 -1.1964 -0.0946 0.0300 32 H 0.0658 5.8448 -0.1588 0.0863
9 C -0.6299 -2.4673 -0.1204 -0.0401 33 C 4.4671 1.0567 -0.2093 -0.0996
10 C 1.4854 -1.2014 0.0175 -0.0272 34 C 4.3714 -1.1639 0.7541 -0.0342
11 C -1.9791 2.5216 -0.0929 -0.0412 35 H -5.9114 0.0745 -0.0008 0.1122
12 C 0.1514 3.7017 -0.0977 -0.0507 36 H -3.8146 -3.7276 -0.1477 0.0984
13 H 2.0403 2.1040 0.1899 0.1396 37 C -2.0369 -4.9037 -0.1638 0.0333
14 C 2.2322 -0.0280 0.1088 0.0058 38 H -0.0809 -5.8419 -0.2001 0.1258
15 C -4.1099 1.2499 -0.0437 -0.0944 39 H -2.4371 5.9066 -0.1831 0.1140
16 C -4.1411 -1.1474 -0.0630 -0.0382 40 H 3.9741 1.9279 -0.6429 0.0888
17 C -2.0415 -2.4705 -0.1202 0.0066 41 C 5.8578 1.0346 -0.1202 -0.0392
18 C 0.0574 -3.7037 -0.1539 -0.0731 42 H 3.8020 -2.0184 1.1245 0.0943
19 H 1.9993 -2.1557 0.0110 0.1087 43 C 5.7627 -1.1824 0.8408 -0.1172
20 C -2.6331 3.7708 -0.1343 -0.0780 44 H -2.5876 -5.8452 -0.1777 0.1138
21 H 1.2385 3.7123 -0.0996 0.0676 45 H 6.4355 1.8929 -0.4673 0.1010
22 C -0.5084 4.9176 -0.1347 0.0077 46 C 6.5117 -0.0860 0.4007 -0.0581
23 C 3.7024 -0.0450 0.2216 -0.0045 47 H 6.2672 -2.0562 1.2563 0.1042
24 H -4.6584 2.1881 -0.0183 0.0912 48 H 7.6004 -0.1048 0.4614 0.1070

Table A.2: Atomic units building up the PQP+ ion, labeled by the index i according to the
schematic view of the molecule presented in Fig. A.21. The positions of these entities (xi, yi
and zi, and all in Å), as they were obtained in a relaxed DFT-based configuration, are given with
respect to the center-of-mass of the molecule, marked in this figure by a cross. Furthermore, the
respective charges of the atomic units, qi (given in units of the elementary charge e), are obtained
in a Bader analysis [342]; these charges are directly transferred to our classical model of the PQP+

molecule.

i element xi yi zi qi

1 Cl 0.0000 0.0000 0.0000 2.6996
2 O 1.4732 -0.0020 0.0000 -0.9249
3 O -0.4916 1.3888 0.0000 -0.9249
4 O -0.4917 -0.6933 1.2034 -0.9249
5 O -0.4917 -0.6933 -1.2034 -0.9249

Table A.3: Atomic units building up the ClO−
4 molecule. The positions of these entities (xi, yi

and zi, and all in Å), as they were obtained in a relaxed DFT-based configuration, are given with
respect to the center-of-mass of the molecule, which coincides with the position of the oxygen
atom. Furthermore, the respective charges of the atomic units, qi (given in units of the elementary
charge e), are obtained in a Bader analysis [342]; these charges are directly transferred to our
classical model of the ClO−

4 molecule.

237



A Supplementary Theory and Information

on top (OT) side by side (SBS) SBS on gold support

PQP+ 1.0 0.9 0.9
N (M = 1) -1.1 -1.1 -1.2
C (M = 29) 0.2 0.3 0.3
H (M = 18) 1.9 1.7 1.8

ClO−4 -1.0 -0.9 -1.0
Cl (M = 1) 2.6 2.5 2.7
O (M = 4) -3.6 -3.5 -3.7

Au (M = 72) — — 0.1

Table A.4: Charges obtained in Bader analysis for PQP+, ClO−
4 ions in the gas phase and supported

by the gold surface. The on top (OT) and side by side (SBS) configurations correspond to the
configurations of single PQPClO4 pairs as in Fig. 3.65 a) and b) of the main text Subsection 3.2.2.5,
respectively. The SBS configuration on gold is depicted in Fig. A.18a). The atom specific charges
are summed values of all M atoms of the same type.

Figure A.21: Schematic view of the PQP+ ion where its atomic constituents and the related bonds
are depicted. The spheres are colored according to the respective chemical element: hydrogen
(white), carbon (gray), and nitrogen (blue). The atomic constituents are labeled by indices i = 1
to NPQP = 48; the positions of each of these entities (with respect to the center-of-mass of the
molecule) are listed in Table A.2. The black cross marks the center of mass, RPQP, of the PQP+

molecule.

238



A.2 Predictive Supramolecular Self-Assembly

A.2.1.4 Image Charges in a Solvent

We4 may describe the electrostatic interaction between a charge distribution and a
metallic surface by the method of image charges [158]. The electric field inside a metal
is completely screened and therefore the field on the surface can only be perpendicular
to the metal surface.

Inside media the Maxwell equation for the displacement field D(r, t) reads

∇ ·D(r, t) = −4πε0ρ(r, t) (A.5)

where ε0 is the permittivity of the vacuum and ρ(r, t) a charge density. The rela-
tive permittivity εr of the medium connects to the electric field E(r, t) to D(r, t) via
D(r, t) = ε0εrE(r, t). The Maxwell equation, Eq. (A.5), then becomes

∇ · εrE(r, t) = −4πρ(r, t). (A.6)

A spatially constant permittivity εr thus leads to

∇ ·E(r, t) = −4π
ρ(r, t)

εr
(A.7)

which is the Maxwell equation in vacuum with a charge density scaled by the relative
permittivity.

A slab geometry with a planar, perfectly conductive lower surface of infinite extend,
separating the slab region from the interior bulk region at z = 0 can be modeled
by image charges. These are placed within the bulk according to Eq. (3.30) in the
main text Subsection 3.2.2.4, i.e., ri = (xi, yi, zi) → (xi, yi,−zi) = ri′ and qi′ → −qi
and fulfill metallic boundary conditions. Including the constant electrostatic field Ez
introduced in Eq. (3.33) in the main text Subsection 3.2.2.4 this setting corresponds
to the electrostatic potential Φ(r) of the form

Φ(r) =
1

4πε

n∑
i=1

qi

(
1

|r− ri|
− 1

|r− ri′ |

)
+ z Ez Θ(z), (A.8)

where Θ(z) is the Heaviside Theta (or step) function which is 0 if z ≤ 0 and 1 otherwise.
The potential vanishes at z = 0 in the entire (x, y)-plane, i.e., Φ (rxy = (x, y, z = 0)) =
0. In fact, every term in the sum vanishes separately as we have |rxy − ri|2 = (x −
xi)

2 + (y − yi)2 + (±zi)2 = |rxy − ri′ |2, ensuring metallic boundary conditions [158].

4The content of Appendix A.2.1.4 was elaborated together with M. Walter.
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A.2.2 Identifications of Self-Assembly Scenarios

A.2.2.1 Angle-Axis Gradient as Calculated from the Torque

The software package LAMMPS [93] allows to evaluate forces and torques of rigid
molecules enclosed in a simulation box. Since we are interested in the gradient of the
potential energy with respect to angle-axis vectors, P, i.e., ∇PU =

(
∂U
∂P1

, ∂U∂P2
, ∂U∂P3

)
,

we present here the transformation which is required to transform a three-dimensional
torque T = (Tx, Ty, Tz) to an angle-axis gradient, ∇PU , or in a component-wise nota-
tion ∂U

∂Pi
= ∂iU , using Latin indices i = 1, 2, 3 for three-dimensional vectors.

In LAMMPS orientations are expressed in terms of unit-quaternions via the four di-
mensional vector Q(4) (using Greek indices ν = 0, 1, 2, 3)

Q(4) =

(
cos

θ

2
, sin

θ

2
P̂

)
= (Q0, Q1, Q2, Q3), (A.9)

where, as described in Appendix A.2.1.2, θ = |P| is the angle of rotation around the
axis P̂ = P/θ and |Q(4)| = 1.

Following the documentation of LAMMPS [359] the resulting (four dimensional) torque
vector, T(4) = (0, Tx, Ty, Tz) = (0,T) on a rigid body is specified via

T(4) = −1

2
ST4×4∇Q(4)U + T

(4)
int . (A.10)

The internal torque T
(4)
int , provided by LAMMPS [93], ensures that T (4) = (0, Tx, Ty, Tz),

i.e., T (4) = (0,T).

Henceforward the matrix index “4 × 4” indicates four-by-four matrices. In the above
relation we have introduced the orthogonal skew-matrix S4×4, given by

S4×4 =


Q0 −Q1 −Q2 −Q3

Q1 Q0 −Q3 Q2

Q2 Q3 Q0 −Q1

Q3 −Q2 Q1 Q0

 ; (A.11)

further, ∇Q(4)U is the gradient of the potential energy with respect to the unit-
quaternion vector Q(4), or, alternatively, in a component-wise notation ∂U

∂Qν
= ∂νU ,

ν = 0, 1, 2, 3.

Since we are dealing with rigid bodies and explicitly avoid intra-molecular interac-
tions we can neglect T

(4)
int in Eq. (A.10); further, S4×4 is an orthogonal matrix, thus

S4×4ST4×4 = ST4×4S4×4 = I4×4 where I4×4 is the four dimensional unit matrix. Hence
we can rewrite Eq. (A.10) as

∇Q(4)U = −2S4×4T
(4), (A.12)
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and further express ∂iU in terms of Eq. (A.12) using the chain rule

∂iU =
∂U

∂Pi
=
∂Qν
∂Pi

∂U

∂Qν
= (Q3×4)iν∂νU i = 1, 2, 3 and ν = 0, 1, 2, 3; (A.13)

above we have used the Einstein summation convention. For convenience we have
introduced the 3×4 matrix Q3×4 with components Qiν = ∂Qν

∂Pi
, or equivalently, Q3×4 =

(∂Q0

∂P , ∂Q∂P ), with components that – using Eq. (A.9) – can be written as

∂Q0

∂P
=

(
− 1

2θ
sin

θ

2

)
P, and (A.14)

∂Q

∂P
=

2

θ2

(
cos

θ

2
− 1

2θ
sin

θ

2

)
P ·PT +

(
θ2 sin

θ

2

)
I; (A.15)

here Q = (Q1, Q2, Q3), P ·PT = θ2(P̃P̃+ I), where I is again the 3× 3 identity matrix,
the dot represents a dyadic product, and P̃ is defined in Eq. (A.3).

With Eq. (A.12) and using Qiν , given by Eqs. (A.14) and (A.15), we can rewrite
Eq. (A.13) as

∇PU = −2QST (4) = PT (A.16)

with the 3× 3 matrix

P =
1

θ

[
(cos θ − 1)I + (sin θ − θ) P̃

]
P̃− I, (A.17)

and with T = (Tx, Ty, Tz) being the torque in Cartesian coordinates in the lab-frame.

A.2.2.2 Order Parameters

In order to quantify the structural difference between configurations identified via the
optimization procedure we associate a feature vector (i.e., a set of order parameters),
x, to every configuration, X , as defined by Eq. (3.31) in Subsection 3.2.2.4 of the main
text. Here, we mainly rely on the so-called bond orientational order parameters [225–
228], Ψν(X ), defined by Eq. (2.62) in Subsection 2.3.2 of the main text which provide
information about the positional bond orientational order of ordered structures. Ad-
ditionally, we use two variants of orientational order parameters [229] α(X ) and β(X )
defined by Eq. (2.64) and Eq. (2.63) in Subsection 2.3.3 of the main text, respectively,
which correlate spatial and orientational degrees of freedom. All of these order param-
eters describe global properties (or symmetries) of an ordered structure based on the
local proximity of its atomic or molecular entities.

The evaluation of local order parameters strongly depends on the method on how to
identify neighbors: here we use the well-defined method of Voronoi construction [223,
224] (cf. Subsection 2.3.1 in the main text). Further, the above order parameters are
defined for two-dimensional systems. In our case of a quasi-two dimensional geometry,
with a molecular self-assembly in a plane and with slightly stacked 3D structures, we
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use for the calculation of the order parameters the projected coordinates of all molecules
to the z = 0-plane.

For the particle positions, ri, and the orientations, ui, considered in Ψν(X ), α(X )
and β(X ), given by Eqs. (2.62) to (2.64) defined in the main text Subsections 2.3.2
and 2.3.3, we used the center-of-mass coordinates and the orientations of the different
molecules within a configuration X . Henceforward, we drop the argument of Ψν(X ),
α(X ) and β(X ) and may simple write Ψν , α and β.

For our PQP+ ClO−4 system we used a set of Nf = 13 order parameters to define the
feature vector x as

x = (f1, . . . , fNf
); (A.18)

with f1 = Ψ
(PQP)
4 , f2 = Ψ

(PQP)
5 , f3 = Ψ

(PQP)
6 and f4 = Ψ

(ClO4)
4 , f5 = Ψ

(ClO4)
5 ,

f6 = Ψ
(ClO4)
6 quantifying the ν = 4, 5, 6-fold bond-orientational order parameters, de-

fined by Eq. (2.62) in Subsection 2.3.2 of the main text, considering only PQP+

and ClO−4 molecules as neighbors, respectively. f7 = Ψ
(PQP|ClO4)
4 , f8 = Ψ

(PQP|ClO4)
5 ,

f9 = Ψ
(PQP|ClO4)
6 describe the ν = 4, 5, 6-fold bond-orientational order parameters for

all PQP+ molecules while considering only ClO−4 molecules as neighbors. f10 = β(PQP),
f11 = β(ClO4) and f12 = α(PQP), f13 = α(ClO4), defined by Eq. (2.63) and Eq. (2.64) in
Subsection 2.3.3 of the main text, quantify the orientational- and spatial-orientational-
correlation between neighboring PQP+ and ClO−4 ions, respectively.

A.2.3 Results

A.2.3.1 General Remarks and System Parameters

The following details provide an idea about the numerical costs of our calculations: in
order to obtain the ground state configuration for a single state point (specified by a set
of the system parameters defined in Subsection 3.2.4.1 in the main text) convergence
of the full EA+LG ground-state search (based on the evolutionary algorithm and the
local, steepest gradient descent procedure as specified in Subsection 3.2.3 in the main
text) we require at least one to two weeks on one node on the Vienna Scientific Cluster
(VSC3) [281] (equipped – per node – with either two Intel Xeon E5-2650v2, 2.6 GHz,
eight core processors or two Intel Xeon E5-2660v2, 2.2 GHz, ten core processors from
the Ivy Bridge-EP family). We typically used 16 to 20 asynchronous worker processes
per evolutionary optimization.

A.2.3.2 Clustering of Results by Similarity

In Subsection 3.2.4.4 of the main text (see in particular Fig. 3.69) we present and dis-
cuss results which originate from an independent and separate evolutionary algorithm
analysis which focuses entirely on the mobility of the perchlorate anions. The evolu-
tionary search is done by fixing the unit cell as well as the positions and orientations of
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the contained PQP+ molecules such that we can study the local minima in the poten-
tial energy as a function of the degrees of freedom of the ClO−4 molecules. To be more
specific these investigations were performed for the structures depicted in Fig. 3.66(a),
(e) and (c) of the main text Subsection 3.2.4.4. Among the solutions identified by the
evolutionary algorithm we chose roughly 5000 configurations, all representing a local
energy minimum in this energy landscape, for which we evaluated the set of order
parameters, x, specified in Eq. (A.18). Here, we extend this set of order parameters
for the problem at hand: (i) we extend x by additional bond orientational order pa-
rameters Ψ

(ClO4)
ν and Ψ

(PQP|ClO4)
ν for ν = 3, 8, and Ψ

(ClO4|PQP)
ν for ν = 3, 4, 5, 6, 8, as

defined by Eq. (2.62) in the main text Subsection 2.3.2 following the specification of the
order parameters in Appendix A.2.2.2. (ii) We further extend x with the orientational
order parameters α(ClO4|PQP) and β(ClO4|PQP) as defined by Eqs. (2.63) and (2.64) in
the main text Subsection 2.3.3 but considering the orientational order of perchlorate
molecules only with respect to PQP+ neighbors and, vice versa, by α(PQP|ClO4) and
β(PQP|ClO4). Further, (iii) we use the minimum, mean, median and maximum value of
the z coordinates of all ClO−4 ions and (iv) the average nearest neighbor distance of
the perchlorates and (v) of all molecules.

In order to identify configurations which are similar in their structure among all these
molecular arrangements and to further distinguish between different collections of sim-
ilar structures in these large data sets we used unsupervised clustering techniques (see
Section 2.4); a very instructive review on such useful tools and many other helpful
machine learning applications in physics or chemistry can be found in Ref. [119].

To be more specific, we combine here the so-called principal component analysis
(PCA) [238] which reduces the dimensionality of our structural data (or better order
parameters thereof) and a successive t-stochastic neighbor embedding (t-SNE) [244] in
order to map high-dimensional data points to low-dimensional embedding coordinates
(in two or three dimensions), while preserving the local structure in the data [119]
(see also Section 2.4 in the main text). With this tool at hand we aim at representing
high-dimensional data in two or three dimensions in order to unravel hidden – or hard
to identify – geometries (such as structural similarities) within the data set.

Coming back to the discussion on the study of the perchlorate molecules we narrowed
down the collection of different structures by admitting only such molecular arrange-
ments whose energy is located within a certain threshold interval, ∆E, above the energy
of the related best structures, respectively.

The respective set of order parameters of those structures is first scaled to unit-
variance– and zero-mean coordinates considering all data points. Subsequently, this
scaled set is subject to a PCA which is a projection of the Nf -dimensional feature space
(in our case of the order parameters or features) to an N∗l -dimensional latent space, see
Subsection 2.4.1. PCA is performed with the intention to identify leading singular val-
ues of the correlation matrix of the data which represent directions in the feature space
with large variance, i.e., which contain the most relevant information [119]. Thereby we
reduced the number of our order parameters from Nf=32 to N∗l =5 latent space coordi-
nates which we used to extract the results presented in Fig. 3.69 in Subsection 3.2.4.4
of the main text (the leading five principal components exhibit an explained variance
of λe >5%, where λe is defined by Eq. (2.75) in Subsection 2.4.1 of the main text).
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The latent space data points (each representing a molecular configuration) are then
subject to a t-SNE analysis (see Subsection 2.4.4 of the main text for details) and
are thereby mapped onto a two-dimensional t-SNE manifold spanned by the axes “t-
SNE 1” and “t-SNE 2”, see Fig. A.22. It is often easier to visually separate clusters
of similar data points in a few t-SNE dimensions than in a higher dimensional PCA
latent space [119].

In addition, we performed a DBSCAN [243], i.e., a density-based clustering algorithm
(see Subsection 2.4.3 of the main text) which automatically labels the different clusters
(each representing a family of structurally similar configurations). The cluster labels
are highlighted in the left panel of Fig. A.22 by color coding and the minimum energy
of each cluster of structures is indicated in the right panel of Fig. A.22, also by a color
code. The results clearly indicate, that several clusters are separated by only minute
energy differences. Four of these configurations, separated by an energy difference of
38 meV per molecule pair, are shown in Fig. 3.69 in Subsection 3.2.4.4 of the main
text.
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Figure A.22: Dimensional reduction of order parameters of a structural data set of supramolecular
configurations into a two-dimensional manifold spanned by t-SNE 1 and t-SNE 2 using t-SNE [244]
in order to identify the structurally different supramolecular configurations presented in Fig. 3.69
in Subsection 3.2.4.4. Panel (a) and (b): Separated clusters represent structurally different config-
urations. The small dots (representing the different configurations) are color-coded by the energy
per PQP+– ClO−

4 pair in the unit cell, U/N , of the respective configurations (see color bar). Panel
(a): Labels of clusters are highlighted using larger, uniformly colored dots in the background (in
an arbitrary color scheme). Panel (b): Same as panel (a) but the background-colors of each dot
indicate the minimal energy amongst all configurations of the respective cluster to which the dots
are assigned to (see color bar). The emphasized red dot indicates the structure with the lowest
energy.
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