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Kurzfassung

Spontane Selbst-Organisation bezeichnet die Fähigkeit von kolloidalen Teilchen, sich ohne
äußere Einflüsse (wie etwa elektrische Felder oder chemische Wirkstoffe) in (geordneten)
Strukturen anzuordnen. In dieser Arbeit wurde die Selbst-Organisation von sogenannten
Inverse patchy colloids (IPCs) untersucht: diese Teilchen wurden ursprünglich als Modell-
systeme eingeführt, um adsorbierte Sternpolymere auf geladenen Kolloiden zu beschreiben.
Das daraus entwickelte Modell lässt sich aber auch zur Charakterisierung eines breiten Spek-
trums von Kolloiden mit heterogen geladenen Oberflächen heranziehen.

Unsere IPCs bestehen aus einem negativ geladenen, sphärischen Zentralteilchen, das auf
den Polregionen mit positiv geladenen patches dekoriert ist. Als Folge der komplexen At-
traktion und Repulsion der verschieden geladenen Oberflächenbereiche sind die Wechsel-
wirkungspotentiale dieser Teilchen (und somit auch ihr Phasenverhalten) deutlich kom-
plexer als jene konventioneller patchy colloids.

Mit Hilfe von Molekulardynamik Simulationen haben wir ein Spektrum an physikalischen
Eigenschaften von IPCs untersucht, wobei wir – neben der Temperatur und der Dichte – ins-
besondere die Oberflächenladungsverteilung der verschiedenen Regionen, die Größe der
patches und deren Interaktionsreichweite systematisch verändert haben. Dabei haben wir
gefunden, dass Modelle mit kleiner patch Größe keine geordneten Strukturen bilden kön-
nen; die entstandenen ungeordneten Phasen wurden auch mit Integralgleichungsverfahren
untersucht. Weiters konnte gezeigt werden, dass IPC Modelle mit patches mittlerer Grøße
eine neue hybride kristall-flüssig Phase bilden können: ihre Eigenschaften wurden mit
Hilfe statischer und dynamischer Korrelationsfunktionen eingehend untersucht. Schließlich
wurde gefunden, dass IPCs mit großen patches in FCC Gittern kristallisieren.





Abstract

Spontaneous self-assembly is a process in which a disordered system crystallizes into an
ordered structure without external influence. In this work, we study the self-assembly prop-
erties of inverse patchy colloids (IPCs). IPCs were originally introduced to describe the
complex colloids formed by the adsorption of polyelectrolyte stars onto charged colloids,
however the proposed model of IPCs is very versatile and can be used to describe many real
systems of colloids with a heterogeneously charged surface.

We consider IPCs composed of a negatively charged central body and two positively-
charged patches localised at the poles. The complex interplay between the regions of like
and unlike charge makes the phase behavior of IPCs considerably more complex than the
one typical of conventional patchy colloids.

Using molecular dynamics simulation, we investigated the model by varying the charge
distribution, the size of the patches, and the interaction range. Models with small patch
extension did not spontaneously self-assemble into any ordered structue, thus we studied
their fluid phase by means of integral equation theories. Models with medium patch exten-
stion crystallized in a novel hybrid crystal-liquid structure, that we characterized by means
of correlation functions. Finally, models with large patch amplitudes formed a face centered
cubic lattice.





In ricordo di Giuseppe Pitzalis (1960-2008)

“Mi piace il numero quindici, si può usare in tante espressioni:
fino a pagina quindici, quindici piegamenti. . . ”
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1 Why bother reading?

Spontaneous self-assembly is a process where a disordered system crystallizes into an
ordered structure without external influence [GS07], like electric fields or chemical agents.
What triggers this process, and how to obtain control into which ordered structure will
be formed, are yet open questions that scientists from many different fields (physicists,
chemists, material engineers. . . ) try to answer. Such a question arises not only out of
scientific curiosity, but also because of the huge amount of possible applications ranging
from medicine (drug delivery, tissue synthesis) to technology (construction of devices and
sensors).

The predominant approaches for the manufacture of complex materials are top-bottom
methods, which work like the sculpture: for example, computer microprocessors are manu-
factured via photolithography, where silicon layers are shaped using lasers or X-rays. Top-
bottom methods have a major disadvantage: they can be very expensive, partially because
they waste materials during the “sculpting”. The opposite approaches are called bottom-up
processes. Methods that follow this philosophy aim to construct smart building blocks that
will eventually form the desired structure without further action or, in other words, will
self-assemble. Consequently, there is no waste of materials (as long as the production of the
building blocks is efficient).

Spherical colloids with isotropic interactions only yield phases of simple simmetry such
as face- or body-centered cubic: self-assembly of more complex phases requires particles
that are either anisometric (i.e. nonspherical) or have anisotropic interactions. In this work,
we focus on a model for colloids with heterogeneously charged surfaces, the so-called in-
verse patchy colloids (IPCs). With a negatively charged central body and positively charged
patches at the poles, IPCs are characterized by their charge distribution, their interaction
range, and the size of the patches. The first two parameters are fixed during the synthesis,
while the interaction range is influenced by the pH of the solution in which the IPCs are
dissolved. In conventional patchy colloids, the patches attract each other; in IPCs, due to the
charge distribution, patches repel each other while attracting the center of the colloid. This
“inverse” behavior of IPCs with respect to conventional patchy particles is the origin of the
name “inverse” patchy colloids.

Using molecular dynamics simulations, we study few IPC models, varying the parameters
that characterize the interaction: the patch size, the interaction range and the charge dis-
tribution. We identify which parameter combinations lead to spontaneous self-assembly of
ordered structures, and we characterize these structures in depth from both the structural
and the dynamical point of view.

The thesis is organized as follows. Chapter 2 introduces inverse patchy colloids, and
summarizes some results about IPCs from other authors that are useful in the context of
this work. Chapter 3 introduces the theoretical framework needed to study inverse patchy
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1 Why bother reading?

colloids, namely the correlation-functions formulation of fluid state theory (first three sec-
tions), some self-consistent approximated methods to compute correlation functions (fourth
section), and molecular dynamics computer simulations (fifth section). Chapter 4 contains
a summary of the results obtained in the three years of the Ph. D. studies, divided in four
sections, each one describing a group of IPC models with similar self-assembly properties.
Finally Chapter 5 presents some concluding remarks.
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2 Inverse patchy colloids
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2.1 Colloids

The usual dictionary definition of colloidal dispersion involves a mesoscopic solute in a
microscopic solvent. A more precise reference, maybe an encyclopedia or even Wikipedia,
specifies the dimensions of the solute as ranging between the micrometer and the nanome-
ter scale. To understand where these limits come from, one has to think about the most
important phenomena reguarding colloids, the Brownian motion, in which the solute is seen
floating, apparently randomly, in the solvent, without being forced to sediment by gravity.
The following definition comes from [Fre02].

Let us consider a small isolated body of mass m and density ρ. The body is put in a
container, filled with a medium of density ρm at temperature T ; the gravitational field is
considered constant and of intensity g. If the density of the body is larger than that of the
medium, it will not float on the surface, and its mass will be reduced by the buoyancy to
m∗ = m(1− ρm/ρ). In this condition, the body will be found at an average heigth h from
the bottom of the the container of

〈h〉 =

∫∞
0 h exp

(
−m∗gh

kBT

)
dh∫∞

0 exp
(
−m∗gh

kBT

)
dh

=
kBT

m∗g
, (2.1)

where kB is Boltzmann’s constant. At room temperature, a macroscopic body with a mass
as small as a tenth of gram will just sink to the bottom of the box: a colloid has to be much
smaller. [Fre02] defines a colloid as a body that can float higher than its size: assuming a
spherical shape with radius σ, the condition kBT/m∗g > 2σ can be expressed as

3kBT

8π(ρ− ρm)g
> σ4. (2.2)

For an excess density of ρ− ρm = 1g/cm3, this formula gives the upper limit of 1µm stated
in the beginning – on earth. Of course, the same experiment carried in a space station would
allow a larger size.

From this formula alone, it would seem that every material with a sufficiently low density
would behave as a colloid, but this is not what intuition suggests. A solute molecule is not
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2 Inverse patchy colloids

only meant to float: it also has to move due to thermal diffusion. In a time ∆t, a spherical
particle diffuses approximatively

√
2D∆t where D is the diffusion constant. Since for a

spherical particle D = kBT/3πησ, with η the viscosity of the medium, the time required to
diffuse further than a diameter is

∆t(2σ) ' 3πησ3

kBT
. (2.3)

For realistic values of η, a diffusion over 2σ with σ ' 1µm happens in times of the orders of
seconds; and due to the cubed radius, increasing the size leads to a fast increasing diffusion
time. Thus, a macroscopic body of the same density as water (some kinds of wood, for
example) would only be a colloid in a timescale much larger than that of human observation
times.

The lowest limit stems instead from the physical description. A colloid is defined [Fre02] as
something whose internal structure is not needed for the description of the phase behavior.
This of course does not mean that the internal structure is irrilevant, just that the phase
behavior can be predicted without its knowledge. For example, to understand the biological
function of a protein, their exact chemical composition is crucial; but to compute its phase
diagram in water solution, it is not. Thus, the same body can be regarded or not as a colloid
depending on which properties are being studied.

There are at least three good practical reasons for which colloids are interesting.

• For theorists (physicists and chemists): colloidal solutions are composed by a solute
and a solvent, and the particles of the former are larger (and slower) than those of the
latter by some order of magnitudes. When the study is only concerned with the solute,
the exact dynamics of the solvent is so fast that it can be treated as if it was a continu-
ous medium, and the interaction between solute and solvent can be approximated with
wonderful accuracy using classical statistical mechanics. Thus, the required mathemat-
ical methods are well-known and simple, leaving the researcher free to concentrate on
the physics.

• For experimentals (physicists, chemists, biologists, engineers. . . ): colloids are cheap and
reasonably fast to manufacture, and due to their size observations can be carried with
optical microscopy. Again, this frees the researcher to concentrate on the physics and
not on the methods.

• For everybody: there are many technologic applications of colloids. They are ubiqui-
tous, within our bodies, in the food we eat, in many things we use in everyday life.
Further, considerable hope rests on colloidal science for the discovery of new technol-
ogy.

A key feature of colloids, and in general of substances in solution, is the range of in-
teractions. Long-ranged interactions are well known and frequently present simple phase
diagrams like the left one in figure 2.1: a well defined vapor/liquid transition, with both a
triple and a critical point. This kind of behavior is well documented in literature [HM06].

Short-ranged interactions are frequently associated with computer simulations. In fact
it is true that the first computer, the ENIAC built in Los Alamos during the Manhattan
Project, was tested simulating the dynamics of hard disks, and later of hard spheres. These
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2.2 Patchy colloids

studies showed that hard particles without attractive forces have a simple phase diagram,
with only a fluid and a face centered cubic crystal (FCC) state (figure 2.1, center) depending
on the density (temperature obviously does not play a role). Even this, at the time, sounded
unbelievable: while now it is understood that short-ranged repulsion and excluded volume
effect are the main factors that decide the phase behavior of a system, at the time it was
widely believed that any phase transition occurred thanks to attractive interactions. It was
even argued that hard particles were unphysical, but at present day this model is frequently
used to study many systems (for example silica particles [RJWS09]) and they are often used
as the first degree of approximation in studies of other particles.

If a short-ranged isotropic attraction is added to hard spheres, the phase diagram is similar
to the one for particles with long-ranged interactions. Fluid-solid transition depends again
on temperature, and a liquid-vapor transition branch is found (figure 2.1, right), although it
is only a metastable state that would separate to solid-fluid given an infinite time. Isotropic
short-ranged interactions were also extensively studied in the sixties and seventies, and they
are well understood theoretically thanks to integral-equations theories [HM06].

Figure 2.1: Phase diagram of a long-range-interactions substance (left); Hard Spheres (center); HS plus short-
ranged attraction (right).

2.2 Patchy colloids

The next step after isotropic colloids is to increase complexity by reducing the symmetry
of the interactions. Anisotropic particles can be more difficult to manufacture, and require
more complex mathematics to deal with the orientations, but at the benefit of a richer phase
diagram, featuring new phases that have a larger field of application. Anisotropy in colloidal
systems can be introduced in many ways [GS07]. The most obvious one is using anisometric
(i.e. non-spherical) colloids: particles (i.e. hard non-spherical particles), like cubes [RSI+11],
ellipsoids [MFV09], octapods [QdGQ+12] and more complicated shapes (see figure 2.2). The
other way to introduce the anisotropy is via the potential: for example, manufacturing hard
spheres with an electric or magnetic dipole moment.

In some cases, the interactions are localized in small regions of the surface. For example,
proteins only form bonds at particular spots. Another example are the famous Janus par-
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2 Inverse patchy colloids

Figure 2.2: Hard spheres can be made
anisotropic by making the
shape nonspherical, or
by adding an anisotropic
potential.

ticles [GJC09, HCLG08], spherical particles that like the roman god have two faces: a rigid
one, and an interacting one that can attract the interacting face of another particle. These
colloids are fairly easy to manufacture: hard spheres are lined against a wall and sprayed
with a chemical. The face that is not protected by the wall gets coated, and becomes attrac-
tive, while the other stays rigid. The attractive part of the surface is called a patch. The three
snapshots in the left half of figure 2.3 show simulation snapshots [SGP09, GLL+10] of Janus
particles in phases intermediate between the fluid and the FCC crystal seen in hard spheres:
micelles and vescicles (top), and “wrinkled” planes (bottom). More complex variants of
Janus colloids can be manufactured with more than one patch and different ratios between
the attractive surface and the rigid one. Snapshots of a two-patch model are shown in the
right half of figure 2.3: lamallae for small patch extension, and planes for larger amplitudes.

This section presented a very small sample of what can be done with patchy colloids, but it
should have coveyed the message that anisotropic particles exhibit complex phases that are
not present in isotropic systems. Excellent review papers on the subject are [BBL11, PK10,
GS07].

2.3 Inverse patchy colloids

A different kind of patchy particles was proposed in [BKL11]. These colloids have charged
surfaces, but different regions carry charge of different sign: thus, while conventional patchy
particles have patches that can attract the patches of other particles, inverse patchy particles
have patches that repel each other, while attracting the rest of the colloidal surface (see
figure 2.4). Because of this peculiarity they are called inverse patchy colloids (IPCs).

Although originally developed to describe mesoparticles obtained from the adsorption
of charged polyelectrolyte stars onto the surface of oppositely charged colloids, the model
works equally well for heterogeneously charged colloids synthesized in the lab [vOHNR15].
In the original paper [BKL11], the authors concentrated on IPCs with two charged, sym-
metric, polar patches and an oppositely charged equatorial belt. This system was modeled
as three equivalent point charges: one for the center, and two for the patches. The in-
teraction potential between two colloids was derived by solving a Debye-Hückel equation,
i.e. a Poisson equation where the charge density is assumed proportional to the Boltzmann
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2.3 Inverse patchy colloids

Figure 2.3: Structures obtained via simulations using the the Kern & Frenkel model (a hard sphere with square
well interactions between the patches) with a single Janus (50%) patch (figures in the left half)
and two patches with different opening angles (right). The one-patch model forms wrinkled solid
planes [VPS+13], micelles and vescicles [SGP09]; the two-patch model, depending on the patch size,
forms lamellae or planes [GLL+10].

factor of the potential (the so-called Maxwell-Boltzmann approximation) and the exponen-
tial is linearized. The solution was found analytically, as an expansion in Bessel functions
and Legendre polynomials. Such a complicated expression is unsuitable for simulations,
so the authors also presented a coarse-grained description: a simpler model that preserves
all the key physical features. A few years later the model was extended to asymmetrical
patches [SBK15].

The coarse-grained model is composed of a hard sphere of radius σC carrying three inter-
action sites. One corresponds to the colloid center, and two to the patch centers; the latter
are placed at distances ei from the colloid center, in opposite directions (see Figure 2.5). The
colloid center carries a charge Zc, while the patches have charge Z1 and Z2. The colloid cen-
ter has an interaction sphere of radius σC + δ/2, where δ is the interaction range; the patch
interaction spheres have radius σi. By construction, for each patch the following relations

Figure 2.4: Types of interaction of two IPCs along the three main orientations.
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2 Inverse patchy colloids

Figure 2.5: IPC cross-section.

hold: [BKL11]

σC + δ/2 = ei + σi and cosγi =
σ2C + e2i − σ

2
i

2eiσC
, (2.4)

where γi is half of the opening angle of patch i, and i = 1, 2. In addition, the validity of
the solution of the Debye-Hückel equation requires that all the sites where the charge is
located do not lie outside the colloidal particle, i.e. ei < σC. By virtue of the four constraints
represented in equation (2.4), of the eight geometric parameters introduced (σC, δ,σi, ei,γi)
only four are independent (three if the patches are symmetrical).

For two IPCs separated by a center-center distance r whose orientations are given by the
unit vectors ω̂1 and ω̂2, the pair interaction is given by [BKL11]

U(r, ω̂1, ω̂2) =


+∞ if r < 2σC
3

4πσ3C

∑
ij uijwij(r, ω̂1, ω̂2) if 2σC < r < 2σC + δ

0 if r ≥ 2σC + δ,
(2.5)

where i (j) specifies one of the three interaction sites of the first (second) IPC. Thewij(r, ω̂1, ω̂2)
are the overlap volumes of the corresponding interaction spheres, and the uij are the cou-
pling constants quantifying the strength of the ij interaction. While the uij are constants,
the wij – as well as the potential U – depend in a complex way on both the inter-particle
distance and the relative orientation of the two IPCs; luckily the wij(r, ω̂1, ω̂2) can also be
written as simple functions of the site-site (i.e. patch-center, center-center and patch-patch)
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2.4 Studies of IPCs

distances [BKL11]:

wij(rij) =



0 if rij > σi + σj

π
3

[(
2σi +

σ2i−σ
2
j+r

2
ij

2rij

)(
σi −

σ2i−σ
2
j+r

2
ij

2rij

)2]
+

π
3

[(
2σj −

σ2i−σ
2
j−r

2
ij

2rij

)(
σj +

σ2i−σ
2
j−r

2
ij

2rij

)2]
if σi + σj > rij > |σi − σj|

4π
3 min(σi,σj)3 if rij < |σi − σj|

(2.6)

Of the nine uij, only six are independent: uCC,uC1,uC2,u11,u22 and u12. For two identical
patches they reduce to three, uCC, uCP and uPP. In both cases, all the uij are fixed using
the Debye-Hückel analytical description of the model [BKL11, SBK15], that relates them to
macroscopic quantities like the screening of the solution, and to the model-characteristic
parameters, i.e. the geometry (σC, δ,γi) and the charge distribution (Zc, Z1 and Z2).

2.4 Studies of IPCs

Shortly after the original paper [BKL11], the same authors presented studies where the
IPCs were constrained to two dimensions via both neutral and charged walls [BLK13, BLK14].
Their simulations showed a large number of obtainable phases depending on the model pa-
rameters. Various patch sizes and also different charging were investigated: overall neutral
systems (total patch charge + central body charge = 0) and overall charged systems (total
patch charge + central body charge 6= 0). It was seen that models with a small patch did not
form ordered structures, while particles with medium and large patch extensions formed
hexagonal structures (see figure 2.6). In most cases, the orientation (defined as the direc-
tion that joins the two patches) of the IPCs was confined to the plane, but the model with
the largest patch also showed a flower-like arrangement where one of the particles pointing
orthogonally to the plane.

Figure 2.6: 2D IPC structures from [BLK13, BLK14]. The number in the subfigures refers to the model, n stands
for neutral and the number is the γ angle in degrees.

In a successive study [NKD+14], the IPCs were studied in three dimension, and a simi-
lar structure was found. Particles with a total net charge and two symmetric patches with
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2 Inverse patchy colloids

γ ' 38.6◦ where investigated, and the full phase diagram was explored using a large assort-
ment of techniques (Monte Carlo simulations inNpT and µVT ensembles, a genetic algoritm,
thermodynamic integration, the Einstein molecule approach and direct coexistances). A
phase composed by parallel planar layers was observed: the planes had the same hexagonal
alignment shown by one of the models presented in [BLK13], the one shown in the center
of figure 2.6. Orthogonal views of the three-dimensional lattice are shown in figure 2.7,
where it may be noted that the planes are not aligned with each other. A follow-up pa-
per [NB15] studied the stability of this phase with respect to overcharging, patch amplitude,
and interaction range.

Figure 2.7: The crystalline structure found in refer-
ence [NKD+14]. The planes have an hexag-
onal lattice and are parallel but not aligned
between themselves.

At the same time, the first experimental studies of IPCs began. In [vOHNR15], silica
particles of 2 µm of diameter were decorated with patches made of a charged dye; two
snapshots are shown in figure 2.8. In this experiment the patches are not symmetric, one
being around 40◦ and the other around 50◦.

Figure 2.8: (left) Epifluorescence image that shows IPCs aggregation. It is not easy to distinguish the presence
of patches, although the aggregation suggests it, since silica would otherwise be repulsive. (right)
confocal microscope image of two IPCs, where the patches are more visible and the patch-to-equator
alignment is evident. Both pictures come from [vOHNR15].
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“Quando te l’ho chiesto?”

Roberto Marcis
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While the previous chapter presented the phenomenology and did not need mathematical
details, the present one introduces the theoretical framework typical of fluid state theories,
based on statistical mechanics and correlation functions. We will go in depth as a standard
textbook would; this chapter is meant as a brief summary, and as a quick introduction for an
unexperienced reader to the physical tools used in the work. A reader already familiar with
the basics of fluid state theory can skip to subsections 3.4 and 3.5 where implementations
are discussed. To ensure ease of reading, these subsections have been kept self-consistent,
repeting all the non-standard notations.

Three types of properties are discussed. Static properties are all the features of the system
that do not evolve in time. This includes two different but closely related concepts: thermo-
dynamic properties and structural properties. The former focus at the phase diagram and at
equations of state; the latter describe how particles are arranged. Dynamic properties are all
those quantities that depend on time.
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3 The physics behind

3.1 Static properties: thermodynamics

In this section we define what phase transitions are, and why we are interested in them.
The present discussion is based on the standard textbooks [Cal85, Pat96, Fer72], from which
all the formulas are taken, and to which the reader is referred to for more details.

3.1.1 Ensembles and macrostate

Let us consider a systems composed by N particles, enclosed in a volume V and with total
energy E. In theory, it is possible to computate the trajectories of the particles by solving
Newton’s equations; in practice, since for a macroscopic system N = O(1023), this task is
impossible. Moreover, the single trajectories are of no relevance, because the state of the
system can be described by means of experimentally measurable thermodynamic variables
like density, temperature or pressure.

Constraining the system to fixed E,V and N defines the microcanonical ensemble, which
is described by means of the entropy, S(E,V ,N). The triplet (E,V ,N) defines the macrostate;
each possible configuration of the positions and of the momenta of the particles is called a
microstate. For every ensemble of N particles confined in a volume V , there are many ways to
arrange the positions and momenta of the particles in such a way that the total energy is E;
thus, to each macrostate will correspond a number of microstates, Ω(E,V ,N), that is almost
always larger than one, and might be very large for some values of E. The link between the
entropy and the micro- and macrostate is given by the famous formula

S(E,V ,N) = kB lnΩ(E,V ,N), (3.1)

where kB is Boltzmann’s constant.

The partial derivatives of the entropy with respect to the thermodynamic variables are
called equations of state, and yield the pressure p, the temperature T and the chemical
potential µ:

∂S

∂E

∣∣∣∣
VN

=
1

T
,

∂S

∂V

∣∣∣∣
EN

=
p

T
,

∂S

∂N

∣∣∣∣
EV

= −
µ

T
. (3.2)

Knowledge of these three derivatives and of the three thermodynamic variables is sufficent
to reconstruct the entropy, since it can be proven that [Cal85]

S(E,V ,N) =
E

T
+
pV

T
−
µN

T
, (3.3)

where p, µ and T are all functions of E, V and N. This relation can also be inverted for the
energy, yielding

E(S,V ,N) = TS− pV + µN, (3.4)

where p, µ and T are now functions of S, V and N.

Let us now consider a system immersed in a thermal bath1 with which it exchanges energy
in the form of heat. At thermodynamic equilibrium, the system will assume the temperature
of the bath, so that the thermodynamic variables will be (N,V , T). This setup defines the

1See the suggested books for the definition of thermal bath.
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3.1 Static properties: thermodynamics

canonical ensemble, and the thermodynamic potential that describes it is the Helmholtz
free energy, linked by a Legendre transform 2 to the energy:

F(N,V , T) = E(S,V ,N) − TS, (3.5)

where S = S(N,V , T).

Various other ensembles can be defined, but here we only define the two that will be
used in the work. The first is the isotherm-isobaric, where the volume is not fixed because
the walls of the container are mobile. The system reaches mechanical equilibrium with the
surroundings when its pressure is equal to the external one; it is described by the Gibbs free
energy, linked to the energy by a double Legendre transform

G(N,p, T) = E(S,V ,N) − TS+ pV(N,p, T), (3.6)

where S = S(N,p, T) and V = V(N,p, T). The last is the grand canonical ensemble, where
the walls do not move but allow exchange of both heat and particles. The flow of particles
between the system and its surroundings will stop when the system and the bath reach
chemical equilibrium, i.e. when their chemical potentials will be the same. It is described by
the grand potential

Ω(µ,V , T) = E(S,V ,N) − TS− µN, (3.7)

where S and N are both functions of (µ,V , T).

Concluding with an interesting side note, the combination of having mobile walls that al-
low exchange of both energy and particles (a hypotetical (µ,p, T) ensemble) makes no sense,
because experimentally it would be impossible to distinguish the system from the bath, and
applying all the three possible Legendre transforms to the energy gives as a thermodynamic
potential

E(S,V ,N) − TS+ pV − µN = 0 (3.8)

in virtue of equation (3.4).

3.1.2 Phase diagram and phase transitions

Even knowing the energy, pressure, and chemical potential for a system at fixed N, V and
T , it is not obvious if the system is found in a liquid, solid or whatever other phase; and
“Which phase will the system be found in?”, “What is the extent of this particular phase?”
are some of the most interesting questions that can be made, especially from the point of
view of applications.

Let us take as an example water in the isothermal-isobaric ensemble. It is pretty obvious
that the molecular arrangement is very different between liquid water, vapor and ice. How
does the system choose which state is the stable one, at certain pressure and temperature?
The Gibbs free energy is well defined in both phases, and for each phase they have a different
value; the phase with the lower value is the stable one – for that value of (N,p, T)! Figure 3.1
illustrates the point: Gibbs free energy curves for solid, liquid and gas are shown, and the
chosen phase at fixed T , p and N will be the one with the lowest G.

2The general definition of Legendre transform is actually F(p) = infx f(x) − px. Thermodynamic potentials are assumed to be doubly
differentiable and convex functions, thus a sufficient condition is that p(x) = f ′(x). Assuming that at least locally is possible to invert p(x),
the Legendre transform becomes F(p) = f(x(p))−px(p) with x = f ′−1(p).
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3 The physics behind

Figure 3.1: Gibbs free energy as a function
of temperature for three phases
along paths at constant p and N.

The information on phases can be collected in the so-called phase diagram. The thermody-
namic variables are on the axes, and depending on which ones are used the phase diagram
will have a very different look. The most comprehensive ones are three-dimensional plots,
but they are difficult both to draw and to visualize, so two-dimensional projections of the
three-dimensional representation, where a third variable is kept constant, are the norm.
Some examples are shown in figure 3.2.

Pressure-temperature diagrams commonly emerge from experimental data: the pressure
is often the atmospheric one, the temperature can be easily manipulated, and the number of
particles is assumed constant. The p− T diagram in the left panel of figure 3.2 shows in blue
the three typical transition branches: liquid-solid, liquid-vapor and solid-vapor. Liquid and
vapor are structurally indistinguishable, and the only difference is the density. At temper-
atures and/or pressures higher than the critical ones (signalled in the figure by the critical
point PC) the phase transition does not happen anymore. Old textbooks call these region the
gas, but in research it is customary to refer to vapor, liquid and gas as a single fluid phase.
Most materials have a phase diagram that follows the blue curve in the figure; the red line
charachterizes an alternative liquid-solid branch for materials (like, for example, water) that
can be made liquid by compressing the solid.

Pressure-volume diagrams are the first ones encountered in thermodynamics classes, be-
cause the work done at constant temperature by/onto the system – computable as

∫
pdV

– is portrayable as areas below the isotherms, i.e. the curves at constant temperature de-
picted in green in the central panel of figure 3.2. The blue curves enclose the coexistence
region, where the system will separate into two phases. For example, following the lower
isotherm, the system (if initially in the vapor phase) will meet the coexistence region when
compressed, and separate; the larger the compression, the more vapor will liquify, until all
the system will be found in the liquid phase. The coexistence region around the triple point
can be either a smooth minimum (red in figure) or a cusp.

In research, the thermodynamic limit (V and N → ∞, but N/V = ρ constant) is assumed.
In this case, ρ takes the place of both N and V , and only another variable is needed to specify
a statepoint, usually pressure or temperature. Pressure-density diagrams, like the one in the
right panel of figure 3.2, are often seen in papers about theoretical methods (integral equa-
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3.2 Static properties: structure

tions, perturbation theories. . . see next sections). Often, theoreticians work in the canonical
ensemble, where temperature and density are fixed. When the above-mentioned methods
are used to compute phase diagrams, the pressure is computed at single statepoints along
isotherms by varying the density; deswegen the results are best presented by drawing these
isotherms in a p− ρ diagram.

Another type of diagram which is frequent in papers is temperature-density. T − ρ dia-
grams are practical in presenting results from simulations which were run in the canonical
ensemble.

3.2 Static properties: structure

In this section we introduce the time-independent spatial correlation functions. All the
formulas are quoted from [HM06].

3.2.1 Reduced distribution function

“The partition function is the dream of every theoretician.”

Giorgio Pastore

The simplest Hamiltonian for an N-body system is composed by the kinetic term plus a
pairwise additive isotropic potential:

H = K+U =

N∑
i=1

p2i
2m

+

N−1∑
i=1

N∑
j=i+1

ϕ(xi,xj), (3.9)

where the xi are the positions of the particles and the pi are the momenta. In the canonical
ensemble, with fixed temperature T and volume V , to each possible position-momentum
configuration of the N particles {p,x} can be attributed a probability density function in

Figure 3.2: Examples of phase diagram: p− T (left), p− ρ (center) and T − ρ (right). S,V,G,L denote the phase:
solid, vapor, gas, liquid; Pc and Pt the critical and triple point. For the line colors, see the text.
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configuration space

f({p,x}) =
e−βH({p,x})

h3NN!QN
, (3.10)

where h is the Plack constant and QN is the partition function,

QN =

∫
e−βH({p,x})

h3NN!
dNpdNx, (3.11)

the integral of 1 over all the possible microstates (intended, as in the previous sections, as the
positions and momenta of all particles) weighted by the Boltzmann factor e−βH({p,x})/h3NN!.
This quantity was dubbed as a dream, because its knowledge would provide all the possible
information on the system. Unfortunately, it is just a dream because it is not possible the
compute the extremely complicated integral except for non-mutually-interacting particles.

The probability density function is a very complicated object. To lower the number of
variables, we define the reduced (to n-particles) probability density by integrating away
n−N coordinates:

f(n)(p1,x1, . . . ,pn,xn) =
N!

(N−n)!

∫
f({p,x})dN−npdN−nx. (3.12)

Because of the addittivity of the kinetic terms, the momenta can be factorized

f(n)(p1,x1, . . . ,pn,xn) = ρ
(n)
N (x1, . . . ,xn)

n∏
i=1

e−βp
2
i /2m

(2πmkT)3/2 , (3.13)

and since their contribution is trivial, they can also be integrated away. The remaining part
is called the n-particles density

ρnN(x1, . . . ,xn) =
N!

(N−n)!

∫
e−βU({x})

ZN
dN−nx, (3.14)

where
ZN =

∫
e−βU({x}) dNx (3.15)

is the reduced partition sum (the letter Z comes from the german Zustandsumme, literally
sum over states). The n-particles densities rapresent the probability density of finding a
particle in the position specified by the arguments. For example, ρ(2)N (x1,x2)dx1 dx2 is the
probability to find a particle in the volume dx1 around x1 and another one in the volume
dx2 around x2. n-particles densities are normalized such that∫

ρ
(n)
N (x1, . . . ,xn)dnx =

N!

(N−n)!
. (3.16)

From the n-particle densities it is possible to define the n-particles distribution function

g
(n)
N (x1, . . . ,xn) =

ρ
(n)
N (x1, . . . ,xn)

ρ
(1)
N (x1) . . . ρ

(1)
N (xn)

. (3.17)

If particles where completely uncorrelated – as in a perfect gas – then the n-particle densities
could be factorized:

ρ
(n)
N (x1, . . . ,xn) = ΠNi=1ρ

(1)
N (xi), (3.18)
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3.2 Static properties: structure

and the g(n)N (x1, . . . ,xn) would be identically one; otherwise, the g(n)N (x1, . . . ,xn) signals
the deviation from complete uncorrelation. And since the only interaction that does not
originate a correlation between the particles is no interaction, the n-particles distribution
function measures the deviation from a perfect gas. Two equations of state can be written in
terms of the g(n)N (x1, . . . ,xn): the excess energy per particle

uxc =
1

2

∫
g
(2)
N (x1,x2)ρ

(1)
N (x1)ρ

(1)
N (x2)ϕ(r12)dx1 dx2 (3.19)

and the virial pressure

p = ρkT −
1

6

∫
g
(2)
N (x1,x2)ρ

(1)
N (x1)ρ

(1)
N (x2)x1 · ∇1ϕ(r12)dx1 dx2. (3.20)

Before ending this subsection, we introduce a compact notation for the ensemble average,

〈. . . 〉 =
∫
. . .
e−βU({x})

ZN
dN−nx, (3.21)

and two identities (that can be proven by direct evaluation) that will be of use in the next
section. Denoting with δ(x) the three-dimensional Dirac delta:

ρ
(1)
N (x) =

〈
N∑
i=1

δ(x−xi)

〉
, (3.22)

and

ρ
(2)
N (x,y) =

〈
N∑
i=1

N∑
j 6=i
δ(x−xi)δ(y −xj)

〉
. (3.23)

3.2.2 Homogeneous and inhomogeneous systems

The 1- and 2-particles densities (and distribution functions) have respectively 3 and 6 ar-
guments. To further simplify them we will consider homogeneous and isotropic systems.
Inhomogeneous and anisotropic systems may have walls or other obstacles, be subject to
external fields, or have a crystalline structure where the density is very irregular: to describe
these kind of systems, all the arguments are necessary. 1 Instead, in a pure unordered phase
and far from the surface, the n-particle densities and distribution functions vary smoothly,
and depend only on |x1 − x2| whenever the potential also does. The equilibrium (i.e. the
ensemble- or time-averaged) single particle density is constant,

ρ
(1)
N (x) = N/V = ρ, (3.24)

which greatly simplifies equation (3.17):

ρ(n)g
(n)
N (x1, . . . ,xn) = ρnN(x1, . . . ,xn). (3.25)

Of course, no real system is truly homogeneous, because in real systems there will always
be walls; but as long as surfaces effects can be neglected, experiments can study the bulk
behaviour of large samples, and calculations can use the thermodynamic limit.
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3 The physics behind

Assuming homogeneity and isotropy, we use the change of variable x2 = x1 + r to intro-
duce the relative position of two particles r, and the absolute positions can be integrated out
from the 2-particles distribution function g(2)N (x,x+ r): 3

1

V

∫
g
(2)
N (x,x+ r)dx = g(r) = g(r). (3.26)

The g(r) is called the radial distribution function, depends only on the radial distance under
the assumption of anisotropy, and it is normalized so that

ρ

∫
g(r)4πr2 dr = N− 1. (3.27)

The g(r) can be interpreted as the conditional probability density that, having a particle in
the origin, another will be found at distance r; thus, ρg(r)4πr2 dr is the number of particles
located in a spherical shell of thickness dr at distance r from the particle in the origin. This
interpretation can be better understood by looking at figure 3.3(a).

(a) Given a particle in the origin, the number
of different particles in the spherical shell at
distance r and thick dr is ρg(r)4πr2 dr.

(b) g(r) from scattering experiments on liq-
uid Argon at 85 K. The ripples near zero
are artifacts due to a Fourier transform.
From [HM06].

(c) Comparison of the g(r) of Argon in the
solid and the liquid phase.

Figure 3.3: g(r), explanation and example

In figure 3.3(b) a typical liquid g(r) obtained from experiments is shown: at small dis-
tance it goes to zero because of Pauli repulsion, while at large distances converges to unity,
signalling loss of correlation. This is a general fact: it can be proved analitically that

g(r)
r→∞−→ 1− 1/N. (3.28)

The peaks at intermediate distance, instead, characterize the structure. Figure 3.3(c) shows
a comparison of the g(r) of Argon in the solid and the liquid phase. Liquid Argon has
essentially no structure, and this is reflected in the absence of remarkable features in the
plot; on the other hand, the g(r) of solid Argon has very pronounced peaks and valleys,
revealing the presence of a rigid structure with ordered neighbours and vacancies.

We conclude the section with some equations that will be used in the implementation of
the theoretical methods. The equations of state shown in the previous section are greatly

3Many papers skip the integration and define g(r) = g
(2)
N (|x1 −x2|); this is obviously equivalent, although not rigorous. See [HM06].
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simplified in terms of the g(r):

uxc =
ρ

2

∫∞
0

g(r)ϕ(r)4πr2 dr, (3.29)

p = ρkT −
ρ2

6

∫∞
0

∂ϕ(r)

∂r
g(r)4πr3 dr. (3.30)

Another useful identity can be derived using equation (3.23):

1

V

∫
g
(2)
N (x,x+ r)dx =

1

Vρ2

∫
ρ
(2)
N (x,x+ r)dx

=
1

ρN

〈
N∑
i=1

N∑
j 6=i

∫
δ(x−xi)δ(x+ r−xj)dx

〉

=
1

ρN

〈
N∑
i=1

N∑
j 6=i
δ(r− [xj −xi])

〉
= g(r). (3.31)

The last line can be used, together with the physical interpretation (that ρg(r)4πr2 dr is the
number of particles located in a spherical shell of thickness dr at distance r from the particle in the
origin), to compute the pair distribution function from simulations:

ρg(r) =

〈
number of couples in(r− dr/2, r+ dr/2)

N4πr2 dr

〉
. (3.32)

3.2.3 Pair correlation and static structure factor

The pair distribution function has the problem that it does not converge to zero at infinity.
For later convenience,the pair correlation function is defined as

g
(2)
N (x1,x2) − 1 = h

(2)
N (x1,x2); (3.33)

in a homogeneous system this relation is simply h(r) = g(r) − 1.

Another important and closely related quantity is the static structure factor (SSF)

S(k) = 1+ ρĝ(k) = 1+ ρ8π3δ(k) + ρĥ(k) (3.34)

where the hat denotes a Fourier transform. The SSF is experimentally measurable in elastic
scattering experiments with neutrons or X-rays, via the differential cross section per unit
solid angle Ω

dσ
dΩ

(k) = N(Bi +BcS(k)), (3.35)

where Bi and Bc are called the coherent and incoehrent mean squared diffusion lengths,
which typically depend on the type of material but not on the shape of the sample; the size
of the sample only enters the equation through the number of particles in the sample N.
The delta contribution in formula 3.34 rapresents the particles that emerge from the sample
unscattered. Mathematically, it is due to the g(r) not converging to zero at r → ∞. The
introduction of h(r) helps making this evident.
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Figure 3.4: Liquid Sodium SSF. The dots
are from experiment, the line
is a Monte Carlo simulation
with isotropic potentials ∝ r−4.
Adapted from [Cac96].

Using formula 3.22 it can be also proven that

S(k) =

〈
ρ̂(k)ρ̂(−k)

N

〉
. (3.36)

where

ρ̂(k) =
N∑
i=1

e−ik·xi (3.37)

is the Fourier transform of equation (3.22).

Figure 3.4 shows a comparison of experimental and simulation results, where we can
observe the typical shape of the SSF in the fluid phase: a large main peak, a decay to unity
at large k, and a small but nonzero value at k = 0. The main peak of the SSF is usually
found at 2π/a, where a is the typical particle-particle separation; other peaks at smaller k
denote structures of periodicity larger than a. S(0) is a very important value, because it can
be proved that

S(0) = ρkBTχT , (3.38)

where χT is the isothermal compressibility of the system,

χT = −
1

V

∂V

∂p

∣∣∣∣
T

. (3.39)

During an isothermal phase transition (see figure 3.2, central panel), a finite change in vol-
ume does not induce any change in pressure: the compressibility diverges, and consequently
so does the zero value of the SSF.

3.2.4 Further correlation functions, integral equation theories

The direct correlation function c(x1,x2) is often defined by postulating the Ornstein-
Zernike (OZ) equation [HM06]

h
(2)
N (x1,x2) = c

(2)
N (x1,x2) +

∫
c
(2)
N (x1,y)ρ

(1)
N (y)h

(2)
N (y,x2)dy, (3.40)

but a more accurate density functional treatment (found for example in [HM06]) would
first introduce the c(2)N (x1,x2) as the linear response of the free energy functional to density
fluctuations and deduce equation (3.40) from it.

30



3.2 Static properties: structure

Figure 3.5: Direct action of A on B
in black; indirect action in
color – see equation (3.42).

The physical meaning of the OZ equation is very important: the total correlation (h) be-
tween two particles is given partially by the direct interaction between the two (c), and
partially by the indirect interaction that these particles have through the other particles in
the system. Denoting the convolution with the symbol ⊗, the OZ equation reads

h = c+ ρc⊗ h (3.41)

which can be formally expanded as

h = c+ c⊗ ρc+ c⊗ ρc⊗ ρc+ . . . (3.42)

where the colors refer to the lines in figure 3.5. The first term (c) accounts for the direct
interaction between particles A and B, the second term (ρc⊗ c) stands for the interaction
that a third particle, C, exerts on B by being influenced by A, the third term (ρ2c⊗ c⊗ c)
would include fourth particle, D, and so on. The OZ equation ensures that the full indirect
action is taken into account.

The convolution part of equation (3.40) is usually termed the indirect (or series) correlation
function

γ
(2)
N (x1,x2) = h

(2)
N (x1,x2) − c

(2)
N (x1,x2) =

∫
c
(2)
N (x1,y)ρ

(1)
N (y)h

(2)
N (y,x2)dy. (3.43)

We have introduced four correlation functions, g(2)N (x1,x2), h
(2)
N (x1,x2), c

(2)
N (x1,x2) and

γ
(2)
N (x1,x2), but since g(2)N (x1,x2)−1 = h

(2)
N (x1,x2) and γ(2)N (x1,x2) = h

(2)
N (x1,x2)−c

(2)
N (x1,x2),

only two are independent. To solve for two unknowns, two equations are needed: the first
is the OZ, (3.40), while the second, appropiately called closure equation, reads [HM06]

g
(2)
N (x1,x2) = e−βϕ(x1,x2)+γ

(2)
N (x1,x2)+B(x1,x2), (3.44)

where ϕ(x1,x2) is the two-body potential, and β = 1/kbT . B(x1,x2), called the bridge
function, can be derived in a density functional theory (found for example in [HM06]) as a
complicated functional of the pair distribution function. 4 As with the partition function, it

4As an historical digression, it is interesting to note the that the names bridge and series function come from the diagramatic expansion of
the logarithm of the cavity function. Three types of diagram are involved: the terms that involve disconnected diagrams, which look like
electrical circuits in parallel, sum to zero; the terms that look like electrical circuits in series sum to γ(x1,x2); the terms that look like
Wheatstone bridges sum to B(x1,x2). This is where the apparently strange names come from.
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is impossible to compute B(x1,x2) exactly, so approximations are needed. The first approx-
imation to the closure equation was proposed in 1958 by Percus and Yevick, and reads

g
(2)
N (x1,x2) = e−βϕ(x1,x2)γ

(2)
N (x1,x2), (3.45)

which corresponds to the choice B(x1,x2) = γ
(2)
N (x1,x2) + lnγ(2)N (x1,x2); the second, pro-

posed two years later, is called hypernetted chain closure (HNC) and sets the bridge function
to zero:

g
(2)
N (x1,x2) = e−βϕ(x1,x2)+γ

(2)
N (x1,x2). (3.46)

Not strictly needed in theory, but useful in practical calculations, is the cavity function

y(x1,x2) = g
(2)
N (x1,x2)eβϕ(x1,x2) = eγ

(2)
N (x1,x2)+B(x1,x2). (3.47)

By direct substitution in (3.17) and (3.14) it can be shown that the cavity function is the pair
distribution function of pair of particles that do not interact with each other, while interacting
with all the other particles of the system. The name cavity stems from hard spheres, for
which two noninteracting particles can be seen as compenetrable cavities. The introduction
of y(x1,x2) is justified by the fact that at very short distances the pair distribution function
goes to zero while the potential diverges. The cavity function is instead finite in this region.

In the homogeneous case, the OZ and closure equations greatly simplify:

h(r) = c(r) + ρ

∫
c(|r− y|)h(|y|)dy, (3.48)

g(r) = e−βϕ(r)+γ(r)+B(r). (3.49)

3.2.5 Extension of integral equations to anisotropic particles

When particles are not spherical, the distribution functions have to take into account the
orientations ω̂i, which in general need to be specified by three angles. In case of particles
with a cylindrical or axial symmetry, the orientation of a particle can be defined as the
direction of the symmetry axis, and specified with only two angles. For the IPCs, this is
the line joining the center of the two patches. In an anisotropic (no external fields) and
homogeneous (no walls and phase transitions) system, the two-particle correlation functions
for IPCs depend only on the mutual center-center distance r, the two angles between the
vector joining the center of mass (r) and the orientations of the particles, θ1 and θ2, and the
relative angle between to particles φ = φ2 −φ1 in the plane orthogonal to r.

The OZ equation, modified to take orientations into account, reads

h(r12, ω̂1, ω̂2) = c(r12, ω̂1, ω̂2) +
ρ

4π

∫
c(r13, ω̂1, ω̂3)h(r32, ω̂3, ω̂2)dr3 dω̂3. (3.50)

It is called the molecular OZ (MOZ) equation, and features a convolution in five variables.
The closure equation changes minimally:

g(r, ω̂1, ω̂2) = e−βϕ(r,ω̂1,ω̂2)+γ(r,ω̂1,ω̂2)+B(r,ω̂1,ω̂2). (3.51)
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3.3 Dynamic properties

3.3.1 Time-dependent correlation functions

Time-dependent correlation functions are frequently used in many fields of physics, engi-
neering and even economy. They are typically defined as

〈A(t ′ + t)B(t ′)〉, (3.52)

where A and B are two generic time-dependent functions, and 〈. . . 〉 denotes an ensemble
average. At thermodynamic equilibrium, the correlation functions do not depend on the
absolute time, t ′, but only on the time difference between the arguments, t, so that they are
more frequently defined as

〈A(t)B(0)〉. (3.53)

A correlation function for which A = B is called an autocorrelation function.

In this work we will use the normalized autocorrelation function of the velocity v(t)

cv(t) =

〈
v(t) · v(0)
v(0) · v(0)

〉
, (3.54)

the autocorrelation function (automatically normalized) of the orientation n̂(t)

cn(t) = 〈n̂(t) · n̂(0)〉 , (3.55)

and the mean squared displacement (MSD)

∆x2(t) =
〈
[x(t) −x(0)]2

〉
, (3.56)

where x(t) is the trajectory of a particle. Via the MSD we also implicitely define the diffusion
coefficient D as

∆x2(t) = 2dDt, (3.57)

in the limit of t → ∞. d is the dimension of the space, thus we would have 4Dt in two
dimension, 6Dt in three and so on.

The spatial correlation functions introduced in the previous sections (such as g(r) and
S(k)) can be extended to describe time-dependent observables. The extension of the g(r) is
the Van Hove function G(x, t), defined as [HM06]

G(x, t) =
1

N

〈
N∑
i=1

N∑
j=1

δ(x−xj(t) +xi(0)))

〉
. (3.58)

The Van Hove function can be seen as a density autocorrelation:

G(x, t) =
1

N

〈
N∑
i=1

N∑
j=1

∫
δ(x+ y −xj(t))δ(y −xi(0))dy

〉

=
1

N

〈∫
ρ(x+ y, t)ρ(y, 0)dy

〉
=
1

ρ
〈ρ(x, t)ρ(, 0)〉 (3.59)
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where

ρ(x, t) =
N∑
i=1

δ(x−xi(t)) (3.60)

is the obvious time-dependent extension of (3.22). The G(x, t) can be written as the sum of
two parts: a self part,

Gs(x, t) =
1

N

〈
N∑
i=1

δ(x−xi(t) +xi(0)))

〉
, (3.61)

that accounts for the diffusion of single particle, satisfying the t = 0 condition Gs(x, 0) =

δ(x); and a distinct part,

Gd(x, t) =
1

N

〈
N∑
i=1

N∑
i 6=j
δ(x−xj(t) +xi(0)))

〉
, (3.62)

that correlates the actual position of a particle with the position that other particles at the
initial times, and whose t = 0 condition is Gd(x, 0) = ρg(x).

Switching to Fourier space, equation (3.60) becomes

ρ̂(k, t) =
N∑
i

eik·xi(t) (3.63)

and can be used to generalize the static structure factor S(k) (3.36):

F(k, t) =
〈
ρ̂(k, t)ρ̂(−k, 0)

N

〉
. (3.64)

This quantity, the autocorrelation of ρ(k, t)/
√
N, is called the intermediate scattering func-

tion (ISF); by definition F(k, 0) = S(k). Comparing equation (3.59) and (3.64), one can see
that the F(k, t) and the Van Hove function are closely related; in fact, they are the spatial
Fourier transform of each other [HM06]. The inverse time Fourier transform of the F(k, t) is
called the dynamic structure factor [HM06]

S(k,ω) =
1

2π

∫
F(k, t)eiωt dt, (3.65)

and can be measured in inelastic scattering experiments, via its relation to the scattering
cross section:

d2σ
dΩdω

= Nb2
ki
ks
S(k,ω) (3.66)

where Ω is the scattering solid angle, b2 is the the mean squared scattering length, ki is the
wave vector of the incident particle, and ks of the scattered particle.

3.3.2 Mode coupling theory, solution, non-ergodicity factor

The time evolution of a generic autocorrelation function f(t) can be predict by integration
of the Zwanzig-Mori (ZM) equation [KB11, Göt09]

f
′′
(t) +Ω2f(t) +Ω2

∫+∞
0

Mf(t− τ)f
′
(τ)dτ = 0; (3.67)
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here, the primes denote time derivatives, Ω2 (not to be confused with the solid angle in the
previous §) is a constant charachterizing the function f, and the memory kernel Mf(t) has
been introduced. 5 The careful reader will recognize (3.67) as the equation of motion of an
harmonic oscillator onto which a time-retarded force Ω2Mf(t) is applied. The ZM equation
is exact, but the memory kernel is unknown in an exact, closed form; nevertheless, many
approximated expressions have been proposed, among which we use the so-called Mode
Coupling Theory (MCT).

The MCT approach can be applied to different types of correlation functions; we are in-
terested in applying it to intermediate scattering function (ISF) introduced in the previous
paragraph,

F(q, t) =
1

N

N∑
i

〈eiq·xi(t)e−iq·xi(0)〉, (3.68)

whose t = 0 value, F(q, 0) = S(q), is the static structure factor (SSF). In what follows, homo-
geneity and isotropy of the fluid will be assumed, so that F(q, t) = F(q, t) and S(q) = S(q).
Each mode6 of the ISF will satisfy its own ZM equation with its own memory function
M(q, t) and its own constant Ω2(q), so that in general

F
′′
(q, t) +Ω2(q)F(q, t) +Ω2(q)

∫+∞
0

M(q, t− τ)F
′
(q, τ)dτ = 0, (3.69)

holds. It can be shown [HM06, KB11, Göt09] that Ω2(q) = kBTq
2/mS(q), with m the mass

of the particles. It was proposed by Götze [KB11, Göt09] to write the memory function in
terms of the ISF as

M(q, t) = v(q)Mr(t) +
ρS(q)

16π3q4

∫
IR3
F(k, t)F(|q − k|, t)

[
(q · k)c(k) + q · (q − k)c(|q − k|)

]2
dk,

(3.70)
where c(q) = ρ−1(1− 1/S(q)) is the direct correlation function, introduced in § 3.2.4. The
first term, v(q)Mr(t), in which t- and q-dependence are factorized, is called the regular
part [KB11, Göt09], and is only important in fluid phases in which there is no dynamic
arrest. Its exact shape is a very thin peak around t = 0, and on the much larger timescale of
arrested states (gels, glasses) it can often be neglected [Kra07]. On the other hand, the part
with the complicated integral vanishes in ergodic states but is very important for arrested
states [KB11].

Together with the initial conditions F(k, 0) = S(q) and F
′
(q, 0) = 0 [Kra07], equations (3.69)

and (3.70) can be numerically solved with a self-consistent procedure. Unfortunately, the
solution of the time-dependent MCT equations is very complicated. However, the F(q, t)
carries a lot of information that might not be wanted. If the system is ergodic, F(q, t) will
eventually decay to zero for all values of q; if it does not, the limit function

f(q) = lim
t→∞ F(q, t)

S(q)
, (3.71)

appropriately called the non-ergodicity factor, will provide information on the modes which
are not decaying. f(q) possess the additional benefit of not depending on time, therefore it

5Another version of the ZM equation for other applications has only a first order derivative.
6We call “mode” the value assumed by F(q, t) for a specific q.
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satisfies a time-independent ZM equation [KB11, Kra07]

f(q)

1− f(q)
=
ρS(q)

16π3q4

∫
IR3
S(k)f(k)S(|q − k|)f(|q − k|)

[
(q · k)c(k) + q · (q − k)c(|q − k|)

]2
dk.

(3.72)
Thus, whenever the full time-dependence of the decay of F(q, t) is not important, one can
just compute only f(q), which is easier and faster.

3.4 Solution schemes for the theoretical approaches

3.4.1 Lado RHNC solution (for the g(r) and the thermodynamics)

In 1982, Fred Lado proposed to expand the correlation functions onto rotational invari-
ants [Lad82]. Axially symmetric particles like IPCs have two rotational degrees of freedom,
so their correlation functions have four. Since each couple of degrees of freedom requires a
spherical harmonic Ym` (θ,φ), a generic function F(r, θ1, θ2,φ) is expanded as follows:

F(r, θ1, θ2,φ) = 4π
∞∑
`1=0

∞∑
`2=0

M∑
m=−M

f`1`2m(r)Y
m
`1
(θ1,φ1)Y−m`1 (θ2,φ2), (3.73)

whereM = min(`1, `2), r is the vector joining the two particle centers, θi is the angle between
r and the orientation unit vector of particle i, and φ = φ2 −φ1 is the difference in the az-
imuthal angle, i.e. the angle between the two orientation unit vectors in the plane orthogonal
to r. The functions do not depend directly on φ2 and φ1 because of the isotropy of space,
consequently only the difference φ appears in the expansions, in exponentials like em(φ2−φ1).
To reconstruct F(r, θ1, θ2,φ) from the f`1`2m(r) coefficients, the inverse formula can be used:

f`1`2m(r) =
1

(4π)2

∫
[Ym`1 (θ1,ϕ1)Y

−m
`2

(θ2,ϕ2)]∗F(r, θ1, θ2,ϕ) sin θ1 dθ1 sin θ2 dθ2 dϕ1 dϕ2.

(3.74)
Some of the f`1`2m(r) coeffiecients have an obvious interpretation: the g000 is the spherical
average and coincides with the g(r) of an isotropic system thanks to the 4π in the definition,
the terms with `i = 1 depend on the dipole moment that the potential might possess (and
thus are all zero in the case of IPCs with symmetric patches), and so on.

Lado proposed to use this expansion to simplify the solution of the MOZ equation (3.50).
Written for the coefficients of the total correlation function and direct correlation function,
h`1`2m(r) and c`1`2m(r), the MOZ equation reads

h`1`2m(r12) − c`1`2m(r12) = (−1)mρ

∞∑
j=0

∫
h`1jm(r13)cj`2m(r32)dr3 (3.75)

where we had to introduce rij = ri − rj, ri being the position of particle i; what we called r
is obviously r12. In Fourier space equation (3.75) becomes

h`1`2m(k) − c`1`2m(k) = (−1)mρ

∞∑
j=0

h`1jm(k)cj`2m(k), (3.76)

which, at fixed m, is a system of linear integral equations in the first two indices.
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The second equation that is necessary to solve to obtain the correlation functions is the
closure equation (3.51). Unfortunately, due to its nonlinearity, it does not simplify when
expanded onto spherical harmonics, and must be solved as it is.

Lado devised a program for the self-consistent solution of equations (3.76) and (3.51) in ref-
erence [Lad82]. It follows an iterative procedure divided in two steps. In the first one, start-
ing from a guess for h(r, θ1, θ2,φ), the closure relation (3.51) is solved for c(r, θ1, θ2,φ). The
bridge function used is EHS(r;σ

∗), i.e. the bridge of an HS fluid based on the parametriza-
tion proposed in [VW72]; the parameter σ∗ is an effective HS diameter that differs from the
diameter of the particles under study, and for which at the beginning of the iterative pro-
cedure a suitable guess is assumed. In the second step, c(r, θ1, θ2,φ) is expanded in terms
of the c`1`2m(r), using formula (3.74); the angular integrals are carried out using Gaussian
quadratures. The c`1`2m(r) coefficients are then Fourier transformed and used to solve equa-
tion (3.76) for the h`1`2m(r). The h(r, θ1, θ2,φ) is then obtained from the h`1`2m(r) coefficients
via formula (3.73). These two steps constitute an iteration loop that will be iterated to self-
consistency. Many subtleties are used to treat the discontinuities and the Fourier transforms;
the reader is referred to references [Lad82, GLL+09, GLL+10, GGL+14] for more details.

When convergence is achieved 7 for a particular value of σ∗, then this variable is changed
and the iterative scheme is repeated, until the free energy of the system, which is convex
with respect to σ∗, has been minimized. The way in which the free energy is computed is
very complicated, and the interested reader should consult [GLL+09, GLL+10].

The initial guess for g(r, θ1, θ2,φ) and γ(r, θ1, θ2,φ) stems, whenever possible, from a pre-
vious solution of the problem for a neighbouring state point; otherwise the program can re-
sort to the parametrization of the isotropic HS counterparts of g(r, θ1, θ2,φ) and γ(r, θ1, θ2,φ)
proposed in [VW72].

Once the algorithm has converged, the excess energy per particle and the pressure are
obtained from the following equations:

uxc =
ρ

2

∫
dXg(r, θ1, θ2,φ)ϕ(r, θ1, θ2,φ), (3.77)

p = ρkBT −
ρ2

6

∫
dXg(r, θ1, θ2,φ)r

∂

∂r
ϕ(r, θ1, θ2,φ), (3.78)

where we used the symbol∫
dX =

1

(4π)2

∫∞
0

dr
∫ 1
−1

d cos θ1
∫ 1
−1

d cos θ2
∫ 2π
0

dφ1
∫ 2π
0

dφ2. (3.79)

The chemical potential can be computed from pressure and the free energy F using formula
βµ = βF/N+βp/ρ. 8

The computation of a single state point takes just a few minutes on a modern computer,
although high density and/or low temperature states may require intermediate steps.

7In our case, the criterium is
∑
`1`2m

∫
h`1`2m(r)dr < 10−5.

8The validity of this formula is far from obvious: due to the approximations introduced, in many theories this is not valid. Lado’s treat-

ment [Lad82] ensures that the Hiroike condition ρ∂u
∂ρ

= β ∂
∂β

(
βp
ρ

)
is satisfied, and this is sufficient for βµ = βF/N+βp/ρ to hold.

See for example reference [GLL+10].
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3.4.2 Barker-Henderson TPT (for the thermodynamics)

The original Barker-Henderson Thermodynamic Perturbation Theory [BH67] (TPT) for
isotropic systems was devised to allow an approximate computation of the pressure and the
chemical potential, so that coexistence regions could be obtained by searching for the state
points of equal T , p and µ. The Helmholtz free energy F is expanded in a perturbative series
starting from a reference fluid:

βF

N
=
βFref

N
+
∑
i≥1

βFi
N

, (3.80)

where N is again the number of particles and β = 1/kBT . Each βFi/N is computed as
an integral of the potential weighted by the reference pair distribution function [BH67].
The reference fluid was chosen in the paper to be the hard-sphere fluid, for which good
parametrizations of the pair distribution function as well as the free energy are available.

The TPT was later extended to anisotropic potentials in reference [GRSG12]; they still used
the hard spheres as the reference fluid, and they proposed to use the spherical average of the
potential in the integrals. According to reference [GRSG12], the the first and second order
corrections are

βF1/N = 2πρ

∫ 2σ+δ
2σ

gref(r)〈βϕ(r, ω̂1, ω̂2)〉ω̂1,ω̂2 dr (3.81)

and

βF2/N = −
πρ

χ̃

∫ 2σ+δ
2σ

gref(r)〈[βϕ(r, ω̂1, ω̂2)]2〉ω̂1,ω̂2 dr, (3.82)

where 〈. . . 〉ω̂i = 1
4π

∫
dω̂i indicates an angular average over the solid angle, ω̂i is the orien-

tation of the particle i, and

χ̃ =
6

π

∂

∂ρ

(
βp

ρ

)
ref

. (3.83)

Knowing the free energy, the pressure and the chemical potential can be computed as

βp

ρ
= ρ

∂

∂ρ

(
βF

N

)
and βµ =

∂

∂ρ

(
ρ
βF

N

)
. (3.84)

As mentioned above, the reference fluid was chosen to be hard spheres due to the avail-
ability of parametrization for the observables needed by the TPT. The equation of state of
hard spheres can be approximated by the Carnahan and Starling formula [CS69, Ros90], and
the pair distribution function was modeled by Verlet and Weis [VW72].

3.4.3 MCT solution (non-ergodicity factor)

In non-ergodic systems, the intermediate scattering function F(q, t) introduced in (3.64)
does not uniformly decay to zero at large time; the limit behavior is captured by the so-
called non-ergodicity parameter (NEP), defined as

f(q) = lim
t→∞ F(q, t)

S(q)
, (3.85)
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where S(q) = F(q, 0) is the well-known static structure factor. f(q) provides information on
which modes are not decaying to zero at t→∞, and satisfies the equation

f(q) =
M(q)

M(q) + 1
(3.86)

with

M(q) =
ρS(q)

2q4

∫
IR3

dk
(2π)3

S(k)f(k)S(|q−k|)f(|q−k|)
[
(q ·k)c(k)+q · (q−k)c(|q−k|)

]2
, (3.87)

where c(q) = ρ−1(1− 1/S(q)). These two equations can be numerically solved starting from
a guess for f(q),9 solving for M, and using it to obtain a new extimate for f. This cycle has
to be repeated until convergency is achieved.

The complicated expression for M(q) can be rewritten in a form that is better suited to
numerical computation. [Voi02] Using polar coordinates and exploiting the symmetry of the
integrand around q, the integration variables and boundaries become∫

IR3
dk = 2π

∫∞
0

k2 dk
∫ 1
−1

d cos θ, (3.88)

with θ being the angle between k and q. The integration variable is now changed from cos θ
to p, the modulus of p = q − k; cos θ and p are related via the equation p2 = (q − k)2 =

q2 + k2 − 2qk cos θ. A differentiation and straighforward algebra yield for the integration
variables and boundaries ∫

IR3

dk
(2π)3

=
1

q

∫∞
0

kdk
2π

∫q+k
|q−k|

pdp
2π

. (3.89)

Substitution of (3.89) in (3.87) yields

M(q) =
ρS(q)

8π2q5

∫∞
0

dk kS(k)f(k)

∫q+k
|q−k|

dp pS(p)f(p)
[
(q · k)c(k) + (q · p)c(p)

]2
. (3.90)

The scalar products can be written in terms of q, k and p as

2q · k = q2 + k2 − p2, (3.91)

2q · p = q2 + p2 − k2. (3.92)

Substitution of these expression gives the final formula for M,

M(q) =
ρS(q)

32π2q5

∫∞
0

dk kS(k)f(k)

×
∫q+k
|q−k|

dp pS(p)f(p)
[
(q2 + k2 − p2)c(k) + (q2 + p2 − k2)c(p)

]2
, (3.93)

which can be discretized in two Riemann sums on k and p. The final subtlety is due to the
value M(q = 0), problematic because of the divergent q−5 term; the obvious solution is to
compute M(q) on a grid spaced not as

0, δk, 2δk, . . . (3.94)

but instead as
1

2
δk,
(
1+

1

2

)
δk,
(
2+

1

2

)
δk . . . (3.95)

9not too refined: even f(q) ≡ 1 often works, while f(q) ≡ 0 has to be avoided because it’s always a solution but not the interesting one.
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3.5 Numerical simulations using molecular dynamics

Numerical simulations have been used with profit since many years, and are now regarded
as the third paradigm of physics: after a theory is developed, gets tested and refined by the
comparison with simulations, and only later compared with experiments. The simplest
introductory book on the subject is [FS02], while [AT87] presents indispensable “advanced”
topics like cell lists and constrained dynamics.

In an N-body problem we consider N point particles of mass mi under the influence of an
interaction pair potential ϕ(xi,xj). The equations of motion for particle i read

miẍi(t) = Fi(t), (3.96)

where xi is the trajectory of particle i, the dots denote time derivation, and Fi is the total
force acting on particle i

Fi(t) = −∇xi

∑
j 6=i
ϕ(xi,xj), (3.97)

which depends on the trajectory of all particles. This set of equations is impossible to solve
analytically, so we find ourself in need of an approximate numeric solution.

3.5.1 Velocity-Verlet algorithm

Molecular dynamics (MD) solves an N-body problem by substituting the time derivatives
in the equations of motion with finite differences. The trajectories are reconstructed on a
discrete time grid. Many algorithms have been proposed with different degrees of short-
time and long-time accuracy; the one of our choice is the Velocity-Verlet (VV) algorithm. VV
discretized the equations of motion (3.96) for particle i as [SABW82, AT87, FS02]

xi(t+ h) = xi(t) + vi(t)h+
Fi(t)

2mi
h2, (3.98)

vi(t+ h) = vi(t) +
Fi(t) +Fi(t+ h)

2mi
h. (3.99)

This algorithm has many good properties, that are well described in the references, and will
not be repeated. To speed up the time-expensive force calculation we use cell lists [AT87];
the code was written in C++ and compiled with g++ version 4.1.2 20080704, and parallelized
using the GNU OpenMP library.

Two difficulties arise when applying VV to IPCs, and the next paragraphs will present
them.

3.5.2 Adaptation of the potential

The force between two particles is obtained as the gradient of the potential:

F12(x1,x2) = −∇x1ϕ(x1,x2) = −F21. (3.100)

The IPC potential presented in § 2.3 includes an hard sphere which, at the contact between
two particles, is discontinuous. A discontinuous potential in equation (3.100) implies that
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the force diverges, and thus cannot be used inside the VV scheme. Usually, hard sphere
dynamics is treated using the so-called collision dynamics, which does not discretize the
times: particles follow an uniform linear motion until they collide, and the collisions are ap-
proximated as perfectly elastic scattering. Unfortunately, such an approach is uncompatible
with the continuous part of the potential.

In our program, we used the VV algorithm but substituted the hard sphere with a soft
sphere potential, which at center-center particle distance r reads

ϕHC(r) = A

[(
2σC

r

)2k
− 2

(
2σC

r

)k
+ 1

]
Θ(2σC − r), (3.101)

where A (which has the dimension of an energy) and k (adimensional) are parameters to
be fitted to propely reproduce IPCs. This soft sphere potential is regular10 and vanishes at
r ≥ 2σC, as does its first derivative.

The sensibility of the soft-core version of the model was checked by comparing energies,
pair distribution functions and static structure factors obtained via MD with the same ob-
servables obtained via Monte Carlo simulations of the original hard-sphere model from [BKL11].
We did this check at many state points, and at different patch amplitudes and interaction
strengths. Values of k = 15 and A = 500εm where chosen, where εm is the energy unit
that will be defined in chapter 4. No significative deviations were observed between the
hard-sphere and the soft-sphere model.

The reader could wonder if the exponent k is not too small, making the potential not
sufficiently stiff to reproduce an hard core. In fact, a value of k = 15 is small compared to
what is used in other papers –for example, a value of 100 was used in [AFST05], where a
very similar potential is used. But looking at the exponent alone is deceiving, because the
large value of the coefficient A contributes to make the potential as stiff as needed in the
range that is actually explored by the particles during the simulation.

3.5.3 Adaptation of the algorithm

IPCs are linear rigid bodies, composed of three interaction centers. There are two standard
ways to treat the dynamics of rigid bodies in MD: the decomposition of the motion in center-
of-mass motion plus rotation, and constrained dynamics.

The first approach associates a 4-dimensional unit vector (called quaternion) to a general
rigid body, and a three dimensional unit vector to a linear/axial particle. Albeit extremely ef-
ficient, quaternions are not easy to implement nor very flexible: for example, switching from
a linear two-patch particle to a more complex three-patch particle would require complete
rewriting of the program.

Within constrained dynamics, instead, the trajectories of all the interaction sites are com-
puted, while forcing them to keep fixed mutual distances by inserting the constraints into
the equations of motion via Lagrange multipliers. Constrained dynamics is less efficient
10Regular in the sense continuos with continuous first derivative (C1). A discontinuity in the potential would cause a divergent force, a

discontinuity in the force would cause a divergence in the pressure; hence it is crucial for the potential to be at least C1. Continuity in higher
order derivatives is not required, in fact the proposed potential is not even C2.
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than quaternions, but extremely easy to code and to extend, and in addition works with
the position of the three interaction sites, which would be required anyway to compute the
forces using equation (2.6).

Because of these reasons, we choose constrained dynamics for our program. Unfortunately,
another problem has yet to be solved. An IPCs is described as a linear molecule composed
of three sites, one for the center of the colloid and two for the patches. In the framework
of VV, constrained dynamics is implemented via the RATTLE algorithm [And82]; unfortu-
nately, this approach is singular for linear particles. The reason is that the corrections to the
trajectories are proportional to the relative positions of the three sites, xc − x1, xc − x2 and
x2 − x1, where c denotes the colloid center and 1 and 2 the patches. For a general rigid
body, these three vectors form a basis of IR3; however, in the case of a linear particle they
are all parallel, and as soon as one of the sites developes a displacement in a direction or-
thogonal to the initial one, the algorithm can no longer correct for it, and consequently fails.
Due to this problem, we make use of the scheme introduced in reference [CFR82] to reduce
the number of degrees of freedom of rigid bodies. The Ciccotti scheme divides the parti-
cles in two groups: “primary” particles, whose trajectory will be integrated by solving the
equations of motion, and “secondary” particles, whose trajectory will not be integrated but
computed as a linear combination of the trajectories of the primary particles. These linear
combinations are used as constraints, that will be included in the equations of motion of the
primary particles via an effective force representing the inertia of the secondary particles; in
addition to these effective forces, the trajectories of the primary particles will be integrated
using constrained dynamics. Having less trajectories to be integrated, the code also becomes
more efficient.

The entire procedure will be clarified in the next paragraph by applying the concept to the
IPC case.

Construction of the equations of motion

The two patches will be considered the primary particles. The colloid center is treated as
a secondary particle11, whose position position can be written as the linear combination

xc = (e1/d)x2 + (e2/d)x1, (3.102)

where e1, e2 are the the eccentricities that were introduced in § 2.3, d = e1 + e2, and x12 =

x1 − x2. Equation (3.102) is the first constraint imposed on each IPC; the second is due to
the fixed distance between the particles. We reformulate both constraints as:

σ = (x1 −x2)
2 − d2 = 0 and τ = −xc + (e1/d)x2 + (e2/d)x1 = 0. (3.103)

The equations of motion are corrected subtracting the gradient of the constraints multiplied
by the Lagrange multipliers µ and λ:

mixi = Fi − (1/2)∇i(τ ·µ+ λσ), (3.104)

11Of course using the center and one of the patches as primary would be perfectly equivalent.
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where i = 1, 2, c, denote the first patch, the second patch and the center, and the 1/2 factor
is for future convenience. Substitution of the constraints (3.103) in the equations of mo-
tion (3.104) gives 

m1ẍ1 = F1 − (e2/d)µ− λx12
m2ẍ2 = F2 − (e1/d)µ+ λx12
mcẍc = Fc −µ.

(3.105)

We can now determine the value of µ from the constraint τ = 0. Inserting the equations of
motion (3.105) in the second time derivative of τ = 0, and solving for µ, we obtain the value

µ = −
d2

Imc
Fc +

de1
Im2

F2 +
de2
Im1

F1 − λ

[
de2
Im1

−
de1
Im2

]
x12 (3.106)

where for ease of writing we defined

I =
d2

mc
+
e21
m1

+
e22
m2

. (3.107)

Since this value of µ ensures that the constraint τ = 0 is always satisfied, we can use equa-
tion (3.102) as the trajectory of the colloid center xc(t); this is a great simplification, because
we are substituting a second order differential equation with a linear algebraic equation.
Now we only need to integrate for the trajectories of the patches x1(t) and x2(t), and the po-
sition of the colloid center can be obtained from them. With this simplification, the equations
of motion that we have to solve are m1ẍ1 =

(
1−

e22
Im1

)
F1 +

(
− e1e2
Im2

)
F2 +

(
de2
Imc

)
Fc − λ

[
1+ e1

I

(
e2
m1

− e1
m2

)]
x12

m2ẍ2 =
(
1−

e21
Im2

)
F2 +

(
− e1e2
Im1

)
F2 +

(
de1
Imc

)
Fc + λ

[
1+ e2

I

(
e2
m1

− e1
m2

)]
x12.

(3.108)

Application of RATTLE and VV

The system (3.108) still contains the Lagrange multiplier λ. If we were to naively substi-
tute (3.108) in the second time derivative of σ = 0 (equation (3.103)), we would obtain a
solution that would be subject to a large error when we discretize the equations of motion
for numerical solution (the reason is explained in reference [And82]). The idea behind RAT-
TLE is to determine the value of λ at each numerical integration step, so that σ = 0 is always
satisfied within numerical accuracy.

First, we rewrite (3.108) in a shorter way: we call F̃ the effective total forces, and we
introduce two coefficients α1 and α2 defined as

α1 = 1+
e2
I

(
e2
m1

−
e1
m2

)
, α2 = 1+

e1
I

(
e2
m1

−
e1
m2

)
, (3.109)

so that the equations of motion for the patches of a single IPC read now as{
m1ẍ1 = F̃1 −α1λx12
m2ẍ2 = F̃2 +α2λx12

. (3.110)
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Within the VV scheme, equations (3.110) are discretized as
x1(t+ h) = x1(t) + hv1(t) +

h2

2m1
F̃1(t) −α1λxx12(t)

x2(t+ h) = x2(t) + hv2(t) +
h2

2m2
F̃2(t) +α2λxx12(t)

v1(t+ h) = v1(t) +
h
2m1

(
F̃i(t) + F̃i(t+ h)

)
−α1λvx12(t+ h)

v2(t+ h) = v2(t) +
h
2m2

(
F̃i(t) + F̃i(t+ h)

)
+α2λvx12(t+ h).

(3.111)

where vi(t) are the velocities and h is again the time step. Following reference [And82], two
different Lagrange multipliers are used, λx and λv. The first two equations of (3.111) are
solved for the new positions x1(t+h) and x2(t+h), which can then be used to compute the
new velocities v1(t+ h) and v2(t+ h).

The equations for the positions of the patches are solved as follows. Defining the uncor-
rected positions

si(t) = xi(t) + hvi(t) +
h2

2mi
F̃i(t), (3.112)

and s12 = s1 − s2, the constraint |x1(t+ h) −x2(t+ h)|2 = d2 reads

|s1 −α1λxx12 − s2 −α2λxx12|
2 = s212 − 2λx(α1 +α2)s12 · x12 +O(λ2x) = d2, (3.113)

which can be solved for λx as

λx =
s212 − d

2

2(α1 +α2)s12 · x12
+O(λ2x). (3.114)

This value is substituted in equation (3.111) and the new positions xi(t+ h) are updated.
Since terms of order O(λ2x) have been neglected in equation (3.114), the positions might have
to be corrected more than once; if

|x1(t+ h) −x2(t+ h)|
2 − d2 < 10−12d2, (3.115)

the program can go on, otherwise λx is recomputed from equation (3.114) using the just
corrected positions until (3.115) is satisfied. The reader familiar with machine calculus will
notice that 10−12 is quite close to the machine epsilon; 12 in fact, a threshold lower than 10−12

would make convergence unreachable with 8 byte variables.

Once the new positions x(t+ h) of all the patches of all the IPCs have been corrected, the
velocities are also updated, according to

vi(t+ h/2) = vi(t) +
h

2mi
F̃i(t). (3.116)

The old forces are no longer needed, and their memory space can be used to store the new
forces F̃i(t+ h), that are now computed from the new positions x(t+ h). The velocities are
again updated, as

v∗i (t+ h) = vi(t+ h/2) +
h

2mi
F̃i(t+ h), (3.117)

where the ∗ signals that we still have to correct for the constraints. According to the RATTLE
scheme, we must enforce the time derivative of the constraint |x12(t+ h)|2 = d2,

x12(t+ h) · v12(t+ h) = 0, (3.118)
12 The machine epsilon ε is the smallest number satisfying 1+ε 6= 1 in machine algebra. Using 8 bytes variables it is 1.11 · · · × 10−16.
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where v12 = v1 + v2. This constraint ensures that the velocities of the patches cannot stretch
the IPC but can only rotate or translate it. Thus, to obtained the updated velocities

vi(t+ h) = v
∗
i (t+ h)∓ αiλvx12(t+ h), (3.119)

we substitute (3.119) in the constraint (3.118), obtaining

[v∗12(t+ h) − λv(α1 +α2)x12(t+ h)] · x12(t+ h) = 0, (3.120)

which can be solved (exactly) as

λv =
v∗12 · x12

(α1 +α2)d2
. (3.121)

As a safety meausure to avoid problems due to machine arithmetic (explained by [AT87],
but only in the example codes on the website), equations (3.118) are only applied if

q12 · x12 < 10−12. (3.122)

Symmetric solution

In the most symmetric case (m1 = m2 = mp and e1 = e2) the equations of motion (3.108)
reduce to {

m1ẍ1 =
(
1− mc

2M

)
F1 +

(
−mc
2M

)
F2 +

(mp
M

)
Fc − 2λx12

m2ẍ2 =
(
1− mc

2M

)
F2 +

(
−mc
2M

)
F1 +

(mp
M

)
Fc + 2λx12

(3.123)

where M = 2mp +mc, and
xc = (x2 +x1)/2; (3.124)

the RATTLE equations (3.110) become just{
m1ẍ1 = F̃1 − λx12
m2ẍ2 = F̃2 + λx12

(3.125)

since α1 = α2 = 1.
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This chapter presents most of the results obtained in the three years of the Ph.D. Part of
the results was published in peer reviewed journals [KBFK15, FBKK15], and another part
will be soon [FBK].

Units and reduced quantities

Lengths are expressed in units of the hard sphere diameter, 2σC. The energy unit, εm,
is defined as the absolute value of the minimum of the potential between two IPCs, met
when particles are at polar-equator alignment and at a center-center distance of 2σC. The
last unit to be fixed is the mass: its unit, m0, will be chosen so that an IPC has always a mass
of 3m0. The time unit can be derived from the other units through dimensional analysis:
t0 =

√
m0(2σc)2/εm. Reduced quantities will be defined for convenience: a reduced density

ρ∗ = ρ/(2σC)
3, a reduced temperature T ∗ = kBT/εm, a reduced time t∗ = t/t0, a reduced

pressure p∗ = p(2σC)
3/εm and a reduced excess energy per particle u∗ = uxc/εm. 1

The models

As explained in chapter 2, a two-patch IPC model is completely specified by its hard-
sphere radius σC, its patch amplitudes γ = (γ1,γ2), its interaction range δ, and its charge
distribution (Zc and Zp = (Z1,Z2)). Table 4.1 shows these parameters for all the models that
we studied. As a consequence of our choice of the units of length and energy, only the ratios
δ/2σC and Zi/Zc are relevant.

1 Should the disappearance of the suffix xc confuse the reader, we specify: u∗ does not include the kinetic contribution (3/2)kbT .
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Table 4.2 presents the other model parameters that are derived from γ, δ and Z: the eccen-
tricities e, the patch interaction sphere radiuses σP, and the coupling constants uij.

The models presented in tables 4.1 and 4.2 are divided in four blocks according to the
patch size. The first block includes small-patch symmetric models, that did not self-assemble
in ordered structures, and will be presented in section 4.1. In the models in the second
block, one of the patches is fixed to an opening angle of 45.6◦ while the extent of the other
patch is varied; we also study various possibilities of overcharging the colloid center or the
patches. This models self-assemble into a very interesting hybrid crystal-liquid structure; the
corresponding results are presented in section 4.2. The third block contains four symmetric
models with large patches; some of them self-assemble into a face-centered cubic crystal, and
the results are presented in section 4.3. In the fourth block, both patches are asymmetric both
in charge and size, following the experimental IPCs studied by van Oostrum and coworkers,
in part published in [vOHNR15]. The corresponding results are presented in section 4.4.

Simulation details

Simulations were carried in the NVE ensemble, so whenever we refer to a temperature we
actually mean the average value of the temperature during the run. We took great care to
ensure that the system was equilibrated by running and that the temperature fluctuations did
not present any drift. Most equilibration runs lasted for over 105t0; the runs over which the
observables were sampled 105t0. The ensemble size in the simulations varied. Since a single
IPC requires a force calculation for each of the three interaction sites, the computational
cost of a simulation with N IPCs is equivalent to the cost of a simulation with 3N spherical
particles, so we could not go very high in N. More than half of the self-assembly runs were
done with 2048 IPCs, the others only 1372. Size-effects checks were carried on with 4000
IPCs. Finally, we studied the crystal phase of the 45n models using “perfect” lattices of 1302
IPCs that completely fill the periodic cubic simulation box.

A very important observation is that the mass distribution of the IPCs (i.e. how much muss
is concentrated in the colloid center and how much in the patch centers) does not influence
the physics. In the experiment of Van Oostrum and coworkers [vOHNR15], the particle is a
solid silica sphere with the patch carrying less than 1% of the total mass; thus the inertia ten-
sor of an IPC is basically the inertia tensor of a sphere, because the patches have a negligible
mass. In simulation, the inertia tensor for a linear particle is I = (m1e

2
1 +m2e

2
2)diag(1, 1, 0),

where m1 and m2 are the masses attributed to the patches. During our runs we verified that
a completely symmetric mass distribution where m1 = m2 = mC = m0, and a more realistic
one in which m1 = m2 = 0.01m0 and mC = 2.98m0, showed the same dynamics: the veloc-
ity autocorrelation functions were essentially identical, and the orientational autocorrelation
functions could be made coincide via a time scaling corresponding to the ratios of the inertia
tensors, i.e. the ratio of the masses. Hence, in simulation we used the symmetric distribution
m1 = m2 = mC = m0, which ensured the highest computational efficiency of the program.
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Model δ/2σC γ −Zp/Zc Behavior

Se
ct

io
n

4.
1

M1 0.10 22.3◦ 1/2 does not self-assemble
M2 0.30 43.5◦ 1/2 does not self-assemble
30n 0.20 31.1◦ 1/2 does not self-assemble
g38n 0.25 38.6◦ 1/2 does not self-assemble
g38c 0.25 38.6◦ 5/11 does not self-assemble
39n 0.20 39.0◦ 1/2 does not self-assemble
42n 0.20 42.1◦ 1/2 does not self-assemble

Se
ct

io
n

4.
2

3145n 0.2 31.1◦, 45.6◦ 1/2, 1/2 does not self-assemble
3345n 0.2 33.6◦, 45.6◦ 1/2, 1/2 does not self-assemble
3645n 0.2 36.2◦, 45.6◦ 1/2, 1/2 self-assembles in AP
3945n 0.2 39.0◦, 45.6◦ 1/2, 1/2 self-assembles in AP
4245n 0.2 42.1◦, 45.6◦ 1/2, 1/2 self-assembles in AP
45n 0.2 45.6◦ 1/2 self-assembles in SP
45sQc 0.2 45.6◦ 15/(30+Q) most self-assemble in SP
5045n 0.2 49.5◦, 45.6◦ 1/2, 1/2 does not self-assemble
5045c 0.2 49.5◦, 45.6◦ 5/11, 5/11 self-assembles in AP
5545n 0.2 53.9◦, 45.6◦ 1/2, 1/2 does not self-assemble
6045n 0.2 59.2◦, 45.6◦ 1/2, 1/2 does not self-assemble

Se
c.

4.
3 50n 0.20 49.5◦ 1/2 does not self-assemble

55n 0.20 53.9◦ 1/2 self assembles in FO
g57c 0.25 56.8◦ 15/36 does not self-assemble
60n 0.20 59.2◦ 1/2 self assembles in FO

Se
c.

4.
4 4050c 0.2 39.8◦, 49.5◦ 1/3, 1/2 self-assembles in AP

4050n 0.2 39.8◦, 49.5◦ 1/2, 1/2 does not self-assemble
5535n 0.2 55.2◦, 34.8◦ 3/5, 2/5 does not self-assemble

Table 4.1: IPC models: main parameters, as explained it the text. The four blocks in which the table is divided are
all addressed in a different section indicated in the first column. When only one value is specified for γ
or −Zp/Zc, the model is symmetric. Most model names are chosen to be coherent with the reference in
which they were introduced. Models with names composed by a two digits number followed by n or
c have symmetric patches, δ/2σC = 0.2, the number specifies γ, and the letter refers to the charging (n
for neutral, c for charged). When the number is preceded by a g, δ/2σC = 0.25. Models starting with
a four digits number have asymmetric patches, and the number specifies γ1 and γ2. Models 45sQc
are symmetric and the parameter Q controls the overcharging (see section 4.2.4). The acronyms of the
structures stand for: SP: Symmetric Planes, AP: Asymmetric Planes (both introduced in section 4.2),
and FO: Fcc with Orientations (section 4.3).
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Model e/2σC σP/2σC uCC uC1 uC2 u12 u11 u22

Se
ct

io
n

4.
1

M1 0.30 0.25 4.284 -111.6 989.0
M2 0.30 0.35 0.4230 -10.26 85.47
30n 0.32 0.28 0.8631 -26.62 241.8

g38n 0.30 0.325 2.707 -18.73 105.9
g38c 0.30 0.325 3.553 -20.07 81.54
39n 0.26 0.34 1.341 -23.36 177.2
42n 0.24 0.36 1.528 -22.50 162.0

Se
ct

io
n

4.
2

3145n 0.32, 0.22 0.28, 0.38 0.619166 -26.2067 -7.19724 166.934 302.941 59.6915
3345n 0.30, 0.22 0.30, 0.38 0.749261 -24.8535 -8.89217 157.293 260.601 71.7756
3645n 0.28, 0.22 0.32, 0.38 0.903902 -23.7641 -11.0287 152.583 227.987 87.0606
3945n 0.26, 0.22 0.34, 0.38 1.08756 -22.8896 -13.7380 152.219 202.290 106.575
4245n 0.24, 0.22 0.36, 0.38 1.30595 -22.1966 -17.1995 156.124 181.626 131.759

45n 0.22 0.28 1.724 -21.87 149.0
45sQc 0.22 0.28 depends on Q:

Q=7 2.86231 -23.3889 62.3727
Q=3 2.20791 -22.5177 86.3069
Q=1 1.85387 -22.0465 119.268
Q=0 (45n) 1.724 -21.87 149.0
Q=-1 1.66417 -21.7934 200.323
Q=-3 2.74534 -23.2332 709.735

5045n 0.20, 0.22 0.40, 0.38 1.47400 -16.6738 -21.5407 140.046 117.872 163.221
5045c 0.20, 0.22 0.40, 0.38 1.96161 -17.1432 -22.1899 102.342 86.1378 119.277
5545n 0.18, 0.22 0.42, 0.38 1.38637 -12.8009 -21.4180 121.535 83.9937 162.472
6045n 0.16, 0.22 0.44, 0.38 1.63959 -10.8657 -22.9990 110.322 61.2675 166.018

Se
c.

4.
3 50n 0.20 0.40 1.928 -21.34 137.8

55n 0.18 0.42 2.163 -20.90 128.1
g57c 0.20 0.425 15.05 -30.79 51.97
60n 0.16 0.44 4.003 -25.16 128.2

Se
c.

4.
4 4050c 0.255, 0.20 0.345, 0.40 2.13961 -24.1344 -17.4279 94.6045 114.493 76.1911

4050n 0.255, 0.20 0.345, 0.40 1.07487 -22.6089 -11.2353 134.523 195.536 80.6252
5535n 0.175, 0.29 0.425, 0.31 0.830747 -7.34357 -24.3068 114.705 41.2298 292.121

Table 4.2: IPC models: secondary coarse-grained parameters (see text). The four blocks in which the table is
divided are all addressed in a different section indicated in the first column. When a single value is
given for e/2σC or σP/2σC, the model is symmetric.
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4.1 Symmetric models with small patch extension

The models presented in this section have as a common denominator a patch extension
smaller than 45◦ and the fact that they do not self-assemble into ordered structures. Models
M1 and M2 were presented as examples in the very first paper about IPCs [BKL11]; model
30n, along with its charged counterpart, was first studied in two-dimensional confinement
in reference [BLK13], where via Montecarlo simulations it was clearly seen that no ordered
structure would form at finite temperatures. This trend was confirmed by our simulations
in three dimensions, where we did not see any self-assembly at all.

We concentrated on the fluid region, that in this work we define as the density range
ρ∗ ∈ [0.1, 0.8] and the temperature range where particles are not frozen (in the sense that
particles can diffuse much more than their diameter: |∆x(tS)| � σC where tS is the simu-
lation time). In this region we found fluid phases and liquid-vapor separation (an example
snapshot is shown in figure 4.1). Further cooling of the system would produce a gel, i.e. an

Figure 4.1: MD simulation snapshot of
the 30n model for a state-
point inside the coexistence re-
gion, where liquid and vapor
separate.

disordered system where particles rearrange locally but do not diffuse; such a system is not
thermodynamically stable, and in an infinite time would crystallize, however in simulation
time is metastable. Analogously, at higher density ranges the system is incapable to self-
assemble in any ordered, stable structure, and forms a glass, i.e. a disordered metastable
phase where no movement happens.

It is important to note that, although the models discussed in this section do not self-
assemble, it does not mean that they do not have ordered phases at all, just that these
phases are not obtainable via simple self-assembly. Other studies using more sophisticated
methods (see references [Dop12, DNBK12, NKD+14, NB15] for details) indeed found crystal
structures at patch amplitudes less than 42◦. At high density, all models would crystallize in
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a face-centered cubic lattice [Dop12], and the g38n model (discussed in § 2.4) forms a very
interesting phase composed by planar layers [NKD+14, NB15]. But again, the aim of this
work is to study the phases that can self-assemble in MD simulations.

In our study of the fluid phase, we investigated the dynamics by means of the autocorre-
lation functions, measured in simulations, and tried to predict the thermodynamics and the
static structure using liquid-theory methods. The first liquid-state theory used is the very
simple Barker-Henderson thermodynamic perturbation theory (TPT) [BH67, GRSG12] intro-
duced in § 3.4.2; these calculations were carried by the author of thesis, who also fully imple-
mented the code. The second method is based on integral-equations theories, and uses the
so-called reference hypernetted chain (RHNC) method [Lad82, GLL+09, GLL+10, GGL+14]
that we introduced in § 3.4.1. Also these results were computed by the author of the thesis,
but the using the last version of the code written by F. Lado [GGL+14]. Finally, the third
method is the associative Percus Yevick theory (APY), based on a diagrammatic expansion
of the potential within the so-called Wertheim theory [Wer84a, Wer84b, Wer86a, Wer86b,
Wer87]. It was developed and implemented by Y. Kalyuzhnyi [KBFK15].

The data discussed in this section was published in references [KBFK15, FBKK15].

4.1.1 Phase diagram

The phase behavior of all the small-patch models is very similar: they have a liquid-vapor
phase separation and they do not self-assemble into ordered structure by annealing within
the density range ρ∗ ∈ [0.1, 0.8]. As an example, figure 4.2 shows the phase diagram of the
30n model.

4.1.2 Dynamics

We studied the dynamics via the correlation functions defined in § 3.3.1: the mean squared
displacement |∆x(t)|2, the autocorrelation of the velocity cv(t), and the orientational autocor-
relation function cn(t). The orientation is defined as the direction joining the two patches.
As already said, all the short-patch model were studied in the fluid phase only, and the
correlation functions of different models presented similar behaviors. There is thus no need
to present each model in depth, and we describe the dynamics of the 30n model as a general
example for all models.

All the data are collected in figures 4.3 and 4.4, which are taken from reference [FBKK15].
The upper panels of figure 4.3 show cv(t) for selected temperatures and densities. The curves
at high temperatures show a monotonous decay, while for the lowest values of T ∗ a rebound
mechanism takes place, signaled by negative values of cv(t). The shape of the curves is
independent of the density, but decay becomes faster for increasing densities. These are
all standard features seen in most fluids; nothing remarkable is learnt from the velocity
autocorrelation function. On the other hand, a very interesting feature can be observed
in the orientational autocorrelation function cn(t). As can be seen in the lower panels of
figure 4.3, short-times ripples are present at the lowest temperatures and for every density:
this is a hint of orientational vibrations undergone by the particles. In the next section,
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Figure 4.2: Phase diagram of the 30n model in the T∗ − ρ∗ plane, as obtained via MD simulation. At the state-
points denoted by the blue triangles the system was found in a pure phase, while liquid-vapor coex-
istence was observed in the statepoints indicated by the black squares. The red square is the critical
point of the vapor-liquid transition, as obtained via Grand Canonical MC simulations performed by
E. Bianchi [FBKK15]. The background colors are guides for the eye.

dedicated to the models with γ1 = 45◦, we shall see how these vibrations will evolve in an
ordered phase where IPCs have fixed spatial position and preferred orientations.

The left panel of figure 4.4 shows the diffusion coefficient D versus density at different
temperatures. As expected, D shows a monotonous decrease with decreasing temperature
and raising density. In the right panel of figure 4.4 the same data is plotted along the phase
diagram in the temperature-density plane, in terms of the isodiffusivity lines. The region of
dynamical slowing-down is often defined as the region where D . 10−4(2σC)

2/t0, and for
our model is localized in the low T ∗/high ρ∗ region of the phase diagram.

4.1.3 Static structure

As explained in chapter 3, integral equation theories describe the structure of the fluid
in terms of the pair correlation function g(r), which gives information about the spatial
distribution of particles. Once the g(r) is known, the excess energy and the pressure can be
computed as weighted integrals of the g(r) (see § 3.4.1 for RHNC, and reference [KBFK15]
for APY). It is thus of crucial importance that this spatial correlation function is faithfully
reproduced.

Figure 4.5 shows the g(r) for three different models: simulation data is compared to theo-
retical results. The first column shows the g(r) for model M1, which has a short interaction
range (δ/2σC = 0.1) and a small patch semi-amplitude (γ = 22.3◦). The second column
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Figure 4.3: MD results for the velocity (top panel) and orientational (bottom panel) autocorrelation functions at
several temperatures and densities (as labeled). Reprinted from [FBKK15].

shows the g(r) for model M2, whose interaction range is longer (δ/2σC = 0.3) and the patch
amplitude γ is almost twice that of model M1: 43.5◦. Finally the third column shows the
g(r) for model 30n, with intermediate values for both the interaction range and patch semi-
amplitude (δ/2σC = 0.2, γ = 31.1◦). The simulation data comes from MC for models M1
and M2, and MD for model 30n.

The first two columns of figure 4.5 present the g(r) for models M1 and M2 computed at the
same statepoints. The top panels show data at high temperature (T ∗ = 0.50) and low density
(ρ∗ = 0.20) state, while in the second and third row the density is higher (ρ∗ = 0.45) and the
temperature is progressively lower (T ∗ = 0.23 and 0.18). Both RHNC and APY excellently
reproduce the pair distribution function for model M1, the one with the shorter δ and smaller
patch, at all presented temperatures and densities. At ρ∗ = 0.45 it can be noted that APY
shows small deviations in the second neighbor peak, while RHNC correctly reproduces
this feature. For model M2 there is also a good agreement, but more discrepancies arise.
RHNC again reproduces better the shape of second neighbor peak, but is unable to converge
numerically at the lowest temperature; on the other hand, APY reproduces more faithfully
the valley between the first and second peak and converges for all the presented statepoints.
The capacity of APY to converge at lower temperatures than RHNC is evidenced in the
study of model 30n, presented in the rightmost column of the figure. This system is studied
at lower T ∗ and higher ρ∗ than models M1 and M2. In this case RHNC does not appear in
the plots because it does not converge at temperatures T ∗ < 0.15, and only APY could be
compared with the simulation data. Here we see that, although the description of the second
peak is far from perfect (especially at the lowest temperature), the range 2σC < r < 2σC + δ/2
is very faithfully reproduced. Quality of the g(r) in this range is the main goal of integral
equation theories, because pressure and energy are obtained as integrals of the g(r) from
2σC to 2σC + δ/2.
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Figure 4.4: Left: MD results for the diffusion coefficient D along several isotherms (as labeled). Right: phase
diagram of the system along the isodiffusivity lines. The highlighted points correspond to the nu-
merically investigated statepoints: a red upward triangle denotes a phase separating system, a blue
downward triangle corresponds to a homogeneous fluid, and the black full square symbolizes the
critical point. Along the gray curves the value of the diffusion coefficient D is constant and decreases
from 10−3 to 7.5 · 10−5 in units of (2σC)

2/t0. Reprinted from [FBKK15].

How do the deviations arise? RHNC describes the bridge function of the model as an
“equivalent hard sphere” [Lad82]; the more anisometric2 the systems is, the less the RHNC
approximation is valid. On the other hand, APY strongly relies on two approximations. The
first is the single-bonding approximation, i.e. each patch interacts with the center of only
another particle; this approximation is reasonable if the patch is small, and ceases to be valid
if the patch amplitude becomes too large. The second approximation lies in the treatment
of the patch-patch repulsion, which are neglected in the expansion of the potential and then
added back in the solution of OZ equation. It was argued [KBFK15] that this leads to the
imprecision in the description of the second peak.

Only for model 30n, we compared APY to MD simulation data not only using the g(r), but
also the static structure factor S(k). While the g(r) captures the short range details, the S(k)
evidences long range spatial correlations: being able to describe both limits is a very good
test for an integral equation theory. It is important to note that, in APY, the g(r) is obtained
through a Fourier transform of the S(k), while in the simulation g(r) and S(k) are measured
using two independent procedures. The results are shown in figure 4.6. The agreement
between theory and simulation data is excellent, even at the lowest temperature.

The careful reader will notice that the simulation data of the S(k) is more noisy than
that of the g(r): the reason lies in the measurement method. Equation (3.32) accumulates
N(N− 1)/2 statistically independent data points, one for every possible couple of IPCs, from
each simulation frame. These data points must be divided between the bins in which r-axis
is discretized; since we sampled 5000 frames and 2048 IPCs in a simulation box whose side
was between 15 and 30 (in units of 2σC), distributing the points in bins of length between
0.05 and 0.02 still leaves about a million of statistically meaningful data points in every r-bin,
which is a good statistical sample. On the other side, equation (3.34) can accumulate from
each simulation frame only a single statistically independent point for every value of k that

2Anisometric = different from an hard sphere.
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Figure 4.5: Pair correlation functions g(r) for models M1 (left column), M2 (central column) and 30n (right
column), at selected statepoints (as labeled); note the logarithmic scale of the vertical axis. Crosses
correspond to MC simulation data for models M1 and M2 and to MD data for model 30n; green lines
represent APY results and red lines RHNC results.

is sampled; since we sampled 5000 frames this amounts to only 5000 statistically meaningful
points in every k-bin. The reader might wonder why this method is used at all, if it turns
out to be so inefficient compared to calculating the g(r) and then Fourier transforming it.
The reason is that, to obtain good precision at small k, the long-range values of the g(r) are
needed, but the simulation g(r) is only known up to a finite range and, especially at high
densities, it might be unpractical or even impossible to simulate a system of the necessary
size.

4.1.4 Thermodynamics

In integral equation theories, pressure and energy are obtained as integrals of the g(r)
over the range 2σC < r < 2σC + δ/2 (i.e. the interaction range). Because of the excellent
agreement between simulation data and theoretical results met in the interaction range, it
is natural to expect an agreement of teh same quality for the thermodynamics. Moreover,
RHNC had a better agreement with simulation data for model M1, and APY was better for
model M2; one would expect this trend to be reflected also in the thermodynamics. Instead,
the opposite is observed: RHNC turns out to work better for model M2, while APY gives
better results for model M1. In addition, the TPT was used, to show how another approach,
not based on integral equations, compares with RHNC and APY.
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Figure 4.6: Static structure factor S(k) for model 30n at selected statepoints (as labeled). Crosses represent MD
simulation data, green lines are APY results.

The results are summarized in figure 4.7: energy in left column, pressure in the right, and
each row shows a different model, M1, M2 and 30n.

The curves for the energy u∗ are presented in the left column of figure 4.7. Both theories
have an excellent agreement with simulation data at T ∗ = 0.50 and 0.32; however, RHNC
underestimates the simulation data at the lower temperatures for model M1, while APY
overestimates the simulation data at high density for model M2. This is the opposite behav-
ior to that seen in the data for the g(r)! The explanation is that neither technique uses only
the plain center-center g(r) to computer the integrals: APY uses three site-site correlation
functions – center-center (the g(r)), patch-center, and patch-patch – each with appropriate
weights, while RHNC uses a spherical harmonics expansion of the angular dependent dis-
tribution function of which the g(r) is just the isotropic component (see § 3.4.1). Hence, the
quality in the other site-site correlation function for APY, and in the other components of
the direction-dependent distribution function for RHNC, will influence the thermodynamics
beyond the simple center-center radial g(r).

Similar observations can be made for the pressure: for model M1 all theories – now in-
cluding the TPT – give a good result for T ∗ ≥ 0.32; but for T ∗ ≤ 0.23 only APY is able to
reproduce the correct result, while both TPT and RHNC deviate by quite a large amount.
Passing from model M1 to model M2, we see the same behavior that was observed for the
energies: both integral equations theories work well for T ∗ ≥ 0.32, and for T ∗ = 0.23 RHNC
is slightly closer to the MC data, while APY deviates from it, although less than RHNC did
for model M1. At T ∗ = 0.18 APY gives a result of poor quality, while RHNC does not even
converge. The TPT data are not even shown for model M2 because the results deviate by an
entire order of magnitude, showing that this simple perturbation theory is unsuited for the
description of a complex model such as IPCs.

For model 30n, no pressure data are available, and only the energies are shown in the
picture, compared with APY. The reduced temperature was extended to lower values than in
the previous models, and RHNC did not converge. The agreement between simulation and
APY data is remarkably good even for the half of the T ∗ = 0.10 along the values in the liquid
branch; the other half of this isotherm is not shown because the system is phase-separating,
and integral equations are not applicable in the coexistence region. Data for the pressure for
model 30n are not shown; to compute the pressure in the MD simulations, the virial had to
be extended to include the contributions due to the Ciccoti algorithm; unfortunately there
is no standard expression for it in the literature, and the derivation turned out to be a very
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challenging task that the author of the thesis was unable to solve.

4.1.5 Small-patch models: summary

The small patch models did not self-assemble into ordered structures, thus were used
to test the application of APY and RHNC integral equation theories. From the data we
concluded that each theory is better suited to describe different properties (g(r), thermo-
dynamics) for different model parameters. However we can conclude that APY is more
reliable, in the sense that it converges for lower temperatures, and presents deviations from
the simulation data that are in general smaller than RHNC.

Another important feature that we met were the oscillations in the orientational correlation
function cn(t), that originate from the vibrations of the IPCs, and will be encountered again
in the crystal-liquid phase presented in the next section.
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Figure 4.7: Energy u∗ and pressure p∗ versus density ρ∗ for different models. Energies are shown in the left
column, pressures in the right one. The first row shows results for model M1, the second for model
M2, and the third for model 30n. Different colors denote different temperatures. For models M1 and
M2: open circles – MC data, continuous lines – APY results, crosses – RHNC results, dashed lines
– TPT results (where convergent). For model 30n: open circles – MD data, continuous lines – APY
results with hard sphere, dashed lines – APY with soft sphere.
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4.2 Models with γ1 = 45◦

In this section we present models in which the amplitude of one of the patches is fixed to
γ1 = 45.6◦. In the most simple case, the other patch is symmetric, and IPC total charge is
zero; this model is called 45n, and it spontaneously self-assembles into an interesting ordered
structure that will be presented in § 4.2.1. Its phase diagram is presented in § 4.2.2, and its
dynamics in § 4.2.3. In § 4.2.4 we study symmetric models in which either the center or the
patches are overcharged; if the other patch is symmetric in size we refer to them as 45sQc.
In the last subsection, § 4.2.5, we analyze asymmetric models and check for which values of
γ2 the ordered structure is still stable.

The initial input to this line of research came from previous studies that showed that
IPCs with medium-sized patches could crystallize into a hexagonal lattice [BLK13] in two-
dimensional confinement and into planar structures in three dimensions [NKD+14, NB15].
These studies were already discussed in § 2.4 so we will not repeat the description here,
but we will remind the reader that in the three-dimensional planar lattice studied in refer-
ence [NKD+14, NB15] the layers repel each other and align parallel.

In another reference [Dop12], a termed called 38n (overall neutral, γ = 38.6◦, δ/2σC = 0.25
was found to be stable at zero temperature in a phase formed by planes stabilized by IPCs
aligned perpendicular to the IPCs in the planes. The structure is shown in figure 4.8; the
density of the system is relatively high (ρ∗ ' 0.88), outside what we defined as the “fluid
region” in the last section. The models presented in this section self-assemble in a structure
similar to this one, but with a larger lattice spacing (and thus a smaller density).

Figure 4.8: Snapshot of a structure formed by model 38n
(reprinted from [Dop12]). Compare with the
structure formed by model 45n in figure 4.9.

4.2.1 The crystal-liquid structure formed by model 45n

Since a picture is worth a thousand words, we start this subsection by inviting the reader to
check figure 4.9, that presents a snapshot of the structure in which this model spontaneously
self-assembles. This structure represents the most relevant novelty discovered in this thesis:
even though layer and interlayer IPCs are exactly the same kind of particles, they behave like
two different species within the temperature range 0.045 < T ∗ < 0.135: the layers are found
in a crystalline state, while the interlayers behave like a fluid. This behavior is not due to
excluded volume effects: we carried out simulations with a density smaller than the one that
would allow for a perfect filling of the simulation box, and we witnessed the formation of the
same structure in coexistence with gas, as presented in figure 4.10. It is important to notice
that the layer-layer distance is independent of density and temperature and characteristic for
the phase. This also holds for the ratio of the number of particles in the layers and in the
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Figure 4.9: Snapshot of a simulation of the 45n model at density ρ∗ = 0.75347 . . . , side view (left) and bird’s eye
view (right). The gray IPCs, that form the planar layers, are stable in their positions and orientations,
and can only vibrate. The green IPCs, confined between the layers, are energetically forced to align
orthogonally to the plane; at low temperatures they are fixed on the positions on top of the bellies of
some of the IPCs in the planes, however when the temperature is sufficiently high they can diffuse
along some minimum potential lines. We term this phase where the green IPCs are mobile as the
crystal-liquid phase.

interlayers.

The interlayer fluid particles do not enter the planes after they are ready, instead they
have an active role in the formation of the layers, that we discovered analyzing the trajectory
movies. After an initial hexagonal plane has self-assembled, another plane would be repelled
by it because the equators of the IPCs in the two planes would be facing each other, as it is
the case in the model g38c studied in reference [NKD+14]. On the other hand, single IPCs
are attracted by the plane because they are free to align their patches to point towards the
plane, and form an attractive layer that acts as a coating of glue on which a second hexagonal
plane can adhere.

We obtained the crystal-liquid structure by annealing a high-temperature gas. The crystal-
liquid structure forms at a temperature between T ∗ = 0.13 and T ∗ = 0.14. We checked the
temperature using NVT Montecarlo direct coexistence simulations: we filled a rectangular
simulation box with IPCs in the crystal-liquid structure, the we froze the particles in a half of
the simulation box, while melting the IPCs in the other half. This setup was then equilibrated
at constant temperature. Snapshots of this method are shown in figure 4.11. This transition
temperature is consistent with the one we observed also in the MD simulations.

The reader might notice from figures 4.9, 4.10 and 4.11 that the ratio of the number of
interlayer IPCs to layer IPCs is always the same. The ratio, in a perfect structure, would
be of two IPC in the interlayers for every nine IPC in the layers. This number was checked
through another NVT Montecarlo direct coexistence simulation: half of the simulation box
was filled with IPCs in the fluid phase, and the other half with a crystal-liquid structure in
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Figure 4.10: Snapshot of a simulation of
the 45n model. Here the
density is lower than in fig-
ure 4.9: the crystal-liquid
structure still forms in a
small spatial region, leaving
the rest of the simulation box
almost empty – i.e. a very
low density gas.

Figure 4.11: An NVT Montecarlo di-
rect coexistence simulation
between the crystal-liquid
structure (in the left side
of the simulation box) and
the liquid phase (in the
right side of the simulation
box). To enhance visibility,
the IPCs that were in the
interlayers at the beginning
of the simulation (before the
initial melting) are depicted
in turquoise.

which the interlayers were under/over-filled. The part of the system in the crystal-liquid
phase absorbed IPCs from the liquid (or ejected the surplus of IPCs into the liquid) until it
reached the ideal ratio of particles.

The dynamic behavior of the interlayer particles changes radically with the temperature.
A transition is located around T ∗ ' 0.045: below this temperature, interlayer IPCs remain in
a fixed position and do not move, while above T ∗ ' 0.045 they diffuse, and their mobility
increases with raising temperature. It worth noting that the ratio between this transition
temperature and the one at which the layers melt (i.e. 0.045/0.135 ' 1/3) gives the same
numerical value of the ratio between of the binding energies of interlayer and layer IPCs in a
perfect lattice (-1/-3), suggesting a link between binding energies and melting temperatures
of the layers and interlayers.

As just stated, interlayers IPCs are frozen at T ∗ . 0.045. Thee orientation of the IPCs is
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4.2 Models with γ1 = 45◦

aligned perfectly orthogonal to the planes, and the patches are placed on top of the equators
of the IPCs in the layers, if no defects are present. To better explain this phenomenon, we
show in figure 4.12 the potential energy landscape felt by a single interlayer IPC between
two layers at three different distances (the middle position between the layers, and two posi-
tions slightly closer to one of the layers) assuming three different orientations (one perfectly
orthogonal to the planes, the other two inclined). It can be seen that the global minimum is
found when the interlayer IPC is located at at distance σC from both the two planes (since the
distance between the two planes is 2σC, the interlayer IPC is in exact contact with the layer
IPCs, but without penetrating the hard sphere core) and orientated perfectly orthogonal to
the planes; the interstitials regions between layer particles are slightly repulsive, and all the
other positions are not as repulsive but also not as convenient as the minimum. Tilting of the
particle is not convenient, because the potential decreases for every orientation not orthog-
onal to the planes. If the IPC is moved closer to one of the planes (z = 1.49, central column
of the figure – this happens due to thermal agitation and/or lattice defects in the planes),
the hard cores of the layer and interlayer IPCs come into contact, so the equatorial region of
layer IPCs becomes repulsive for the interlayer IPC. Around this repulsive region, there is
an annulus-shaped region of equivalent minimum positions: hence, when the temperature
is raised and defects are introduced, the interlayer IPCs start to “dance”, moving inside the
annulus. In addition, the energy barrier between different annuli at z = 1.49 is lower than
the one between the equatorial regions for z = 1.50; thus whenever an IPC accumulates suffi-
cient kinetic energy, it can jump from annulus to annulus (or even from annulus to equatorial
region and viceversa, if defects are present and/or the temperature is sufficiently high). In-
terlayer IPCs start having enough energy to jump between minima (equatorial regions or
annuli) at T ∗ ' 0.040, but the jumps are sporadic and only at T ∗ & 0.045 this phenomenon
happens with a frequency sufficient to allow a real diffusion.

In the left column of figure 4.12, the interlayer IPC is moved even closer to the lower plane
(i.e. z = 1.45): the shape of the potential is qualitatively close to the configuration at z = 1.49,
but the attractive regions are smaller and their energy is higher, so this configuration is
unfavored.

The bottom panel of figure 4.12 shows the minimum (in the x− y plane) of the potential
felt by the interlayer IPC as a function of z. The plot shows that, although an attractive region
can be found at every distance from the planes, the global minimum of the energy is found
when the interlayer IPC is located in the middle position between the two planes.
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Figure 4.12: Contour plots of the potential experienced by a single interlayer IPCs at different orientations and
distances form the planes. The snapshots at the top shows the three orientations considered; the
colors of the IPCs identify the inclination in the graphs below. In each row the panels show the
potential for a single orientation at different distances (z = 1.45, 1.49, 1.50); the lower plane is cen-
tered at 1.0 (in units of 2σP) and the second at 2.0, so z = 1.5 is the middle position and the other z
values are closer to the lower plane. Blue color in the contour plots should be regarded as inside the
hard core of the IPCs. The graph immediately below the snapshots shows the depth of the absolute
minima in the plane at fixed z, depending on the interlayer IPC height and orientation.
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4.2 Models with γ1 = 45◦

4.2.2 Phase diagram of the 45n model

The phase diagram in the T ∗−ρ∗ plane of model 45n is shown in figure 4.13. It can be seen
that above T ∗ = 0.135 the system is always found in the fluid phase. A small liquid-vapor
coexistence region is found in the temperature range 0.12 < T ∗ < 0.13, and for T ∗ < 0.12
the system is found in coexistence between the gas and the solid (i.e. the crystal-liquid
structure). Only at ρ∗ = 0.75347 the system is found in a pure solid phase. Higher values of
the density were not explored.

Figure 4.13: Phase diagram of the 45n model in the T∗ − ρ∗ plane. The statepoints indicated by the symbols
were studied using simulations: From MD simulation we obtained the blue circles that denote a
fluid phase, the squares that denote the ordered structure (crystal-liquid when red, crystal-frozen
liquid when black) and the upwards violet triangles that denote coexistence between gas and solid.
The pink downward triangles come from grand-canonical Montecarlo simulations and denote the
the liquid-vapor coexistence line; the critical point is differentiated from the other points using a
rhombus. This figure comes from a paper currently under publication process [FBK].

4.2.3 Dynamics of the 45n model

Some technical details

Before discussing the dynamic correlation functions, we have to introduce some technical
details to the reader. Self-assembled crystals have many defects and planes are often tilted
with respect to each other. A glance at figure 4.10 shows clearly what we mean: it is rather
difficult to distinguish between layer and interlayer IPCs. A good criterion is checking the
mean squared displacement of the particles, but this only works for T ∗ & 0.045, when the
interlayer IPCs diffuse. For T ∗ < 0.045 the only possible criterion is to check the orientations,
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and this is very difficult when the planes present defects. To circumvent the problem, we
created a “perfect” lattice, where the planes were all perfectly straight and aligned parallel
to the x− y plane. The interlayer IPCs were accommodated inside this structure: their z co-
ordinate was chosen to be exactly in the middle point between pairs of layers, but their x and
y coordinates were chosen randomly. The density of this configurations was the “ideal” one,
ρ∗ ' 0.75. This setup was equilibrated at very low temperatures: since T ∗ cannot be fixed
in our MD simulations, a periodic rescaling of the temperature was necessary, otherwise the
interlayer IPCs would acquire too much kinetik energy and impact with the layers creating
defects. To do so, we put all the velocities to zero at regular intervals. We considered this
“ground state” setup to be equilibrated when the system could be let evolvewithout any
temperature drift even without the temperature rescaling. At the end of the equilibration,
the (time-averaged) temperature was usually very low, in the range .005 < T ∗ < 0.011, the
layers did not present defects, and the interlayers IPCs had moved from the random position
in which they were initially placed to the equilibrium positions on top of the equators of the
IPCs in the layers.

Since we wanted to study statepoints of higher temperature, we had to rescale the velocities
so that the temperature would move to a slightly higher (or lower, in the rare instances in
which we cooled) value, let the system equilibrate (again in the sense of no T ∗ drift), and
repeat these two rescaling and equilibration steps until we reached the desired T ∗. The
rescaling of the velocities were kept small to minimize the formation of defects. When
the system finally equilibrated at one of the desired temperatures, longer simulation were
performed and the observables were sampled.

Dynamic correlation functions

We will now describe the observables measured using the method described in the previ-
ous §.

The mean squared displacement (MSD) is shown in the bottom panels of figure 4.14. At
all temperatures, the MSD of the IPCs in the layers is quite small and does never exceed
the value of 0.1 in units of (2/sigc)2. At T ∗ = 0.040 and 0.050, the figure shows not only
the three-dimensional MSD, but also the MSD along the z direction and the one in the
x− y plane. We can observe that the movement of the layer IPCs only happens in the z in
the direction orthogonal to the planes while, on the other hand, the MSD of the interlayer
IPCs shows that at low temperature these particles do not move, but when the temperature
is around 0.45 they start to diffuse over a distance larger than their diameter; above this
temperature they become mobile and the diffusion speed grows with temperature. Their
movement is confined in the space between two parallel layers. The diffusion coefficients for
both particle species are shown figure 4.15. Their growth is monotonous almost everywhere,
except around the transition temperature where a surprise is found: both the layers and the
interlayers show a small ripple. This is not a sampling mistake and was confirmed repeating
the simulations; unfortunately we were not able to find an explanation.

Even more information is contained in the autocorrelation function of the orientation
(ACN). The results are presented in the top panels figure 4.14. The red curves refer to
the IPCs in the layers: it can be seen that the ACN has dumped oscillations with period

66



4.2 Models with γ1 = 45◦

 0.96

 0.98

 1

 0  50  150

T = 0.015

t*

Cn(t*)

interlayers
planes

 0.96

 0.98

 1

 0  50  150

T = 0.040

t*

Cn(t*)

 0.96

 0.98

 1

 0  50  150

T = 0.050

t*

Cn(t*)

 0.9

 0.93

 0.96

 1

 0  50  150

T = 0.095

t*

Cn(t*)

 0

 0.1

 0.2

 0.1  0.2

T = 0.015

ν*

Cn(ν*)

 0

 0.1

 0.2

 0.1  0.2

T = 0.040

ν*

Cn(ν*)

 0

 0.1

 0.2

 0.1  0.2

T = 0.050

ν*

Cn(ν*)

 0

 0.1

 0.2

 0.1  0.2

T = 0.095

ν*

Cn(ν*)

10
-6

10
-4

10
-2

10
0

10
2

10
-1

10
1

10
3

T = 0.015

t*

<∆r(t*)
2
>

10
-6

10
-4

10
-2

10
0

10
2

10
-1

10
1

10
3

T = 0.040

t*

interlayers, ∆z
interlayers, ∆xy

planes, ∆z
planes, ∆xy

10
-6

10
-4

10
-2

10
0

10
2

10
-1

10
1

10
3

T = 0.050

t*

<∆r(t*)
2
>

10
-6

10
-4

10
-2

10
0

10
2

10
-1

10
1

10
3

T = 0.095

t*

<∆r(t*)
2
>

Figure 4.14: Correlation functions for model 45n. Top panels: orientational autocorrelation function at selected
statepoints for the layer IPCs (red) and the interlayer IPCs (black). Middle panels: the Fourier
transform of the orientational autocorrelation functions shown in the top panels, as functiona of the
frequency ν∗ = 1/t∗. Lower panels: the mean squared displacement of the layer IPCs (red) and the
interlayer IPCs (black). For the two temperatures around the transition, we also plotted the MSD in
the x− y plane, and the MSD along the z direction.

τ∗ = 103, around a constant value that decreases with temperature. A radically different
behavior is found for the interlayer IPCs, whose ACN is drawn in black in the plots. At
T ∗ ≤ 0.040 the ACN also oscillates around a constant value, but these oscillations are more
complex than those of the layer IPCs: it is in fact the superposition of two modes. This
can be better understood in frequency space, looking at the Fourier transforms of the ACN
presented in the central panels of figure 4.14: two peaks can be identified, one, very sharp,
is located at ν∗ = 0.1 (τ∗ = 10) and is the same oscillation that the layer IPCs undergo; the
other, broader, is located at ν∗ = 0.08 (τ∗ = 12.5), is characteristic of the interlayers only,
and becomes more pronounced as the temperature raises. The τ∗ = 10 peak is due to the
layer IPCs vibrating around their equilibrium orientation, and we suppose (but cannot prove
conclusively) that the interlayer IPCs undergo the same oscillations when they are located in
their global minima, i.e. on top of the equator of layer IPCs, aligned orthogonal to the layers.
On the other hand, IPCs that are “dancing” in the annulus-shaped minima (explained in the
previous subsection) present the second mode of oscillation.

At T ∗ ≥ 0.050 the interlayer IPCs ACN functions decay. As we learned from the MSD,
at this temperature the interlayer IPCs start being able to diffuse in the x− y plane; at the
same time, the oscillations are no longer peaked at τ∗ = 10 and τ∗ = 12.5, become irregular
with a continuous distribution of frequencies, as suggested by the Fourier transform. This
is because they start hopping from minimum (equator or annulus) to minimum, and since
defects are present in the lattice, their equilibrium alignment also has to change.

3We remind the reader that, as specified in the introduction, times t∗ and time intervals τ∗ are expressed in units of t0.
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Figure 4.15: Diffusion coefficient for
model 45n as a function of
the temperature T∗. Black for
the interlayers, red for the
layers.
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4.2.4 Overcharging and undercharging of symmetric IPCs: 45sQc models

Up to now, the IPC charge has been overall neutral, i.e. the charge of each patch is half that
of the central body. We now relax this condition and vary the charge of the center according
to a simple formula:

Zc = −
30+Q

15
Zp. (4.1)

A positive value of Q makes the center proportionally more charged than the patches, and
hence reduces the relevance of the patch-patch repulsion. For the same reason, a negative
value of N makes the center-center repulsion less prominent. Values of Q such that Q ≥ 8
make the patch-center attraction so strong that the patches do not repel anymore; on the
other hand, for Q < −3 the center-center repulsion becomes so dominant that there is no
longer attraction between patch and centes.

It was shown in [NB15] that overcharge of the central body enlarges the region of stability
in the p− T phase diagram of the layered structure that model 38n forms. For our models
with Q 6= 0 we did not explore in detail the phase diagram as we did for model 45n, but
nevertheless we observed that the crystal-liquid structure did self-assemble more easily, in
the sense that, by cooling an high-temperature gas, the layers self-assembled formed in a
shorter simulation time than the 45n model. Under every other respect, overall charged and
neutral models are equivalent: the shape of the lattice is exactly the same, and the dynamics
too, as the reader can see in the correlation functions presented in figure 4.16: the interlayer
IPCs present the same two peaks at τ∗ = 10 and τ∗ = 12.5 for T ∗ < 0.45 and the decay for
T ∗ > 0.45, as their neutral counterparts do.

4.2.5 Models with asymmetric patches

The results presented in this section refer to models for which γ1 = 45.6◦ 6= γ2. In sec-
tion 4.1 we defined the orientation as the direction joining the two patches; now that the two
patches are no longer equivalent, we still use that definition of orientation, and specify as
“direction of the IPC” the direction pointed by 45.6◦ patch. As the reader can see in table 4.1,
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Figure 4.16: Correlation functions for model 45sQc. Top panels: orientational autocorrelation function at selected
statepoints for the layer IPCs (red) and the interlayer IPCs (black). Middle panels: the Fourier
transform of the orientational autocorrelation functions shown in the top panels, as functiona of the
frequency ν∗ = 1/t∗. Lower panels: the mean squared displacement of the layer IPCs (red) and the
interlayer IPCs (black). For the two temperatures around the transition, we also plotted the MSD in
the x− y plane, and the MSD along the z direction.

we studied many models of patch amplitudes, however only those for which also the second
patch is close to 45◦ crystallized.

How does the crystal-liquid structure change? The answer is surprisingly simple: the
positions and orientations are still the same, and the directions of the IPCs are randomly
distributed. Figure 4.17 shows, using the 3945n model as a reference, three possibilities in
which a hexagonal plane could be arranged. In the left panel we can see that, along the
diagonals defined by the cyan line in the figure, the patches of the same size face each other:
the red line follows the direction pointed by the 45.6◦ patches (drawn in white) along a di-
agonal. Another possibility is presented in the central panel: this lattice is obtained by the
one shown in the left panel by inverting the direction of the IPCs on every other diagonal.
Finally, the right panel shows a configuration in which the directions are distributed ran-
domly, obtained by self-assembly in a simulation. Although the three configurations appear
quite different, they all share the same value of the energy per particle, and hence the one
that will be realized in self-assembly is the one with the highest entropy, i.e. the one with
the directions randomly distributed. Similar considerations hold for the interlayer IPCs: they
might all align with the 45.6◦ patch pointing up, or down, or irregularly (some pointing up
and some down); and since there is no energy difference between these three possibilities,
the irregular alignment will be the one realized in simulation because of its higher entropy.

Neutral models with asymmetric patches self-assembled when the amplitude of their sec-
ond patch was in the range 36.2◦ ≤ γ2 ≤ 45.6◦. Model 3645n required a extremely long time
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Figure 4.17: Three possible alignments of the patches in the hexagonal lattice (as explained in the text): two
regular (left and center) and a disordered one (right). The 45.6◦ patches are colored in white, the 39◦

ones in brown. The cyan arrow denotes the direction defined as “diagonal” in the text; the red lines,
that we drew to help the reader visualize the difference in the orientation of the patches, follow the
directions pointed by the 45.6◦ patches.

to self-assemble via an extremely slow cooling procedure; however, it is remarkable that it
did self-assemble, given how the large asymmetry and the small second patch amplitude.
Other models with patch amplitude closer to the symmetric case, for example model 5045n,
did not self-assemble at all. As we already put forward in the symmetric case, overcharging
improves the stability of the layer phase. While the above-mentioned model 5045n di not
self-assemble into the crystal-liquid structure, its charged version (5045c) did. This actually
shows that the main obstacle to the spontaneous self-assembly of the crystal-liquid structure
might be the patch-patch repulsion, whose relevance with respect to the center-center and
patch-center interactions is reduced by the overcharging.

4.2.6 45* models: summary

Many of the the models presented in this section self-assembled in a novel phase –that
was never observed before – composed by solid layers that behave like a solid, and particles
between the layers that in the temperature range .045 ≤ T ∗ ≤ 0.125 behave like a fluid,
hopping between different minima. We studied dynamic correlation functions (ACN, MSD)
to better understand the transition, and saw that the structure is also formed by asymmetric
models where one of the patch has an amplitude different than 45.6◦. Overcharging the
colloid center enhances the stability of the crystal-liquid phase. We suspect that this is due
to the reduced patch-patch repulsion.
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4.3 Symmetric models with larger patch extension

For very large patch extensions γ ≥ 49.5◦ the crystal-liquid structure is no longer stable,
and its place is taken by an FCC lattice with four independent orientations of the IPCs,
shown from a side view in the left panel of figure 4.18. If the lattice were cut through one
of the diagonals of the cubes, the planes at the interface would appear like the planes found
in two-dimensional confinement [BLK14] that we presented in figure 2.6 from § 2.4, right
panel. It is interesting to note that this FCC structure was predicted by Doppelbauer in his
Ph.D. thesis [Dop12], using a neutral model with γ = 57◦ and δ/2σC = 0.25. In the same
work he also studied a charged version of the same model, that had many other interesting
stable phases, but unfortunately we did not succeed in self-assembling any of those.

Figure 4.18: Snapshots of the face centered cubic structure formed by the 60n model. Left: a side view of a
simulation at very high density (ρ∗ = 1.0), where the typical shape of the FCC can be identified.
Right: a simulation snapshot at low density, where the interfaces present the hexagonal structure
that was formed by the model also in two-dimensional confinement [BLK14].

The remarkable feature of this phase is that it is so energetically convenient with respect to
a fluid phase, that it forms even at very low density in coexistence with gas, as can be seen
in the right panel of figure 4.18.
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4.4 Completely asymmetric models

In this last section, we present some models whose patch amplitudes and charge distribu-
tion are chosen to extend to three dimensions the experimental results in two-dimensional
confinement of van Oostrum (some are published in reference [vOHNR15], but a large part
is still unpublished). The most interesting model is the 5040c whose parameters are cho-
sen to mimic the experimental particles studied in reference [vOHNR15]. Despite the large
asymmetry in the patches, this model still self-assembles in the crystal-liquid phase. A
simulation snapshot showing the coexistence between the crystal-liquid phase and the low
density fluid is presented in figure 4.19. It is important to note that the neutral equivalent
(model 5040n) does not, again showing that overcharging stabilizes the ordered structure.
We already observed this phenomenon for models 5045n and 5045c, where only the charged
model self-assemble; however, in the case of the 5045c and 5045n moels the patch had differ-
ent amplitudes but carried the same charge, while in the case of the 5040c and 5040n models,
the patches are asymmetric also in the charge.

Figure 4.19: Snapshot from MD simula-
tion of the model 5040c. This
statepoint shows the coex-
istence between the crystal-
liquid phase and a low-
density gas.
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In this thesis we studied colloids with a heterogeneously charged surface, referred to in the
literature as inverse patchy colloids (IPCs) and first introduced in reference [BKL11]. While
in conventional patchy particles the patches attract each other, in IPCs, due to the electric
interaction between regions of like-unlike charge, the patches repel each other and attract
the rest of the colloidal surface.

Previous studies of IPCs in two-dimensional confinement [BLK13, BLK14] showed that,
depending on the patch amplitude, particles self-assemble in a variety of ordered structures.
The results are summarized in the upper panels of figure 5.1: particles with small patch
semiamplitude (γ = 31.1◦) do not form ordered structures at all, medium-size patches (γ =

45.6◦) form a hexagonal layer in which all the patches of the IPCs have their orientations
aligned with the layer, and larger patches (γ = 59.2◦) formed another type of hexagonal
lattice where some of the IPCs have their patches pointing outside the plane.

In this work, we extended these studies to three dimensions. We investigated the phase
behavior of the model, varying interaction range, patch size and charge distribution, and
searched for ordered structures that could spontaneously self-assemble in the density range
ρ∗ ≤ 0.8. For these investigation, we developed our own code for a molecular dynamics
(MD) simulation.

For small-patch models (left panel of figure 5.1), no ordered structure was found, as it
was in two-dimentional confinement; in this case, we studied the thermodynamics of the
fluid using an integral-equations approach, namely the reference hypernetted chain method
developed by Fred Lado [Lad82]; we compared the results with Montecarlo simulation pro-
vided data by Bianchi [KBFK15], and the associative Percus-Yevick method developed by
Kalyuzhni [KBFK15]. These techniques showed good results in the reproduction of the ra-
dial correlation function and in the prediction of pressure and energy. We also used MD
simulations to explore the phase diagram of a neutral model with γ = 31.1◦, of which we
also studied the dynamics, observing simple oscillations in the orientation that will become
more complex for larger patch systems.

For medium-patch models (central panel of figure 5.1), we discovered a hybrid crystal-
liquid structure, composed by the same hexagonal planes seen in two-dimensional confine-
ment and by additional particles located between (and whose patches were pointing to) the
layers. At very low temperature, these interlayer IPCs are trapped in minima and do not
diffuse. However, for T ∗ > 0.045, interlayers IPCs have enough kinetic energy to hop be-
tween different minima, and acquire a mobility comparable to that of a fluid. We studied
the dynamics by means of correlation functions, and we discovered complex oscillations in
the orientational autocorrelation function; these oscillations are influenced by the hopping
and the orientational autocorrelation functions exhibits a sharp transition at T ∗ ' 0.045. We
also computed the phase diagram of the symmetric neutral model with γ = 45.6◦, and stud-
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ied the stability of the crystal-liquid phase with respect to overcharging of the colloid center
and of the patches, and the variation in size of one of the two patches. We observed that the
overcharging of the colloid center improves the stability of the crystal-liquid phase, while
overcharging of the patches weakens it.

Figure 5.1: Structures formed by neutral IPCs in two-dimensional confinement (top panels) and in three dimen-
sion (lower panels, pointed by the red arrows). The patch amplitude grows from left to right. See the
text for explanation.

For larger patch models (right panel of figure 5.1), we found an FCC structure, that if
cutted along one of the diagonals of the cubes would appear like the planes seen in two-
dimensional confinement. We saw that the FCC would form even at really low density,
coexisting with the gas.

We also studied some models inspired by the experimental research of van Oostrum and
coworkers [vOHNR15] and studied a charged model with patches asymmetric both in size
and charge, compatible with the experimental IPC models, would (in absence of gravity)
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spontaneously self-assemble in the crystal-liquid structure, while an overall neutral model
with the same patch sizes would not.

Figure 5.2 summarizes all the ordered structure that spontaneously self-assembled, de-
pending on the two patch semiamplitudes γ1 and γ2. The natural extensions of this work
would be to complete the exploration of the parameters (charge, patch size and interac-
tion range) of the model, and to further inquire the causes that trigger the self-assembly.
It would also be insightful to systematically study all the ordered structures (not only the
ones that self-assemble spontaneously) using solid-state methods such as those used in ref-
erence [NKD+14], although the work required would be huge. At T ∗ = 0, this task has been
carried out by Doppelbauer in his Ph.D. thesis [Dop12], but at finite temperature the ques-
tion remains open. Moreover, all the models studied in this work had two patches located
at the opposite poles of the colloid; it would be interesting to study the behavior of a model
with patches placed in other positions, or with three or more patches.
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Figure 5.2: Ordered phases in function of
the patch angles γ1 and γ2.
Combiantions for which no or-
dered structure self-assembles
are denoted by red down-
wards triangles; Upwards tri-
angles show where the crystal-
liquid structure was found
(green if also overall-neutral
IPCs could self-assemble, or-
ange if only overall-charged
models did); black squares de-
note the face-centered cubic
lattice.
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