
Dissertation

Structure, thermodynamics and phase
behavior of a polydisperse colloidal mixture

ausgeführt zum Zwecke der Erlangung des akademischen
Grades eines Doktors der technischen Wissenschaften unter der Leitung

von

Univ.Doz. Ass.Prof. Dipl.-Ing. Dr. Gerhard Kahl

Institut für theoretische Physik

eingereicht an der technischen Universität Wien

Fakultät für technische Naturwissenschaften und Informatik
von

Dipl.-Ing. Sabine Leroch
9226250

Bendlgasse 24/3, 1120 Wien

August 4, 2005





Zusammenfassung

In dieser Arbeit haben wir die thermodynamischen Eigenschaften und das Phasenverhal-
ten einfacher polydisperser Flüssigkeiten untersucht, wobei wir uns hierbei nur auf die
fluide Phase beschränken. Wir haben polydisperse Flüssigkeiten als n-Komponenten Mis-
chung im Grenzwert n → ∞ betrachtet in dem die Teilchendurchmesser kontinuierlich in
einem Bereich [σmin, σmax] variieren und die Konzentrationen der Teilchenarten durch eine
kontinuierliche Verteilungsfunktion f(σ) ersetzt werden. Die Teilchen wechselwirken über
effektive Paar-Potentiale, deren repulsiver Anteil aus einer hard sphere Wechselwirkung
besteht und die anziehenden Anteile in einem Fall durch ein square-well und im zweiten
Fall durch ein Yukawa Potential gegeben sind, zusätzlich haben wir eine van der Waals
Flüssigkeit untersucht.
Um die Ornstein Zernike Gleichungen zu lösen, haben wir eine thermodynamische Stö-
rungstheorie - die optimized random phase approximation (ORPA) - angewandt. Im er-
sten Teil dieser Arbeit haben wir die ORPA Ausdrücke für die thermodynamischen Größen
verwendet und den Einfluß der Polydispersität auf die thermodynmaischen Größen un-
tersucht.
Um Phasenübergänge zu berechnen, haben wir uns auf Systeme mit einfacheren freien
Energien als jenen aus der ORPA beschränkt, sie werden als sogenannten ‘truncatable’
freie Energien bezeichnet. Das Wort truncatable bedeutet, daß es sich hierbei um freie
Energien handelt, die nur von einem endlichen Satz von verallgemeinerten Momenten der
Verteilungsfuntion f(σ) und der mittleren Teilchendichte des Systems abhängen. Für
Systeme mit truncatable freier Energie können wir daher polydisperse Phasenübergänge
ähnlich wie bei n-komponentigen Mischungen mit der üblichen Tangentenkonstruktion
in einem endlich dimensionalen Momenten-Raum berechnen. Wir haben den Einfluß der
(Größen- und Amplituden-) Polydispersität auf den Phasenübergang für drei verschiedene
Modelle von truncatable freien Energien (für die van der Waals, die hard-shpere square-
well und die hard-sphere Yukawa freie Energie) untersucht und dadurch zahlreiche Ein-
sichten über das Phasenverhalten polydisperser Systeme gewonnen. Die Polydispersität
führt unter anderem zu neuen Phänomenen im Bezug auf das Phasenverhalten, das bei
den entsprechenden monodispersen Systemen nicht auftritt.





Abstract

In this work we have studied the thermodynamic properties and the phase transitions
of simple polydisperse systems, where we direct our attention on the fluid phases only.
In our study we have treated a polydisperse system as a n-component mixture in the
limit n → ∞ where the particle diameters are distributed continously within a range
[σmin, σmax] and the concentrations of the various particle types are replaced by a distri-
bution function f(σ). The particles interact via effective potentials which are given by
a hard sphere repulsion with attractive tail. The attractions are in one case given by a
square-well and in the second case by a Yukawa potential. In adddition we have studied
a polydisperse van der Waals system.
To calculate the structure and thermodynamic properties of the polydisperse system we
have used a thermodynamic perturbation theory - the optimized random phase approxi-
mation (ORPA). In the first part of this work the ORPA expressions for the thermody-
namic properties were used to study the influence of polydispersity on the thermodynamic
properties.
For the calculation of phase transitions we have limited ourselves to approaches that lead
to free energies that are simpler than the ones obtained from the ORPA; they are com-
monly refered to as ‘truncatable’ free energies i.e. the expressions for the free energy
depend only on a finite set of generalized moments of the distribution function f(σ) and
on the number density of the system. For systems of truncatable free energies we can
calculate phase equilibriua via the usual common tangent construction in a finite dimen-
sional moment-space as for n-component mixtures. We have studied the influence of (size
or amplitude) polydispersity on the phase transition process for three different truncat-
able free energy models (a van der Waals, a hard sphere square-well and a hard sphere
Yukawa free energy) and have gained new insight into the phase behavior of polydisperse
fluids in comparison to the corresponding monodisperse phase transition.
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Chapter 1

Introduction

Colloidal suspensions consist of mesoscopic particles (with mean diameters typically from

1nm to 1µm) that are dispersed in a suspending microscopic fluid. The fact that such

colloids are practically ubiquitous in our everyday lives (ranging from industrial prod-

ucts such as paints, glues or lubricants to basics such as food or pharmaceuticals) is one

reason why increasing attention has been dedicated to these systems. (For an overview

see, for instance, [1].) On the other hand, for a liquid state physicist such systems are

very attractive in that they represent mesoscopic realizations of simple atomic liquids.

Surprising analogies between the statistical behavior of such systems and that of simple

atomic systems can be observed, and in some cases analogous experiments can be carried

out much more easily for colloids than for atomic systems. To describe these suspensions,

one usually integrates out (at least conceptually) the molecular degrees of freedom of the

microscopic suspending fluid, and employs effective potentials acting directly between the

mesoscopic particles that are rather simple: a harsh repulsion at short distances followed

by an attraction at larger distances. In some cases, these interactions can even be tailored

by suitable production techniques, while in atomic liquids one is simply stuck with the

interaction dictated by the electronic structure.

Statistical mechanics was originally developed for the study of large systems of identical

particles such as atoms and small molecules. However, many materials of industrial and

commercial importance do not fit into this framework: due to their production process,

the colloidal particles are never precisely identical to each other, but have a range of radii

(and possibly surface charges, shapes etc.), meaning that they are polydisperse. A poly-

disperse liquid can be considered as a mixture with an infinite number of components,

characterized, for instance, by the particle diameter σ, that is now a continuous rather

than a discrete variable.

The first attempts to treat such systems date back to the late 1970s [2, 3], when a model

of polydisperse hard spheres was investigated within the Percus-Yevick approximation.

3
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In later years the concept of polydispersity was cast in a mathematically rigorous form by

Salacuse and Stell [4] and by Briano and Glandt [5]. In these formulations, σ is the realiza-

tion of some random variable Σ distributed according to a probability distribution fΣ(σ),

which replaces the finite set of concentrations of the discrete components of a mixture.

Meanwhile, the formalism has been extended systematically to more refined and more

sophisticated hard-core model systems [6, 7]. The first step toward numerically solving

such general (i.e., continuous) systems was carried out by D’ Aguanno and Klein [8], who

applied well-known integral equation approaches of liquid state theory to the polydisperse

case. This was achieved by replacing the continuous distribution fΣ(σ) with a histogram

for a finite set of n well-chosen diameters, thus mapping the polydisperse system back

onto a n-component mixture. Recently this approach was modified by Lado [9] by joining

the orthogonal polynomial technique with classical liquid state integral equation theory.

In this procedure, all σ-dependent functions (in particular, the correlation functions) are

expanded in terms of orthogonal polynomials pi(σ) associated with the distribution func-

tion fΣ(σ). This expansion technique avoids the rapid increase in computational cost

with the number of components n in the D’Aguanno-Klein mixtures-method, while fully

retaining the advantages and numerical accuracy of Gaussian quadrature based on the

distribution function fΣ(σ). The same technique can further be applied to a much wider

range of problems dealing with internal and external degrees of freedom in fluid systems

[10, 11].

In my diploma thesis [12], we merged the orthogonal polynomial expansion method

with a thermodynamic perturbation theory, the optimized random phase approximation

(ORPA). The same formalism was used in this work to calculate structure and thermo-

dynamic properties of a polydisperse system. The ORPA was introduced in the 1970s

[13, 14], and turned out to be a very successful liquid state theory, favored by practition-

ers over a considerable period of time until - because of new, more efficient numerical

algorithms - it was overtaken by integral equations in the 1980s. In the ORPA, the pair

potential is split into a harshly repulsive reference term (the optimum choice is of course

a hard sphere interaction) and a perturbation term; the Ornstein-Zernike equations are

then solved along with a mean-spherical-type-closure relation which guarantees in addi-

tion that the pair distribution function vanishes in the region that is not accessible due

to the strong repulsion (’core region’). It can be shown that the solution of the resulting

integral equation is equivalent to the minimization problem of a suitably chosen func-

tional of the direct correlation function. This makes the ORPA very attractive, since it

is sometimes more convenient (and numerically more stable) to solve the minimization

problem than to solve an integral equation. Thermodynamic and structural properties are

calculated via perturbation expressions. In recent years - in particular due to the work
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of Pastore and co-workers [15, 16] - the ORPA has been rediscovered: new numerical

tools and the rapid development of computers have brought this liquid state method back

into the race. Preliminary calculations for simple square-well systems have shown that in

some cases the ORPA can in fact be applied over a larger range of system parameters than

integral equation approaches [17]. In addition, the ORPA shows a remarkable degree of

thermodynamic consistency without the necessity of introducing an additional parameter,

as required in applications of parameterized integral equations theories that enforce some

thermodynamic consistency.

In [18] we have presented results of a polydisperse hard-sphere square-well system ob-

tained via the ORPA. As shown there the structure functions obtained via the random

phase approximation (RPA), a liquid state theory where the pair distribution functions

do not necessarily vanish within the core region, differs significantly from the ones calcu-

lated within the ORPA. Moreover we have shown that the thermodynamic quantities of

a polydisperse liquid differ only slightly from the corresponding monodisperse properties

and are almost independent from the choice of the truncation level within the Gaussian

quadrature. In this work we have studied the influence of polydispersity on the thermody-

namic properties calculated within the framework of the ORPA. As sample applications

we have chosen again the square-well fluid and in addition the Yukawa fluid. These are

rather simple systems that nevertheless capture all essential features of a typical potential

of atomic liquids or colloidal suspensions. In these formulations, the potential parameters

of the polydisperse systems (hard-core diameter σ, well width λ and well depth ε for the

square-well fluid; inverse screening length κ and contact value γ for the Yukawa fluid)

can be varied independently; i.e. they can be distributed according to three independent

distribution functions for each potential fΣ(σ), fΛ(σ) and fE(σ) (for the square-well po-

tential) and fΣ(σ), fκ(σ) and fΓ(σ) (for the Yukawa potential).

Apart from the calculation of structure and thermodynamics of a polydisperse system

we have examined the influence of polydispersity on a phase separation process. In the

study of polydisperse phase equilibria, one is interested to examine under which condi-

tions of pressure and temperature a polydisperse system will be stable against demixing,

how many phases will result if it does demix, and what their properties are, where the

emphasis of this work will be on the problem of predicting such phase behavior theoreti-

cally. We will concentrate exclusively on bulk phase equilibria. In addition, we will only

discuss the case of fixed polydispersity, where the polydisperse attribute (in this work the

particle diameters) of each particle remains fixed once and for all.

The theoretical study of phase separations in polydisperse systems is faced with rather

hard technical problems (mainly due to the infinite number of components). While for

a n-component system the phase coexistences can be calculated from the free energy via
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the common tangent construction in a n-dimensional density space (where each axis cor-

responds to the density ρi of the ith particle type), for a polydisperse system this becomes

an impossible task as the free energy depends in general on a continuous density distri-

bution function ρ(σ). That means the free energy is now a functional of ρ(σ) = ρfΣ(σ)

(with ρ the number density of the polydisperse system) and one has to make the com-

mon tangent construction in an infinite dimensional space. To calculate phase splits of

polydisperse systems we have therefore to look for methods which can be used to reduce

the dimensionality of the occurring equations. One of the most conventional possibilities

is to use the ‘truncatable’ free energy method [19, 20], because it is an exact method.

The expression truncatable means that along with this method the excess free energy can

be expressed as a function of a finite set of moments of the distribution function fΣ(σ)

and of the number density ρ only. So we can reduce the problem to finite dimensionality

given through the k-dimensional moment-space (where k stands for an arbitrary finite

number). However the number of systems with a truncatable free energy is limited (for

an overview see [20]). To calculate phase transitions of polydisperse systems that do not

belong to this class (the free energy calculated via the ORPA for example) one is therefore

forced to use approximations. The most straightforward way is to discretize the equations

that define the phase coexistences and to map the polydisperse system onto a finite n-

component mixture. The advantage of this approximation is that it can be applied to all

systems irrespective of their dependence on the distribution function fΣ(σ); the drawback

of this approach is that the method of discretization is very sensitive to systematic and

numerical errors and that it is high in computational cost (because n has to be rather

large to minimize the occurring errors). Other more suitable methods to calculate the

phase equilibrium in polydisperse systems is for instant the so called moment free energy

method introduced in [21] and [22]. These approximate methods lead in contrast to the

truncatable free energy method, to approximations for the phase coexistence curves; that

means one can only define regions in the ρ-T plane characterized by the so called ‘cloud’

and ‘shadow’ curves which provide envelopes for the phase coexistence curves - the bin-

odals.

In our calculation of phase-equilibria via truncatable free moment models we have con-

sidered the simplest possible phase separation, namely the fluid-fluid phase separation.

To calculate the phase transition we have chosen either a van der Waals fluid or a hard

sphere fluid with attractive tail given by a square-well or a Yukawa potential.

The polydisperse phase diagrams show aspects which cannot be observed at the monodis-

perse ones: While for monodisperse systems there exists only one binodal for polydisperse

systems one can calculate an arbitrary number of binodals - one for each choice of parent

number density (corresponding to the number density of the initial phase) ρ(0) -, where
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only the binodal calculated for ρ(0) = ρcrit approaches the critical point; all other binodals

are truncated at a certain temperature below or above the critical point. The cloud point

curve with incipient shadow curve are special cases of binodals which can be obtained if

we let the composition of the initial or parent phase unaltered and calculate the phase

coexistence between this parent phase (where the equilibrium number densities are iden-

tical to ρ(0)) and the incipient minority-phase which is present in infinitesimal amounts

only.

Also for the critical point an evident difference between monodisperse and polydisperse

system can be observed: while the critical point in the monodisperse case is always situ-

ated at the maximum of binodal or spinodal, in the polydisperse case it can be obtained

from the intersection of cloud point curve and shadow curve which have in general no

common maximum (only for special choices of potential parameters). In most cases the

maxima of cloud point curve and shadow curve are at temperature tm above the critical

point; this allows for a re-entrant behavior of the high or low density phase. Where with

re-entrant behavior we mean that also for the case of two phase coexistence there can

occur phase coexistences above the critical point (at least for special choices of ρ(0)).

We have studied the influence of the so called size polydispersity, the amplitude polydis-

persity and the combination of size and amplitude polydispersity on the phase transition

process. With size polydispersity we mean that the amplitude of the attractions is con-

stant for all particle type interactions, while for amplitude polydispersity it depends on

the diameters σ of the interacting particles. The size or (and) amplitude polydispersity

of the potential can be adjusted by the special choice of the potential parameters (z for

the square-well model and a for the Yukawa model).

For the size polydisperse van der Waals and square-well system the cloud point and

shadow curves have a common maximum which is identical to the critical point, while for

the size polydisperse Yukawa system the cloud curve is slightly shifted to higher densities

so that the maxima of shadow- and cloud point- curve never coincide and the critical

point is lying at their intersection. In the size and amplitude polydisperse van der Waals

and square-well system the shadow curve is shifted to higher densities and moves partly

out of the interior of the cloud point curve whereas the size and amplitude polydisperse

Yukawa fluid shows for moderate values of a (a = 1) a similar behavior with respect to

the shadow and cloud point curves as the size polydisperse Yukawa model.

While for the size polydisperse square-well system the phase coexistence region does not

shift to lower temperatures as compared to the corresponding monodisperse case the size

polydispersity has big influence on the phase coexistence regions of the van der Waals

and Yukawa system. Size polydispersity is not favorable for the phase transition process,

where with not favorable we mean that with increasing size polydispersity the critical
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temperature moves to lower values and the high density phase on the cloud point curve

is shifted towards lower densities. The last statement can also be written as follows: If

we start at a certain temperature T above the critical point of the monodisperse system

we have a stable fluid phase by reducing the temperature first the monodisperse system

approaches its critical point and for further decrease of the temperature finally also the

size polydisperse system splits off in two or more phases.

When the system is in addition to the size polydispersity also polydisperse in amplitude

then we can observe for the square-well model that even for small values of z (z = 0.1)

(weak amplitude polydispersity) the phase coexistence region is shifted to higher temper-

atures as compared to the monodisperse case while in the Yukawa fluid the effects of the

amplitude polydispersity dominates over the one of the size polydispersity only for po-

tential parameters a ≥ 2 what means the critical region is shifted to higher temperatures

with respect to the one of the corresponding monodisperse system. From that we can

summarize that the amplitude polydispersity is favorable to the phase separation process,

i.e. the critical temperature is shifted to higher values and the high density phase on the

cloud point curve moves to higher densities with increasing amplitude polydispersity.

The work is organized as follows. In chapter 2 we give a definition for a polydisperse system

including the mathematical description of so called ‘random systems’ given by Salacuse

[24] and present the chosen interaction potentials. In chapter 3 we define the Ornstein

Zernike (OZ) equation of a polydisperse fluid and discuss the correlation functions as well

as the thermodynamic properties calculated within the framework of statistical mechan-

ics. In chapter 4 we present the different liquid state methods which can be used to solve

the OZ equations for a polydisperse system, where we finally use one of this liquid state-

theories - a perturbation theory (ORPA) - to obtain general expressions for structure and

thermodynamics of a polydisperse liquid. We have done this by introducing orthogonal

polynomial expansions for all σ dependent functions. In chapter 5 we define the phase

equilibrium conditions of the studied systems by use of the truncated free energy method.

In chapter 6 finally we show the results and discuss occurring problems.



Chapter 2

The system

Most substances appearing in nature like Ar, Ne, Fe, C etc. are perfectly monodisperse,

that means all particles of the considered system are equal in size (charge etc.) and interact

via the same potentials with each other. To the contrary industrially produced colloidal

suspensions always contain macromolecules with a range of particle diameters (charges

etc.); they often consist of a large number of different molecular species best described as

having continuously varying properties across each family of molecules. All these materials

are therefore polydisperse: they contain particles with properties depending continuously

on one or several parameters.

2.1 Definition of a polydisperse liquid

In this thesis we regard polydisperse colloidal suspensions. These consist of mesoscopic

particles characterized, i.e., each by different diameters, charges etc., that are dispersed

in a microscopic solvent. The polydisperse colloidal suspension will for further consider-

ations be called polydisperse liquid and the mesoscopic particles are designated simply

as particles. A polydisperse liquid can be considered as a system, where the particles

are characterized by a random variable X, which is distributed by a continuous function

f(X). In this thesis the variable X is chosen to be the diameter σ of the particles. The

function f has the interpretation, that f(σ0)dσ0 represents the fraction of particles in the

system characterized by a σ value in the range [σ0, σ0 + dσ0]. Thus f(σ) is positive and

integrates to one and hence may be interpreted as a probability density function (pdf)

f(σ) > 0,

∫ ∞

0

f(σ)dσ = 1. (2.1)

Thermodynamic properties of a polydisperse system can be obtained by generalizing from

a mixture with a finite number of components to the polydisperse case. This procedure

9
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is characterized by the rules [4]

ci =
Ni

N
→ f(σ)dσ

∞∑

i=1

cixi →
∫ ∞

0

dσf(σ)x(σ), (2.2)

where Ni represents the number of particles, ci the concentrations and xi a characteristic

quantity of species i in the case of a mixture with a finite number of components consisting

of N particles. The above generalization may be thought of as allowing the index i to

take a continuum of values, while the probability of finding a particle of type i, Ni

N
, goes

into f(σ)dσ. In addition, the summations over i become integrations over σ. The above

described rules (2.2) can be justified if we regard the conception of ‘binning’. With binning

we mean that we regard a system, where the σ values for which f(σ) is defined have been

partitioned into n subdivisions (bins) and demanded that within the chosen interval ∆σ

all particles have the same diameter σ, which means they are indistinguishable. In this

way, one obtains a n component mixture. If the number n of components (bins) goes

to infinity the bins become infinitesimally small and all σ dependent variables become

continuous functions in σ, which means that the discrete system becomes polydisperse in

the limit n → ∞.

In an alternative derivation of the polydisperse limit, one can assume from the start

that all particles are genuinely different, with σ sampled randomly from the normalized

distribution function f(σ), so that the number of distinct species is always N (every

particle represents a component too) and is taken to infinity together with the system

size. The two procedures give equivalent results [24]. The second procedure proposed

by Salacuse [24] is physically more plausible for colloid materials treated in this thesis in

which no two particles present are exactly alike, even in a sample of macroscopic size [20].

For this reason we shortly describe the concept of so called random systems defined by

Salacuse in the following section.

2.1.1 Random systems of hard spheres with attractive tail

Consider a reservoir of particles with diameters distributed via pdf H(σ), where H(σ)

can be a continuous or discrete pdf. We then form a system of N particles by random

selections from this population. Salacuse defined the ensemble of systems constructed in

this manner as an N -particle random system of particles and any particular such system

is a realization of the N -particle random system. A particular realization will yield a

set of values (σ1, σ2, . . . ., σN). Different realizations give different sets, where the sphere

diameters σi are associated with random variables, because we are not knowing which
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realization member one is dealing with. This means that random systems of particles

are inherently probabilistic in character; every sphere diameter is given with a certain

probability (depending on the random selection) within one realization. If we let the par-

ticle number N within one realization go to infinity, we can show, that the probability of

finding a particle of certain diameter in this realization converges towards the probability

of finding a particle of the same diameter in the reservoir. The distribution of particle

diameters in the reservoir can also be obtained by averaging over the contributions given

by the whole set of N -particle realizations.

2.1.1.1 Mathematical description

To bring the above qualitative conclusions in mathematical form [24], it is often convenient

to associate an underlying space Ω with the random variable σi(ω). In describing a random

system of particles it is convenient to use the infinite dimensional space R+∞ as underlying

space Ω. Each ω belonging to Ω is an infinite sequence of real numbers, ω = (ω1, ω2, . . .)

and represents an outcome of the random experiment of making a countable infinity of

independent selections of spheres from a reservoir. We define the σi as σi : Ω → σ, where σ

represents the set of real numbers, such that σi(ω) = ωi for i = 1, 2, . . . , N (where we take

later the limit N → ∞ to see the equivalence between random system and polydisperse

system). Thus σ1(ω), σ2(ω), . . . are independent, identically distributed random variables

having common pdf H(σ) with σi(ω) representing the diameter of the ith sphere selected

in the outcome ω. The random vector [σ1(ω), σ2(ω), . . . σN (ω)] is a N -particle random

system of spheres characterized by pdf H(σ). For fixed ω this vector is a N -tuple of

real numbers representing a realization of the N -particle random system. The notation,

σj(ω), is particularly convenient since it allows one to vary j and fix ω, hence vary over

the diameters of a particular realization, or alternatively fix j and vary ω, thus consider

the jth diameter over different realizations.

The random variables σk
1 (ω), σk

2(ω), . . . are independent and identically distributed

with first moment mk, the kth moment of H(σ) which is assumed to exist. The law of

large numbers gives

1

N

N∑

i=1

σk
i (ω) → mk, with probability one as N → ∞ (2.3)

Thus almost every countable infinite selection of spheres yields an ω such that

σ1(ω), σ2(ω), . . .

satisfies (2.3).



2.1: Definition of a polydisperse liquid 12

We consider now how the distribution of sphere diameters in a given realization of

a random system approximates the distribution of spheres in the reservoir. For a N -

particle realization [σ1(ω), σ2(ω), ..σN(ω)], we define the function HN(ω, σ) to be a right

continuous step-like function with steps of height 1
N

at σ values σi(ω), i = 1, . . . , N . The

HN(ω, σ), often called empirical distribution functions satisfy the following relations

E[HN(ω, σ)] = H(σ), (2.4)

with E[ ] representing the expected value and,

HN(ω, σ) → H(σ) as N → ∞ (2.5)

for all σ and uniformly in σ. Result (2.4) (proof [24]) simply notes that although for

a given N , HN(ω, σ) varies from one realization to another, where averaging over all

such realizations yields H(σ). Result (2.5) states that almost every selection ω yields an

N -particle realization such that HN(ω, σ) converges to H(σ) if we take the limit N → ∞.

Now we can summarize as follows: A N -particle random system of particles is char-

acterized by the random vector [σ1(ω), ..σN(ω)] where the σi are independent random

variables which are identically distributed according to the pdf H(σ) and are defined on

the common underlying space Ω. A particular ωεΩ yields a realization of the random

system. The composition of a N -particle realization, characterized by HN(ω, σ), varies

over the ensemble of realizations, while the expected composition (ensemble average) is

given by H(σ). As N increases, the composition of ensemble members becomes more

similar and in the limit N → ∞, the composition of essentially all realizations is H(σ).

Finally we have to remark that if we restrict ourselves to continuous pdfs it is obvious

that a typical realization of a random system contains no spheres of the same diameter

[24]. Comparison of two or, in general, a countable number of typical realizations yields

no sphere of common diameter. This holds for N -particle realizations and also for the

limiting case N → ∞.

2.1.1.2 Generalization to the polydisperse case

A polydisperse system is a system with composition given by a continuous pdf, which has

been denoted by f(σ). As is the case for random systems with continuous pdf a typical

polydisperse realization contains no sphere of common diameter, the same is valid if we

compare two or in general a countable number of N -particle realizations. This means that

every particle is also a distinct component. Further, random systems are directly related

to polydisperse systems by expression (2.5) which shows that as N → ∞ almost every

realization of a N -particle random system becomes polydisperse in that its composition

is described by pdf f(σ) of the entire ensemble. Hence, essentially every realization of
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[σ1(ω), σ2(ω), . . . σN (ω)] with the σi(ω) representing independent random variables identi-

cally distributed according to pdf fN (σ) represents a polydisperse realization of particles

with composition given by fN(σ), where fN(σ) gives the pdf of an ensemble member

(N -particle realization) of the polydisperse system.

Since a polydisperse system is a N -particle random system in the limit N → ∞ the

results (2.4) and (2.5) apply to such systems, thus almost every polydisperse realization

satisfies (2.3).

2.2 Interatomic potentials

As already defined above a colloidal suspension consists of mesoscopic particles dispersed

in a microscopic solvent. At the calculation of the potential the influence of the solvent is

taken into account only through an effective interaction mediated between the colloidal

particles within the suspension. This effective interactions are rather simple: a harsh

repulsion at short distances followed by attraction at larger distances. In some cases one

is even able to tailor a suitable effective potential (see [25]), where one not depends at the

calculation on the electronic structure like it is the case for atomic liquids. In an exact

calculation of the effective potential we would have to take into account all contributions

of n-body interactions (with n up to order N where N gives the number of the particles in

the regarded system), what means the potential measured at a point within the suspension

is given by a sum of all pair-, triplet-, and all higher order particle interactions [25]. For

most liquid state theories it is sufficient to restrict oneself to effective pair potentials [26],

which simplifies the calculations.

In this chapter we give an overview over the effective pair potentials used in this thesis.

The liquid and the gas phases are homogenous and isotropic, hence at every space point

within the fluid the number density ρ is constant. The particles of the regarded systems

interact via radially symmetric pair-potentials φ(r, σi, σj), where the interaction depends

on the distances r between two particles characterized by diameters σi and σj.

2.2.1 Hard-sphere potential

The partial hard-sphere (HS) potential is defined via

φ(r, σi, σj) =

{
∞ r < σ̂

0 r ≥ σ̂
. (2.6)

We assume additivity of the diameters, i.e.,

σ̂ =
σi + σj

2
. (2.7)
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Figure 2.1: Hard-sphere potential
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For many years, the HS system was a very useful, but rather academic model system. A

purely hard potential does not materialize in atomic systems. However, with the advance

of colloidal science, it became possible to prepare samples, which are extremely close in

their behavior to an ideal HS system. By index matching colloidal particles with the sur-

rounding solvent, the van der Waals attraction can be drastically reduced (see [25]), and

the interaction between the colloids is then dominated by the repulsive core [27, 28, 29].

The HS system is without doubt the best examined system in liquid state theory; its

structural and thermodynamic properties have been studied thoroughly. The HS po-

tential plays an important role as a reference system in perturbation theories, since it

captures the main features of the repulsive part of a typical interatomic potential. For

the HS potential the Percus-Yevick (PY) approximation is analytically solvable. Percus

and Yevick found the solution for the monodisperse HS fluid [30], which was then ex-

tended to the binary fluid by Lebowitz [31] and finally to the polydisperse fluid by Blum

and Stell [3]. However, it has turned out that the solution of the PY approximation is not

able to reproduce the results for structure or thermodynamic properties from computer

simulations, in particular for high packing fractions. The empirical Carnahan-Starling [32]

equation, developed for the one component fluid (which is based on the PY expressions

for the thermodynamic properties), leads to an improved agreement of the thermody-

namic properties of the fluid with results from simulation. To improve the agreement

for the structure, Verlet and Weis [33] and also Henderson and Grundke [34] proposed a

semiempirical parameterization of the correlation functions. Both the Carnahan-Starling

and the Verlet Weis formalism can be extended to the multicomponent case [36, 35] and

finally to the polydisperse case [12].
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2.2.2 Square-well potential

The square-well (SW) potential is given by a HS core and an adjacent perturbation in

form of a well. We use the following definition

φ(r, σi, σj) =







∞ r < σ̂

−ε(σi, σj) σ̂ ≤ r ≤ σ̂λ(σi, σj)
0 r > σ̂λ(σi, σj)

, (2.8)

where λ(σi, σj) is the perturbation width. Again the diameters σi are assumed to be addi-

tive. Although this potential seems rather academic, it captures (to a certain extent) the

Figure 2.2: Square-well potential with λ = 2
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rσ̂
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λσ̂

behavior of mesoscopic spherical particles (interacting via a hard-sphere-like interaction)

in a microscopic solvent (assuming that the mesoscopic particles and the particles of the

solvent have no or only very weak interactions). The SW potential models the effective

potential between the particles of colloid-polymer mixtures or between particles of atomic

systems with van der Waals attractions.

2.2.3 Hard-sphere Yukawa potential

The hard-sphere Yukawa (HSY) potential is given by an additive HS core and an adjacent

perturbation in form of a Yukawa potential. We use the following definition

φ(r, σi, σj) =

{
∞ r < σ̂

−γ(σi, σj)
1
r
e−κ(σi,σj)(r−σ̂) r ≥ σ̂

, (2.9)

where κ(σi, σj) is the so called inverse screening length and γ(σi, σj) is the measure for

the electric charge multiplied with a length. The HSY potential is the effective potential

of charge-stabilized colloidal suspensions [37]: such suspensions are created by putting

mesoscopic particles with surface radicals into a polar solvent like water. Most of the

charged surface groups dissociate into the solvent and form counter-ions carrying one
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Figure 2.3: Hard-sphere Yukawa potential with κ = 2.3
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or two elementary charges. Consequently, the colloidal particles become highly charged

and may be called macro-ions (they carry typically 100-10000 elementary charges). Since

the counter-ion distribution is diffuse due to their finite temperature, the screening of

the macro-ions is imperfect and a screened Coulomb repulsion between the macro-ions is

the result. The van der Waals attractions between the colloidal particles together with

the screened Coulomb repulsion which includes the influence of the solvent (where in this

calculation the solvent is regarded as continuous dielectric medium with dielectric constant

ε) lead then to the HSY potential which models the effective interaction potential between

the macro-ions. In order to get a net attraction, the van der Waals contribution must

dominate over the screened Coulomb repulsion.



Chapter 3

Basics of liquid state theory

3.1 Static structure functions

The Ornstein Zernike (OZ) equation is the central equation in liquid state theory. In

the homogenous, isotropic polydisperse fluid it is an integral equation coupling the total

correlation function h(r, σi, σj) to the direct correlation function c(r, σi, σj), where the

particle diameters σi and σj of two interacting particles, separated by distance r from

each other, are distributed by a continuous distribution function f(σ). The OZ equation

for a homogeneous, isotropic polydisperse fluid is given by [9]

h(r, σi, σj) = c(r, σi, σj) + ρ

∫ ∞

0

f(σl)dσl

∫

c(|~r − ~r
′|, σi, σl)h(r

′

, σl, σj)d
3r

′

. (3.1)

As we can see from (3.1) the OZ equation consists of a convolution integral, so we can

write the OZ equation in Fourier space as

h̃(k, σi, σj) = c̃(k, σi, σj) + ρ

∫ ∞

0

f(σl)dσlc̃(k, σi, σl)h̃(k, σl, σj). (3.2)

To solve the OZ equations, one requires a further (functional) relation between the cor-

relation functions and the pair potentials, known in the literature as closure relations

(we will discuss closure relations in the next chapter). Such relations can be derived

from exact statistical mechanical diagrammatic expansions [26], introducing simplifying

approximations.

By starting from the direct correlation functions c(r, σi, σj), the total correlation func-

tions h(r, σi, σj) can be formally defined through the OZ equation (3.1). The meaning

of the direct correlation functions is usefully illustrated by a representation of the OZ

equation, which follows by iterative substitution of h(r, σi, σj) inside the kernel of (3.1).

One easily obtains an infinite series of convolution integrals

17
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h(r, σi, σj) = c(r, σi, σj) + ρ

∫ ∞

0

dσkf(σk)

∫

c(|~r − ~r′|, σi, σk)c(r
′, σk, σj)d

3r′ +

ρ2

∫ ∞

0

dσkf(σk)

∫

d3r′c(|~r − ~r′|, σi, σk)

∫ ∞

0

dσlf(σl) ×
∫

d3r′′c(|~r′ − ~r′′|, σk, σl)c(r
′′, σl, σj) + . . . ,

here truncated at the second iteration. The chain structure of this equation shows that

the OZ equation amounts to describing the total correlation function between a pair of

particles as a sum of different contributions, the first of which being given by a ‘direct’

term, c(r, σi, σj), and the rest amounting to indirect correlations mediated by the same

c(r, σi, σj) through many-body integrals over other particles in the fluid. The direct cor-

relation functions c(r, σi, σj) are short range functions, even when correlations between

density fluctuations tend to develop long-range algebraic tails, as it happens when the

system approaches criticality or the associated ‘spinodal-line’. From diagrammatic ex-

pansions (see [26]) we can deduce that the range of c(r, σi, σj) is roughly the same as

the range of the potential. To lowest order in density, c(r, σi, σj) ' f(r, σi, σj), where

f(r, σi, σj) = e−βφ(r,σi,σj) − 1 is the Mayer function, or at large distances, c(r, σi, σj) '
−βφ(r, σi, σj) with β = 1

kBT
; kB the Boltzmann constant and T the temperature of the

system.

In the following, we will introduce the N -particle density distribution functions

ρ(N)(r1, . . . rN ; σ1, . . . σN). In particular we define the one-particle and two-particle den-

sity distribution function. For the one-particle density distribution function ρ(1)(r, σ),

concerning particles of diameter σ at position ~r, it follows [5, 9]

ρ(1)(~r, σ) =

〈
N∑

i=1

δ(~r − ~ri)δ(σ − σi)

〉

, (3.3)

where ~ri is the location of particle i and σi its diameter; the brackets denote an ensem-

ble average. The one-particle density distribution function ρ(1)(~r, σ) is defined so, that

ρ(1)(~r, σ)d3rdσ is the probability of finding a particle with size σε[σ, σ +dσ] in the volume

d3r at ~r. For a spatially homogeneous fluid, ρ(1)(~r, σ) = ρ(σ) is independent of ~r and is

separable into ρ(σ) = ρf(σ), where the number density is defined as

ρ =

∫ ∞

0

ρf(σ)dσ.

For the corresponding Fourier transforms ρ̃(~k, σ), we obtain
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ρ̃(~k, σ) =

N∑

l=1

δ(σ − σl)e
−i~k~rl

〈ρ̃(~k, σ)〉 =

∫

d3re−i~k~r

〈
N∑

i=1

δ(σ − σi)δ(~ri − ~r)

〉

. (3.4)

In the homogenous, isotropic fluid the one-particle density distribution function in k

space 〈ρ(k, σ)〉 = (2π)3ρf(σ)δ(k), which means that, it has only a contribution for k = 0.

This can be explained by the homogeneity of the fluid, where the one-particle density

distribution function ρ(σ) in r-space is independent of r.

The two-particle density distribution function ρ(2)(~r, ~r′, σ, σ′) is defined as [5, 9]

ρ(2)(~r, ~r′, σ, σ′) = ρ(1)(~r, σ)ρ(1)(~r′, σ′)g(~r, ~r′, σ, σ′)

=

〈
N∑

i=1

N∑

j 6=i

δ(~r − ~ri)δ(σ − σi)δ(~r′ − ~rj)δ(σ
′ − σj)

〉

, (3.5)

where ~ri and ~rj are the locations of particle i and j with diameters σi and σj; the brackets

denote an ensemble average. The function g(~r, ~r′, σ, σ′), introduced above, is the pair

distribution function, which will be discussed below. The two-particle density distribution

function is defined so, that ρ(2)(~r, ~r′, σ, σ′)d3rd3r′dσdσ′ is the probability of simultaneously

finding a particle with size σε[σ, σ + dσ] in a volume d3r at ~r and another of size

σ′ε[σ′, σ′ + dσ′] in a volume d3r at ~r′. If we take the average in the canonical ensemble,

the two-particle density distribution function ρ(2)(~r, ~r′, σ, σ′) can be defined as a functional

derivative of the configurational integral ZN(V, T ) with respect to the pair potential

ρ(2)(~r, ~r′, σ, σ′) = ρ(1)(~r, σ)ρ(1)(~r′, σ′)g(~r, ~r′, σ, σ′)

=
N(N − 1)

ZN(V, T )

∫

x3

. . .

∫

xN

e−βVN (~x,~x′,~x3,...~xN )d4x3 . . . d4xN

= −2
δ ln ZN(V, T )

δβφ(~r, ~r′, σ, σ′)
(3.6)

with

ZN(V, T ) =

∫

x1

. . .

∫

xN

e−βVN (~x1,~x2,...~xN )d4x1 . . . d4xN .

We assume pairwise additivity hence

VN(~x1, . . . , ~xN) = VN(~r1, . . . ~rN ; σ1, . . . , σN ) =
1

2

N∑

i=1

N∑

j 6=i

φ(~ri, ~rj, σi, σj), (3.7)

where the vector d4x = d3rdσ, V is the volume and VN is the potential energy of the

system. In a homogeneous system the two particle density distribution function becomes
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a function of the distance between the particles, i.e. ρ(2)(r, σ, σ′) = ρ2f(σ)f(σ′)g(r, σ, σ′),

where g(r, σ, σ′) is the radial pair distribution function. The radial pair distribution

function g(r, σi, σj) = h(r, σi, σj)+ 1 is proportional to the probability density, that given

a particle of identity σi in a volume d3r at the origin, a particle of identity σj is found in a

volume d3r a distance r apart. If the distances between the particles tends to infinity, the

radial pair distribution functions g(r, σi, σj) → 1, a limiting value, which expresses the

loss of correlations between particles at large distances. One can show [5], that the radial

pair distribution function behaves as e−βφ(r,σi,σj) as ρ → 0, in the same limit, h(r, σi, σj)

behaves as f(r, σi, σj).

The Fourier transforms of the radial pair distribution functions are directly related to

the structure factor SM(k), a quantity experimentally measurable, for instance, through

scattering techniques. The structure factor SM(k) depends on the form factors b̃(k, σ) for

spherical particles of diameter σ and is defined as [9, 12]

SM(k) = 1 + ρ

∫
dσf(σ)

∫
dσ′f(σ′)b̃(k, σ)b̃(k, σ′)

∫
d3re−ikr[g(r, σ, σ′) − 1]

∫
dσf(σ)b̃2(k, σ)

= 1 + ρ

∫
dσf(σ)

∫
dσ′f(σ′)b̃(k, σ)b̃(k, σ′)h̃(k, σ, σ′)
∫

dσf(σ)b̃2(k, σ)

where h̃(k, σi, σj) is the Fourier transform of the total correlation function

h̃(k, σi, σj) =

∫

h(r, σi, σj)e
−ikrd3r.

Because the structure factor SM(k) depends on the form factors b̃(k, σ), measuring of its

peaks gives no information about the density distribution, respectively about the positions

of the particles within the fluid [8]. For this reason, one defines the so called number-

number structure factor SNN(k), which gives information about the density fluctuations.

By starting from the basic definition of SNN(k) as the autocorrelation function of the

Fourier components of the density fluctuations [38], one can show that

SNN(k) =

∫

dσi

∫

dσj

√

f(σi)f(σj)S(k, σi, σj) (3.8)

with the partial structure factors S(k, σi, σj)

S(k, σi, σj) =
1

N
√

f(σi)f(σj)
〈δρ̃(σi)

k δρ̃
(σj )
−k 〉

=
〈ρ̃(k, σi)ρ̃(−k, σj)〉 − 〈ρ̃(k, σi)〉〈ρ̃(−k, σj)〉

N
√

f(σi)f(σj)

= δ(σi − σj) + ρ

√

f(σi)f(σj)

∫

d3r[g(r, σi, σj) − 1]e−ikr, (3.9)
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where we have used equation (3.4) to calculate the density fluctuations in the partial

structure factor, and the brackets denote an ensemble average. The total correlation

functions have a Fourier representation in terms of S(k, σi, σj)

ρ

√

f(σi)f(σj)h(r, σi, σj) =
1

(2π)3

∫

d3keikr[S(k, σi, σj) − δ(σi − σj)].

Inserting (3.9) into (3.8), we can write for the number-number structure factor

SNN(k) = S(k) = 1 + ρ

∫

dσif(σi)

∫

dσjf(σj)h̃(k, σi, σj), (3.10)

where we skip the subindex NN for further considerations.

3.2 Thermodynamic properties

Once the structure functions are known, they can be used to obtain the thermodynamic

properties of the system. Because of the various Maxwell relations, thermodynamic pro-

vides different routes to calculate the thermodynamic properties. Here we will discuss

three of them, the energy-, the virial- and compressibility-route. It is convenient to split

thermodynamic quantities into two contributions:

• The ideal part (’id’) describes the corresponding thermodynamic property for an

ideal gas; here all these quantities can be calculated analytically.

• the contribution to a thermodynamic property arising from the (pair)interactions is

the excess part (’ex’) and has to be calculated - in general - numerically.

3.2.1 Internal energy U

The ideal part of the internal energy is given by [26]

Uid =
3

2
NkBT.

For the excess internal energy it follows [9]

Uex =
1

ZN(V, T )

∫

e−βVN (x1,...xN )VN(x1, . . . , xN )

N∏

i=1

d4xi

=
1

ZN(V, T )

∫

e−βVN (x1,...xN )

(

1

2

N∑

l=1

N∑

k 6=l

φ(rlk, σl, σk)

)
N∏

i=1

d4xi

=
1

2

∫

x1

∫

x2

φ(r12, σ1, σ2)

(

N(N − 1)

ZN(V, T )

∫

..

∫

e−βVN (x1,...xN )
N∏

i=3

d4xi

)

d4x1d
4x2

=
1

2

N2

V

∫ ∞

0

f(σ1)dσ1

∫ ∞

0

f(σ2)dσ2

∫

φ(r, σ1, σ2)g(r, σ1, σ2)d
3r,
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where we have used the homogeneous version of equation (3.6) for the last manipulation.

This result is called the energy equation. Hence we obtain for the internal energy

U = Uid + Uex =
N

β

(
3

2
+

ρ

2

∫ ∞

0

dσf(σ)

∫ ∞

0

dσ′f(σ′)

∫

d3rg(r, σ, σ′)βφ(r, σ, σ′)

)

.

(3.11)

3.2.2 Virial pressure pv

In the virial route we derive a relation between the pressure and the radial pair distribution

function g(r, σi, σj) which corresponds to the homogeneous version of (3.6). The pressure

can be split into the ideal part [26]

pid = kBT
N

V

and the excess part, which is given by the ensemble average [9]

pex = − ρ

3NZN(V, T )

∫

e−βVN (x1,...xN )

N∑

l=1

~rl
~∇l

(
N∑

k 6=l

φ(rlk, σiσj)

)
N∏

i=1

d4xi

= − ρ

3N

1

2

N∑

l=1

N∑

k 6=l

1

ZN(V, T )

∫

e−βVN (x1,...,xN )~rlk
~∇lkφ(rlk, σi, σj)

N∏

i=1

d4xi

= − ρ

6N

∫

d4x1

∫

d4x2r12φ
′(r12, σi, σj)

(

N(N − 1)

ZN(V, T )

∫

e−βVN (x1,...,xN )

N∏

i=3

d4xi

)

= −ρ2

6

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

∫

rφ′(r, σi, σj)g(r, σi, σj)d
3r,

where φ′(r, σi, σj) =
dφ(r,σi,σj)

dr
. The virial pressure pv of the system is then given as

pv = kBT
N

V
− 2πρ2

3

∫ ∞

0

dσf(σ)

∫ ∞

0

dσ′f(σ′)

∫

r3dφ(r, σ, σ′)

dr
g(r, σ, σ′)dr. (3.12)

Equation (3.12) is called the virial equation. Because this relation involves the derivative

of pair potentials, it has to be treated with special care in the case of hard core sys-

tems. The problem can be overcome by rewriting the equation in terms of the function

y(r, σ, σ′) = eβφ(r,σ,σ′)g(r, σ, σ′). The function y(r, σ, σ′) is a continuous function of r, even

if both φ(r, σ, σ′) and g(r, σ, σ′) have discontinuities [26]. On introducing y(r, σ, σ′) into

equation (3.12), we find that

βpv

ρ
= 1 − 2

3
πβρ

∫

dσf(σ)

∫

dσ′f(σ′)

∫ ∞

0

φ′(r, σ, σ′)y(r, σ, σ′)e−βφ(r,σ,σ′)r3dr

= 1 − 2

3
πρ

∫ ∞

0

dσf(σ)

∫ ∞

0

dσ′f(σ′)

∫ ∞

0

y(r, σ, σ′)r3 d

dr
e−βφ(r,σ,σ′)dr. (3.13)
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3.2.3 Helmholtz free energy A

The ideal part of the Helmholtz free energy, Aid, is given by [26]

βAid

N
=

∫

dσf(σ)
(
ln [ρf(σ)Λ3(σ)] − 1

)
,

where Λ(σ) is the de Broglie thermal wavelength

Λ(σ) =

√

2πβh̄

m(σ)
,

m(σ) is the mass of a particle with diameter σ and h̄ is Plank´s constant, while the excess

free energy is given as [26]

Aex = −kBT ln
ZN(V, T )

V N
. (3.14)

The free energy A = Aid + Aex can be calculated from known thermodynamic quantities

like pressure or internal energy via Maxwell relations, such as

U = A + TS = A − T

(
∂A

∂T

)

V,T

(3.15)

p = −
(

∂A

∂V

)

T,N

. (3.16)

Hence A can be obtained from the pressure p via thermodynamic integration along

isotherms:

Aex(V, T ) = Aex(0, T ) −
∫ V

0

dV ′pex(V
′)

Aex(ρ, T ) = Aex(0, T ) + N

∫ ρ

0

dρ′pex(ρ
′)

ρ′2
, (3.17)

or from U along isochores:

Aex(V, T1)

T1
=

Aex(V, T0)

T0
+

∫ 1
T1

1
T0

d′ 1

T
Uex(T ). (3.18)

3.2.4 Chemical potential µ(σ)

The chemical potential is a measure for the change in free energy by adding a particle

of diameter σ to a mixture of N particles, while temperature and volume are kept fixed.

The chemical potential µ(σ) can be obtained via functional derivation of A with respect

to the particle number distribution function N(σ) = Nf(σ) [4]

µ(σi) =

(
δA

δNf(σi)

)

T,V,Nf(σj)

=
1

β

(
δA+

δρf(σi)

)

T,V,ρf(σj)

, (3.19)
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where all values of the particle number distribution function Nf(σj), and all one-particle

density distribution functions ρf(σj), at σj 6= σi must also be kept constant and A+ = βA

V

is the energy density. The ideal part µid(σ) is given by

µid(σi) =

(
δAid

δNf(σi)

)

T,V,Nf(σj)

(3.20)

= kBT ln [ρf(σi)Λ
3(σi)]. (3.21)

3.2.5 Isothermal compressibility χT

The isothermal compressibility is defined as

χT = − 1

V

(
∂V

∂p

)

T

=
1

ρ

(
∂ρ

∂p

)

T

.

For the ideal gas one finds [26]

χTid
=

1

ρkBT
.

One can show [9], that the isothermal compressibility can be calculated from the direct

correlation functions via

1

ρkBTχT

= 1 − ρ

∫

d3r

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c(r, σi, σj)

= 1 − ρ

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj). (3.22)

The pressure can be obtained from (3.22) via thermodynamic integration

p(ρ) = p(0) + kBT

∫ ρ

0

dρ′

[

1 −
∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)ρ
′c̃(0, σi, σj; ρ

′)

]

= pc (3.23)

and will be denoted as the compressibility pressure, pc. If we insert this pressure into

equation (3.17), we get

Aex(ρ) − Aex(0) = −N

β

∫ ρ

0

dρ′ 1

ρ′2

∫ ρ′

0

dρ′′ρ′′

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj; ρ
′).

With Aex(0) = 0 (ideal gas) and partial integration we get [40]

Aex(ρ) = −N

β

{

−
[

1

ρ′

∫ ρ′

0

dρ′′ρ′′

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj; ρ
′′)

]ρ

0

+

∫ ρ

0

dρ′

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj; ρ
′)
}

A+
ex =

∫ ρ

0

dρ′(ρ′ − ρ)

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj; ρ
′)

= −
∫ ρ

0

dρ′

∫ ρ′

0

dρ′′

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)c̃(0, σi, σj; ρ
′′) = Ac

ex. (3.24)
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3.3 Thermodynamic inconsistency

In the last subsections we have derived the formulae needed to calculate the thermody-

namic properties of a polydisperse system from its structure. Further, we have shown,

that one thermodynamic quantity (as, for example, the pressure) can be calculated via dif-

ferent routes (corresponding to different thermodynamic relations). If we knew the exact

structure functions (i.e. without approximation), then all these different routes would yield

the same results for one thermodynamic quantity. However, due to the various simplifi-

cations and approximations (discussed later) made in the concepts of liquid state theory

the value of a certain thermodynamic quantity will depend on the thermodynamic path

one has chosen. This deficiency is also known in the literature as thermodynamic incon-

sistency. To minimize these deficiencies, so called self-consistent liquid state theories have

been developed during the past years. For instance Verlet and Weis [33] have proposed a

semi-empirical parameterization for the structure functions of a monodisperse HS fluid,

which leads to thermodynamically self-consistent results; their ideas can be generalized

to the polydisperse case [12]. For the case of one component and binary systems several

(at least partly) self-consistent approaches have been proposed during the past years (for

an overview see e. g. Caccamo [38]). Some of these approaches have been generalized to

the polydisperse case [9]. The method used in this thesis, the optimized random phase

approximation (see next chapter), shows a rather high degree of self-consistency [17].





Chapter 4

Theoretical concepts

In this chapter we will describe the various theoretical concepts that can be used to

obtain the thermodynamic properties and the structure functions (radial pair distribution

functions and direct correlation functions) of a homogenous isotropic polydisperse fluid.

We start with a rather simple system, the van der Waals fluid, for which only ther-

modynamic properties have to be calculated. Then we discuss in detail the methods

of thermodynamic perturbation theory, where we concentrate here mainly on the (opti-

mized) random phase approximation. Within this method we have calculated structure

functions and obtained closed expressions for the thermodynamic quantities of a poly-

disperse system. Finally we give a short insight to integral equation theories, which can

easily applied to polydisperse fluids.

4.1 Van der Waals approach

The idea of representing a liquid as a system of HS moving in a uniform, attractive

potential tail or sea is an old one, providing as it does the physical basis for the van der

Waals (vdW) equation [26]. The hard repulsion, arising from the strong Pauli exclusions

of the core electrons in, e.g., the noble gas elements, are taken into account by a excluded

volume term, while the attractions are averaged over the whole volume of the system,

to obtain a uniform attractive potential. The uniform potential comes physically from

spontaneously fluctuating electric dipoles that tend to align themselves giving rise to the

so called ‘dispersion forces’. The vdW model is simple enough to allow a clear explication

and yet complex enough to illustrate fundamental calculational problems (concerning

for example later calculated phase diagrams). Within the vdW theory no structural

functions are calculated. The vdW approach starts directly with an approximation for the

Helmholtz free energy, other thermodynamic quantities can be deduced via appropriate

Maxwell relations.

27
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For a polydisperse fluid the vdW free energy density reads [19]

A+[f ] =

∫ ∞

0

dσρf(σ)

{

ln

(
Λ3(σ)ρf(σ)

E[f ]

)

− 1

}

+
1

2
β

∫ ∞

0

dσ

∫ ∞

0

dσ′ϕ(σ, σ′)ρf(σ)ρf(σ′),

(4.1)

where [f ] indicates a functional dependence on the distribution function f(σ). The hard

repulsion between the particles in (4.1) can be taken into account via the vdW excluded

volume correction

E[f ] = 1 −
∫

dσV (σ)ρf(σ) = 1 − 4π

3

∫

dσ
(σ

2

)3

ρf(σ)

= 1 − ρ
π

6

∫

dσf(σ)σ3 = 1 − η, (4.2)

V (σ) = π
6
σ3 being the volume of a particle with diameter σ and η the packing fraction.

The second term of (4.1) gives, in the vdW mean field approximation, the cohesive energy

resulting from the interparticle attractions, described by the pair potentials φ(r, σ, σ ′)

ϕ(σ, σ′) =

∫

d3rφ(r, σ, σ′). (4.3)

If equation (2.7) denotes the contact distance between two particles of species σ and σ ′,

we have φ(r, σ, σ′) = 0 when r < σ̂, so that the last equation can always be rewritten

ϕ(σ, σ′) = −ν(σ, σ′)
4π

3
σ̂3, (4.4)

where ν(σ, σ′) > 0 characterizes the amplitude of the attractions.

From equations (4.1) and (3.19) we obtain for the chemical potential within the vdW

approximation [19]

βµ(σ, [f ]) = ln

(
Λ3(σ)ρf(σ)

E[f ]

)

− ρ

E[f ]

δE[f ]

δρf(σ)
+

∫

dσ′ϕ(σ, σ′)ρf(σ′). (4.5)

From the Maxwell relations (3.16) and (3.19) we calculate the pressure

βp = ρ

(
∂A+

∂ρ

)

T,N

− A+

=

∫ ∞

0

µ(σ, [f ])ρf(σ)dσ − A+

and obtain for the pressure within the vdW approximation [19]

βp([f ]) = ρ

(

1 − ρ

E[f ]

∫ ∞

0

f(σ)
δE[f ]

δρf(σ)

)

+
1

2
β

∫ ∞

0

dσ

∫

dσ′ϕ(σ, σ′)ρf(σ)ρf(σ′), (4.6)

where we have kept the expressions for the chemical potential (4.5) and the pressure (4.6)

in a general form, what means we have not used explicitely (4.2).
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We have extended the vdW approach to the case of a HS system with a vdW attraction

by substituting the excluded volume correction E[f ] by

E[f ] = e−
βAHS

ex [f ]

N , (4.7)

where AHS
ex [f ] is the excess Helmholtz free energy of the HS system [12].

4.2 Thermodynamic perturbation theories

The intermolecular pair potential can in many cases be separated in a natural way into

a hard, short-range repulsion φ0(r, σi, σj) and a smoothly varying long-range attraction

φ1(r, σi, σj)

φ(r, σi, σj) = φ0(r, σi, σj) + φ1(r, σi, σj). (4.8)

This separation expresses the influence of the respective contribution of the potential to

the structure: it is now generally accepted that the structure of simple liquids, at least

at high density, is largely determined by geometric factors associated with the packing

of the particles; in contrast, the attractive interactions may, in a first approximation,

be regarded as giving rise to a uniform background potential, that provides the cohesive

energy of the liquid, but has little effects on its structure. In this way, the properties of

a given liquid can be related (in good approximation) to those of a HS reference system,

the attractive part of the potential being treated as a perturbation to the former.

The thermodynamic perturbation theory approach has its basis in the vdW equation,

where we consider liquids as systems of HS moving in a uniform, attractive potential

well. The vdW equation of state (4.6), proposed in the last section, is not a very exact

approximation, especially for higher densities. Below we shortly discuss some perturba-

tion theory methods (see [26]) that may be regarded as attempts to improve the theory

of van der Waals in a systematic fashion. The methods we describe have as a main in-

gredient the assumption that the structure of a dense, polydisperse fluid resembles that

of a polydisperse assembly of hard spheres. For many simple liquids this restriction is a

good approximation, but particularly in the critical region the perturbation theory fails,

because the role of the attractive forces gets more important due to the critical fluctua-

tions of the system at all length scales, and the simple vdW model no longer has a sound

physical basis.

If the potential (4.8) splits in two parts, the calculation then proceeds as follows, if

the reference system is a HS system. One computes the effect of the perturbation (quan-

tities characterized with index 1) on the thermodynamic properties and pair distribution

functions of the reference system (index 0). This can be done systematically via an ex-
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pansion in powers, either of inverse temperature (the ’λ-expansion’), or of a parameter

that measures the range of the perturbation (the ’γ-expansion’).

4.2.1 The λ-expansion

In the λ-expansion one introduces

φλ(r, σi, σj) = φ0(r, σi, σj) + λφ1(r, σi, σj), (4.9)

where λ is a parameter that varies between 0 and 1 and φ0(r, σi, σj) will be throughout

a HS potential. When λ = 0, φλ(r, σi, σj) reduces to the potential of a reference system

whose properties are known, whereas for λ = 1 the potential is the one that characterizes

the system of interest. The quantity λ has the meaning of a coupling parameter: the effect

of varying λ continuously from 0 to 1 is that of gradually ‘switching on’ the perturbation

φ1(r, σi, σj). With (4.9) the total potential energy is given as

VN(λ, r1, . . . rN , σ1, . . . , σN ) =
1

2

N∑

i=1

N∑

j 6=i

φλ(rij, σi, σj), (4.10)

where the indices i, j denote the interacting particle pair with particle diameters σi, σj.

Using the configurational integral (3.6) together with the definition of the excess free

energy (3.14), we can calculate the derivative of Aex(λ) with respect to the coupling

parameter λ
∂Aex

∂λ
= 〈V ′

N(λ)〉λ,

where V ′
N(λ) = ∂VN (λ)

∂λ
, and the brackets denote the canonical ensemble average for a

system characterized by the potential (4.9). By integration of the last expression with

respect to λ, one can write for the excess free energy

βAex(λ = 1)

N
=

βA0,ex

N
+

β

N

∫ 1

0

〈V ′
N(λ)〉λdλ (4.11)

=
βA0;ex

N
+

β

2N

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj) ×
∫ 1

0

dλ

∫

gλ(r, σi, σj)φ1(r, σi, σj)d
3r,

where A0;ex = Aex(λ = 0) is the excess free energy of the HS reference system, and

gλ(r, σi, σj) is the radial pair distribution function of the system with the pair potential

φλ(r, σi, σj). Since gλ(r, σi, σj) cannot be calculated directly, we have to make an approx-

imation. We make a Taylor series expansion of 〈V ′
N(λ)〉λ around λ = 0 and insert the
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result of this expansion in (4.11). Then we obtain, together with

φN(r1, . . . , rN ; σ1, . . . , σN ) =
1

2

N∑

i=1

N∑

j 6=i

φ1(rij, σi, σj),

a Taylor expansion of (4.11) in terms of λ (if the reference system is a HS system the

expansion reduces to a Taylor series in β [26])

βAex = βA0;ex + β〈φN〉0 −
1

2
β2(〈φ2

N〉0 − 〈φN〉20) + O(β3) (4.12)

= βA0;ex + β
Nρ

2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

∫

g0(r, σi, σj)φ1(r, σi, σj)d
3r

+O(β2),

where φN is the total perturbation energy, and g0(r, σi, σj) is the radial pair distribution

function of the HS reference system. The brackets denote a statistical average evaluated

in the reference-system ensemble. It can be shown [26], that already the second order term

in β in (4.12) requires a knowledge of the three and four-particle distribution functions

of the reference system. Hence in general expansion (4.12) is truncated after the first

order term in β (high temperature approximation (HTA)), that means no correction of

the structure of the fluid due to the perturbation are made in this approximation.

4.2.2 The γ-expansion

Situations in which the influence of the attractive forces on the structure cannot be ignored

may be treated by methods similar to those used when the perturbation is both weak and

very long ranged relative to the reference potential. In such cases, the natural expansion

parameter for the free energy A is the inverse range rather than the strength of the

perturbation potential. This leads to the so called γ expansion [26].

As a consequence of the separation of the pair potential φ(r, σi, σj) in (4.8), we can

split the free energy A into a reference-part (A0) and into a perturbation-part (A1) . The

perturbation-part of the free energy depends on the direct correlation function c1(r, σi, σj),

where we have assumed the approximation

c(r, σi, σj) = c0(r, σi, σj) + c1(r, σi, σj) ∼ c0(r, σi, σj) − βφ1(r, σi, σj). (4.13)

After some simplifying approximations [26] and the restriction to certain terms within the

γ expansion, we arrive at the following expression for the free energy

A ' A0 + AHTA + ARPA. (4.14)

Equation (4.14) gives the approximation for the free energy within the so called random

phase approximation (RPA); ARPA is the energy correction, which in addition to AHTA,
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occurs in presence of the perturbation potential φ1(r, σi, σj). As we can see form (4.14)

the free energy within the RPA goes one step behind the HTA (4.12) in accuracy. The

corresponding approximation of the radial pair distribution functions g(r, σi, σj) can be

obtained from (3.6) together with (3.14) as the functional derivatives of A with respect

to φ1(r, σi, σj)

− δ ln ZN(V, T )

βδφ1(r, σi, σj)
=

δA[φ1]

δφ1(r, σi, σj)
=

1

2
ρ2g(r, σi, σj), (4.15)

where A is a functional of φ1(r, σi, σj). The functional derivative of AHTA with respect

to the perturbation potential φ1(r, σi, σj) gives the radial pair distribution function of the

reference system, while the functional derivate of ARPA gives the correction g1(r, σi, σj)

of the radial pair distribution function caused by the perturbation potential. So we can

write the approximation for the radial pair distribution function within the RPA as

g(r, σi, σj) ' g0(r, σi, σj) + g1(r, σi, σj). (4.16)

As we will show in one of the following sections one can find closed expressions for ARPA,

and g̃(k, σi, σj).

The structure functions of the system within the RPA are, in comparison to the

HTA, changed in presence of the perturbation, i.e., they are different from the structure

functions of the HS reference system. But the RPA has a fundamental drawback: Due

to the presence of hard cores, g(r, σi, σj) has to vanish for r < σ̂; in the approximation

(4.13) there is no guarantee that this will be the case, since in general g1(r, σi, σj) will

be non-zero in that range. This means, that geometrical exclusion effects are not treated

correctly. On the other hand, in this framework, there is a flexibility in the choice of

φ1(r, σi, σj), that can be usefully exploited. For the physically inaccessible region for

r < σ̂, the perturbation of the pair potential can be chosen to have any finite functional

form. Thus the perturbing potential φ1(r, σi, σj) inside the core (r < σ̂) can be varied

without changing the properties of the fluid, to obtain the so called optimized potential.

That means that the unphysical behavior of the RPA can be eliminated by choosing

φ1(r, σi, σj), respectively c1(r, σi, σj) for r < σ̂ in such a way, that

g1(r, σi, σj) = 0, r < σ̂.

One can show, that this condition is equivalent to the functional derivative (4.15)

δARPA[φ1]

δφ1(r, σi, σj)
=

1

2
ρ2g1(r, σi, σj) = 0, r < σ̂. (4.17)

In other words, the core condition is equivalent to the requirement that the RPA free

energy is stationary with respect to variations in the perturbing potential inside the core.
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The RPA together with the condition (4.17) is called the “optimized” random-phase

approximation (ORPA). The ORPA may equally well be viewed as a solution to the

Ornstein-Zernike relation, that satisfies both, the closure approximation (4.13) and the

core condition g(r, σi, σj) = 0 for r < σ̂.

4.2.3 ORPA, mean spherical approximation for a polydisperse

system

There are a variety of model fluids of interest in the theory of liquids for which the pair

potential consists of a HS interaction plus an attractive tail, because the mathematical and

numerical methods for hard core systems are easier to implement as compared for example

with soft core systems (see for instance [40]). Hard core systems, which include both the

‘square-well’ and dipolar HS fluids, have been widely studied in the mean field-spherical

approximation (MSA). The name has its origin in the fact that the approximation was

first proposed by Lebowitz and Percus [39] as a generalization of the mean-spherical model

for Ising spin systems, although the MSA is distinct from the Ising model.

The MSA, applied to systems with a hard core and an adjacent attractive potential,

is given in terms of the radial pair distribution functions and direct correlation functions

by

g(r, σi, σj) = 0 ; r < σ̂

c(r, σi, σj) = −βφ1(r, σi, σj) ; r ≥ σ̂. (4.18)

Together with the OZ relation these expressions yield an integral equation for g(r, σi, σj)

respectively for c(r, σi, σj). The first expression in (4.18) is exact, while the second extends

the asymptotic behavior of c(r, σi, σj) to all r ≥ σ̂ and is clearly an approximation. Despite

the approximation for the direct correlation functions the MSA gives good results im many

cases [26]. For example, it provides a much better description of the properties of the

square-well fluid than is given by the Percus Yevick (PY) approximation

c(r, σi, σj) = f(r, σi, σj) + f(r, σi, σj)[h(r, σi, σj) − c(r, σi, σj)], (4.19)

although the MSA closure is obtained by linearization of (4.19). However, the most attrac-

tive feature of the MSA is the fact that the integral equations can be solved analytically

for a number of potential models of physical interest including simple models of electrolyte

solutions and of polar fluids [26]. The PY equation for hard spheres is a special case of

the MSA when the tail in the potential is absent. The MSA was extended to the binary

HS system by Lebowitz [31] and then to the polydisperse HS system by Blum and Stell

[3].
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The MSA can also be extended to a more general class of pair potentials of the form

given by (4.8), where the reference potential is conventionally the HS potential. For

this potentials the solution of the OZ equation together with the relations (4.18) become

formally identical to the ORPA. For the reference system one then uses the PY solution

for HS [3], whereas the second expression of equation (4.18) is the ansatz of the ORPA

for c1(r, σi, σj) outside the core. To improve the quality of the solution, thermodynamic

properties for the reference HS system are being calculated using the Mansoori, Carnahan,

Starling and Leland [35] equation of state.

4.2.3.1 Structure of a polydisperse system

In application of the last section, we develop now the structure and thermodynamic

quantities for a polydisperse system within the ORPA (see [12, 18]). We start with the

separation of the correlation functions into reference and perturbation part as proposed

in (4.16) and (4.13). The two sets of correlation functions have to fulfill the OZ equations

(3.2)

h̃0(k, σi, σj) = c̃0(k, σi, σj) + ρ

∫ ∞

0

f(σl)dσlh̃0(k, σi, σl)c̃0(k, σl, σj) (4.20)

h̃(k, σi, σj) = c̃(k, σi, σj) + ρ

∫ ∞

0

f(σl)dσlh̃(k, σi, σl)c̃(k, σl, σj). (4.21)

Since the reference system are HS, the g(r, σi, σj) have to be zero inside the core:

g0(r, σi, σj) = 0 and g1(r, σi, σj) = 0 for r < σ̂.

The closure relation for the (O)RPA (4.13) reads

c1(r, σi, σj) = −βφ1(r, σi, σj) ∀r. (4.22)

As we have already discussed in the last section, equation (4.22) together with the OZ

equations (4.21), do not lead to the correct behavior of g(r, σi, σj) inside the core region

r < σ̂. To avoid this problem, we solve the OZ equations (4.21) within the ORPA by use

of the functional derivative (4.17), where we have to rewrite the closure relation (4.22)

and the core condition as

c1(r, σi, σj) =

{
? ; r < σ̂

−βφ1(r, σi, σj) ; r ≥ σ̂

g1(r, σi, σj) =

{
0 ; r < σ̂

? ; r ≥ σ̂
. (4.23)
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4.2.3.1.1 Solution of the OZ equations using orthogonal polynomials

To solve the OZ equations (4.20) and (4.21) for the direct correlation functions c̃(k, σi, σj),

we have to calculate the integral over σ. This can for instance be done by introducing

orthogonal polynomials, which are associated to the distribution function f(σ) [9]:

∫ ∞

0

dσf(σ)pi(σ)pj(σ) = δij,

where δij is the Kronecker delta function and p0(σ) = 1. For some choices of f(σ), such as

the Schulz (or Γ) distribution used below, pi(σ) are known explicitly. In other cases, these

polynomials must be constructed numerically; this can be done using the Gram-Schmidt

algorithm, starting from p0(σ) = 1. Now all σ-dependant functions can be expanded in

such a way that [9]

x(r; σ) =

∞∑

j=0

xj(r)pj(σ);

y(r, σ1, σ2) =
∞∑

i,j=0

yij(r)pi(σ1)pj(σ2), (4.24)

where the coefficients are given by

xi(r) =

∫ ∞

0

dσf(σ)x(r, σ)pi(σ)

yij(r) =

∫ ∞

0

dσ1f(σ1)

∫ ∞

0

dσ2f(σ2)y(r, σ1, σ2)pi(σ1)pj(σ2). (4.25)

There are analogous relations valid in k space. If we use the OZ equations (4.21) together

with (4.24) in k space and the orthogonality relation, we obtain [12]

h̃lm(k) = c̃lm(k) + ρ
∑

t

h̃lt(k)c̃tm(k), (4.26)

where this can be written as a matrix equation for the expansion coefficients

H̃(k) = C̃(k) + ρH̃(k)C̃(k)

(1I + ρH̃(k)) = (1I − ρC̃(k))−1. (4.27)

We have denoted the coefficients for the orthogonal polynomial expansion of the direct and

total correlation functions c(r, σi, σj) and h(r, σi, σj) by clm(r) and hlm(r) (and similarly

for their Fourier transforms, with an additional tilde). The uppercase C̃(k) and H̃(k) in

(4.27) characterize matrices with the elements c̃lm(k) and h̃lm(k); 1I stands for the unity

matrix.



4.2: Thermodynamic perturbation theories 36

Equivalent relations, as in (4.27), are valid for the reference OZ equation (4.20)

H̃0(k) = C̃0(k) + ρH̃0(k)C̃0(k)

(1I + ρH̃0(k)) = (1I − ρC̃0(k))−1. (4.28)

We take now the OZ equation (4.26) and split the coefficients c̃lm(k) and h̃lm(k), as

proposed in (4.16) and (4.13), into reference (index 0) and perturbation (index 1) part.

We then obtain [12]

h̃lm;1(k) = c̃lm;1 + ρ
∑

t

(

h̃lt;1(k)c̃lm;1(k) + h̃lt;1(k)c̃tm;0(k) + h̃lt;0(k)c̃lm;1(k)
)

(4.29)

which corresponds to the matrix relation

H̃1(k) = C̃1(k) + ρ
(

H̃1(k)C̃1(k) + H̃1(k)C̃0(k) + H̃0(k)C̃1(k)
)

, (4.30)

where H̃1(k), H̃0(k) C̃0(k) and C̃1(k) are matrices with the elements h̃lm;1(k), h̃lm;0(k)

c̃lm;0(k) and c̃lm;1(k). If we solve equation (4.30) for the correction of the total correlation

functions, h̃lm;1(k), occurring in presence of a perturbation potential, φlm;1(r), we arrive

at the so called residual OZ equation

H̃1(k) = G̃1(k) =
[

1I + ρH̃0(k)
]

C̃1(k)

([

1I + ρH̃0(k)
]−1

− ρC̃1(k)

)−1

. (4.31)

With the help of the orthogonal polynomial expansion the number-number structure-

factor S(k) (3.10) can now be rewritten as follows [9]

S(k) = 1 + ρ

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)h̃(k, σi, σj)

= 1 + ρh̃00(k) = S0(k) + ρh̃00;1(k), (4.32)

where S0(k) is the number-number structure factor of the reference system and the per-

turbation h̃00;1(k) has to be calculated numerically within the ORPA.

4.2.3.1.2 Functional of the polydisperse fluid

The core condition and the closure relation (4.23) can now be extended to the coefficients

clm;1(r) and glm;1(r) as follows [18]

glm(r) = glm;1(r) = 0 r < σ̂

clm;1(r) = −βφlm;1(r) r ≥ σ̂. (4.33)
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Within the RPA one can calculate the functional −βARPA

V
= F [C̃1], which is defined as

[18]

F [C̃1] = −1

2

(
1

2π

)3 ∫

d3k
{

Tr
(

{1I + ρH̃0(k)}ρC̃1(k)
)

+ ln
[

det
(

1I − {1I + ρH̃0(k)}ρC̃1(k)
)]}

, (4.34)

where Tr denotes the trace of a matrix and det its determinant. Using the ORPA, the

correlation functions c̃lm;1(k) in F [C̃1] have to be fitted in such a way, as to fulfill the core

condition in (4.33). This means, in generalization of (4.17) to the coefficients, that the

functional F [C1] has to be an extremum with respect to variations of −βφlm;1(r) = clm;1(r)

inside the core

δF [C1]

δclm;1(r)
=

ρ2

2
glm;1(r) = 0 r < σ̂. (4.35)

This reads in k-space
δF [C̃1]

δc̃lm;1(k)
=

ρ2

2(2π)3
g̃lm;1(k). (4.36)

One can show that the functional F [C1] is a convex functional of clm;1(r) i.e., it has exactly

one extremum, which represents its unique solution [15].

4.2.3.2 Thermodynamics of a polydisperse system

In chapter 3 we have already developed thermodynamic expressions for the internal energy,

the free energy, the pressure, the chemical potential and the isothermal compressibility

for a polydisperse system. While for the expressions of the internal energy U and the

isothermal compressibility χT we have only to evaluate the integrals in (3.11) and (3.22)

by use of (4.24), the expressions for the pressure p, the free energy A and the chemical

potential µ(σ), based on the ORPA formalism, will be derived in the following subsections.

4.2.3.2.1 Internal energy U

For the internal energy we have obtained equation (3.11)

βUex =
Nρ

2

∫

d3r

∫ ∞

0

dσ1f(σ1)

∫ ∞

0

dσ2f(σ2)βφ(r, σ1, σ2)g(r, σ1, σ2).

With the help of the orthogonal polynomial expansion we can now eliminate the integrals

over σ to get [18]

βUex = 2πNρ

∫ ∞

0

drr2
∑

l,m

βφlm;1(r)glm(r). (4.37)
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4.2.3.2.2 Virial pressure P

The calculation of the virial pressure (3.13) requires derivatives of the potential φ(r, σi, σj)

with respect to r, - for the case of the HS reference potential - the problems with the

jumps in g(r, σi, σj) and in φ′(r, σi, σj) can be circumvented by introducing the function

y(r, σi, σj) (we have done this in chapter 3), which must be a continuous function. The

ORPA violates this condition and y(r, σi, σj) is never a continuous function, it turns out

that y(r, σi, σj) is discontinuous where the potential φ(r, σi, σj) contains discontinuities

[40]. In the following we will derive an expression, which can cope with such a discontinuity

in general (see [40]).

At first we have to rewrite those parts of the integral (3.13), which are concerned.

Let us assume, that y(r, σi, σj) (and hence φ(r, σi, σj)) have discontinuities at r = γm

(m = 1, . . . , p) outside the core region (r > σ̂) and that these functions are continuous

elsewhere. We start from equation (3.13)

pex =
2π

3

ρ2

β

∫ ∞

0

drr3

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)
d

dr
e−βφ(r,σi,σj)y(r, σi, σj)

︸ ︷︷ ︸

I

=
2π

3

ρ2

β
(IS + ID),

where the integral I splits into two parts, IS and ID. The integral IS consists of all the

continuous parts of I and is defined as [12]

IS =

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)σ̂
3g(σ̂+, σi, σj), (4.38)

whereas, the integral ID takes into account the p jumps contained in the integrand of I:

ID =

p∑

m=1

ID
m ,

where ID
m is the integral across the mth discontinuity

ID
m =

∫ γ+
m

γ−

m

drr3

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)y(r, σi, σj)
de(r, σi, σj)

dr

=

∫ γ+
m

γ−

m

drr3

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)g(r, σi, σj)
d ln e(r, σi, σj)

dr

=

∫ γ+
m

γ−

m

drr3

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)g(r, σi, σj)
dc1(r, σi, σj)

dr
, (4.39)

where we have used the ORPA closure and introduced

e−βφ(r,σi,σj) = e(r, σi, σj).
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Now we define c1(r, σi, σj) near the discontinuity [40]

c1(r, σi, σj) = ε0(σi, σj) + ∆ε(σi, σj)Θ(r − x),

where ε0(σi, σj) = c1(γ
−
m, σi, σj) and ε1(σi, σj) = ε0(σi, σj) + ∆ε(σi, σj) = c1(γ

+, σi, σj).

Using this ansatz for c1(r, σi, σj), we introduce a continuous function ĝ(r, σi, σj) at γm:

from the OZ equation we know that g(r, σi, σj)− c(r, σi, σj) is a convolution and therefore

continuous:

ĝ(r, σi, σj) = g(r, σi, σj) − c1(r, σi, σj). (4.40)

Inserting (4.40) into equation (4.39) leads to

ID
m =

∫ γ+
m

γ−

m

drr3

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)[ĝ(r, σi, σj) + c1(r, σi, σj)]
dc1(r, σi, σj)

dr

=

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

(
∫ γ+

m

γ−

m

drr3ĝ(r, σi, σj)
dc1(r, σi, σj)

dr

+
1

2

∫ γ+
m

γ−

m

drr3dc2
1(r, σi, σj)

dr

)

.

Now we can integrate over r and use Θ2(r − x) = Θ(r − x) to get

ID
m = γ3

m

(

ĝ(γm, σi, σj) +
2ε0(σi, σj)∆ε + ∆ε2(σi, σj)

2

)

. (4.41)

We can replace ĝ(r, σi, σj) with the left- and right-side limit of g(r, σi, σj)

g(γ−
m, σi, σj) = ĝ(γm, σi, σj) + ε0(σi, σj)

g(γ+
m, σi, σj) = ĝ(γm, σi, σj) + ε0(σi, σj) + ∆ε(σi, σj),

to eliminate ε0(σi, σj) from equation (4.41)

ĝ(γ+
m, σi, σj) =

g(γ−
m, σi, σj) − ε0(σi, σj) + g(γ+

m, σi, σj) − ε0(σi, σj) − ∆ε(σi, σj)

2
,

so finally the integral ID
m evaluates to

ID
m =

1

2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)γ
3
m∆ε(σi, σj)[g(γ−

m, σi, σj) + g(γ+
m, σi, σj)].

Together with the integral IS the virial pressure then becomes [12, 18]

βpv

ρ
= 1 +

2π

3
ρ

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj) × (4.42)

(

σ̂3g(σ̂+, σi, σj) +
1

2

p
∑

m=1

γ3
m∆ε(σi, σj)

[
g(γ−

m, σi, σj) + g(γ+
m, σi, σj)

]

)

,
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where the location of the jumps γm are depending on the perturbation potential φ1(r; σi, σj).

For the square well potential (p = 1) we obtain

γ1 = λ(σi, σj)σ̂

and for the potential depth

∆ε(σi, σj) = −βε(σi, σj),

whereas for the Yukawa potential (p = 1) the jump is located at

γ1 = σ̂.

with the jump height

∆ε(σi, σj) = c1(σ̂
+, σi, σj) − c1(σ̂

−, σi, σj),

which can be calculated only numerically.

4.2.3.2.3 Helmholtz free energy A

The free energy A is calculated from

A = A0 + A1,

where A0 is the free energy of the reference system, and A1 is the free energy due to

the perturbation. We assume that the free energy of the reference system (in our case

a hard-sphere system) is known [4]. The perturbation free energy A1 is calculated using

equation (3.18):
A1(T1)

T1
− A1(T0)

T0
=

∫ 1

1
T0

T1d
1

T
Up(T ),

where Up is the internal energy due to the perturbation potential. By setting T0 to ∞
(ideal gas), T1 to the actual temperature and substituting λ = T1

T
, we get [40]

A1

T1
=

1

T

∫ 1

0

dλUp(λ),

where Up(λ) corresponds to (3.11) except, that the g(r, σi, σj) are now depending on the

coupling parameter λ:

A1 =
ρN

2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

∫ 1

0

dλ

∫

d3rgλ(r, σi, σj)φ1(r, σi, σj). (4.43)

This equation corresponds to the expression for A1 already found in the λ expansion

(4.11), where gλ(r, σi, σj) is the radial pair distribution function for a system that is
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characterized by a potential φλ(r, σi, σj) (4.9). Within the (O)RPA we split the radial

pair distribution function gλ(r, σi, σj) into

gλ(r, σi, σj) = g0(r, σi, σj) + g1;λ(r, σi, σj).

Inserting this expression into (4.43) leads to

A1 =
Nρ

2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

(
∫

d3rφ1(r, σi, σj)g0(r, σi, σj)

+

∫ 1

0

dλ

∫

d3rφ1(r, σi, σj)g1;λ(r, σi, σj)

)

. (4.44)

The first term of this equation corresponds to the HTA (4.12). Using orthogonal polyno-

mials this term can be rewritten as

AHTA = 2πNρ

∫ ∞

0

drr2
∑

l,m

φlm;1(r)glm;0(r).

The second term in (4.44) can be simplified further, in the framework of the (O)RPA, by

using the residual OZ equation (4.31). By use of the orthogonal polynomials we obtain

for the second term, [12]

ARPA =
ρN

2

∫

d3r

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)φ1(r, σi, σj)

∫ 1

0

dλg1;λ(r, σi, σj)

=
Nρ

2

∫

d3r

∫ 1

0

dλ
∑

l,m

φlm;1(r)glm;1(r, λ). (4.45)

With the closure βφlm;1(r) = −clm;1(r) and Parceval’s theorem, we get

ARPA = −Nρ

2β

1

(2π)3

∫

d3k

∫ 1

0

dλ
∑

l,m

g̃lm;1(k, λ)c̃lm;1(k) (4.46)

= −Nρ

2β

1

(2π)3

∫

d3k

∫ 1

0

dλ Tr
(

G̃1(k, λ)C̃1(k)
)

. (4.47)

Using the residual OZ equation (4.31) in the form

G̃1,λ(k) = [1I + ρH̃0(k)]λC̃1(k)
(

[1I + ρH̃0(k)]−1 − ρλC̃1(k)
)−1

,

we can integrate (4.47) with respect to λ and finally obtain for ARPA [18, 12]

ARPA =
1

2(2π)3

N

ρβ

∫

d3k

{

Tr
(

[1I + ρH̃0(k)]ρC̃1(k)
)

+ ln
[

det
(

1I − [1I + ρH̃0(k)]ρC̃1(k)
)]
}

. (4.48)
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The result for ARPA is, as already proposed in the last chapter, proportional to the

functional F (4.34). If we use for c1(r, σi, σj) the optimized direct correlation functions,

(4.48) is the ORPA contribution of the Helmholtz free energy. Hence, we can write for

the Helmholtz free energy within the ORPA

A = A0 + AHTA − V

β
F [C̃1]

A = Aid + A0;ex + AHTA + AORPA. (4.49)

Using the definition of A, given by Hoye and Stell [42] for the monodisperse and binary

case, we can rewrite the Helmholtz free energy A1 = AHTA + AORPA for the polydisperse

fluid as

A+
1 = −Nρ

2β

∫ ∞

0

d3r
∑

l,m

[clm(r) − clm;0(r)][hlm;0(r) + 1]

+
N

2β

1

(2π)3

∫

d3k
∑

l,m

[δlm + ρh̃lm;0(k)][c̃lm(k) − c̃lm,0(k)]

+
N

2ρβ

1

(2π)3

∫

d3k ln
[

det
(

1I − [1I + ρH̃0(k)]ρC̃1(k)
)]

=
ρ2

2

∑

l,m

c̃lm;1(0) +
ρ

2

∑

l

cll;1(0) (4.50)

+
1

2(2π)3

∫

d3k
(

Tr
[

ln
{

1I − ρC̃(k)
}]

− Tr
[

ln
{

1I − ρC̃0(k)
}])

,

where we have used Parceval’s theorem and the relations (see also appendix C)

1I − ρC̃1(k)[1I + ρH̃0(k)] = 1I − ρC̃1(k)(1I − ρC̃0(k))−1

= [1I − ρC̃0(k) − ρC̃1(k)](1I − ρC̃0(k))−1

= (1I − ρC̃(k))(1I − ρC̃0(k))−1

ln [det (X)] = Tr [ln (X)] (4.51)

and X denotes a matrix. Expression (4.50) will be used in the next subsection to calculate

the chemical potential of the polydisperse system within the MSA.

4.2.3.2.4 Chemical potential µ(σ)

Hoye and Stell [42] have calculated a closed expression for the chemical potential within

the ORPA for the one-component and the binary fluid. We want to extend this approach

to a polydisperse fluid. To calculate the functional derivative (3.19) of the free energy

(4.50) we would need the free energy in dependence of the direct correlation functions and

not in dependence of their coefficients, in addition the number densities and sums must
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be substituted by integrals over one-particle density distribution functions. Otherwise

we do not obtain σ dependent functions by the functional derivation (3.19). To avoid

the problems occurring by rewriting the free energy (4.50) in appropriate form to take

the functional derivative with respect to the one-particle density distribution function

ρ(σ), we calculate the discrete chemical potentials µi of species i for the corresponding

n-component system and take then the limit n → ∞ to obtain the chemical potential

µ(σ) for the polydisperse fluid. For this purpose we have to rewrite equation (4.50) for a

discrete system as [12]

A+
1 = −1

2

∑

l,m

ρlρmc̃1
lm(0) +

1

2

∑

l

ρlc
1
ll(0) (4.52)

+
1

2(2π)3

∫

d3k
(

Tr
[

ln
{

1I − C̃(k)
}]

− Tr
[

ln
{

1I − C̃0(k)
}])

,

where we have substituted the number densities in (4.50) by the one-particle densities

ρl of species l, and the coefficients of the direct correlation function by the direct cor-

relation functions clm concerning particles of species l and m of a discrete n component

mixture. The matrices C̃ and C̃0 in (4.52) consists of the matrix elements
√

ρlρmc̃lm

and
√

ρlρmc̃0
lm. To make it easier to distinguish between the correlation functions of the

discrete n-component system and the expansion coefficients of the continuous correla-

tion functions of the polydisperse system, we have chosen another font and in addition

high indices to indicate the reference and the perturbation part of a discrete correlation

functions.

For the chemical potential of a discrete system we can write

βµi = βµidi + βµ0
exi +

∂A+
1

∂ρi

, (4.53)

where µ0
exi

is the excess chemical potential of the HS system [12] and the chemical potential

of the ideal n-component fluid is given as

µidi = ln
(
ρiΛ

3
i

)

with Λi the de Broglie wavelength of species i.

To calculate the derivative of the matrix relation ln
[

1I − C̃(k)
]

in (4.50), we have to

expand the logarithmic function in a Taylor series

ln [1I − C̃(k)] =
∑

n

an

[

1I − C̃(k)
]n

.

For the derivative it follows then
∂

∂ρi

ln
[

1I − ρC̃(k)
]

=
∑

n

ann[1I − C̃(k)]n−1 ∂

∂ρi

[

C̃(k)
]

= − ∂

∂ρi

[

C̃(k)
] [

1I − C̃(k)
]−1

.
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Similar relations are valid for ln
[

1I − C̃0(k)
]

in (4.50). Using this relations and the OZ

equations in matrix notation [12]

(1I − C̃(k))−1 = 1I + H̃(k)

(1I − C̃0(k))−1 = 1I + H̃0(k)

where the matrices H̃ and H̃0 have as elements the total correlation functions
√

ρlρmh̃lm

and
√

ρlρmh̃0
lm. We can write for the derivatives of A1 with respect to ρi (4.53)

∂A+
1

∂ρi

= −
∑

l

ρlc̃
1
li(0) − 1

2

∑

lm

ρlρm

∂c̃1
lm(0)

∂ρi

− 1

2(2π)3

∫

d3k ×
{
∑

l

ρl

(

c̃li(k)h̃li(k) − c̃0
li(k)h̃0

li(k)

)

+
∑

lm

ρlρm

(

h̃lm(k)
∂c̃lm(k)

∂ρi

− h̃0
lm(k)

∂c̃0
lm(k)

∂ρi

)}

= −
∑

l

ρlc̃
1
li(0) − 1

2

∑

lm

ρlρm

∂c̃1
lm(0)

∂ρi

− 1

2

∫

d3r ×
{
∑

l

ρl

(

cli(r)hli(r) − c0
li(r)h

0
li(r)

)

+
∑

lm

ρlρm

(

(glm(r) − 1)
∂clm(r)

∂ρi

− (g0
lm(r) − 1)

∂c0
lm(r)

∂ρi

)}

= −
∑

l

ρlc̃
1
li(0) − 1

2
(hii(0) − cii(0)) +

1

2
(h0

ii(0) − c0
ii(0))

−1

2

∫

d3r
∑

lm

ρlρm

(

glm(r)
∂clm(r)

∂ρi

− g0
lm(r)

∂c0
lm(r)

∂ρi

)

, (4.54)

where we have used Parceval‘s theorem and for the last expression the OZ equation for

the n-component fluid in the form [12]

hlm(r) − clm(r) =

n∑

i=1

ρi

∫

d3r′cli(|~r − ~r′|)him(r′),

h0
lm(r) − c0

lm(r) =

n∑

i=1

ρi

∫

d3r′c0
li(|~r − ~r′|)h0

im(r′).

The final relation in (4.54) can be further simplified within the ORPA (4.23) to obtain

for the chemical potential of a n-component mixture

βµi = βµidi + βµ0
exi −

n∑

l=1

ρlc̃
1
li(0) +

1

2
c1
ii(0). (4.55)
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If we use the rules (2.2) and let n → ∞ in equation (4.55), then we obtain for the chemical

potential µ(σ) of the polydisperse fluid

βµ(σ) = βµid(σ) + βµ0;ex(σ) − ρ

∫

dσ′f(σ′)c̃1(0, σ, σ′) +
1

2
c1(0, σ, σ). (4.56)

Equation (4.56) can, by use of (4.24), be rewritten in terms of the expansion coefficients

of the σ dependent functions as

βµi = βµidi + βµex;0i
− ρc̃0i;1(0) +

1

2
cii;1(0), (4.57)

where the µi are the coefficients of the chemical potential µ(σ).

4.2.3.2.5 Isothermal compressibility χT

The isothermal compressibility (3.22) can be simplified to [18]

1

ρkBTχT

= 1 − ρ

∫

d3r

∫ ∞

0

dσ1f(σ1)

∫

dσ2f(σ2)c(r, σ1, σ2)

= 1 − ρc̃00(k = 0) =
{

[1I + ρH̃(k = 0)]−1
}

00
, (4.58)

where the indices 00 in the matrix representation means the element 00 of the correspond-

ing matrix. We can rewrite the compressibility in the following form

χT

χT id

=
det (1I + ρH̃(0))

|(1I + ρH̃(0))|00
,

where |(1I + ρH̃(0))|00 is the cofactor of the 00 element.

4.2.4 HS Reference system

As a reference system for the thermodynamic perturbation theory described in the preced-

ing sections, we have used the HS system. To calculate its structure and thermodynamic

properties, we have used the analytical solutions of the PY closure [3], or the semi empir-

ical parameterization of computer simulation based on results of Verlet and Weis (VW)

[33], which were extended to the polydisperse case [12].

In the PY approximation the solution for the direct correlation functions c(r, σi, σj)

at given moments ξi (i = 1, 2, 3) of the distribution function f(σ)

ξi = ρ

∫

dσf(σ)σi i = 1, 2, 3

are found to be [43]-[46]:

c(r, σi, σj) =







π
2

(
1
3
σ3

i a + σ2
i b + σi

ξ2
(1−η)2

)

; r ≤ ν
1

1−η
Θ(σ̂ − r) + 1

r

[
a(σi, σj)

+rb(σi, σj) + r2d(σi, σj) + r4f(σi, σj)
] ; ν < r < σ̂,

(4.59)
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where

ν =
1

2
(σj − σi)

with σj > σi and Θ denotes the Heavyside-function. The coefficients in (4.59) are defined

as

a =

(
ρ

(1 − η)2
+

π2ξ3
2

4(1 − η)4
+

ξ1ξ2π

(1 − η)3

)

,

b =

(
ξ1

(1 − η)2
+

ξ2
2π

2(1 − η)3

)

,

a(σi, σj) = − π

16
(σi − σj)

2

[
1

4
(σi + σj)

2a + (σi + σj)b +
ξ2

(1 − η)2

]

,

b(σi, σj) =
π

4

[
1

3
(σ3

i + σ3
j )a + (σ2

i + σ2
j )b + (σi + σj)

ξ2

(1 − η)2

]

,

d(σi, σj) = −π

4

[
1

2
(σ2

i + σ2
j )a + (σi + σj)b +

ξ2

(1 − η)2

]

,

f(σi, σj) =
π

12
a

The total correlation functions h̃(k, σi, σj) can either be calculated from c̃(k, σi, σj) via

(4.28), or directly from the analytical expressions calculated by Blum and Stell within the

PY approximation [3].

For the thermodynamic quantities analytical expressions can be found. The pressure

calculated via the compressibility equation (3.23) is found to be [4]

βpc = ρ − ρ2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)

∫

c(r, σi, σj)d
3r

=
ρ

(1 − η)
+

ξ1ξ2π

2(1 − η)2
+

ξ3
2π

2

12(1 − η)3
. (4.60)

For the pressure via the virial equation (3.13) we obtain [4]

βpv = ρ +
2π

3
ρ2

∫ ∞

0

dσif(σi)

∫ ∞

0

dσjf(σj)σ̂
3g(σ̂, σi, σj)

=
ρ

1 − η
+

πξ2(6ξ1 + πξ2
2)

12(1 − η)2
, (4.61)

where the contact values g(σ̂, σi, σj) are obtained from [47] and [12]. Calculating the

Helmholtz free energy from these two expressions for the pressure by use of equation

(3.17) yields [4]

β
Ac

ex

V
= −ρ ln (1 − η) +

ξ1ξ2π

2(1 − η)
+

ξ3
2π

2

24(1 − η)2

β
Av

ex

V
= β

Ac
ex

V
+

ξ3
2π

2

12η

[
(1 − 3

2
η)

(1 − η)2
+

ln (1 − η)

η

]

. (4.62)
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From the expressions for free energies and pressures it is obvious, that the PY solution

is thermodynamically inconsistent. The analytical expressions for the chemical potential

µ(σ)c respectively µ(σ)v, derived by equation (3.19), are given in [12] and [4].

The structural quantities, calculated with the PY approximation, have some funda-

mental shortcomings, which result in the described thermodynamic inconsistency of the

thermodynamic quantities. This shortcomings are in generalization of [33, 36] to the

polydisperse fluid given as follows [12]

• The contact values of the radial pair distribution functions g(r, σi, σj), calculated

using the direct correlation functions (4.59), are too low. This leads to an increas-

ing discrepancy between the prediction from the PY solution and the results from

simulations as the packing fraction η increases.

• The maximum of the number-number structure factor S(k) is too high, because of

the oscillations of the radial pair distribution functions for larger r (these oscillations

are also slightly out of phase with respect to computer simulations.)

• The cavity functions y(r, σi, σj) are too small inside the core (r < σ̂)

To overcome these deficiencies, Verlet and Weis [33] have proposed a semi-empirical pa-

rameterization of the radial pair distribution function g(r) for the monodisperse fluid,

which is used in combination with the empirical parameterization of the equation of state

due to Carnahan and Starling [32]. Grundke and Henderson [36] then generalized this

parameterizations to the discrete n-component case, from where the corresponding poly-

disperse expressions can easily be found [12].

The VW parameterization for the radial pair distribution functions g(r, σi, σj) of a

polydisperse system are given by

g(r, σi, σj) =

{
0 ; r < σ̂

gPY (r, σ′
i, σ

′
j) +

A(σi,σj)

r
e−b(σi,σj)(r−σ̂) cos [b(σi, σj)(r − σ̂)] ; r ≥ σ̂

,

where we calculate the radial pair distribution function gPY (r, σ′
i, σ

′
j) (upper index PY

means within the PY approximation) with respect to a smaller packing fraction η ′ as

compared with the packing fraction η of g(r, σi, σj)

η′ = η
(

1 − η

16

)

.

Hence we obtain for the corresponding hard sphere diameters

σ̂′ = σ̂
(

1 − η

16

) 1
3

σ′
i = σi

(

1 − η

16

) 1
3
.
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The parameters A(σi, σj) and b(σi, σj) are determined so that the results for the pressure

from the virial and compressibility equations agree. Relations for the two parameters are

derived in [12].

The expressions for the pressure proposed by Mansoori, Carnahan, Starling and Leland

(MCSL) [35] is given by

βp = β
1

3
pv + β

2

3
pc

=
ρ

1 − η
+

ξ1ξ2π

2(1 − η)2
− ξ3

2π
2(η − 3)

36(1 − η)3
.

This expression for the pressure fits the results of computer simulations nearly perfectly.

For the free energy one finds then [12, 4]

A =
1

3
Av +

2

3
Ac

βAex

V
=

πξ2

36η(η − 1)2

(
18ηξ1(1 − η) + πξ2

2

)
+ ln (1 − η)

(
ξ3
2π

2

36η2
− ρ

)

.

For a more detailed description of the VW parameterization concerning polydisperse hard

sphere systems see [12].

4.3 Integral equations

In this section we will give an overview over integral equation theories (IETs) generalized

to polydisperse systems. For a general introduction in IET see, for instance, [26, 38] and

[40]. IETs represent an alternative approach to perturbation theories (PTs) to calculate

the structure and thermodynamic properties of a liquid. While in PTs one generally

relates the properties of the system to those of a reference system and corrects for the

(hopefully small) perturbations. IETs, on the other hand, are based on the Ornstein

Zernike equation (3.1), which is solved along with a suitable closure relation.

These closures are derived from exact diagrammatic relations under simplifying ap-

proximations. During the past years a large number of closure relations have been devel-

oped, which in some cases were constructed in order to satisfy particular requirements of

the system. The closure relation can, in the general case, be written as

F [c, h, φ](r) = 0

i.e., a functional relation between the direct correlation function c(r), the total correlation

function h(r), and the pair potential φ(r).
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IETs can be generalized in a straightforward way to the case of polydisperse systems,

where the OZ equation (3.1) is solved together with the closure relation

F [c, h, φ](r, σi, σj) = 0.

For example the PY [3], hyper-netted chain (HNC) [9] or Rogers Young (RG) closure [9]

in the polydisperse case reads

F [γ, φ](r, σi, σj) = c(r, σi, σj) = [1 − eβφ(r,σi,σj)]g(r, σi, σj) = f(r, σi, σj)y(r, σi, σj) (4.63)

F [γ, φ](r, σi, σj) = c(r, σi, σj) = e−βφ(r,σi,σj)+γ(r,σi,σj) − γ(r, σi, σj) − 1, (4.64)

F [γ, φ] (r, σi, σj) = c(r, σi, σj) = e−βφ(r,σi,σj)

{

1 +
exp [γ(r, σi, σj)f(α; r)] − 1

f(α; r)

}

−γ(r, σi, σj) − 1, (4.65)

where γ(r, σi, σj) = h(r, σi, σj) − c(r, σi, σj) and the mixing function f(α; r) in the RY

closure interpolates between the PY and the HNC approximation.

The integral, occurring in the OZ equation (3.1), is in general only numerical solvable.

This was done for example by D’Aguanno et al. [8] and by Lado [9]. They have calculated

structure and thermodynamic properties of a polydisperse system, using the HNC or RY

closure, where the particles of the system were interacting via a Yukawa potential. The RY

closure has as a built-in requirement the fulfillment of thermodynamically self-consistency

between virial and compressibility route.

Similar as in the one component or n-component case, a few model systems can be

treated, within suitable closure relations, analytically. Blum and Stell [3] for example have

used the PY closure relation to calculate the analytical expressions for the correlation

functions in k-space of the HS reference system. The solutions of this IETs approach

have already been discussed in the previous section.





Chapter 5

Phase equilibria of a polydisperse
system

To understand why the prediction of phase equilibria in polydisperse systems is a chal-

lenging problem, it is useful to recall first the procedure for a monodisperse system. In

a suspension of identical particles, for example, the experimentally controlled variables

would be the temperature T , the suspension volume V , and the number N of particles;

the appropriate thermodynamic ensemble is therefore the canonical one, and the thermo-

dynamic potential the Helmholtz free energy A(N, V, T ). The suspension will separate

into two phases with particle numbers N (α) and volume, V (α) (α = 1, 2) if it can thereby

lower its total free energy
∑

α A(N (α), V (α), T ) below the value A(N, V, T ). The N (α) and

V (α) adopt the values which minimize this total free energy, subject to conservation of

volume and particle number. Introducing Lagrange multipliers for this constraints then

gives the familiar coexistence conditions of equal chemical potential and pressure in the

two phases [20]. In terms of the free energy density A+, the coexistence condition has a

simple geometrical interpretation. The number densities ρ(1) and ρ(2) of two coexisting

phases are determined by constructing the well known double tangent to A+ [20].

Before we move now to the polydisperse case, we regard first the phase equilibria of

a discrete n-component system, where we assume that there are n different species of

colloid particles, each with its own particle number Ni and corresponding one-particle

density of species i ρi = Ni

V
. The free energy density A+(T, ρi) is now a function of all n

one-particle densities, as well as of a fixed temperature T . A plot of A+(T, ρi) versus the

one-particle density distribution functions ρi would give a (hyper-)surface in a graph with

n + 1 coordinate axes, and to find phase coexistence we would have to construct multiple

tangent (hyper-) planes to this surface; a procedure known as constructing the ‘convex

envelope’ of the hypersurface. Where such tangent planes exist, the total free energy is

lowered by phase separation into the appropriate number of phases (which from Gibbs’

phase rule, can be between two and n+1). The one-particle densities ρ
(α)
i in the different

51
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phases are given by the points where the tangent plane touches the free energy surface.

Now consider the polydisperse case. The discrete one-particle densities ρi are now

replaced by the continuous one-particle density distribution function ρ(σ) = ρf(σ). For-

mally, this corresponds to a scenario with an infinite number of particle species, as can

be seen by splitting the range of σ into n “bins”, defining the ρi to be the one-particle

density within each bin, and then taking n → ∞ [4]. The tangent plane procedure for

finding phase coexistence then clearly becomes unmanagable, both conceptually and nu-

merically: one would have to work in an infinite-dimensional space, which mathematically

corresponds to the fact that the free energy becomes a functional A+(T, [ρ]) of the one-

particle density distribution function ρ(σ), and Gibbs’ phase rule allows the coexistence

of arbitarily many thermodynamic phases.

As we will show later, there is a limited class of polydisperse systems, which can be

reduced without approximation to finite dimensionality. In those cases the phase sepera-

tion can be calculated via the usual common tangent construction as for a n component

mixture.

In the following section we develope the phase equilibrium and stability conditions for

a polydisperse system.

5.1 Phase coexistence conditions

5.1.1 Binodals

When for a given T , a parent phase of one-particle density distribution function ρ(0)f (0)(σ),

phase seperates into m daughter phases of one-particle density distribution function

ρ(i)(σ) = ρ(i)f (i)(σ) (i = 1, . . . , m), the thermodynamic conditions of phase equilibrium

[19, 4] imply the equality of the pressures and of the chemical potentials

p(T, [ρ(1)]) = p(T, [ρ(2)]) = . . . = p(T, [ρ(m)])

µ(σ, T, [ρ(1)]) = µ(σ, T, [ρ(2)]) = . . . = µ(σ, T, [ρ(m)]) (5.1)

for each species characterized by σ. In addition the phase separation is constrained by

the conservation of the total number of particles of each species σ [19, 4]

N (0)f (0)(σ) =
m∑

i=1

N (i)f (i)(σ), (5.2)

where N (i) is the particle number and f (i)(σ) the normalized distribution function of phase

i. The conservation of the total volume occupied by the parent phase can be written as,
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V (0) =
m∑

i=1

V (i)

N (0)

ρ(0)
=

m∑

i=1

N (i)

ρ(i)
, (5.3)

where we have assumed that a polydisperse system of N (0) particles initially distributed

according to f (0)(σ), separates into m phases which occupy the total volume V (0) [4].

Finally, the normalization of the distribution functions f (i)(σ) in (5.2) implies

N (0)

∫

f (0)dσ =
m∑

i=1

N (i)

∫

f (i)(σ)dσ

N (0) =

m∑

i=1

N (i), (5.4)

which expresses the conservation of the total number of particles.

In principle, given T , ρ(0) and f (0)(σ), one has to solve the system of equations (5.1)

- (5.4) for the ρ(i) and f (i)(σ) (i = 1, 2, . . . , m) to obtain the region of phase coexistences

characterized by the equilibrium number densities ρ and temperature T . The curves in

the ρ, T -plane along this equilibrium number densities are called binodals.

Even when starting from a relatively simple expression for A(T, [ρ]) the solution to

(5.1) - (5.4) turns out to be a rather formidable task because equations (5.1) - (5.4) are no

longer algebraic equations (as would be the case for discrete mixtures) but become here

integral equations for the f (i)(σ).

5.1.2 Cloud point and shadow

The cloud point is the point at which, for a system with given density distribution function

ρ(0)(σ), phase separation first occurs as the temperature T or another external control

parameter is varied. At a cloud point one has therefore phase coexistence between a

slightly varied initial phase (the parent) occupying the whole volume V (0) and containing

all particles N (0) and the corresponding incipient phases, called the ‘shadows‘, which are

present only in infinitesimal amounts. The cloud point curve can be obtained by diluting

or concentrating the system, i.e., varying its number density ρ(0) while maintaining a fixed

‘shape’ of polydispersity f (0)(σ). Plotting the cloud point temperature T versus number

density ρ(0) defines the cloud point curve (CPC), while plotting T versus the number

density of the shadow gives the shadow curve (SC). These curves provide envelopes for

the binodals calculated via (5.1) - (5.4). If we restrict ourselves, for the purpose of

simplicity, to two phase (gas-liquid) coexistences, physically, the roles of CPC and SC
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can be explained as follows: If the parent phase is a gas represented by the low density

phase given by the left branch of the CPC then the coexisting high density phase given

by the right branch of the SC represents the first occurring liquid drop; if we start with

the liquid phase to be the parent, then the CPC and the incipient SC represent a liquid

which is in equilibrium with the first occurring gas bubble.

The equations to calculate the CPC and the SC can be obtained from equations (5.1)

- (5.4) by considering a situation of incipient phase separation whereby all phases but one

are present only in infinitesimal amounts. This situation is seen to correspond to N (i) → 0

respectively V (i) → 0 for i = 1, . . . , m − 1 or ρ(m) → ρ(0) with ρ(j) (j = 1, . . . , m) finite.

From equation (5.2) it is seen that this implies f (m)(σ) → f (0)(σ). The CPC and the SC

are hence solutions of

p(T, [ρ(1)]) = p(T, [ρ(2)]) = . . . = p(T, [ρ(0)])

µ(σ, T, [ρ(1)]) = µ(σ, T, [ρ(2)]) = . . . = µ(σ, T, [ρ(0)]) (5.5)

with the additional conditions

N (0) = N (m)

f (0)(σ) = f (m)(σ)

V (0) = V (m)

ρ(0) = ρ(m). (5.6)

In a monodisperse system, the CPC and the SC would coincide, with a critical point

at their common maximum. In the polydisperse case, however, CPC and SC are differ-

ent, and the critical point occurs at the crossing of the two curves. To understand this

difference between monodisperse and polydisperse systems, it is useful to bear in mind,

that the set of parent phases whose behavior is represented by the CPC have constant

composition on the curve what means the distribution function f(σ) = f (0)(σ) remains

constant for every cloud point on the curve. In general, the SC does not have constant

composition on the curve, because its distribution functions are given by solution of the

equilibrium conditions (5.5) and (5.6) that means, in comparison to the cloud phases,

the shadow phases have become enriched in one or the other of the species, a process

normally referred to as ‘fractionation’. Thus, in contrast to a monodisperse system, the

roles of cloud and shadow phases cannot be reversed, and CPC and SC are therefore in

general different. The fact that the critical point is located at a crossing of the CPC and

SC follows because at criticality cloud and shadow are by definition identical.
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5.2 Thermodynamic stability conditions

Even if the solution for a phase split into m phases could be determined numerically,

one would still need to verify that the calculated phase coexistence is thermodynamically

stable, i.e. that it gives the lowest possible total energy; this problem is more complex

in a polydisperse system than in a monodisperse one due to the potentially unlimited

number of coexisting phases. In principle, the criterion for global stability is that no part

of the free energy surface cuts the calculated tangent plane; equivalently, an appropriately

defined tangent plane distance [48] needs to be everywhere non-negative. We can therefore

define global stability for a polydisperse phase split as the property that there is no other

phase split that gives a lower total free energy for the same parent one-particle density

distribution function ρ(0)(σ). Or, in more intuitive language, this means that if we put

a collection of m phases ρ(α)(σ) (α = 1, . . . , m), which satisfy the phase equilibrium

conditions (5.1) - (5.4), into contact with each other, the resulting system would be

globally (thermodynamically) stable; neither the composition nor the number of phases

would change over time. For global stability, the free energy density A+(T, [ρ]), must

remain a convex functional of ρ(σ) = ρ(0)(σ), i.e., it must satisfy [19, 48]

A+(T, [ρ + λδρ]) < λA+(T, [ρ + δ(ρ)]) + (1 − λ)A+(T, [ρ]) (5.7)

for any λ, 0 < λ < 1, and for any change, δρ(σ) 6= 0, of the functional form of ρ(σ). If we

consider only infinitesimal changes, δρ(σ), the above equation is equivalent to [19]

0 <

∞∑

k=2

1

k!
(λ − λk)δkA+(T, [ρ]), (5.8)

where δkA+ is the kth functional variation of A+,

δkA+ =

∫

dσ1 . . .

∫

dσk

δkA+(T, [ρ])

δρ(σ1) . . . δρ(σk)
δρ(σ1) . . . δρ(σk). (5.9)

Definition (5.8) characterizes the local stability, where this corresponds to the requirement

that the defined tangent plane distance [48] be a local minimum at each of the m phases

in the regarded solution of (5.1) - (5.4).

5.2.1 Spinodals and critical states

In comparison to the monodisperse case where there can exist e.g. only a critical point of

order two (what means, at fixed temperature two phases with identical number densities),

in the phase behavior of polydisperse systems there is the possibility of encountering

critical points of arbitrary order. Such critical points are specified by a one-particle
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density distribution function ρ(σ) and a temperature T ; their defining property is that,

at those parameters, a single phase separates into m infinitesimally different phases. Thus

m = 2 is an ordinary critical point, m = 3 a tricritical point and so on [49, 48, 19]. Since

there is no limit on the number of coexisting phases, it is intuitively clear that there is

also no upper limit on the order of critical points that occur in polydisperse systems.

The condition (5.8) for local stability reduces (δk+1A+ � δkA+) to [19]

0 < δ2A+(T, [ρ]), (5.10)

where this condition characterizes the so called ordinary stable state. In the region on

the ρ-T plane where the parent phase first becomes unstable to local density fluctuations,

there must exist at least one density fluctuation δρ(σ) 6= 0, such that δ2A+(T, [ρ]) = 0, or

explicitly

δ2A+ =

∫

dσ1

∫

dσ2
δ2A+(T, [ρ])

δρ(σ1)δρ(σ2)
δρ(σ1)δρ(σ2) = 0 (5.11)

for a given T and ρ(σ), where any δρ(σ) of equation (5.11) will be called a critical fluc-

tuation. For the system to remain stable with respect to these critical fluctuations δρ(σ)

we must have according to (5.8), δ3A+ = 0 (as δ3A+ changes the sign in dependence of

δρ) and δ4A+ > 0 [19]

δ3A+ =

∫

dσ1

∫

dσ2

∫

dσ3
δ3A+(T, [ρ])

δρ(σ1)δρ(σ2)δρ(σ3)
δρ(σ1)δρ(σ2)δρ(σ3) = 0

(5.12)

δ4A+ =

∫

dσ1

∫

dσ2

∫

dσ3

∫

dσ4
δ4A+(T, [ρ])

δρ(σ1)δρ(σ2)δρ(σ3)δρ(σ4)
×

δρ(σ1)δρ(σ2)δρ(σ3)δρ(σ4) > 0. (5.13)

The conditions for stable and critical states initially shown by Brannock [49] can now

be summarized as follows; δ2A+ > 0 defines the ordinary stable state; δ2A+ = 0, δ3A+ =

0, δ4A+ > 0 an ordinary critical state, δ2A+ = 0, δ3A+ = 0, δ4A+ = 0, δ5A+ = 0, δ6A+ > 0

a tricritical state, etc [19].

The values of T and ρ(σ), for which equation (5.11) has a solution define a spinodal,

whereas those values for which relations (5.11), (5.12) and (5.13) are satisfied simultane-

ously correspond to the critical states of a polydisperse fluid. Note that in the present

context the stability conditions (5.10) - (5.13) imply stability with respect to changes in

both the number density (δρ(σ) = δρf(σ)) and the composition (δρ(σ) = ρδf(σ)). The

spinodals (SP) in a polydisperse system are the points where for varied temperature for

example a given parent phase first becomes unstable to local density fluctuations. De-

termining the SP points for all parents at fixed composition gives a SP curve which can
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be plotted along with the CPC and the SC. The limitation that the composition of the

parent phase is kept fixed can be justified by the conservation of particles types.

The critical point always lies on the SP curve and so the SP and the CPC intersect at

the critical point.

5.3 Methods

5.3.1 Truncatable free energy method

Significant progress in the solution of the non-linear set of integral equations (5.1) - (5.4),

can be made for (model) systems with the so-called ‘truncatable’ free energy method [20],

which can in general be solved directly by numerical methods. Truncatable systems are

characterized by an excess contribution to the free energy Aex = Aex(mi) that depends

only on a finite number n of generalized moments

mi[f ] =

∫

dσwi(σ)f(σ) (5.14)

of the distribution function f(σ); for power-law weight functions wi(σ) = σi, the mi = mi

are conventional moments. The term ‘truncatable’ emphasizes that the number of gener-

alized moments appearing in the excess free energy of truncatable models is finite, while

for none-truncatable models the excess free energy depends on all details of ρ(σ), corre-

sponding to an infinite number of generalized moments. The class of polydisperse systems

whose free energies are truncatable is surprisingly large (for examples see [20]). We have

chosen two example systems of this class to calculate polydisperse phase diagrams the

vdW model and the HS system with an adjacent interaction (HTA-type approximation).

If the free energy is not truncatable or the numerical solution of the nonlinear equations

(5.1)-(5.4) for the truncatable system is not possible (the numerical algorithm does not

converge because too many degrees of freedom have to be fitted), the phase equilibrium

conditions have to be substituted by suitable approximations. In the following we shortly

describe some of this approximate methods to calculate polydisperse phase separations.

5.3.2 Moment free energy method

To address the disadvantages occurring in the solution of (5.1)-(5.4) concerning systems of

truncatable free energies, one can construct a so-called ‘moment free energy’ [22, 48, 21].

The moment free energy consists of an excess free energy and of an ideal part of the free

energy which is substituted by an approximation, in such a way that both depend only

on a finite set of generalized moment densities ρmi (5.14).
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There are two approaches to constructing the moment free energy: the so called pro-

jection method proposed by Sollich and Cates [21] and the so-called combinatorial method

proposed by Warren [22]. To motivate the construction of the moment free energy, one can

argue that the most important moment densities to treat correctly in the calculation of

phase equilibria are those actually appear in the excess free energy Aex(ρmi). For the ap-

proximation of the ideal free energy the combinatorial and the projection method provide

two completely different routes, surprisingly they lead to practically identical moment free

energies A(ρmi), except for a term depending linearly on the number density ρ. Because

the difference between the two defined moment free energies is linear in this density, the

combinatorial and the projection method predict exactly the same phase behavior.

In the projection method one divides the infinite-dimensional space of one-particle

distribution functions into two complementary subspaces: a ‘moment-subspace’, which

contains all degrees of freedom of ρ(σ) that contribute to the generalized moment densities

ρmi and a ‘transverse subspace’, which contains all the remaining degrees of freedom (they

can be varied without effecting the chosen generalized moment densities ρmi) [21]. This

approach allows violations of the particle conservation laws (5.2) and (5.4) as long as these

occur solely in the transverse space. The transverse degrees of freedom are then chosen so

as to minimize the ideal part of the free energy over all one-particle density distribution

functions ρ(σ) with fixed generalized moment densities ρmi.

In the combinatorial approach one starts with the total free energy of the system (this

means of all m coexisting phases) defined as configuration space integral. The integral over

partitions with fixed particle numbers N (i) of the m phases can be solved approximately

by replacing it by the maximum of the integrand in the thermodynamic limit [22]. From

this we obtain the ideal part of the free energy in a form that depends explicitly only on

the chosen generalized moment densities. But the expression for the ideal part of the free

energy is intractable in general because it still contains the full complexity of the problem

[22]. Progress can be made by setting in the ideal part of the free energy N (i) � N (0)

(i = 1, . . . , m − 1), when the number of particles in the m − 1 phases are much smaller

than in the parent phase.

The moment free energy, obtained via the projection method in one way and the

combinatorial method in the other way, can then be used to construct a finite dimensional

phase diagram via the usual tangency plane rules, ignoring the underlying nature of the

polydisperse system [48]. For coexistence involving finite amounts of different phases the

moment free energy only gives approximate results [48], because of the violation of the

particle conservation law in the projection method and the restriction N (i) � N (0) in the

combinatorial approach. The calculated binodals are therefore only exact, if all but one

of a set of coexisting phases are of infinitesimal volume compared to the majority phase.
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This means that the CPC and SC are given exactly, the same is true for the calculated SPs

and critical points. According to Gibbs’ phase rule, a moment free energy depending on

n moment densities will not formally predict more than n + 1 coexisting phases, whereas

we know that polydisperse systems can in principle separate into an arbitrary number of

phases. Both of these shortcomings can be overcome by including extra moment densities

within the moment free energy; this does not affect any of the exactness statements above

but systematically increases the accuracy of any calculated phase splits [48].

5.3.3 Binning and pseudo-components

For an approximate solution of the polydisperse phase equilibrium problem, the most

straightforward method is to ‘bin’ the full one-particle density distribution function ρ(σ)

into a number of discrete ‘pseudo-components‘, whose one-particle density distribution

functions are given by the density of particles within the respective σ-ranges. This

then formally reduces the problem to that of a finite mixture. The pseudo-components

can be spaced evenly across the σ-range, or chosen according to other ad-hoc prescrip-

tions. Whatever particular implementation is chosen (for an overview see [20]), it is

clear that binning introduces uncontrolled systematic errors (mainly because of the cho-

sen discretization) and also becomes numerically unwieldy for large numbers of pseudo-

components. All approaches, discussed in [20], to allocate pseudo-components, based on

the idea to reduce the equations (5.1) - (5.4) to a set of (approximate) nonlinear equations

in a finite number of variables, can be used to calculate at least approximate CPC and

SC.

5.4 Phase coexistence for truncatable free energy

method

For the calculation of phase transitions we restrict ourselves in this thesis on systems

with truncatable free energies. To simplify the problem we assume the parent distribu-

tion function f (0)(σ) to be monomodal, i.e. centered around a single reference species, as

suitable for the polydisperse generalization of one-component systems. This parent dis-

tribution function will further be assumed to be fixed, once and for all, by the production

process of the colloid particles. As an additional restriction, we would like to stress that

our study will be limited to fluid phases of the polydisperse system, leaving aside whether

these phases are stable or metastable with respect to possible solid phases. In this way,

we will be able to focus on the central difficulty resulting from replacement of the alge-

braic equations in finite dimensional space, characteristic of the phase behavior of discrete

mixtures, by the integral equations in infinite dimensional space (5.1) characteristic of the
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continuous mixtures. As final simplification we will restrict ourselves here to two-phase

coexistence only, i.e., to m = 2. In practice, a polydisperse system does rarely use the

infinite number of phases given by Gibbs’ phase rule [19]. Since these multiple-phase

coexistences are expected to occur at low temperatures, the restriction (m = 2) implies

that the value of T should be chosen high enough [19]. This is consistent to the restriction

to fluid phases, because for low temperatures some of the (multiple) fluid phases could

coexist with solid phases.

5.4.1 Binodals

For a two-phase coexistence (m = 2) the particle numbers N (i) (i = 1, 2) can be obtained

from (5.3) and (5.4) as

N (1) = N (0) ρ
(1)(ρ(2) − ρ(0))

ρ(0)(ρ(2) − ρ(1))

N (2) = N (0) ρ
(2)(ρ(1) − ρ(0))

ρ(0)(ρ(1) − ρ(2))
,

expressing the so-called lever rule [50] or particle conservation, whereas f (2)(σ) can be

eliminated by using equation (5.2)

f (2)(σ) =
ρ(0)(ρ(1) − ρ(2))

ρ(2)(ρ(1) − ρ(0))
f (0)(σ) +

ρ(1)(ρ(0) − ρ(2))

ρ(2)(ρ(1) − ρ(0))
f (1)(σ)

=
(ρ(1) − ρ(2))ρ(0)f (0)(σ) − (ρ(0) − ρ(2))ρ(1)f (1)(σ)

(ρ(1) − ρ(0))ρ(2)
, (5.15)

where ρ(0) and f (0)(σ) are given parent phase data. To find ρ(1), ρ(2) and f (1)(σ) we

need three relations. For this purpose we eliminate the ideal contribution to the chemical

potential (3.21) from equation (5.1) for m = 2 and write

ρ(1)(σ) = ρ(2)(σ)eβ∆µex(σ,T,[ρ(1),ρ(2)]),

where

∆µex(σ, T, [ρ(1), ρ(2)]) = µex(σ, T, [ρ(2)]) − µex(σ, T, [ρ(1)]), (5.16)

with µex(σ, T, [ρ]) being the excess part of µ(σ, T, [ρ]). In terms of f (i)(σ), the above

equation becomes

f (1)(σ) = f (2)(σ)
ρ(2)

ρ(1)
eβ∆µex(σ,T,ρ(1),ρ(2),[f(1)],[f(2)]). (5.17)

Eliminating f (2)(σ) from equation (5.17) by use of (5.15), one obtains finally

f (1)(σ) =
ρ(0)f (0)(σ)(ρ(1) − ρ(2))eβ∆µex

ρ(1) [ρ(1) − ρ(0) + (ρ(0) − ρ(2))eβ∆µex ]
. (5.18)
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This equation is the first relation between ρ(1), ρ(2) and f (1)(σ). Given T , ρ(0) and f (0)(σ),

equation (5.18) can in principle be solved with respect to f (1)(σ) for given ρ(1) and ρ(2)

values. A relation between ρ(1) and ρ(2) can then be found by solving

1 =

∫

dσf (1)(σ) =

∫

dσ
ρ(0)f (0)(σ)(ρ(1) − ρ(2))eβ∆µex

ρ(1) [ρ(1) − ρ(0) + (ρ(0) − ρ(2))eβ∆µex ]
, (5.19)

which is the normalization of the distribution function f (1)(σ). Finally, the system of

equations is closed by equation (5.1), the equality of the pressures

p(T, [ρ(1)]) = p(T, [ρ(2)]). (5.20)

As it depends continously on the particle diameter σ, for the general case (5.18) is an

equation in an infinite dimensional space, which can not be used to calculate numerically

a two phase coexistence. For a system of truncatable free energies, however, the thermo-

dynamic quantities can be rewritten as functions of a finite set of generalized moments

mk[f ] (5.14). This can be exploited to map the equation (5.18) onto a finite dimensional

space.

For further considerations we suppress the functional dependence of the generalized

moments mk on f(σ). We can thus express the excess chemical potentials (5.16) by use

of (5.14) in dependence of their generalized moments as

∆µex(σ, T, ρ(1), ρ(2), m
(1)
k , m

(0)
k ) = µex(σ, T, ρ(2), m

(1)
k , m

(0)
k ) − µex(σ, T, ρ(1), m

(1)
k ), (5.21)

where the generalized moments m
(2)
k have been eliminated in favor of m

(1)
k and m

(0)
k by

using equation (5.15). The explicite dependence of the equations (5.15) and (5.18) on σ

can be eliminated by integration to transfer them into a set of moment relations [19]

m
(2)
k =

(ρ(1) − ρ(2))ρ(0)m
(0)
k − (ρ(0) − ρ(2))ρ(1)m

(1)
k

(ρ(1) − ρ(0))ρ(2)
, (5.22)

m
(1)
k =

∫

dσwk(σ)
ρ(0)f (0)(σ)(ρ(1) − ρ(2))eβ∆µex

ρ(1) [ρ(1) − ρ(0) + (ρ(0) − ρ(2))eβ∆µex]
, (5.23)

with ∆µex from equation (5.21). Finally the equality of the pressures (5.20) becomes

p(T, ρ(1), m
(1)
k ) = p(T, ρ(2), m

(1)
k , m

(0)
k ). (5.24)

For any given T , ρ(0) and f (0)(σ) the k + 2 unknowns (ρ(1), ρ(2), m
(1)
k ) can be obtained by

solving the system of k + 2 equations (5.23) and (5.24) together with the normalization

relation (5.19). When this result is substituted in equation (5.18) by use of (5.21), we

obtain f (1)(σ) and from equation (5.15) finally f (2)(σ). This then completely solves the

two-phase coexistence problem for the present model.
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5.4.2 CPC and SC

The CPC and SC can be obtained from equations (5.23) and (5.24) by use of (5.5), (5.6)

and (5.22) as [19]

m
(2)
k = m

(0)
k

m
(1)
k =

∫

dσwk(σ)
ρ(0)f (0)(σ)eβ∆µex

ρ(1)

p(1)(T, ρ(1), m
(1)
k ) = p(2)(T, ρ(0), m

(0)
k ) (5.25)

with

∆µex(σ, T, ρ(1), ρ(0), m
(1)
k , m

(0)
k ) = µex(σ, T, ρ(0), m

(0)
k ) − µex(σ, T, ρ(1), m

(1)
k ). (5.26)

The distribution function f (1)(σ) becomes then

f (1)(σ) = f (0)(σ)
ρ(0)

ρ(1)
eβ∆µex (5.27)

with

f (2)(σ) = f (0)(σ)

ρ(2) = ρ(0)

The solution of equations (5.25) - (5.27) corresponding to the majority phase 2 yields the

CPC, while the solution for the minority phase 1 yields the SC.

5.4.3 Spinodals and ordinary critical points

Critical points can be obtained by the following different routes. The most straightforward

possibilities are to look for the so called untruncated binodals or for intersections of CPC

and SC. In a polydisperse phase transition untruncated binodals play an important role

because the critical points are situated on their maxima. This untruncated or critical

binodals are obtained by solution of (5.18) - (5.20) by the special choice of the parent

number density ρ(0) = ρcrit, while all remaining binodals for ρ(0) 6= ρcrit are truncated

before they approach the critical point. When the critical region is approximately known,

the determination of the critical point via the untruncated binodal or the intersection of

CPC and SC is easily executed but these methods become unpracticable when no a priori

knowledge about their location is avaliable, as is the case here for all the polydispersity

induced critical points.

The method to be followed here will therefore be based on the stability criteria (5.11),

(5.12) and (5.13). When we follow this route the critical points can be found by looking

for intersections of the SP and the stability curve.
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We can write the SP criterion also in the form (because along the SP curve we have

stability at least against one density fluctuation δρ(σ))

0 =

∫

dσ2δρ(σ2)

(
δ2A+

δρ(σ1)δρ(σ2)

)

, (5.28)

where this definition corresponds to the SP criterion given by Brannock [49] in vector

notation

0 = (δ~ρ∇)~µ[ρ(0)] = (δ~ρ∇)~∇A[ρ(0)] (5.29)

with the infinite dimensional vectors ~ρ and ~µ containing the values of ρ(σ) and µ(σ).

The SP criteria (5.28) and (5.29) for a parent phase ρ(0)(σ) mean then, that there is an

incipient instability direction δ~ρ along which the chemical potentials do not change [48].

Equation (5.28) can be cast into an eigenvalue form for zero eigenvalue [51] by writing

δρ(σ) as δρ(σ) = ρ(σ)e(σ), where e(σ) is yet unknown. If we split the free energy in (5.28)

into ideal and excess part [48, 51], we obtain

0 =

∫

dσ2δρ(σ2)

(
δ2A+

id

δρ(σ1)δρ(σ2)
+

δ2A+
ex

δρ(σ1)δρ(σ2)

)

=

∫

dσ2f(σ2)e(σ2)

(

δ(σ1 − σ2)
√

f(σ1)f(σ2)
+ C2(σ1, σ2, T, ρ)

)

(5.30)

where C2(σ1, σ2, T, ρ) = ρ
δ2A+

ex(T,[ρ])
δρ(σ1)δρ(σ2)

depends on the excess free energy of the used model.

For systems of truncatable free energies we can rewrite C2(σ1, σ2, T, ρ) as [51, 19]

C2(σ1, σ2, T, ρ) = ρ
∑

i

∑

k,k′

∂2A+
ex

∂mk,i∂mk′ ,i

δmk,i

δρ(σ1)

δmk′ ,i

δρ(σ2)

=
∑

i

∑

k,k′

wk,i(σ1)ckk′ ,i(T, ρ)wk′ ,i(σ2), (5.31)

where the ∂2A+
ex

∂mk,i∂m′

k,i

are partial derivatives with respect to the generalized moments (5.14)

and the coefficients ckk′ ,i(T, ρ) are independent of σ and can be deduced by comparison

of the explicit expression for C2(σ1, σ2, T, ρ) with definition (5.31). The index i in (5.31)

was introduced to make it possible to distinguish between different generalized moment

types, which are characterized each by a certain weight function wk,i(σ). The functional

derivative C2(σ1, σ2, T, ρ) depends on a finite set of generalized moments contained in A+
ex;

the sums over k and k′ in (5.31) are therefore finite.

A solution of the homogeneous equation (5.30) for the eigenvector e(σ) can by use of

(5.31) be given as

e(σ) = −
∑

i

∑

k,k′

ckk′ ,i(ρ, T )wk,i(σ)δmk′ ,i, (5.32)
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where δmk,i is the variation of the kth generalized moment with respect to the weight

function wk,i(σ)

δmk,i =

∫

dσf(σ)e(σ)wk,i(σ) =

∫

dσδf(σ)wk,i(σ). (5.33)

If we take the lth generalized moment of e(σ), we can rewrite (5.32)

0 =

∫

dσf(σ)wl,j(σ)

(

e(σ) +
∑

i

∑

kk′

ck,k′

,i
(T, ρ)wk,i(σ)δmk′ ,i

)

=
∑

i

∑

k

δmk,i

(

δkl,ij +
∑

k′

ckk′ ,i(T, ρ)mk′l,ij

)

(5.34)

where we have used ∫

dσf(σ)wk,i(σ)wl,j(σ) = mlk,ij. (5.35)

Because the variation of the eigenvector δm is not zero (compare (5.29)) a solution to

(5.34) will exist provided the determinant of the matrix

det (1I + B) = 0 (5.36)

with the matrix elements

Bkl,ij =
∑

k′

ckk′ ,i(ρ, T )mk′l,ij. (5.37)

(5.36) is the equation to calculate the SP. In the present context this amounts to looking

for thermodynamic states (T, ρ) which, for a given distribution function f(σ) = f (0)(σ),

satisfy (5.36). From the eigenvector e(σ) we can then deduce the fluctuations in the one-

particle density distribution function δρ(σ) = δρ(0)(σ) obtained from (5.32) by inserting

the solution δm of (5.34).

After calculation of the SP, we turn now to the determination of the ordinary critical

point, for which the SP criterion (5.36) and the criteria for the critical point (5.12) and

(5.13) have to be fulfilled simultaneously. We can rewrite (5.12) for a system of truncatable

free energies as

∫

dσ1dσ2dσ3ρ(σ1)ρ(σ2)ρ(σ3)e(σ1)e(σ2)e(σ3)
(

− δ(σ1 − σ2)δ(σ2 − σ3)

ρ(σ1)ρ(σ2)

+
C3(σ1, σ2, σ3, T, ρ)

ρ2

)

= −
∫

dσ1f(σ1)e
3(σ1) +

∑

j

∑

k,l,o

cklo,j(T, ρ)δmk,jδml,jδmo,j = 0, (5.38)
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where C3(σ1,σ2,σ3,T,ρ)
ρ2 is the third functional derivative of Aex with respect to ρ(σ) and the

coefficients cklo(T, ρ) can be deduced from the relation

C3(σ1, σ2, σ3, ρ, T ) =
∑

j

∑

klo

cklo,j(ρ, T )wk,j(σ1)wl,j(σ2)wo,j(σ3). (5.39)

If we insert the definition of e(σ) (5.32) into (5.38), we obtain

∑

jj′j′′

∑

k,l,o

δmk,jδml,j′δmo,j′′

(

cklo,j(T, ρ)δjj′δjj′′ +

∑

k′,l′,o′

ckk′ ,j(T, ρ)cll′ ,j′(T, ρ)coo′ ,j′′(T, ρ)mk′l′o′ ,jj′j′′

)

= 0, (5.40)

where we have used for mk′l′o′ jj′j′′ a relation similar to (5.35). For the condition in (5.13)

we get in similar manner as in (5.38) and (5.40)
∫

dσ1f(σ1)
[

2e4(σ1) +

∫

dσ2dσ3dσ4f(σ2)f(σ3)f(σ4) ×

e(σ1)e(σ2)e(σ3)e(σ4)C4(σ1, σ2, σ3, σ4, ρ, T )
]

=
∑

jj′j′′j′′′

∑

k,l,o,p

δmk,jδml,j′δmo,j′′δmpj′′′

(

cklop,j
(T, ρ)δjj′δjj′′δjj′′′

+2
∑

k′,l′,o′,p′

ckk′ ,j(T, ρ)cll′ ,j′(T, ρ)cii′ ,j′′(T, ρ)cpp′ ,j′′′
(T, ρ)mk′l′o′p′ ,jj′j′′j′′′

)
)

> 0,

(5.41)

where C4(σ1,σ2,σ3,σ4,T,ρ)
ρ3 is the forth functional derivative of Aex with respect to the one-

particle density distribution function ρ(σ). The coefficients cklop,j
(ρ, T ) are given through

C4(σ1, σ2, σ3, σ4, ρ, T ) =
∑

j

∑

k,l,o,p

cklop,j
(ρ, T )wk,j(σ1)wl,j(σ2)wo,j(σ3)wp,j

(σ4) (5.42)

and the mk′l′o′p′ ,jj′j′′j′′′
by

mk′l′o′p′ ,jj′j′′j′′′
=

∫

dσf(σ)wk′j(σ)wl′j′(σ)wo′j′′(σ)wp′j′′′
(σ).

Note that equations (5.31) - (5.41) are algebraic equations involving T , ρ and the general-

ized moments of type mk,j, mkk′ ,jj′, mkk′k′′ ,jj′j′′ and mkk′k′′k′′′ ,jj′j′′j′′′, where (k, k′, k′′, k′′′)

cover the finite set of values appearing in the excess free energy and (jj ′j ′′j ′′′) the set of

all generalized moment types of the excess free energy.

In the following subsections we present two examples of truncatable free energies, the

vdW free energy (4.1) and the free energy within the HTA approximation (4.12), for which

two-phase coexistences have been calculated numerically.
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5.4.4 Van der Waals fluid

Xu et al. [19, 52] have studied the phase behavior of a system within a vdW approxima-

tion, first at the level of two-phase coexistence and later for three-phase coexistence. It

was shown there [19], that the polydispersity can have profound influence on the binodals

of this system as compared with their monodisperse counterparts. In [52] they show that,

as a consequence of the Gibbs phase rule, a polydisperse system can also phase separate

or ‘fractionate’ into more than two fluid phases, each phase differing both on number

density and in size distribution.

In [19] Xu et al. have studied the influence of amplitude polydispersity and (or) size

polydispersity on a polydisperse phase separation process. With size polydispersity we

mean that the amplitude of the attractions (ν(σ, σ′) in the vdW model) is constant for all

particle type interactions, while for amplitude polydispersity it depends on the diameters

σ of the interacting particles. The size or (and) amplitude polydispersity of the attractions

can be adjusted by the special choice of parameters within the definition of the attractions.

The systems with size or amplitude polydispersity only are simpler to study, because their

excess free energy involves fewer moments (5.14) of the size distribution function f(σ).

We will therefore consider either only the size or the amplitude polydisperse model, to

discuss the conclusions made already by [19] with the help of some later calculated phase

diagrams.

With the attractions ϕ(σ, σ′) (4.4) rewritten in more general form as [19]

ϕ(σ, σ′) = −ν
4π

3
(σσ′)s

(
σt + σ′t

2

)3

(5.43)

the vdW excluded volume (4.2) and the definition of the moments (5.14) characterized

by the weight function wk(σ) = σk, one can rewrite the equations for excess free energy

(4.1), chemical potential (4.5) and pressure (4.6) of a vdW fluid [19]

A+
ex(T, ρ, [f ]) = −ρ ln

(

1 − π

6
ρm3t

)

− β
π

6
ρ2ν(msm3t+s + 3mt+sm2t+s)

βµex(σ, T, ρ, [f ]) = − ln (1 − π

6
ρm3t) +

π
6
ρσ3t

1 − π
6
ρm3t

−β
π

6
νρ
(
σ3t+sms + 3σ2t+smt+s + 3σt+sm2t+s + σsm3t+s

)

βp(T, ρ, [f ]) =
ρ

1 − π
6
ρm3t

− β
π

6
ρ2ν (msm3t+s + 3mt+sm2t+s) (5.44)

where ν has the dimension of an energy and gives a fixed potential depth. As we can

see in (5.44) the thermodynamic properties depend only on a finite set of conventional

moments. Equation (5.43) was chosen to be able to calculate independently a size or a

amplitude polydisperse system by varying the parameters t and s in a suitable manner;
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{s = 0, t = 0} corresponds to the absence of polydispersity, {s = 1, t = 0} to a system

that is polydisperse in amplitude (or interaction strength) only, {s = 0, t = 1} to a system

that is polydisperse in size only, finally all other combination of s and t corresponds to

a system that is both amplitude and size polydisperse. We restrict ourselves here to the

cases {s = 0, t = 1} and {s = 1, t = 0}.
The phase equilibrium can be calculated with (5.22) - (5.24) for the unknowns (ρ(1),

ρ(2), m
(1)
k , m

(2)
k ) by use of (5.44) and the normalization relation (5.19). The corresponding

distribution functions f (1)(σ) and f (2)(σ) are then found with (5.18) and (5.15).

To calculate the critical behavior of the vdW fluid, we will limit ourselves to determine

the ordinary critical states (5.36), (5.12) and (5.13) of the vdW free energy (4.1). The

functional derivatives of the free energy (4.1) with respect to the one-particle density

distribution functions need to calculate an ordinary critical state are given as [19]

β
δ2A+(T, [ρ])

δρ(σ1)δρ(σ2)
=

δ(σ1 − σ2)

ρ(σ1)
+ βϕ(σ1, σ2) +

1

1 − π
6
ρm3t

[

V (σ1) + V (σ2) +
ρV (σ1)V (σ2)

1 − π
6
ρm3t

]

(5.45)

β
δ3A+(T, [ρ])

δρ(σ1)δρ(σ2)δρ(σ3)
= −δ(σ1 − σ2)δ(σ2 − σ3)

ρ(σ1)ρ(σ2)
+

2ρ

(1 − π
6
ρm3t)3

(V (σ1)V (σ2)V (σ3) +

1

(1 − π
6
ρm3t)2

[V (σ1)V (σ2) + V (σ2)V (σ3) + V (σ3)V (σ1)](5.46)

β
δ4A+(T, [ρ])

δρ(σ1)δρ(σ2)δρ(σ3)δρ(σ4)
= 2

δ(σ1 − σ2)δ(σ2 − σ3)δ(σ3 − σ4)

ρ(σ1)ρ(σ2)ρ(σ3)
+

6ρ

(1 − π
6
ρm3t)4

V (σ1)V (σ2)V (σ3)V (σ4) +
2

(1 − π
6
ρm3t)3

×
[
V (σ1)V (σ2)V (σ3) + V (σ1)V (σ2)V (σ4)

+V (σ1)V (σ3)V (σ4) + V (σ2)V (σ3)V (σ4)
]
, (5.47)

where it is seen that the fourth functional derivative of A+ with respect to the one-

particle density distribution function ρ(σ) is positive definite, while the third and second

functional derivative can vanish because the volume V (σ) of species σ and the excluded

volume E = (1 − π
6
ρm3t) are positive while in the second derivative ϕ(σ1, σ2) is negative

and in the third derivative the first term has a negative sign [19].

The equations (5.31) - (5.37) and (5.38) - (5.42) to calculate the SP and the ordinary

critical state simplifies for the vdW fluid since they depend now only on one moment type

(the indices i and j can be skipped). We obtain for C2(σ1, σ2, T, ρ) = ρ δ2A+
ex

δρ(σ1)δρ(σ2)
in the
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vdW excess free energy (4.1)

C2(σ1, σ2, T, ρ) =
π
6
ρ

1 − π
6
ρm3t

[
σ3t

1 + σ3t
2

]
+

π2

36
ρ2

(1 − π
6
ρm3t)2

σ3t
1 σ3t

2

−βε
π

6
ρ
[
σ3t+s

1 σs
2 + 3σ2t+s

1 σt+s
2 + 3σt+s

1 σ2t+s
2 + σs

1σ
3t+s
2

]
. (5.48)

For the weight function wk(σ) = σk, C2(σ1, σ2, ρ, T ) (5.31) becomes

C2(σ1, σ2, ρ, T ) =
∑

kk′

σkckk′(ρ, T )σk′

(5.49)

and the SP criterion (5.34) can then be written as

0 =
∑

k

δmk

(

δki +
∑

k′

ckk′(T, ρ)mk′+i

)

=
∑

k

δmk (δki + Bki) (5.50)

with δmk (5.33) given now for the weight function wk(σ) = σk and Bki (5.37) in depen-

dence of the conventional moments

mik = mi+k =

∫

dσf(σ)σi+k.

Similar relations are valid for the moments in (5.40) (mikl = mi+k+l) and (5.41) (miklj =

mi+k+l+j). From this we can follow, that if the excess free energy contains moments up

to order n, the SP condition (5.50) involves moments up to order 2n and the ordinary

critical point (5.40) moments up to order 3n.

From expressions (5.48) and (5.49) we can deduce the matrix elements ckk′(T, ρ) for

the size polydisperse case {t = 1, s = 0} (k = 0, 1, 2, 3; k′ = 0, 1, 2, 3) as

c03 = c30 =
π
6
ρ

1 − π
6
ρm3

− βν
π

6
ρ

c12 = c21 = −βν
π

2
ρ

c33 =
π2

36
ρ2

(1 − π
6
ρm3)2

, (5.51)

while all remaining elements vanish. The matrix (1I+ B) obtained from (5.50) and (5.51)

can then be written as






1 + c03m3 c03m4 c03m5 c03m6

c12m2 1 + c12m3 c12m4 c12m5

c12m1 c12m2 1 + c12m3 c12m4

c03 + c33m3 c03m1 + c33m4 c03m2 + c33m5 1 + c03m3 + c33m6







, (5.52)
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where we have set m0 = 1. The determinant to calculate the SP is then given through

(5.36) by use of (5.52). Where (5.36) has by use of (5.52) to be solved numerically for the

unknown number densities ρ leading to the SP curve and the moments mk (k = 1, . . . , 6)

are the moments of the parent distribution function f (0)(σ). Finally the eigenvector δm

is obtained up to a constant from (5.50) and (5.52) by

const












− 1
1+c03m3

[

c03m6 + c03m5
|1I + B|43
|1I + B|44 − c03m4

a

(

b − c
|1I + B|43
|1I + B|44

)]

− 1
a

[

b − c
|1I + B|43
|1I + B|44

]

|1I + B|43
|1I + B|44

1












=







δm0

δm1

δm2

δm3







,

(5.53)

where |1I + B|kk′ denotes a cofactor and the expressions for a, b and c are given by

a = (1 + c03m3)(1 + c12m3) − c03m4c12m2

b = −c03m6c12m2 + (1 + c03m3)c12m5

c = c03m5(1 + c12m3) − (1 + c03m3)c12m4.

For the amplitude polydisperse case {t = 0, s = 1} (k = 0, 1; k′ = 0, 1) we obtain with

(5.48) and (5.49) the coefficients for C2

c00 =
π2

36
ρ2σ6

(1 − π
6
ρσ3)2

+
π
3
ρσ3

(1 − π
6
ρσ3)

c11 = −4π

3
ρσνβ, (5.54)

where all other coefficients vanish and σ = 1 is the average hard core diameter given by

the parent distribution function f (0)(σ). With the coefficients (5.54) we can write the

determinant of the 2 × 2 matrix, which gives the SP criterion

(1 + c00)(1 + c11m2) − c00c11m
2
1 = 0. (5.55)

The eigenvector δm in (5.50) is then given through
(

δm0

δm1

)

= const

(
− c00m1

1+c00

1

)

. (5.56)

Having found the SP and the eigenvector δm for the two considered cases, we now turn

to the stability condition (ST), equation (5.38). Inserting (5.46) into (5.38) we obtain in

the general case [19]
∫

dσf(σ)e3(σ) = 3

(
ρ

1 − π
6
ρm3t

)2{∫

dσf(σ)e(σ)

}{∫

dσf(σ)e(σ)V (σ)

}2

+2

(
ρ

1 − π
6
ρm3t

)3{∫

dσf(σ)e(σ)V (σ)

}3

.
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Substitution of

e(σ) =
∑

k

a0kσ
k

with

a0k = −
∑

k′

ckk′δmk′

into the above equation yields finally

∑

k,k′,k′′

a0ka0k′a0k′′mk+k′+k′′ = 3

( π
6
ρ

1 − π
6
ρm3t

)2
(
∑

k

a0kmk

)(
∑

k′

a0k′mk′+3t

)2

+2

( π
6
ρ

1 − π
6
ρm3t

)3
(
∑

k

a0kmk+3t

)3

, (5.57)

where the coefficients a0k for size polydispersity only (s = 0, t = 1) are given as

a00 = −c03δm3

a01 = −c12δm2

a02 = −c12δm1

a03 = −c03δm0 − c33δm3,

whereas for amplitude polydispersity only (s = 1, t = 0) one obtains

a00 = −c00δm0

a01 = −c11δm1.

Equations (5.50) and (5.57) have to be solved simultaneously to get the critical point

using (5.52) and (5.53) for the size polydisperse case and using (5.55) and (5.56) for the

amplitude polydisperse case. In the present context this amounts to look for thermody-

namic states (T, ρ) which, for a given distribution function f(σ) = f (0)(σ), satisfy both

(5.50) and the stability criteria (5.57). In the vdW model the relation δ4A+ > 0 is always

satisfied because equation (5.47) is positive definite.

5.4.5 HS fluid with attractive tail

The free energy (4.50) calculated within the ORPA does not belong to the class of trun-

catable free energies. We restrict ourselves therefore to the free energy within the HTA

(4.12). Here we have to make in addition the approximation that the radial pair distribu-

tion function of the HS system takes its long distance value, what means g0(r, σi, σj) = 1.
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With this approximation we obtain the free energy

A+ = A+
id + A+

ex,0 + β
ρ2

2

∫

dσif(σi)

∫

dσjf(σj)

∫

d3rφ(r, σi, σj)

= A+
id + A+

ex,0 + β
ρ2

2

∫

dσif(σi)

∫

dσjf(σj)ϕ(σi, σj), (5.58)

where A+
ex,0 is the excess free energy (4.62) of the HS system and ϕ(σ, σ ′) is the average

potential. For the square-well potential (2.8) we obtain [18]

ϕ(σ, σ′) = −4π

3
σ̂3(λ3(σ, σ′) − 1)ε(σ, σ′) = −4π

3
σ̂3[λ3(σ, σ′) − 1]ez(σ̂−σ)ε, (5.59)

and for the Yukawa potential (2.9) we find [53]

ϕ(σ, σ′) = −γ(σ, σ′)
4π

κ(σ, σ′)

(

σ̂ +
1

κ(σ, σ′)

)

= −4πγ
σaσ′a

σ2(a−1)

(

σ̂ +
1

κ(σ, σ′)

)

, (5.60)

where σ is the average hard core diameter given as

σ = m1 =

∫

dσf(σ)σ,

ε and γ have the dimension of an energy, a is a positive integer, which models the charge in

the Yukawa potential and z is a parameter (with dimension of an inverse length) modeling

the depth of the square well. Both expressions (5.59) and (5.60) are size and amplitude

polydisperse. If we set κ(σ, σ′) and λ(σ, σ′) to constant values and in addition a = 0 and

z = 0 then we obtain potentials which are size polydisperse only.

In the above equations (5.59) and (5.60), we have used the Berthelot rule [26]

ε(σ, σ′) =
√

ε(σ, σ)ε(σ′, σ′) = εe
z
2
(σ−σ)e

z
2
(σ′−σ)

γ(σ, σ′) =
√

γ(σ, σ)γ(σ′σ′) = γ
σa

σa−1

σ′a

σa−1

√

κ(σ, σ)κ(σ′, σ′)

κ(σ, σ′) =
√

κ(σ, σ)κ(σ′, σ′). (5.61)

As we can see in (5.59) and (5.60) the potentials depend now not only on the sphere

diameters, but also on the first moment m1 of the distribution function f(σ). This has

to be taken into account in the calculation of the chemical potential µ(σ). For the excess

chemical potential (3.19) and for the pressure (4.6), one obtains then by use of (4.7)

βµex(σ, T, ρ, [f ]) = βµex,0(σ, T, ρ, [f ]) + βρ

∫

dσ′f(σ′)ϕ(σ, σ′, m1) +

β
ρ2

2

∫

dσ′f(σ′)

∫

dσ′′f(σ′′)
δϕ(σ′, σ′′, m1)

δρ(σ)
(5.62)



5.4: Phase coexistence for truncatable free energy method 72

βp(T, ρ, [f ]) = βp0(T, ρ, [f ]) +
βρ2

2

∫

dσf(σ)

∫

dσ′f(σ′)ϕ(σ, σ′, m1), (5.63)

where p0 is the pressure (4.61) and µex,0 the excess chemical potential of polydisperse HS

are given by [12]

βµex,0(σ, T, ρ, [f ]) = − ln
(

1 − π

6
ρm3

)

+
σ3 + π

2
ρσ(σm1 + m2)

1 − π
6
ρm3

+ (5.64)

π2ρ2σ2m2(
1
3
σm1 + 1

2
m2)

4(1 − π
6
ρm3)2

+
(πρσm2)

3

72(1 − π
6
ρm3)3

+
2πρ(σm2)

2

m3

(

3

[

1 − π
4
ρm3

(1 − π
6
ρm3)2

+
6 ln

(
1 − π

6
ρm3

)

πρm3

]

− σm2

m3

[
1 − π

6
ρm3 + (1 − π

3
ρm3)

2

(1 − π
6
ρm3)3

+
12

πρm3
ln
(

1 − π

6
ρm3

)]
)

.

The last term in (5.62) vanishes only in the limit z = 0 for the square-well potential and

a = 1 for the Yukawa potential. From definition (5.64) we can calculate C2(ρ, T, σ, σ′)

(5.49) for the HS system, for which the non-vanishing coefficients cHS
kk′ (ρ, T ) (k, k′ =

0, 1, 2, 3) are given as

cHS
03 = cHS

30 =
π
6
ρ

(1 − π
6
ρm3)

cHS
12 = cHS

21 =
π
2
ρ

1 − π
6
ρm3

cHS
13 = cHS

31 =
π2

12
ρ2m2

(1 − π
6
ρm3)2

cHS
23 = cHS

32 =
1

12m3
3(1 − π

6
ρm3)2

[

π2ρ2m1m
3
3 − 3m2

2

(

72 ln
[

1 − π

6
ρm3

]

+12π
(

1 − 2 ln
[

1 − π

6
ρm3

])

ρm3 + π2
(

−3 + 2 ln
[

1 − π

6
ρm3

])

ρ2m2
3

)]

cHS
33 =

−1

216m4
3(1 − π

6
ρm3)3

[

− 6π3ρ3m1m2m
4
3 − 6π2ρ2m4

3

(

1 − π

6
ρm3

)

+

3m3
2

(

− 1296 ln
[

1 − π

6
ρm3

]

+ 216π
(

−1 + 3 ln
[

1 − π

6
ρm3

])

ρm3 −

18π2
(

−5 + 6 ln
[

1 − π

6
ρm3

])

ρ2m2
3 + π3

(

−11 + 6 ln
[

1 − π

6
ρm3

])

ρ3m3
3

)]

cHS
22 =

m2

4m2
3(1 − π

6
ρm3)2

[

72 ln
[

1 − π

6
ρm3

]

+ 12π
(

1 − 2 ln
[

1 − π

6
ρm3
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ρm3

+2π2
(

−1 + ln
[

1 − π

6
ρm3

])

ρ2m2
3

]

. (5.65)
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5.4.5.1 Square-well fluid

The expressions in equation (5.62) and (5.63) become for the square-well potential (5.59)

µex(σ) = µex,0 − ρ
π

6
ε(λ3 − 1)e−zm1

[

e
z
2
σ
(
m3(z) + σ3m0(z) + 3σm2(z) + 3σ2m1(z)

)

−z(σ − m1)[m3(z)m0(z) + 3m1(z)m2(z)]
]

p = p0 −
π

6
ρ2ε(λ3 − 1)e−zm1(m0(z)m3(z) + 3m1(z)m2(z)), (5.66)

where we have used for λ(σ, σ′) the constant value λ and the generalized moments mk(z)

(k = 0, 1, 2, 3) are calculated from (5.14) with wk(σ) = σke
z
2
σ.

The chemical potential and the pressure in (5.66) involves two types of moments;

conventional moments mk via the HS contribution and generalized moments mk via the

potential contribution. The phase equilibrium conditions are then given by the equations

(5.23) and (5.24) for the unknown moments m
(1)
k (wk(σ) = σk), generalized moments mk

(1)

(wk(σ) = σke
z
2
σ) and the number densities ρ(1) and ρ(2). Together with the normalization

relation (5.19) this provides 9 equations for the 9 unknowns. The distribution functions

of the two phases are obtained by the equations (5.18) and (5.15).

The CPC and the SC are obtained from equations (5.25) - (5.27) by use of equation

(5.66).

To simplify the equations for the spinodal criterion (5.31) - (5.37) we will restrict

ourselves with the calculation of the spinodal to the size polydisperse case (z = 0):

equations (5.66) depend then only on one moment type - the conventional moments mk

(k = 1, 2, 3) - and we can use (5.50) to calculate the number densities characterizing the

region of local stability. The non-zero coefficients ckk′(ρ, T ) in (5.49) for the square-well

fluid are then given with (5.65) as

c03 = c30 = cHS
03 − βε

π

6
ρ(λ3 − 1)

c12 = c21 = cHS
12 − βε

π

2
ρ(λ3 − 1)

c13 = c31 = cHS
13

c22 = cHS
22

c23 = c32 = cHS
23

c33 = cHS
33 (5.67)

with the corresponding determinant (5.36)
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

∣
∣
∣
∣
∣
∣
∣
∣

= 0, (5.68)
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and the matrix elements in the general case

a11 = 1 + c00 + c01m1 + c02m2 + c03m3

a12 = c00m1 + c01m2 + c02m3 + c03m4

a13 = c00m2 + c01m3 + c02m4 + c03m5

a14 = c00m3 + c01m4 + c02m5 + c03m6

a21 = c01 + c11m1 + c12m2 + c13m3

a22 = 1 + c01m1 + c11m2 + c12m3 + c13m4

a23 = c01m2 + c11m3 + c12m4 + c13m5

a24 = c01m3 + c11m4 + c12m5 + c13m6

a31 = c02 + c12m1 + c22m2 + c23m3

a32 = c02m1 + c12m2 + c22m3 + c23m4

a33 = 1 + c02m2 + c12m3 + c22m4 + c23m5

a34 = c02m3 + c12m4 + c22m5 + c23m6

a41 = c03 + c13m1 + c23m2 + c33m3

a42 = c03m1 + c13m2 + c23m3 + c33m4

a43 = c03m2 + c13m3 + c23m4 + c33m5

a44 = 1 + c03m3 + c13m4 + c23m5 + c33m6 (5.69)

to calculate the number densities ρ(0) for the SP criterion (5.50). The eigenvector δm in

(5.50) of a 4 × 4 matrix can be written in general form as

const












− 1
a11

[

a14 + a13
|1I + B|43
|1I + B|44 − a12

a

(

b − c
|1I + B|43
|1I + B|44

)]

− 1
a

[

b − c
|1I + B|43
|1I + B|44

]

|1I + B|43
|1I + B|44

1












=







δm0

δm1

δm2

δm3







, (5.70)

with B from (5.50) and the expressions

a = a11a22 − a21a12

b = a11a24 − a14a21

c = a13a21 − a11a23. (5.71)
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5.4.5.2 Yukawa fluid

For the Yukawa potential the expressions (5.62) and (5.63) become

µex(σ) = µex,0 − 4πργ
σa

m
2(a−1)
1

(
ma+1

2
+

[
σ

2
+

1

κ

]

ma

)

+4πργ
(a − 1)

m2a−1
1

(σ − m1)

[

ma+1ma +
m2

a

κ

]

p = p0 − 2πγ
ρ2

m
2(a−1)
1

(

mama+1 +
m2

a

κ

)

, (5.72)

where we have set κ(σ, σ′) to the constant value κ; ma and ma+1 are conventional moments.

The phase coexistence conditions (5.23) and (5.24) (wk(σ) = σk) and (5.19) are then

solved by use of (5.72) to get the unknowns (ρ(1), ρ(2), m
(1)
k ) where k = 1, 2, 3 if a ≤ 2 (5

unknowns) otherwise k = 1, . . . , a + 1 (a + 3 unknowns). The distribution functions of

the two phases are again obtained from the equations (5.18) and (5.15).

The CPC and the SC are obtained from equations (5.25) - (5.27) by use of equation

(5.72).

The coefficients ckk′(ρ, T ) for the SP criterion (5.50) depend on a. We have restricted

ourselves to the cases a = 0 (size polydisperse), a = 1 and a = 2. For the size polydisperse

case only (a = 0) we obtain the non- vanishing coefficients

c00 = −βγ4πρm3
1

c01 = c10 = βγ6πρm2
1

c03 = c30 = cHS
03

c11 = −4π

κ
ρ(1 + 3κm1)

c12 = c21 = cHS
12 − 2βγπρ

c13 = c31 = cHS
13

c22 = cHS
22

c23 = c32 = cHS
23

c33 = cHS
33 (5.73)

with the elements (5.69) of the determinant (5.68).
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For a = 1 the non-zero coefficients in (5.49) read

c03 = c30 = cHS
03

c11 = −4π

κ
ρ

c12 = c21 = cHS
12 − 2βγπρ

c13 = c31 = cHS
13

c22 = cHS
22

c23 = c32 = cHS
23

c33 = cHS
33 (5.74)

with the elements (5.69) of the determinant (5.68). For a = 2 we get the non-zero

coefficients

c00 = −βγ4πρ
m2(m2 + κm3)

κm2
1

c01 = c10 = βγ8πρ
m2(m2 + κm3)

κm3
1

c02 = c20 = −βγ4πρ
2m2 + κm3

κm2
1

c03 = c30 = cHS
03 − βγ4πρ

m2

m2
1

c11 = −βγ12πρ
m2(m2 + κm3)

κm4
1

c12 = c21 = cHS
12 + βγ4πρ

2m2 + κm3

κm3
1

c13 = c31 = cHS
13 + βγ4πρ

m2

m3
1

c22 = cHS
22 − βγ4π

ρ

κm2
1

c23 = c32 = cHS
23 − βγ2π

ρ

m2
1

c33 = cHS
33 (5.75)

to calculate the matrix elements (5.69) for the SP criterion.

The eigenvectors δm for the three different cases can be obtained by the use of (5.70)

together with (5.73) - (5.75).



Chapter 6

Results

6.1 Parent phase distribution

We now specify, ρ(0)(σ) = ρ(0)f (0)(σ), the distribution of the parent phases to be con-

sidered here. Very large values of σ are unphysical but these will be given a very small

weight by requiring that f (0)(σ) decays with σ in a manner which is sufficiently rapid for

all the moments of f (0)(σ), m
(0)
k , to exist. In addition, we restrict ourselves to monomodal

distributions so that the systems considered here are polydisperse generalizations of sin-

gle component systems. We have limited ourselves in this work to the Schulz-Zimm (SZ)

distribution

f (0)(σ) =
αα

Γ(α)
σα−1eασ, (6.1)

where Γ(α) is the Euler gamma function of argument 0 < α < ∞, where α is a parameter

which determines the inverse width of the SZ distribution, or equivalently, its polydisper-

sity index, I = 1 + 1
α

[19]; the average hard core diameter was set to σ = m
(0)
1 = 1. The

conventional moments of (6.1) are given by

mk =
1

αk

Γ(α + k)

Γ(α)
, (6.2)

whereas the generalized moments mk (5.14) of the square-well fluid (wk(σ) = σke
z
2
σ) are

defined by use of the SZ distribution as

mk =
αα−1

(α − z
2
)α−1+k

Γ(α + k)

Γ(α)
. (6.3)

As we can see from (6.2) the conditions (2.1) are fulfilled.

In the monodisperse limit (I → 1, α → ∞) the SZ distribution reduces to the Dirac

distribution, δ(σ − 1), centered around the average species diameter σ = 1. On the

contrary, when I becomes very large (α is small) the above distribution becomes very

77
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Figure 6.1: Schulz distributions for different values of inverse width α
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wide, increasing hereby the importance of the particles which are not only centered around

σ. In figure 6.1, we have plotted the SZ distribution functions versus reduced hard core

diameter σ∗ = σ
σ

for the four α values used in this chapter. Note, that the average

value σ does not coincide with the value of σ for which f (0)(σ) reaches its maximum: the

maximum is shifted to lower σ when the polydispersity increases.

6.2 Thermodynamics

We have examined the behavior of the thermodynamic quantities within the ORPA for the

polydisperse square-well (2.8) and for the Yukawa potential (2.9) by use of the relations

(5.61). We have calculated four thermodynamic quantities, the isothermal compressibility

(4.58), the Helmholtz free energy (4.49), the virial pressure (4.42) as well as the pressure

obtained by derivation of the Helmholtz free energy with respect to the volume (3.16) to

check the self-consistency of the ORPA method introduced in chapter 4; we have used

the PY solution for the reference HS systems. We have chosen the reduced temperatures

t = kBT
ε

(SW); t = kBT
γ

(HSY) to be below the critical temperature of the corresponding

monodisperse system since we want to study the influence of polydispersity on the thermo-

dynamic properties. We have examined the behavior of the thermodynamic quantities for

different polydispersity indices I and have compared these results with the monodisperse

case.
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The following figures, are arranged as follows: for each of the four thermodynamic

quantities mentioned above we display on one page three plots, where each of them shows

the results for a different potential parameter (z = 0, 1 or 2 for the square-well potential

and a = 0, 1, or 2 for the Yukawa potential), in addition each of this single plots shows

this thermodynamic quantity as function of ρ∗ = ρσ3 for three α values (α = 1000; α =

50; α = 20), where for α = 1000 we produce the monodisperse case. As shown in the

following figures the convergence of the ORPA algorithm is good for small z or a, large

temperature t and small polydispersity index I. In regions where the ORPA fails the

curves for the corresponding thermodynamic quantities are interrupted. The vertical

lines in the plots mark for the given temperature t the ρ-values of the spinodal belonging

to the monodisperse fluid.

6.2.1 Square-well fluid

In figure 6.2 we have plotted the gas-liquid coexistence curve together with the SP curve

for the monodisperse square-well system for λ = 1.5 within the ORPA. The binodals were

calculated via the common tangent construction what means by the derivation of the free

energy with respect to the volume and with respect to the particle number to obtain the

equilibrium conditions given by the equality of pressures and chemical potentials. The

horizontal lines indicate the two temperatures (t = 1.25, t = 1.12) for which we have

calculated the thermodynamic quantities discussed below.

The parameter z within the square-well potential (5.61) has the task to vary the poten-

tial strength in dependence of the particle sizes; for size polydispersity z = 0 all particles

are attracted, irrespective of the particle diameters, by the same pair potential depending

only on the inverse temperature, whereas for z 6= 0 (size and amplitude polydispersity)

the potential depth becomes σ dependent.

In figures 6.3 and 6.4 we show the reduced (with respect to the ideal gas) isothermal

compressibility (4.58) (χ∗
T = χT

χT id
) of the polydisperse square-well fluid, for t = 1.25

and t = 1.12. We observe that in all cases the maximum of the peak in the isothermal

compressibility moves to lower densities as the polydispersity is increased. According to

this remarks we can observe for increasing z and I that the isothermal compressibilities

belonging to the gas phases (for densities lower than the densities on the left branch of

the monodisperse spinodal) split more and more off, while for the liquid phase (densities

higher than the densities on the right branch of the monodisperse spinodal) we can observe

the opposite effect but much weaker.

Due to physical reasons the isothermal compressibility should diverge within the region

of instability characterized in figures 6.3 and 6.4 for the monodisperse case by vertical lines.

The ORPA does not lead to the expected divergence of the compressibility, neither for the
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Figure 6.2: Phase coexistence region of a monodisperse square-well fluid with λ = 1.5
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monodisperse nor for the polydisperse case. This can be explained by the thermodynamic

inconsistency of the ORPA. The spinodal curve in figure 6.2 was calculated from the

free energy (4.49) obtained via the virial route, while the region where the compressibility

diverges should be determined from the free energy (3.24) obtained via the compressibility

route.
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Figure 6.3: Reduced dimensionless isothermal compressibilities of a polydisperse square-
well system with λ = 1.5 reduced temperature t = 0.8 for different α-values, where each
single plot represents a different value z (from top to the bottom z = 0, z = 1, z = 2).
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Figure 6.4: Reduced dimensionless isothermal compressibilities of a polydisperse square-
well system with λ = 1.5 and reduced temperature t = 1.12 for different α-values, where
each single plot represents a different value z (from top to the bottom z = 0, z = 1, z = 2).
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In figures 6.5 and 6.6 we have plotted the free energy density A+ (4.49) for t = 1.25

and t = 1.12. For fixed temperature and fixed z one can observe that the minimum in

the free energy density is shifted to lower densities as the polydispersity increases. For

increasing z the minimum of the free energy density moves to smaller values because

the attractions become more important as compared with the size polydisperse and the

monodisperse case. In addition we can see that the free energies on the liquid phase side

split off in dependence of I. If we let the composition of the system unaltered by the

phase transition process as it is the case along the CPC we can expect, that for the size

polydisperse free energies (z = 0) in figures 6.5 and 6.6, the densities representing the high

density phase corresponding to the right branch of the CPC will lie at lower densities than

the corresponding high density phase given by the monodisperse phase coexistence curve.

For size and amplitude polydispersity (z = 1, z = 2) the high density phase on the CPC

has moved towards higher densities than the high density phase of the monodisperse case.

This can be checked by making the common tangent construction to the free energies in

figures 6.5 and 6.6 for fixed I. We will see the effects discussed above more evidently by

looking at the phase diagrams of the next section.

Figures 6.8 and 6.10 show the virial pressure (4.42) pv

t
for t = 1.25 and t = 1.12. As

we can see in each single plot the minimum of the virial pressure moves to lower densities

as the polydispersity increases and with increasing z the values for the virial pressures

decrease. As we increase the amplitude polydispersity, the virial pressure tends to have

negative values (i.e. unphysical) in an increasingly large ρ-range. As long as this happens

in the region of instability where the values of the thermodynamic quantities are not

defined the unphysical results play no role. If the ORPA leads to negative pressures in

the region of local stability, one has to check that the equilibrium densities for the gas-

liquid coexistences are not represented by negative pressures, to avoid unphysical phase

transitions. The pressure pA

t
(3.16) plotted in figures 6.7 and 6.9 is calculated from the

virial free energy, it shows qualitatively the same behavior as pv and should by comparison

with pv give some insight into the degree of thermodynamic inconsistency of the ORPA.

Results from pv and pA agree rather well for small and intermediate values of ρ∗, while for

larger number densities the self consistency is worse. As we can see in figures 6.7 - 6.10

the self consistence is independent of the polydispersity I and of the potential parameter

z.
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Figure 6.5: Free energy densities of a polydisperse square-well system with λ = 1.5 and
reduced temperature t = 1.25 for different α-values, where each single plot represents a
different value z (from top to the bottom z = 0, z = 1, z = 2).
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Figure 6.6: Free energy densities of a polydisperse square-well system with λ = 1.5 and
reduced temperature t = 1.12 for different α-values, where each single plot represents a
different value z (from top to the bottom z = 0, z = 1, z = 2).
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Figure 6.7: Pressures calculated from the free energy of a polydisperse square-well system
with λ = 1.5 and reduced temperature t = 1.25 for different α-values, where each single
plot represents a different value z (from top to the bottom z = 0, z = 1, z = 2).
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Figure 6.8: Virial pressures of a polydisperse square-well system with λ = 1.5 and reduced
temperature t = 1.25 for different α-values, where each single plot represents a different
value z (from top to the bottom z = 0, z = 1, z = 2).

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20



6.2: Thermodynamics 88

Figure 6.9: Pressures calculated from the free energy of a polydisperse square-well system
with λ = 1.5 and reduced temperature t = 1.12 for different α-values, where each single
plot represents a different value z (from top to the bottom z = 0, z = 1, z = 2).
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Figure 6.10: Virial pressures of a polydisperse square-well system with λ = 1.5 and
reduced temperature t = 1.12 for different α-values, where each single plot represents a
different value z (from top to the bottom z = 0, z = 1, z = 2).

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20

0 0,2 0,4 0,6 0,8 1

ρ∗

0

1

2

3

4

5

6

Pv

α=1000
α=50
α=20



6.2: Thermodynamics 90

6.2.2 Yukawa fluid

In figure 6.11 we have plotted the phase coexistence curve and the SP curve calculated

within the ORPA for a monodisperse Yukawa-fluid with κ = 1.8. The horizontal lines

indicate again the temperatures (t = 2.16, t = 1.98) used for the calculation of the ther-

modynamic quantities.

Figure 6.11: Phase coexistence curve of a monodisperse Yukawa fluid with κ = 1.8
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The depth of the polydisperse Yukawa potential (2.9) is via the exponential term

always depending on the particle diameters, in addition we can vary the potential depth

with the help of the prefactor (5.61) given in dependence of a; for a = 0 the prefactor

is constant for all particle type interactions (size polydispersity) whereas for a 6= 0 the

prefactor becomes σ dependent (size and amplitude polydispersity).

The reduced isothermal compressibility (4.58) shown in figures 6.12 and 6.13 show

in many aspects different behavior as the ones calculated for the square-well fluid (fig-

ures 6.3, 6.4). One difference between the two models is that the split off in the com-

pressibility of the gas phase for increasing I is stronger for a = 0 than for a = 1. For

a = 2 finally the compressibility of the Yukawa fluid shows common behavior in compar-

ison to the monodisperse case like the compressibility of the square-well fluid. Another

difference between the square-well and the Yukawa model is, that the maximum of the

polydisperse isothermal compressibility in the Yukawa model increases much slower with

growing importance of the attractions (with growing a) than in the square-well model

(for growing z) with respect to the corresponding monodisperse case. The effect of the
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amplitude polydispersity dominates the one of the size polydispersity for values a ≥ 2 an

effect which can also be observed in the phase diagrams of the following section.

Figure 6.12: Reduced isothermal compressibilities for a polydisperse Yukawa system with
κ = 1.8 and reduced temperature t = 2.16 for different values of α, where each single plot
corresponds to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.13: Reduced isothermal compressibilities for a polydisperse Yukawa system with
κ = 1.8 and reduced temperature t = 1.98 for different values of α, where each single plot
corresponds to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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In figures 6.14 and 6.15 one can see the free energy densities (4.49) for the temperatures

t = 2.16 and t = 1.98. The split off in the free energies corresponding to the high density

phase is weaker with growing a as the one in the square-well model for growing z, in

addition the split off for a = 0 is stronger than the one for a = 1 in the Yukawa fluid.

Further we can observe by common tangent construction that the high density phase

represented by the right branch of the CPC is shifted to higher densities for increasing

amplitude polydispersity (increasing a and I) as compared to the monodisperse case. For

a = 2 finally we can see by common tangent construction (for fixed I) that the high

density phase on the CPC is lying at higher values than the corresponding high density

phase of the monodisperse fluid. See for instance the phase diagrams of the following

section.

The virial pressures (4.42) in figure 6.17 and 6.19 as well as the pressures (3.16)

calculated from the free energy in figures 6.16 and 6.18 show a behavior similar to the

corresponding pressures of the square-well fluid. Apart from this we can observe that

the region where the pressures become negative is larger for the Yukawa fluid and the

self-consistency is worse as compared to the square-well model. In addition for a = 2 the

self-consistency seems to depend on the polydispersity I (see figures 6.16 and 6.17). For

κ = 4 the self-consistency becomes even worse than for κ = 1.8 because the ORPA is not

suited for short ranged interactions [26, 54].
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Figure 6.14: Free energy density for a polydisperse Yukawa system with κ = 1.8 and
reduced temperature t = 2.16 for different values of α, where each single plot corresponds
to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.15: Free energy density for a polydisperse Yukawa system with κ = 1.8 and
reduced temperature t = 1.98 for different values of α, where each single plot corresponds
to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.16: Pressures calculated from the free energy for a polydisperse Yukawa system
with κ = 1.8 and reduced temperature t = 2.16 for different values of α, where each single
plot corresponds to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.17: Virial pressures for a polydisperse Yukawa system with κ = 1.8 and reduced
temperature t = 2.16 for different values of α, where each single plot corresponds to a
different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.18: Pressures calculated from the free energy for a polydisperse Yukawa system
with κ = 1.8 and reduced temperature t = 1.98 for different values of α, where each single
plot corresponds to a different value of a (from top to the bottom a = 0, a = 1, a = 2).
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Figure 6.19: Virial pressures for a polydisperse Yukawa system with κ = 1.8 and reduced
temperature t = 1.98 for different values of α, where each single plot corresponds to a
different value of a (from top to the bottom a = 0, a = 1, a = 2).
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6.3 Phase Diagrams

In chapter 5 we have developed the mathematical expressions to calculate phase separa-

tion processes for three different model systems: a vdW system and a HS system with

attractive tail which is in one case given by a square-well and in the other case by a

Yukawa potential. Although the thermodynamic quantities of the three model systems

are rather different from each other, as we will show later, the phase diagrams show

common behavior in many aspects.

As already mentioned in chapter 5, in the polydisperse system there exists a binodal

for each chosen ρ(0), where only the binodal (B) calculated at the critical number density

ρcrit = ρ(0), the so called untruncated or critical binodal (Bc), reaches the critical point

(c. p.). The other binodals are truncated as soon as they touch the CPC on the high

temperature side. Or in more intuitive language; if ρ(0) < ρcrit, then the binodal is

truncated when it touches the low density phase which is represented by the left branch

of the CPC; for ρ(0) > ρcrit the binodal is truncated by cutting the high density phase

given by the right branch of the CPC and for ρ(0) = ρcrit it reaches the critical point. The

truncated binodals fill the space between the CPC and the SC. This can be explained by

the fact that the left branch of the CPC together with the coexisting right branch of the

SC provide envelopes for the binodals, where the set of parent densities on the left branch

of the CPC representing the low density phase and the set of densities on the right branch

of the SC representing the high density phase are phase equilibrium-densities. (the same

is valid for reversed roles of CPC and SC), and from that it follows that at the truncation

temperature and for the temperatures above the truncated binodal coincides with the

left branch of the CPC and the right branch of the incipient SC. The statements above

will be demonstrated by some binodals calculated for different ρ(0), where the truncated

binodals are indicated by horizontal lines along the truncation temperature.

Although the distribution function (6.1) is monomodal, we will see that the phase

diagrams are considerable modified by the polydispersity, in particular in the region of the

critical point. When the temperature is lowered, starting from the critical temperature,

one expects to encounter a region where three, four etc. phases coexist. Because only

fluid phases are involved we expect a transition from the two-phase to the three-phase

region to proceed through a second critical point. Xu et al. [19, 52] have shown this

for the vdW fluid using a log-normal distribution function and found out that when I

increases the number of critical points increases while at the same time the SP invades

the high density region of the temperature- (t-) packing fraction (η) plane. Since such

a second critical point is absent from the ordinary monodisperse vdW fluid it must be

polydispersity induced [19].

As we will see also in the following phase diagrams the maxima of the CPC and the
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SC in general do not correspond to the critical point (lying always at the intersection of

CPC and SC); for typical polydisperse mixtures the critical point lies below the maxima.

In the following plots the temperature tm corresponding to the maxima of CPC and SC is

indicated by a dashed-dotted horizontal line. While for the vdW fluid we have calculated

the critical points via the intersection of SP and stability curve the critical points for the

HTA of square-well and Yukawa fluids are obtained only via the intersections of CPC and

SC and by the maxima of the critical binodals which can be calculated near to the critical

point. The critical points for the HTA-systems are therefore only approximately given.

In the following sections we show t − ρ∗ plots of the phase diagrams (two coexisting

phases). The corresponding distribution functions are shown in additional plots.

6.3.1 Van der Waals fluid

Xu et al. [19] have already examined phase transitions for the vdW fluid, taking into

account size polydispersity only, amplitude polydispersity only, and size and amplitude

polydispersity. We discuss here the qualitative conclusions made in [19] and complement

them by some phase plots calculated for different polydispersity indices I than the ones

used in [19].

6.3.1.1 Size polydispersity only

For the size polydisperse system {s = 0, t = 1} we have chosen two polydispersity indices

I = 1.05, (α = 20) (figure 6.20), and I = 1.066, (α = 15) (figure 6.21). We have calculated

the SP as well as the Bc, the CPC and SC. As reference we have in addition plotted the

corresponding monodisperse binodal (Bm). We have shown in figure 6.20 three examples of

truncated binodals for ρ(0) = 0.3055 < ρcrit, ρ
(0) = 0.4202 < ρcrit and ρ(0) = 0.7066 > ρcrit.

For the size polydisperse vdW fluid the SC is situated entirely in the interior of the CPC

and is tangent to the later at the common maximum, corresponding to the critical point,

of both curves (see figure 6.20 and figure 6.21) [19].

If we look at the pressure (5.44) then we can see as compared to the corresponding

monodisperse case that for size polydispersity the effect of the polydispersity on the

repulsions is stronger,
π
6
ρ

1 − π
6
ρ
→

π
6
ρ

1 − π
6
ρm3

than its effect on the attractions

2π

3
ρ2 → π

6
ρ2(m3 + 3m1m2),

because the moments mk are increasing functions of I. This growing importance of the

repulsions with increasing I leads to a shift in the phase coexistence region to lower
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temperatures as compared to the corresponding monodisperse phase diagram (I = 1).

Because the relative increase of the repulsions (as compared to the increase in the at-

tractions) for size polydisperse vdW fluids demand, if we start with high temperatures,

a stronger decrease in the temperature to invade the gas-liquid coexistence region as it

would be the case for a monodisperse vdW fluid. This situation is demonstrated in fig-

ures 6.20 and 6.21: for size polydispersity the critical temperature and the critical density

are lowered with increasing I (see also table (6.1)), in addition the high density branch of

the binodal moves towards lower densities, whereas the low density branch is only slightly

shifted towards higher densities. When increasing the value of I all these shifts increase

monotonically without modifying the overall aspect of the phase diagram [19].
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Figure 6.20: SC, CPC, SP curve, critical binodal and some truncated binodals for the
size polydisperse vdW fluid with I = 1.05, (α = 20)
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Figure 6.21: SC, CPC, SP curve, and the critical binodal for the size polydisperse vdW
fluid with I = 1.066, (α = 15)
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In figure 6.22 we have plotted the distribution functions f (1)(σ) and f (2)(σ) on the

critical binodal of the system in figure 6.20 together with the parent distribution: we

have chosen the reduced temperatures t = 1.08 and t = 1.12. The distribution function

f (1)(σ) belongs to the equilibrium density of the low density phase and f (2)(σ) to the

one of the high density phase of the critical binodal. As we can see in figure 6.22 the

distribution functions of the low density phase are shifted to lower particle diameters

and are slightly narrower as compared with the parent distribution independent of the

temperature. The maximum of the distribution functions belonging to the high density

phase of Bc are slightly shifted to higher particle diameters and slightly become wider as

compared to the parent distribution. From this we can conclude that smaller particles

prefer to move to the less dense phase while the bigger particles move to the denser phase.

In addition we can see that the low density phase must have a smaller polydispersity than

the coexisting high density phase.
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Figure 6.22: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for two
different temperatures on the critical binodal of the system in figure 6.20
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6.3.1.2 Amplitude polydispersity only

In the amplitude polydisperse case (t = 0, s = 1) the polydispersity does only affect the

attractions in the expression for the pressure (5.44)

2π

3
ρ2 → 2π

3
ρ2m2

1,

a situation which is favorable to phase separation as compared to the monodisperse case

[19]. Where with favorable we mean that the amplitude polydisperse phase separation

occurs already at higher temperatures than the corresponding monodisperse one. This

is shown in figure 6.23, for I = 1.018, (α = 55) where the phase coexistence region

of the amplitude polydisperse system is shifted to higher temperatures in addition the

coexistence densities of the binodals are shifted for the low density phase to lower values

and for the high density phase toward higher densities in comparison to the monodisperse

case, so that finally the monodisperse binodal is entirely situated inside the polydisperse

binodals. In comparison to the size polydisperse case (figures 6.20, 6.21) the SC has moved

to higher densities and also moved partly outside of the interior of the CPC. While the

CPC is tangent to the SP curve at the critical point the SC cuts the SP curve at the critical

point and is then continued within the region of instability. That means the coexistence of

a parent liquid phase with a gas bubble is physically not possible for temperatures below

tcrit. Similar conclusions as for the SC are valid for the low density phase given by the

truncated and untruncated binodals which invade the region of instability for temperatures

near tcrit. As a result of the shift in the SC the intersection of the CPC and the SC, i.e.,

the critical point {ρcrit = 0.654, tcrit = 1.2341}, is situated now below the temperature

tm = 1.2415 (dashed-dotted line), i.e., the common maximum of the CPC and the SC.

This allows for a re-entrant behavior of the low density phase [19]. The expression re-

entrant behavior of the low density phase means that at temperatures above the critical

temperature we still have the coexistence between a parent gas phase and a liquid drop

and in addition for a special choice of ρ(0) coexistence between gas and liquid phases

present in finite amounts which are given by the corresponding truncated binodals. The

same behavior with respect to the critical point and to the region of re-entrant behavior

is found for any amplitude polydisperse vdW system (s > 0), where Xu et al. [19] found

out that for the present vdW model also for t 6= 0, s = 1 the attractions are always more

affected by the polydispersity than the repulsions, this means that systems that are both

size and amplitude polydisperse show a similar behavior with respect to the SC, CPC and

critical point as the discussed amplitude polydisperse vdW fluid. Qualitatively equivalent

CPC and SC as those in figure 6.23 were found by Gualtieri et al. [55] for a vdW model

similar to one used here. Apart from the CPC and SC we have plotted the SP and three

different binodals: the critical binodal having its maximum at the critical point, as well
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as the truncated binodals for ρ(0) = 0.5198 < ρcrit and ρ(0) = 0.8498 > ρcrit. As we can

see in figure 6.23 the binodal for ρ(0) = 0.5198 has its maximum above the critical point.

In addition we have plotted the binodal corresponding to the monodisperse system. As

we can see by comparison with the monodisperse binodal and the binodals shown in [19]

(figure 4a) for increasing I the critical point moves to higher temperatures, because the

attractions become stronger.
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Figure 6.23: SC, CPC, SP curve, critical binodal and same truncated binodals calculated
for the amplitude polydisperse vdW with I = 1.018, (α = 55)
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Table 6.1: Critical points for the vdW-model

I ρcrit tcrit

1 0.6303 1.1831
1.018 0.6426 1.2341
1.05 0.5219 1.1362
1.066 0.4932 1.1219

In figure 6.24 we can see the distribution functions f (1)(σ) and f (2)(σ) belonging to

the low and high density phase of the critical binodal for the temperatures t = 1.17

and t = 1.21. The behavior is qualitatively the same as for the size polydisperse case

(figure 6.22).
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Figure 6.24: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for two
different temperatures on the critical binodal of the system in figure 6.23
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6.3.2 Square-well fluid

A very similar behavior of the SC and CPC as in the polydisperse vdW fluid can be

observed for the polydisperse square-well fluid. We have calculated phase diagrams for

the size polydisperse square-well potential (z = 0) as well as for size and amplitude

polydispersity.

6.3.2.1 Size polydispersity

In figure 6.25 we show a phase diagram for a size polydisperse (z = 0) square-well fluid.

The potential width is λ = 1.25 and the polydispersity index is I = 1.05, (α = 20), the

thermodynamic properties (5.66) depend now only on the moments mk. We have plotted

the SP, the CPC with the incipient SC, as well as the critical binodal and two truncated

binodals at ρ(0) = 0.15 < ρcrit and ρ(0) = 0.4 > ρcrit. In addition we have drawn the

corresponding binodal of the monodisperse case.

If we substitute the excluded volume term in the free energy of the size polydisperse

vdW (s = 0, t = 1) fluid by the HS free energy

π
6
ρ

1 − π
6
ρm3

→ AHS
ex ,

we obtain a free energy which is practically identical to the free energy of the size polydis-

perse square-well (z = 0) fluid. Where the attractions of the two models are then given

by use of (5.44) and (5.66) as

AvdW
att = −1

t

4π

3
σ̂3

ASW
att = −1

t

4π

3
σ̂3(λ3 − 1)

with Aatt giving the attractive part of the free energy. If λ in the square-well model

is chosen to be 1.26 then the two considered models coincide for other values the phase

coexistence region is only shifted to higher or lower temperatures in dependence of (λ3−1).

After this considerations we can conclude that the size polydisperse vdW model (5.44) and

the size polydisperse square-well model (5.66) are only different in their repulsions given by

the excluded volume term in the vdW and by the HS contribution in the square-well fluid.

This leads to a differing behavior in the phase equilibrium curves, mainly with respect

to the temperatures where the phase split occurs. The size polydispersity in the square-

well system has less influence on the phase coexistence curves than in the vdW fluid;

the influence of the size polydispersity on the repulsions caused by the HS contribution

in (5.66) seems to be compensated by its effects on the attractions (2.8) at least in this

way as the phase coexistence region is not shifted to lower temperatures for increasing
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I. This means while the size polydispersity is not favorable for the phase transition in

the vdW fluid (with not favorable we mean that the phase coexistence region of the size

polydisperse fluid is shifted to lower temperatures in comparison to the phase coexistence

region of the monodisperse fluid) in the square-well fluid it plays only a negligible role as

far as the shift in the critical temperature is concerned. As we can see in figure 6.25 the

critical temperature (tcrit ' 0.364) is only slightly shifted to lower values as compared to

the monodisperse case {tcrit ' 0.3645, ρcrit ' 0.2657} when the polydispersity is increased,

whereas the critical density (ρcrit ' 0.217) as well as the densities on the high density

phase of the critical binodal moves definitely to lower values similar as observed for the

size polydisperse vdW fluid.

In figure 6.26 we show the distribution functions on the critical binodal for the tem-

peratures t = 0.32 and t = 0.35. Although the qualitative behavior is similar as for the

vdW fluid (see figure 6.22), the shift in the low and high density phase distributions with

respect to the parent distribution are stronger. In addition the low density phase distri-

butions f (1)(σ) become smaller and their maxima have higher values, as a consequence

the high density phase distributions f (2)(σ) become broader and their maxima decrease

as compared to the parent (the effect is stronger for lower temperature), what means the

two phases demix stronger than in the vdW fluid.



6.3: Phase Diagrams 114

Figure 6.25: SC, CPC, SP curve, critical binodal and same truncated binodals calculated
for the size polydisperse square-well fluid with I = 1.05, (α = 20), λ = 1.25, z = 0.
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Figure 6.26: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for two
different temperatures on the critical binodal of the system in figure 6.25
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6.3.2.2 Size and amplitude polydispersity

Now we have considered the more realistic case where the square-well potential with

λ = 1.25 is both size and amplitude polydisperse, where the thermodynamic properties

now depend on the generalized moments mk; results are shown in figures 6.27 - 6.29 for

potential strength z = 0.1, z = 0.5 and z = 1 and polydispersity indices I = 1.018; (α =

55) and I = 1.01; (α = 100). In figures 6.27 - 6.29 we have plotted the CPC, the SC

and the critical binodal. We start in figure 6.27 with a system which is besides the

size polydispersity only weakly polydisperse in amplitude (z = 0.1). Although z is very

small the phase diagram has changed with respect to the pure size polydisperse case

(figure 6.25) ; the SC and with it the critical density is shifted to higher densities and has

partly moved out of the interior of the CPC. In addition the phase coexistence region

is shifted slightly to higher temperatures and the densities on the high density phase of

the binodals definitely to higher values as the increasing z only affects the attractions in

(5.66). The shift of the SC out of the interior of the CPC and the re-entrant behavior

of the low density phase was already observed at the amplitude polydisperse vdW fluid

figure 6.23. For z = 0.5 (figure 6.28) and z = 1 (figure 6.29) the influence of the attractions

compared to the repulsions becomes stronger when compared to the monodisperse case

and the shift of the SC to higher densities is further increased. At the same time the

temperature tm or the region of re-entrant behavior becomes larger as compared to the

system in figure 6.27 (z = 0.1). The critical point hardly moves to higher densities and

temperature as compared to the systems in figures 6.25 and 6.27 (see table (6.2)).

We can conclude here that in the size and amplitude polydisperse square-well fluid

the effects of amplitude polydispersity (which leads to an increase of the attractions when

compared to the monodisperse case) dominates over the ones of the size polydispersity

even for small values of z (z ≥ 0.5) (because even for small values of z (weak amplitude

polydispersity) the phase coexistence region is shifted to higher temperatures and the

high density phase to higher densities). As in the vdW fluid the presence of amplitude

polydispersity is favorable to the phase transition process because of the shift of the phase

coexistence region as compared to the monodisperse case.

Table 6.2: Critical points for the square-well systems with λ = 1.25

I z ρcrit tcrit

1 - 0.2657 0.3645
1.05 0 0.217 0.364
1.018 0.1 0.237 0.365
1.018 0.5 0.239 0.367
1.01 1 0.241 0.368
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Figure 6.27: SC, CPC and critical binodal calculated for the size and amplitude polydis-
perse square-well fluid with I = 1.018, (α = 55), λ = 1.25, z = 0.1
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Figure 6.28: SC, CPC and critical binodal calculated for the size and amplitude polydis-
perse square-well fluid with I = 1.018, (α = 55), λ = 1.25, z = 0.5; the dashed-dotted
line indicates the temperature tm
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Figure 6.29: SC, CPC and critical binodal calculated for the size and amplitude polydis-
perse square-well fluid with I = 1.01, (α = 100), λ = 1.25, z = 1; the dashed-dotted line
indicates the temperature tm
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In figure 6.30 and 6.31 we have plotted the parent and daughter distribution functions

of the systems studied in figures 6.28 and 6.29 for t = 0.33; we can see that the smaller

particles enrich the low density phase and the larger particles the high density phase.
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Figure 6.30: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for one
temperature on the critical binodal of the system in figure 6.28
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Figure 6.31: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for one
temperature on the critical binodal of the system in figure 6.29
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6.3.3 Yukawa fluid

The Yukawa potential (5.60) is rather different from the attractions (5.43) given by the

vdW model, this is also expressed by the phase diagrams of the Yukawa system. We

have studied phase transitions for polydisperse Yukawa fluids for three different values of

parameter a (a = 0, a = 1, a = 2); the cases for a = 0 and a = 1 are special cases: a = 0

represents size polydispersity only and for a = 1 the potential (5.60) becomes independent

of m1 and the additional term in the chemical potential (5.72) vanishes.

6.3.3.1 Size polydispersity

For the purely size polydisperse case we have used the following system parameters:

I = 1.018, (α = 55); κ = 1.8. In figure 6.32 we have plotted the SP, the CPC, the SC

and the critical binodal together with two truncated binodals for ρ(0) = 0.12 < ρcrit

and ρ(0) = 0.35 > ρcrit. In addition we have drawn the binodal for the corresponding

monodisperse case with the critical point at {ρcrit ' 0.258, tcrit ' 1.778}. For the size

polydisperse Yukawa fluid the effects on the repulsions seem to be stronger than the

ones one the attractions in (5.72) when compared to the monodisperse case; like for

the size polydisperse vdW fluid the critical point {ρcrit ' 0.250, tcrit ' 1.728} for the

system in figure 6.32 moves to lower densities and temperatures as I increases. While

the low density phase on the critical binodal moves only slightly to higher densities the

high density phase is definitely shifted towards lower densities. From that it follows that

the size polydispersity is not favorable to the phase transition process of the Yukawa

fluid, where the size polydispersity in the Yukawa fluid has more influence on the phase

coexistence region than in the size polydisperse square-well fluid as the phase coexistence

region for the size polydisperse Yukawa fluid is shifted definitely to lower temperatures in

comparison to the monodisperse Yukawa system.

The CPC and SC show a different behavior as compared with the size polydisperse

vdW or square-well fluid. The SC is never entirely situated in the interior of the CPC,

because the CPC is slightly shifted to higher densities. The roles of SC and CPC seems to

be exchanged in the polydisperse Yukawa fluid as the SC is now tangent to the SP curve

at the critical point and the CPC cuts the SP curve at the critical point so that the low

density phase represented by the left branch of the CPC invades a region of instability

near criticality. Physically this means that the coexistence of a parent gas phase with an

incipient liquid drop near the critical point is not possible. The maxima of CPC and SC

are lying slightly above the critical temperature and we can already observe re-entrant

behavior now for the high density phase near the critical point for size polydispersity only.

In figure 6.33 we can see the distribution functions along the critical binodal for t = 1.4

and t = 1.6. Here we can also observe a difference in the behavior compared with the
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Figure 6.32: SC, CPC, SP curve, critical binodal and same truncated binodals calculated
for the size polydisperse Yukawa fluid with I = 1.018, (α = 55), κ = 1.8, a = 0
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distribution functions for the polydisperse vdW and the polydisperse square-well fluid.

The distribution functions for the low density phases are again shifted to lower particle

diameters, but the distributions are broader now what means the polydispersity in the low

density phases are now higher as compared to the parent distribution. In the same time

the high density distributions are moved to higher values of σ and becoming narrower;

the polydispersity is decreased in comparison to f (0)(σ).
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Figure 6.33: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for two
different temperatures on the critical binodal of the system in figure 6.32
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6.3.3.2 Size and amplitude polydispersity

6.3.3.2.1 a = 1

For the case a = 1 we have switched off the dependence on the moment m1 in the Yukawa

potential (5.60) what means the third term in the chemical potential (5.72) which could

have caused the shift of the CPC to higher densities for a = 0 (see figure 6.32) vanishes.

We have calculated the phase diagram for κ = 1.8, I = 1.018 (figure 6.34) and moreover

the phase diagrams for κ = 1.8, I = 1.05 (figure 6.35), κ = 4, I = 1.05 (figure 6.36)

and κ = 10, I = 1.05 (figure 6.37) to study the influence of I and κ on the phase

transition process. Also if the additional term in the chemical potential (5.72) vanishes,

the phase diagrams for κ = 1.8 in figures 6.34 and 6.35 remain qualitatively the same as

for a = 0 (figure 6.32) with the exception that the CPC seems to be even more shifted

to higher densities than in the size polydisperse case. With increasing importance of the

attractions the critical point of the system in figure 6.34 {ρcrit ' 0.247, tcrit ' 1.747} has

moved to higher temperature and slightly to lower density as compared with the system

in figure 6.32 (see table (6.3)).

The polydispersity seems to affect the repulsions stronger than the attractions because

we can observe like in the size polydisperse vdW fluid that for increasing I the phase

coexistence region is shifted to lower temperatures and the high density phase on the

critical binodal towards lower densities (compare figures 6.34 and 6.35) a behavior which

is not favorabel for the phase transition process. The shift in the CPC with respect to the

SC seems to be weaker for higher polydispersity since the intersection in the low density

branches of SC and CPC is closer to the critical point in the system of figure 6.35 than

in the one of figure 6.34.

In figures 6.36 and 6.37 we can see that the phase coexistence region is shifted to lower

temperatures as the inverse screening length κ increases, in addition we can observe that

the shift in the CPC to higher densities is slightly decreased (the distance between the

low density phases on the SC and CPC is increased and the intersection of the low density

branches of CPC and SC moves towards the critical point for growing κ) as compared to

the phase diagram in figure 6.35. For κ = 10 the re-entrant region is practically completely

vanished.

While the daughter distribution functions for the systems with κ = 1.8 (see figure 6.38)

remain qualitatively the same as for the system in figure 6.33 the distributions belonging

to the systems in figures 6.36 and 6.37 show a qualitative equivalent behavior as for the

vdW or square-well fluid. In figure 6.39 one can see the distribution functions belonging

to the system in figure (6.36) for the temperatures t = 1.25, t = 1.35. So we conclude,

that the shift in the CPC curve is mainly due to the term 1
κ

of the Yukawa potential

(5.60), which gets less important as κ increases.
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Figure 6.34: SC, CPC, SP curve and critical binodal calculated for the size and amplitude
polydisperse Yukawa fluid with I = 1.018, (α = 55), κ = 1.8, a = 1

0
0,

1
0,

2
0,

3
0,

4
0,

5
0,

6
0,

7
0,

8

ρ∗

1,
3

1,
351,
4

1,
451,

5

1,
551,
6

1,
651,

7

1,
751,

8

1,
85

t
SP SC C

PC
B

c

B
m

c.
 p

.



6.3: Phase Diagrams 129

Figure 6.35: SC, CPC, SP curve and critical binodal calculated for the size and amplitude
polydisperse Yukawa fluid with I = 1.05, (α = 20), κ = 1.8, a = 1
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Figure 6.36: SC, CPC, SP curve and critical binodal calculated for the size and amplitude
polydisperse Yukawa fluid with I = 1.05, (α = 20), κ = 4, a = 1
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Figure 6.37: SC, CPC, SP curve and critical binodal calculated for the size and amplitude
polydisperse Yukawa fluid with I = 1.05, (α = 20), κ = 10, a = 1
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Figure 6.38: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for one
temperature on the critical binodal of the system in figure 6.34
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Figure 6.39: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for two
different temperatures on the critical binodal of the system in figure 6.36
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6.3.3.2.2 a = 2

For a = 2, κ = 1.8, I = 1.018, (α = 55) (figure 6.40) the SC is almost entirely situated

inside the CPC only for temperatures near the critical point {ρcrit ' 0.246, tcrit ' 1.833}
the CPC is already lying at higher densities as the low density phase on the SC. Like for

the polydisperse vdW and the square-well fluid the SC seems to shift to higher densities

with respect to the CPC as a respectively the strength of the potential is increased. The

shift in the CPC to higher densities caused by the 1
κ
-term is then compensated by the shift

in the SC as the potential parameter a increases. If a is chosen high enough, we expect

therefore a similar behavior with respect to CPC and SC as in the phase diagrams for

the size and amplitude polydisperse square-well fluid. The critical temperature has now

moved to higher values as compared to the cases for a = 0 and a = 1 (I = 1.018, κ = 1.8)

because the attractions become more importance with increasing a (see table (6.3)).

We can conclude now for the Yukawa model as far as the phase coexistence region

is concerned that the phase transition is favored if the effects of the size polydispersity

are dominated by the ones of amplitude polydispersity that is the case for potential

parameters a ≥ 2; then the critical temperature is lying above the critical temperature of

the monodisperse system.

Table 6.3: Critical points for the Yukawa systems

I a κ ρcrit tcrit

1 - 1.8 0.258 1.778
- 4 0.264 1.426
- 10 0.261 1.261

1.018 0 1.8 0.252 1.728
1.018 1 1.8 0.249 1.747
1.018 2 1.8 0.247 1.833

1.05 1 1.8 0.228 1.689
1.05 1 4 0.225 1.375
1.05 1 10 0.221 1.221

The distribution functions calculated along the critical binodal for t = 1.6 (figure 6.41)

show qualitative the same behavior as for the polydisperse square-well model where the

coexisting phases demix stronger than in the square-well fluid. This can be seen by

comparison of low and high density distributions f (1)(σ) and f (2)(σ) for the system in

figure 6.41.
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Figure 6.40: SC, CPC, SP curve and critical binodal calculated for the size and amplitude
polydisperse Yukawa fluid with I = 1.018, (α = 55), κ = 1.8, a = 2
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Figure 6.41: Low and high density distributions f (1)(σ) and f (2)(σ) calculated for one
temperature on the critical binodal of the system in figure 6.40
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Conclusion

In this thesis we have calculated structure functions, thermodynamic properties and phase

diagrams for polydisperse fluid mixtures. The effective interactions mediated between the

colloid particles where chosen to be the HSY or the HS with attractive SW potential, in

addition we have studied the vdW model.

To produce structure functions and thermodynamic quantities we have used a perturba-

tion theory - the ORPA - to solve the OZ equations of a polydisperse fluid by introducing

orthogonal polynomials associated to the distribution function f(σ).

We have studied the influence of temperature, potential depth and polydispersity (char-

acterized by an index I) on four different thermodynamic quantities, where we have made

a difference between size and amplitude polydispersity. With size polydispersity we mean

that the amplitude of the attractions is constant for all particle type interactions, while

for amplitude polydispersity it depends on the diameters σ of the interacting particles.

The size or (and) amplitude polydispersity of the potential can be adjusted by the special

choice of potential parameters (z for the square-well model and a for the Yukawa model)

We have shown that the SW and HSY model have in many aspects similar behavior with

respect to the monodisperse case when the polydispersity is increased. The most evident

difference between the SW and the HSY model turned out to be the thermodynamic self-

consistency of the pressures calculated either via the energy route and or via the virial

route. While for the SW potential the ORPA is self-consistent to a high degree even

for larger number densities, the self-consistency for the HSY potential is not satisfying

(mainly for large screening length κ = 4). This might be explained by the fact, that the

ORPA is made for long ranged potentials (like the SW potential) as it takes only the

asymptotic limit of the attractions into account.

We have calculated the polydisperse phase transitions using truncatable free energy meth-

ods, throughout in such a calculation the free energy of a polydisperse system can be

expressed in dependence of the finite set of moments of a distribution function f(σ). The

truncatable free energy method is an exact method, however it is limited to a rather small

class of model systems [20]. We restrict ourselves in this work to rather simple models: a

vdW free energy and a HTA like approximation for the free energy of a HS system with

137
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attractive tail (either SW or Yukawa potential). Although these models are rather simple

we have found several interesting aspects concerning the influence of polydispersity on

the phase coexistences.

While for monodisperse systems there exists only one binodal, for polydisperse systems

one can calculate an arbitrary number of binodals one for each choice of parent number

density ρ(0), where only the binodal calculated for ρ(0) = ρcrit approaches the critical

point; all other binodals are truncated at a certain temperature below or above the criti-

cal point. If we let the composition of the parent phase unaltered and calculate for fixed

temperature the phase coexistence densities of the parent- (corresponds to the special

choice that ρ(0) is equal to the equilibrium number density of the majority phase) and

incipient minority-phase which is present in infinitesimal amounts only, we obtain a cloud

point with coexisting shadow. The resulting CPC (given by the number densities of the

parent phases versus temperature) and SC (number densities of the incipient phases ver-

sus temperature) provide then envelopes for the various binodals.

Also for the critical point an evident difference between monodisperse and polydisperse

system can be observed: while the critical point in the monodisperse case is always situ-

ated at the maximum of binodal or spinodal, in the polydisperse case it can be obtained

from the intersection of CPC and SC which have in general no common maximum (only

for special choices of potential parameters). In most cases the maxima of CPC and SC

are at temperature tm above the critical point; this allows for a re-entrant behavior of the

high or low density phase: with re-entrant behavior we mean that for a special choice of

ρ(0) one can observe also by restriction to two-phase coexistences phase equilibria above

the critical point.

We have studied the influence of the size polydispersity, the amplitude polydispersity and

the combination of size and amplitude polydispersity on the phase separation process.

If we compare the results obtained via the three model systems (vdW, SW and HSY

system) we can observe the following: With respect to the phase coexistence region we

could observe for the vdW and HSY fluid by comparison with the monodisperse case that

size polydispersity leads to a reduction in the critical temperature and in the coexistence

densities mainly of the high density phase (because the repulsions of the studied systems

are affected stronger by the size polydispersity than the attractions when compared to

the monodisperse case). In the square-well fluid the size polydispersity has less influence,

it causes only a shift in the coexistence densities to lower values but the critical tempera-

ture remains practically unaltered as in the monodisperse case. If the studied systems are

both size and amplitude polydisperse we can observe that the phase coexistence region

is shifted to higher temperatures and the densities on the high density phase moves to

higher values when compared to the monodisperse case. With increasing potential pa-
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rameter (z 6= 0 for square-well and a ≥ 2 for Yukawa) and polydispersity index I the

monodisperse phase coexistence curve is finally situated entirely within the phase coex-

istence region of the polydisperse system. We can conclude now that size polydisperse

fluids need lower temperatures to phase separate than the corresponding monodisperse

fluid while amplitude polydisperse fluids phase separate already at higher temperatures

than the monodisperse fluid. One can also say amplitude polydispersity favors the phase

transition process while size polydispersity is not favorable to it.

The size and (or) amplitude polydispersity has also differing influence on the CPC and

SC of the regarded model systems. While for size polydispersity only in the vdW and SW

fluid the SC is entirely situated inside the CPC, the CPC curve in the HSY system was

shifted to higher densities; thus the maxima of CPC and SC never coincide and the system

shows re-entrant behavior near the critical point. If we introduce in addition amplitude

polydispersity by a suitable choice of the potential parameters, the SC for the vdW and

SW system moves partly out of the interior of the CPC and the region of re-entrant be-

havior of the low density phase increases with growing amplitude polydispersity. In the

HSY system which is both size and amplitude polydisperse we can observe a very similar

behavior as for the pure size polydisperse HSY system at least as it concerns the positions

of the CPC and the SC to each other; it seems to be that for the chosen parameter a ≤ 2

the effects of the size polydispersity dominate over the ones of the amplitude polydisper-

sity.

The chosen model systems gave us a good insight into phase transition processes of simple

polydisperse fluids. They can be used as basis for future work on this topic.





Appendix A

A.1 Abbreviations

Table A.1: List of abbreviations

Abbreviation Meaning section
B Binodal 6.3
Bc Critical binodal 6.3
c. p. Critical point 6.3
CPC Cloud point curve 5.1.2
HNC Hyper-netted chain 4.3
HS Hard sphere 2.2.1
HSY Hard-sphere Yukawa 2.2.3
HTA High temperature approximation 4.2.1
IET Integral equation theories 4.3
MCSL Mansoori-Carnahan-Starling-Leland 4.2.4
MSA mean spherical approximation 4.2.3
ORPA Optimized random phase approximation 4.2.2
OZ Ornstein-Zernike 3.1
pdf Probability density function 2.1
PY Percus-Yevick 2.2.1
RPA Random phase approximation 4.2.2
RY Rogers-Young 4.3
SC Shadow curve 5.1.2
SP Spinodal 5.2.1
SW Square-well 2.2.2
SZ Schulz-Zimm 6.1
vdW van der Waals 4.1
VW Verlet-Weis 4.2.4
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Appendix B

B.1 Numerical methods

B.1.1 Numerical solution of the ORPA

For numerical purposes, we have to find approximate expressions for the sums and in-

tegrals in (4.24) and (4.25). This can be done by Gaussian quadrature. The Gaussian

quadrature uses for an approximate integral or sum the n roots σk of the polynom pn(σ)

to discretize the infinite sums and integrals over σ on a grid with n points. When y(σ) is

a σ dependent function, then we can write the approximation [9] using the n roots σk

∫ ∞

0

dσf(σ)y(σ) '
n∑

k=1

wky(σk) (B.1)

with the weights

wk =
1

∑n−1
l=0 p2

l (σk)
.

The above expressions are exact, if y(σ) is a polynomial of degree 2n − 1 or smaller. If

we use a value n to truncate the series in (4.25), then the polydisperse system is mapped

onto a discrete n component system, which is characterized by the particle diameters (the

roots) σk and concentrations (weights) wk. The matrices in (4.27), (4.28), (4.30) and

(4.31) become now n × n matrices, where n is the (chosen) parameter of discretization;

the actual value for n, required for a sufficient level of accuracy, are discussed later in this

work. With the use of the Gaussian quadrature the equations (4.24) and (4.25) read

y(r, σk, σl) '
n−1∑

i,j=0

yij(r)pi(σk)pj(σl)

yij(r) '
n∑

k,l=1

wkwly(r, σk, σl)pi(σk)pj(σl). (B.2)

Now we have developed the theoretical framework and the numerical concepts to

calculate numerically the structure and thermodynamics of a polydisperse system within

the ORPA.
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From a numerical point of view, the ORPA reduces to a search of the minimum of

the functional F [16]. Its gradient (4.35) with respect to the coefficients of the direct

correlation functions can easily be evaluated via the residual OZ equation (4.31). For the

numerical solution of the ORPA one proceeds as follows [12]:

1. Define a starting value for c1(r, σ1, σ2) = c
(i)
1 (r, σ1, σ2) inside the core (i denotes the

iteration step).

2. Fourier transformation of c
(i)
1 (r, σ1, σ2) to get c̃

(i)
1 (k, σ1, σ2).

3. Decomposition of the direct correlation functions with respect to their expansion

coefficients c̃
(i)
lm;1(k) by use of (B.2).

4. Insert this c̃
(i)
lm;1(k) into the residual OZ equation (4.31) to get h̃

(i)
lm;1(k).

5. Calculation of the Fourier transform h
(i)
lm;1(r).

6. Compose the total correlation functions h(i)(r, σ1, σ2) with (B.2).

7. Check if g(i)(r, σi, σj) satisfies the core condition which corresponds to the minimum

of F . For application it is sufficient to stop this iteration as soon as the maximum

average of g
(i)
1 (r, σ1, σ2) with respect to all grid points m inside the core is below a

given threshold:

maxr<σ̂|g(i)
1 (r, σ1, σ2)| < ε,

where |g(i)
1 (r, σ1, σ2)|r<σ̂ is the average value of g

(i)
1 (r, σ1, σ2) defined as

|g(i)
1 (r, σ1, σ2)r<σ̂| =

1

m

∑

k

g
(i)
1 (rk, σ1, σ2)rk<σ̂,

and max denotes a maximum value. The parameter ε is typically of the size 10−5.

8. Use this g
(i)
1 (r, σ1, σj) to correct c

(i)
1 (r, σ1, σ2) inside the core. This can be done using

various techniques, the simplest and most common one is the method of steepest

descents [46].

9. Take the new c
(i+1)
1 (r, σ1, σ2) and go back to step (2).

One has to be careful with the numerical implementation of this algorithm: especially

the Fourier transform of g̃lm;1(k) from k to r space can cause some problems, because

the resulting glm;1(r) is discontinuous at contact. The solution of this problem requires a

little trick [40]. Obviously, the expression glm(r) − clm(r) is a convolution and therefore

a continuous function. The same is valid for the expression glm;1(r) − clm;1(r). Before
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Fourier transformation of g̃lm;1(k), we simply subtract c̃lm;1(k) from g̃lm;1(k), after Fourier

transformation we add clm;1(r), obtaining thus glm;1(r):

glm;1(r) =
1

(2π)3

∫

d3ke−i~k~r(g̃lm;1(k) − c̃lm;1(k)) + clm;1(r).

B.1.2 Numerical solution of the phase equilibrium conditions

To solve the phase equilibrium conditions (5.23), (5.24) and (5.19) for the truncated free

energy method we have used a globally convergent Newton-Raphson algorithm [56].

B.1.2.1 Globally convergent Newton-Raphson Algorithm

The Newton-Raphson algorithm is one of the simplest multidimensional root finding meth-

ods. If the solution is approximately known the convergence is very good, for other initial

guesses in the most cases the simple Newton Raphson fails. An improvement to the simple

Newton Raphson can be find by use of the so called globally convergent Newton-Raphson

method, which, as the name means, converges also for initial guesses far away from the

solution.

A typical problem gives n in general nonlinear functional relations to be zeroed, in-

volving variables xi, i = 1, 2, . . . , n:

Fi(x1, x2, . . . , xn) = 0 i = 1, 2, . . . , n,

where the functions Fi are given with (5.23), (5.24) and (5.19) as

m
(1)
k −

∫

f (1)(σ)σkdσ = 0

p(1) − p(2) = 0 (B.3)

with k = 0, 1, . . . , n − 2 and the unknowns xi corresponding to m
(1)
k , ρ(1) and ρ(2). The

moment m
(1)
0 is no unknown variable, it is in all relations set to 1. We let ~x denote

the entire vector of values xi and ~F denote the entire vector of functions Fi. In the

neighborhood of ~x, each of the functions Fi can be expanded in Taylor series

Fi(~x + δ~x) = Fi(~x) +

n∑

j=1

∂Fi

∂xj

δxj + O(δ~x2).

which can be written in matrix notation as

~F (~x + δ~x) = ~F (~x) + Jδ~x + O(δ~x2), (B.4)

where J is the Jacobi matrix

Jij =
∂Fi

∂xj

. (B.5)
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By neglecting terms of order δ~x2 and higher and by setting ~F (~x + δ~x) = 0, we obtain

a set of linear equations for the corrections δ~x that move each function closer to zero

simultaneously, namely

Jδ~x = −~F

δ~x = −J−1 ~F (B.6)

The corrections δ~x are then added to the solution vector to obtain the new values

~xnew = ~xold + δ~x (B.7)

The equations (B.4) - (B.7) define the simple Newton-Raphson algorithm which provides

a good convergence for initial values near the solution. To obtain a globally convergent

Newton-Raphson algorithm we define a function [56]

f =
1

2
~F ~F (B.8)

so that we can write
~∇fδ~x = (J ~F )(−J−1 ~F ) = −~F ~F < 0 (B.9)

and δ~x is a descent direction of f . We always try the full Newton step (B.7), because

once we are close enough to the solution we will get quadratic convergence. We check at

each iteration that the proposed step reduces f

fnew ≤ fold + α~∇f(~xnew − ~xold), (B.10)

where α = 10−4 [56]. If (B.10) is not fulfilled then we have to reduce the correction

δ~x along the Newton direction until we have an acceptable step. For this purpose we

introduce a variable λ (0 < λ ≤ 1) into (B.7) to obtain

~xnew = ~xold + λδ~x. (B.11)

The Newton step is a descent direction for f because initially f decreases as we move in

the Newton direction, so we are guaranteed to find an acceptable step with (B.11). The

globally convergent Newton-Raphson algorithm is a method which minimizes f by taking

Newton steps designated to bring ~F to zero.

To calculate the constant λ in (B.11) we define the function [56]

g(λ) = f(~xold + λδ~x) (B.12)

so that

g′(λ) = ~∇fδ~x.
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We expand now g(λ) in a Taylor series around λ and truncate it at the second order term

g(λ) ' (g(1) − g(0) − g′(0))λ2 + g′(0)λ + g(0),

where g(1) is the value in the full Newton step, g(0) corresponds to the unaltered initial

value and g′(0) is its gradient. The value λ is determined in that way as g(λ) should have

its minimum there

λ = − g′(0)

2 (g(1) − g(0) − g′(0))
. (B.13)

For small α, it can be shown [56] that λ should be in the range of 0.1 ≤ λ ≤ 0.5. If the

Newton step (B.12) calculated with this λ does not fulfill the condition (B.10) then we

have to calculate a further λ given now trough a cubic equation

g(λ) = aλ3 + bλ2 + g′(0)λ + g(0), (B.14)

where we use the values g(λ1) from the previous step and the value g(λ2) from the step

before the previous one. Requiring that equation (B.14) gives the correct values for g(λ1)

and g(λ2) leads to the determining equations for the coefficients a and b:

1

λ1 − λ2

(
1
λ2
1

− 1
λ2

−λ2

λ2
1

λ1

λ2
2

)(
g(λ1) − g′(0)λ1 − g(0)
g(λ2) − g′(0)λ2 − g(0)

)

=

(
a

b

)

, (B.15)

The minimum of the cubic equation (B.14) is then at

λ =
−b +

√

b2 − 3ag′(0)

3a
, (B.16)

with 0.1λ1 ≤ λ ≤ 0.5λ1.

We summarize the steps of the globally convergent Newton algorithm as follows:

1. The initial guess for the moments m
(1)
k is given by the moments of the parent by m1

k =

m0
k, the number densities ρ(1) and ρ(2) are chosen to be those of the corresponding

monodisperse phase coexistence. Where the moments m
(1)
k and the number densities

are represented by the solution vector ~xold.

2. Calculation of the functions Fi and f(~xold) = fold by use of (B.3) and (B.8).

3. Check whether the ~Fi are in good approximation equal to zero. The iteration is

stopped as soon as the largest Fi is below a constant ε

max|Fi| < ε,

where we have chosen ε = 10−10.
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4. If the condition of point 3 is not fulfilled we continue with the calculation of the

Jacobi matrix (B.5).

5. Determination of the corrections δ~x with (B.6).

6. Calculation of the full Newton step (B.7) to obtain ~xnew and f(~xnew) = fnew.

7. Check whether condition (B.10) is fulfilled. If this is the case we accept the calcu-

lated Newton step and set ~xnew → ~xold to continue with point 2.

8. If (B.10) is not fulfilled we have to calculate an appropriate λ = λ1 for (B.11) by

use of (B.13) to get ~xnew.

9. If condition (B.10) is still not fulfilled we calculate a further λ with (B.16) by use of

λ1 and λ2 = 1 of the two previous Newton steps. Finally we set λ1 → λ2 and λ → λ1

and continue to calculate values for λ by use of equation (B.16) until we obtain a

~xnew for which the interruption criterion (B.10) is reached and we can return by

setting ~xnew → ~xold to 2.



Appendix C

C.1 Mathematical Expressions

C.1.1 Trace of a symmetric matrix

We will now proof the last equation in (4.51) which where used to calculate the free energy

within the MSA (4.50). We have to show now that

Tr (ln A) = ln (det A)

or equivalently

det A = eTr(ln A), (C.1)

where the matrix A is symmetric. There exists a diagonal matrix D to A so that we can

write

A = TDT−1,

with T the transformation matrices. The determinant of A and of the corresponding

diagonal matrix are identical and defined as

det A = det D =

n∏

i=1

λi (C.2)

where the λi are the eigenvalues of the diagonal matrix D. Equation (C.1) we can now

be written as

eTr(ln A) = eTr(T ln (D)T−1) = eTr(ln D) = elnλ1+...+lnλn =

n∏

i=1

λi, (C.3)

where we have used the relations

Tr
(
TDT−1

)
= Tr

(
T−1TD

)
= Tr(D)

ln (TDT−1) = T ln (D)T−1,

for the last relation we have expanded the logarithm into a Taylor series. The equations

(C.2) and (C.3) lead to the same result, so that we have proofed the equality (C.1).
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This work was supported by the Österreichische Forschungsfond under the Project No.

P11194-PHY and by the Fond zur Förderung der wissenschaftlichen Forschung (FWF)

under the Project No. P14371-TPH. For the financial support during the last month of

my work a thanks goes moreover to enterprise init.at.

During the last three years I was supported by many people and I want to express

my thanks to them here. First of all I would like to thank Elisabeth Maria Schöll-
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