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Zusammenfassung

Einfache Fliissigkeiten konnen ein enorm reiches Phasenverhalten zeigen. Das Hauptau-
genmerk dieser Dissertation ist die Beschreibung einiger Methoden, welche die Berech-
nung der strukturellen Eigenschaften und der Phasendiagramme einer breiten Palette von
Systemen ermdglichen. Die Potentiale einiger dieser System (wie das ‘square-well’ Poten-
tial) sind von rein akademischer Bedeutung; andere wie das Asakura-Oosawa Potential
beschreiben (zumindest qualitativ) das Verhalten einer Kolloid-Polymer Mischung.

Die Methoden welche zur Berechnung des fliissigen Zustandes eingesetzt wurden, sind die
‘optimized random phase approximation’, die ‘mean spherical approximation’ die Rogers-
Young Naherung und die ‘zero separation’ Theorie. Fiir den festen Zustand haben wir
Dichtefunktionalmethoden benutzt; diese basierten entweder auf der ‘weighted density
functional’ Naherung (‘modified weighted density approximation’ und ‘correlation modi-
fied weighted density approximation’) oder auf fundamentalen Mafitheorien (fundamental
measure theory), wie das Rosenfeld Funktional fiir harte Kugeln oder der ‘soft fundamen-
tal measure theory’ fiir andere Potentiale.

In den Phasendiagrammen, die mittels der oben aufgelisteten Theorien berechnet wur-
den, fanden wir einige interessante Phinomene (zum Beispiel isostrukturelle fest-fest
Ubergéinge und trikritische Punkte); unsere Resultate bestétigten dabei die Ergbnisse
von Computersimulationen.






Abstract

Simple liquids can show an enormously rich phase behavior. The focus of this thesis is
to describe some methods to determine the structural properties and phase diagrams of
a wide range of systems. The potentials of some of these systems are purely academic
like the square-well potential; others like the Asakura-Oosawa potential capture (at least
qualitatively) the behavior of a colloid-polymer mixture.

The methods we used for the liquids state are the optimized random phase approxima-
tion, the mean spherical approximation, the Rogers-Young approximation and the zero
separation theory. For the solid state, we have used density functional methods; they are
based on the weighted density functional approach (modified weighted density approxima-
tion and correlation modified weight density approximation) or the fundamental measure
theory (Rosenfeld functional for hard spheres and soft fundamental measure theory for
other potentials).

In the phase diagrams calculated using the methods listed above, we found some inter-
esting phenomena (for instance isostructural solid-solid transitions and tricritical points);
our results are able to confirm simulation data.
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Introduction

Investigations of phase transitions in condensed matter systems belong to the most chal-
lenging and most fascinating problems in physics. The complexity of phase transitions, the
large variety of phases, and the discovery of new phases (such as quasicrystals) guarantee
that scientists will be kept busy in the near future and will not lose interest in investi-
gating these fascinating phenomena. During the past years, significant contributions in
the descriptions of phase transitions in condensed matter physics have been proposed in
theoretical or computational physics [1]. Therefore, theoretical concepts in combination
with computational tools can be considered nowadays as complements to experimental
techniques: on the one side they are able to reproduce experimental results with high ac-
curacy and contribute in this way to a deeper insight into these phenomena; on the other
side they can sometimes even predict (at least in a qualitative way) results which - due
to extreme conditions (such as high pressure or low temperature) - are barely accessible
in experiment.

Phase transitions in condensed matter phases are every-day phenomena and consequently
very familiar (e.g., freezing or vaporization); therefore a deeper understanding of these
phenomena is of a more widespread interest and not only a pure academic problem. Phase
transitions are practically ubiquitous in our everyday lives, ranging from very simple, com-
monplace events to rather complicated and sophisticated production processes in industry
where special knowledge of the phase-diagrams of substances is required and used. There-
fore, the technological aspect of investigations in phase diagrams is of utmost importance
and industrial developments and processes often rely on accurate and reliable phase dia-
grams. In particular in this field, theoretical investigations of phase diagrams might be
helpful in replacing (at least partly) ‘real’ experiments: so, for example, computer ex-
periments might be more economical than real experiments or theoretical investigations
might indicate whether it is worthwhile to push experiments in a direction where difficult
experimental conditions are to be expected.

With this thesis we intend to contribute to a deeper understanding of phase transitions.
Among the various theoretical methods which were proposed over the last decades to
describe these phenomena, we have chosen an access that - during the past years - has
proven to be very successful (see, for instance, [2]): this approach focuses on the molecular
aspect of these phenomena by trying to understand them from the microscopic point of
view. The method we have chosen is based on statistical mechanics and it is liquid-based,
i.e., it views a phase transition such as freezing as a condensation of liquid density modes.
Classical density functional theory (DFT) is based on the reformulation of statistical
mechanics in the language of functionals and direct correlation functions; its essence is
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that the grand potential of a given system is a unique functional of the (inhomogeneous)
one-particle density and that this functional is minimized by the equilibrium one-particle
density. Liquid state theories provide us with information about the structure and the
thermodynamics of the homogeneous liquid; these data are required for the liquid phase
itself and for the solid phase when the ordered phase (the crystal, for instance) is viewed as
a spatially modulated liquid. In principle, these two ingredients are sufficient to describe
‘standard’ phase transitions in simple systems (liquid-vapor, liquid-liquid, liquid-solid and
solid-solid transitions).

It should also be mentioned that this combination of classical DFT plus liquid state theory
for the homogeneous liquid phase can be successfully applied for several other classes of
problems in liquid state (or condensed matter) physics, i.e., to describe strongly inhomo-
geneous systems [3]: phenomena such as nucleation [4], structure and thermodynamics of
interfaces and surfaces, or wetting problems [5] can be described very conveniently within
this framework.

The contributions of this thesis to classical liquid state theory and classical DF'T are the
following;:

e liquid state theory: We have implemented some of the ‘standard’ liquid state the-

ories [6] [optimized random phase approximation [7] (ORPA), exponential approx-
imation [7, 8] (EXP), hypernetted chain approximation [9] (HNC), Percus-Yevick
approximation [10] (PY) and Rogers-Young approximation [11] (RY)] in order to
evaluate and compare the thermodynamic properties and structure functions for
systems with a wide variety of interparticle potentials [bounded ones such as the
Gaussian core potential (subsection 2.2.5), the Fermi distribution potential (sub-
section 2.2.6), the penetrable spheres model (subsection 2.2.7) or the error function
potential (subsection 2.2.8) and unbounded ones (containing a hard core) like the
hard-sphere potential (subsection 2.2.1), the square-well /square-shoulder potential
(subsection 2.2.2), the double square-well/double square-shoulder potential (sub-
section 2.2.2.1), the hard-sphere Yukawa potential (2.2.3) and the Asakura-Oosawa
potential (subsection 2.2.4)]. The liquid state theories used in this thesis are per-
turbation theories or integral equations. Whenever possible, the obtained results
were compared with the ones from computer simulations or other theories (which
are not discussed in this work). Additionally, we have examined the problem of
thermodynamic self consistency for some of the methods presented here.
Although most of the theories mentioned above were introduced decades ago, they
are still able to give remarkably good results when compared to more advanced
‘modern’ theories [such as the soft fundamental measure theory (SFMT) coupled
with the test particle limit (TPL), see below].

e classical density functional theory: In this thesis we have used different types of
classical density functional theories. The well established class of weighted density
approximation functionals [modified weighted density approximation [12] (MWDA)
and correlation weighted density approximation [13] (¢c(MWDA)] were, along with
the results of the liquid-state theories as an input, used to discover the solid phase
of the system. From the class of fundamental measure theories (FMT), we have
used the Rosenfeld functional [14] to yield both the liquid and solid structure of a
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hard sphere system. As a rather new approach, we have used the soft fundamental
measure theory [15] (SFMT) (a generalized version of the Rosenfeld functional), to
get the structure functions of the liquid and the thermodynamic properties of the
solid for some systems. Additionally, the test particle limit [16, 17] (TPL) was used
to correct the unphysical behavior the fundamental measure theory predicts for the
structure functions of the examined systems.

Both of these two classes of theories (weighted density approximations and fun-
damental measure theories) were also the baseline for some simple first order per-
turbation theories, the free volume approximation (FVPA, see section 4.1.8) and
the modified perturbation approximation (MPA, see section 6.6.1). Although the
functionals based on the weighted density approach are rather dated, they give in
most cases better results than the more sophisticated fundamental measure theory
functionals.

Using those theories, we have calculated the liquid-liquid phase diagrams for both one-
component [Gaussian core potential (subsection 6.1.2), hard-sphere potential (subsec-
tion 6.3.3), square-well and square-shoulder potential (subsection 6.4.3), Asakura-Oosawa
potential (subsection 6.5) and double square-well/double square-shoulder potential (sub-
section 6.7)] and binary systems |[hard-sphere Yukawa potential]; for one-component sys-
tems we have, whenever possible, calculated also the liquid-solid (and solid-solid) phase
transitions [where the crystal structure of the solid was either face centered cubic (fcc)
or body centered cubic (bcc), see appendix C.1]. The model potentials we considered
are not simple academic creations; in many cases they describe the effective interactions
in colloidal suspension or solutions, such as charge-stabilized colloids (Yukawa), polymer
chains (Gauss) or colloid-polymer mixtures (Asakura-Oosawa).

The thesis is organized as follows: In chapter 2 the different interparticle potentials of
the one-component and binary systems used in this thesis are introduced. In chapter 3
the fundamental relations for the structure and the thermodynamic properties are devel-
oped. In chapter 4 the theoretical concepts (as mentioned above) used in this work to
evaluate the structure and thermodynamic properties of the liquid and the solid state are
introduced. In chapter 5 we summarize the methods used to obtain phase diagrams of
one-component and binary systems. The results are presented and discussed in chapter 6.
We summarize and conclude in chapter 7. The appendices A to D contain a list of ab-
breviations (appendix A), some mathematical definitions used in this work (appendix B),
important relations and definitions for the solid state (appendix C) and a short summary
of two numerical methods (appendix D).







Chapter 2

The systems

2.1 System parameters

2.1.1 One-component systems

In a one-component system there is only one species of particles that interact via pair-
potentials ¢(7); in this thesis all the potentials are radially symmetric [¢(7) = &(r)]
and density independent. In the liquid and the gas phase we consider homogeneous and
isotropic systems, i.e., at every space point the mean density is constant. The solid phases
of the system are inhomogeneous (the particles are centered around the lattice points).

The system of N particles is confined in a volume V'; we define the number density p as:

P= (2.1)

The potentials used in this thesis are characterized by a scaling parameter ¢ in distance
(such as the hard sphere diameter) and a scaling parameter ¢ in energy. It is convenient
to define a reduced dimensionless number density p* via

pr=—o (2.2)

and - for the temperature 7' - a reduced dimensionless temperature 7% via
1 kgT
Be &

where 3 is the Boltzmann factor. Further, we define the packing fraction n via

T, (2.3)

P, (2.4)

o3

which - for the case of hard spheres - corresponds to the ratio of volume occupied by the
particles, V},, to the volume V.
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2.1.2 Binary Systems

In a binary system there are two species of particles labeled by indices 1 and 2, hence the
system is characterized by a set of three interatomic potentials,

¢11(7") ) ¢12(7")=¢21(7“) ) ¢22(7“)- (2-5)

In this thesis we consider a special group of binary systems, the so called symmetric
binary systems: here the like interactions are equal, only the unlike particles see a different
interaction

$11(r) = Po2(r) # Pra(r)-

In the binary case a volume of V' is occupied by N; particles of species 1 and N, particles
of species 2, hence we can define two partial number densities

p1 = % ;P = % (2.6)
and the total number density
p=p1+p2= M
v
Further, it is convenient to define the concentrations of species i, ¢;,
012%:% ; Cz=%=% ; c1+ca=1.

The potentials are characterized by length scales o;; (0;; = 0;) and energy scales ¢;;
(Eii = Si).
Introducing a size-ratio ¢ of the two length scales
02
q=—
01

we can again define reduced (partial or total) number densities
pi=poi ;5= peaiol

* >k * N
p :p1+,02: V(01+C2q3) 0':13.
The packing fraction is now defined as

n= %Oi” (pr + p2q*) = %Oi‘p (c1 +caq®) = %p*-

2.2 Interatomic potentials

In this chapter we give an overview over the various potentials used in this thesis. Besides
the definition of each potential we will also show the corresponding Mayer function which

is defined as
f(r) =e P 1. (2.7)
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2.2.1 Hard-sphere potential

The hard-sphere (HS) potential is defined via

qﬁ(r):{ A (2.8)

rT>0

with the Mayer function
fHS(T):{ 0 r>o

Figure 2.1: Hard-sphere potential and Mayer function

o(r) A fir) A

A o©

Q
ﬁ

For many years, the HS system was a very useful but purely theoretical construction. A
purely hard potential does not materialize in atomic systems. However, with the advance
of colloidal science, it became possible to prepare samples which are extremely close
in their behavior to an ideal HS system. By index matching colloidal particles with the
surrounding solvent, the van der Waals attraction can be drastically reduced (see [18]) and
the interaction between the colloids is then dominated by the repulsive core [19, 20, 21].
The HS system is without doubt the best examined system in liquid state theory; its
structural and thermodynamic properties have been studied thoroughly. For the HS
potential the Percus-Yevick (PY) approximation is analytically solvable [10], however this
solution has some problems to reproduce the results (pressure) from computer simulations
for high packing fractions. For the thermodynamic properties the empirical Carnahan-
Starling [22] equations leads to an excellent agreement with simulation results. To improve
the agreement for the structure, Verlet and Weis [23] and also Henderson and Grundke
[24] proposed a semiempirical parameterization of the correlation functions.

Further, the HS potential plays an important role as a reference system in perturbation
theories since it captures the main features of the repulsive part of a typical interatomic
potential.
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2.2.2 Square-well/square-shoulder potential

The square-well /square-shoulder (SW/SS) potential is given by a HS core and an adjacent
constant perturbation. We use the following definition

o© r<o
d(r)=4 — o<r<ok,
0 r>o0ol

where ) is the perturbation width. For positive ¢, the perturbation is attractive (square-
well); if € is negative the perturbation is repulsive (square-shoulder). The Mayer function
for this potential is
-1 r<o
fr)=< e -1 o<r<oX .
0 >0\

Although this potential seems rather academic, it captures (to a certain extent) the be-

Figure 2.2: Square-well potential with A = 2 and Mayer function

A B 1) A
eﬁa —1F------
o Ao -
o Ao r r
o
~1
)

havior of mesoscopic spherical particles (interacting via a hard-sphere-like interaction) in
a microscopic solvent (assuming that the mesoscopic particles and the particles of the
solvent have no or only very weak interactions). The SS potential models the interaction
potential of sterically stabilized colloids with short grafted chains, whereas the SW po-
tential models the potential of colloid-polymer mixtures or atomic systems with van der
Waals attractions.

For small perturbation widths there exists a semi-analytic solution of the Percus-Yevick
approximation derived by Nezbeda [25].

2.2.2.1 Double square-well/double square-shoulder potential

The double square-well/double square-shoulder (DSW/DSS) potential is simply an ex-
tension of the SW/SS potential, introducing a second step:
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Figure 2.3: Double-well potential with A\; = 2, Ay = 2.5, £1/e5 = —g and Mayer function

¢(r) A ) oo £r) A
ePer b=
0- -
ePer oo J
/\10 /\20’ )\10. /\20.
S R R
g ;T r
—&1 [~~~ ~~- -1
oo r<o
_ —&1 o<r<g)
¢(T)_ —g9g oM <1 <0l ’
0 7r>0)X
with the Mayer function
-1 r <o
£(r) = efer — 1 o< r <o)\
o 6’362—1 O'Alé r SO'/\Q
0 r > 0M

The reduced temperature will be defined via one of the parameters ¢;, the other one being
related via a factor ¢, i.e.,
E9 = E1&,

This potential type shows a very rich phase behavior in the fluid state, for instance one
can encounter up to two critical points [see section 6.7].

2.2.3 Hard-sphere Yukawa potential

The hard-sphere Yukawa (HSY) potential is given by a hard-sphere core and an adjacent
exponential perturbation. We use the following definition

¢(T) = { oon(r—a) rse )

—eZe” r>o
(s
where k is the so called inverse screening length. The Mayer function of this potential is

-1 r<o
fr) = { exp [Be%e‘“(r_”)] -1 r>0o°

The HSY potential is the effective potential of charge-stabilized colloidal suspensions
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Figure 2.4: Hard-sphere Yukawa potential with x = 2.3 and Mayer function
r) A
#r) ) oo 7y A

e —1|--------1
N

(approximated within the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, see [26,
27]) [2]: such suspensions are created by putting big particles with surface radicals into
a polar solvent like water. Most of the charged surface groups dissociate into to solvent
and form counterions carrying one or two elementary charges. Consequently, the colloidal
particles become highly charged and may be called macroions (they carry typically 100-
10000 elementary charges). Since the counterion distribution is diffuse due to their finite
temperature, the screening of the macroions is imperfect and a screened Coulomb repulsion
between the macroions is the result. The HSY potential now models the interaction
potential between the macroions.

2.2.3.1 Truncated Hard-sphere Yukawa potential

The truncated HSY potential (tHSY) is a modification of the original HSY potential
where one sets

¢(r)=0 for r > Ao,

where Ao is the so called truncation radius. This potential was introduced because for
computer simulations the potential is always truncated (due to the finite range of the
simulation box).

2.2.4 Asakura-Oosawa potential

The Asakura-Oosawa (AO) potential was proposed by Asakura and Oosawa in 1954 [28]
(and later developed independently by Vrij [29]) to model the interaction between colloidal
particles and nonadsorbing (free) polymers in a solvent. This model is an extreme non-
additive binary hard-sphere model, in which the colloids are treated as hard spheres (with
diameter o) and the interpenetrable, non-interacting polymers (polymer coils, diameter
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op) are treated as point particles but which are excluded from the colloids to a center-of-
mass distance of (0.4 0,)/2 [i.e., the polymers can approach the colloids up to a distance
of o, (= qo)].

The potential is given by

00 r<o
_ 1x 3, (1+q)° 3 8
o(r) =4 —35%% 4 |1- sitge T airgies| O Sr<o+op
0 r<o-+o,

where p1, is the chemical potential of the polymer coils and z, = e’#» /A3 is the fugacity
of the polymer particles (A is the de Broglie thermal wavelength). In this model, %z,
can be replaced with 77, the packing fractions of the polymers in a reservoir (which is in
thermal, mechanic and particle equilibrium with the polymers). The explicit form of the
effective pair potential of the colloids is derived by integrating out the degrees of freedom
of the polymer particles in the grand canonical partition function of the colloid-polymer
mixture and neglecting contributions due to particle interactions of order three or higher
(for nonadditive systems see [30], for additive systems we refer to [31]).

After introducing the parameter p = 1 + ¢ we can rewrite the potential as follows:

o0 r<o
3 3
o) =4 g () [1—3#5(5)} c<r<po
0 T < po

where 77 is the packing fraction of the polymer coils as described above. The prefactor

Figure 2.5: Asakura-Oosawa potential with ¢ = 0.8 (p = 1.8) and Mayer function

A f(r) A
N

¢(r) A 0 ePeo 1 |

_60 __________

n,/B can be interpreted as the “strength” of the attractive tail. The value of the potential

at r = o is equal to
r 3
3 1
B\l1-p 2p  2p?
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Figure 2.6: The depletion mechanism. The two big spheres (diameter o) are each sur-
rounded by a depletion layer of thickness 7, where 7 is the diameter of the small spheres.
The overlap area of the two depletion layers is depicted by the lens-shaped area between
the two big spheres.

The Mayer function of this potential is equal to

-1 r<o
3 3
fr) = eXp{n;(l%p) [1—%ﬁ+§(ﬁ)]}—1 o<r<po .
0 r < po

The AO potential describes the effective potential of large (colloidal) particles which
are immersed in a solvent including of smaller macromolecules (polymer coils). The
attractive behavior of this potential can be explained in two different ways. Whenever
two colloidal particles come close to each other, the number of polymer coils between
these two particles becomes smaller; hence there is an unbalanced pressure on the two
colloidal particles by the polymer coils from the ‘outside’ pushing them together. This
is the so called depletion mechanism; another explanation can be seen in figure 2.6. The
solvent particles (diameter 7) are interacting with the mesoscopic particles (with diameter
o) by means of the hard-sphere potential, thus the solvent particles are excluded from a
sphere of diameter o + 7 surrounding each mesoscopic particle (denoted by the so called
depletion layer in figure 2.6). Whenever the depletion layers of two mesoscopic particles
overlap, the total available volume of the solvent particles increases by the overlap volume
(denoted as the lens-shaped area in figure 2.6). As shown in [18], this leads to an (entropy
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driven) attractive interaction between the two mesoscopic particles.

2.2.5 Gaussian core potential

The Gaussian core potential (or Gaussian core model, GCM) is a bounded potential and
is defined by

é(r) = ge—(8)". (2.9)

The Mayer function of this potential is given by
f(r) =exp (—556_(5) ) — 1.

This potential allows, for instance, a partial or complete overlap of two particles. Such a
phenomenon can be observed in polymers: in a solution of polymer coils the potential of
mean force, acting between the center of masses of the coils, is given by a pair potential
¢(r). For these ‘effective’ particles it is not forbidden that two center of masses are located
at the same point.

A Gaussian pair potential was first proposed fifty years ago by Flory and Krigbaum [32]
for the effective interaction between the centers of mass of two polymer chains. As a
realistic model for a bounded potential, the Gaussian core model in the present form was
introduced by Stillinger [33]. This work was complemented later by molecular dynamics
simulations [34, 35], high-temperature expansions [36] and the discovery of exact duality
relations in the crystalline state [37] (see section 6.1). The effective interaction between
linear polymers has been extensively studied by computer simulations, both on-lattice
[38, 39] and off-lattice [40, 41, 42, 43, 44, 45]. The structure and thermodynamic prop-
erties (including a quantitative phase diagrams, see section 6.1.2) of the GCM has been
studied recently in [46] using integral equations. For a detailed study of the Gaussian
core potential see section 6.1.

Figure 2.7: Gaussian core potential and Mayer function
é(r) b

€

Y-

g
T
I
I
I
|

0.37¢
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2.2.6 Fermi distribution potential

The Fermi distribution potential (or Fermi distribution model, FDM) is a bounded po-

tential and is defined as
1+e7/¢

o(r) = e e (2.10)

with the Mayer function
1+e70/¢
f(r) =exp <—5571 " e(TU)/&) -1
¢ is a “smoothing parameter”, having the dimension of length. With this parameter one

can tune this potential from the penetrable sphere model (PSM, & — 0, see below) to a
constant potential [ — oo, ¢(r) = €.

Figure 2.8: Fermi distribution potential with £ = 0.2 and Mayer function
(r) A

9

2.2.7 Penetrable spheres model

The penetrable spheres model (PSM) is the limiting case of the FDM (¢ — 0) and is
given by

e r<o
¢(T) - { 0 r 2 o )
with the Mayer function
ePr—1 r<o
f(T) - { 0 r 2 o .

2.2.8 Error function potential

The error function (ERF) potential is a rather academic case. One reason to introduce
this potential is the fact that its Mayer function can be de-convolved in the framework of
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Figure 2.9: Penetrable sphere model and Mayer function
o(r) A
fir) A

g o r

the Soft fundamental measure theory (as shown in section 4.3) analytically (under certain
assumptions for the potential parameters). The definition of this potential is

1+ erf (T;")
2 )

o(r) = ~3 In

where erf(z) is the error function given by

2 [
erf(z) = ﬁ/dt e .
0

This definition leads to the Mayer function

Figure 2.10: Error function potential with ¢ = 1 and Mayer function

For r = 0 the potential and the Mayer function have the values

¢(r:0):€0:—%ln [%] : f(r:O):foz—% [l-l-erf(g)].

a
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In the limit @ — 0 the Mayer function becomes

f(r):{ —01 r<o

r>o

the HS model (which can also be interpreted as a special case of the penetrable sphere
model). Another limit is that if a is small enough (a < 0.3), f(r = 0) is approximately
equal to —1 and the potential is very similar to having a hard core.




Chapter 3

Basics of liquid state theory

3.1 Ornstein-Zernike equation

The Ornstein-Zernike (OZ) [47] equation relates the total correlation function h(r) and
the direct correlation function c(r) of a fluid. For the case of a uniform, one-component
liquid this equation is given by [6]

h(r) = c(r) + p/d37"1 c(|F— 7)) h(r1) = e(r) + p(cx h) (r), (3.1)
R3

where p is the number density (2.1) and the asterisk x denotes a convolution. The inter-
pretation of the OZ relation is as follows: the total correlation function A(r) between two
particles is given by the direct correlation function ¢(r) plus the indirect correlation via
all other particles in the system.

For convenience, we introduce the radial distribution function g(r), defined as

Physically, the quantity pg(r) is proportional to the conditional probability density of
finding a particle at the distance r given that another particle is located at the origin.
For binary systems the OZ equations are now a set of three coupled integral equations
(with 4,5 = 1,2):

hi(r) = )+ [ri a7l () (3.2

k=1 ]R3
2
= Cij(T) +Z Pk (Cik * hk]) (T)’
k=1

where the p; are the partial number densities (2.6), the ¢;;(r) are the partial direct cor-
relation functions and the h;;(r) are the partial total correlation functions. Due to the

17
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symmetry of equation (3.2) with respect to the indices, the correlation functions h;;(r)
and c¢;;(r) fulfill the following relations:

hlg(T) = hzl(’f') 3 612(7') = 621(7').
We define partial pair distribution functions g;;(r) like in the one component case:
g,-j(r) = hz'j(T) + 1.

To solve the OZ-equation(s) one requires a further (functional) relation between the cor-
relation functions and the pair potentials, known in the literature as closure relations
(the closure relations used in this thesis are summarized in section 4.2). Such relations
can be derived from exact diagrammatic expansions of statistical mechanics, introducing
simplifying approximations.

It is convenient to introduce for subsequent calculations the following functions:

e(r) = e Por) (3.3)

and the so called cavity function y(r):

y(r) = S = glr)eH. (3.4

In Fourier space, the OZ equation (3.1) reads (where Fourier transformed functions are
denoted via a tilde)

h(k) = &(k) + ph(k)e(k). (3.5)

From this equation we can express h(k) and ¢(k) as
i) = (56

.« h(k)
ck) = Y ) (3.7)

h(k) is related to the static structure factor S(k), which can be determined in scattering
experiments, through:

1

T (3.8)

Sk)=1+p / dry € h(r) = 1+ ph(k) =
R3
In the binary case it is convenient to introduce matrices C and H, defined via
(C)ij(k) = Cij(k) = /pipscig(k) 5 (M)ig(k) = Hij(k) = \/pipshis (3.9)
After a Fourier transformation of equation (3.2) we get

(k) = Gy (k) + 3 Culk)Hiy (k). (3.10)

1=1,2
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In matrix notation, this equation reads
H=C+C- H, (3.11)

where the dot denotes a matrix multiplication. From this equation one can derive relations
similar to (3.6), (3.7):

H=(T-C)"'-C ; C=H-(T+H) ",

where T is the 2x2 unity matrix and (A)~' denotes the inverse of the matrix A. The
definition of the static structure factor for binary systems is:

Sky=T+H=(T-C)"". (3.12)

3.2 Thermodynamic properties

Once the OZ equation has been solved with the help of a closure relation, the thermody-
namic properties of the system can be calculated. It is convenient to split thermodynamic
quantities into two contributions:

e The ideal part (‘id’) describes the corresponding thermodynamic property for an
ideal gas; here all these quantities can be calculated analytically.

e The contribution to a thermodynamic property arising from the (pair) interactions
is the excess part (“ex”) and has to be calculated - in general - numerically.

3.2.1 Internal energy U

The ideal part of the internal energy is given by

3

We have used the following reductions for Uy

, 25
2

Ul = papVia = p- (3.15)
The first reduction (with respect to the number of the particles) leads to a dimensionless
quantity, the dimension of the second reduction is equal to an inverse volume. To make the
second reduction also dimensionless, one can multiply the result with o3. In the following
reductions of the first kind will be marked with an asterisk (*) as a mark, reductions of
the second kind will be characterized by a plus (7).

For the excess part of the internal energy one finds [6]

Uer = pg /d3r g(r)o(r). (3.16)
R3
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Hence we obtain for U

3
U= Ui+ U = NkpT | 5 + g / d*r g(r)Be(r)
]R3
After introducing the reduced pair potential ¢*(r) defined as

B =" () ; BO) = (1)

the reduced internal energy U* = ;—f]U reads

Ur=1+ % /d3r g(r)o*(r). (3.17)
R3

For binary systems one finds

N2

U= Uid + ,OEZ CiCj /dgT gij(T)¢ij(T),
W=l ps

where Uy is given by equation (3.13).

3.2.2 Pressure p

The pressure can be split into the ideal part

_ N
Pid = Vv /8
and the excess part (valid only for density independent pair potentials)
CANp [ (e _ 2, [ do(r)
po= =575 @ (79) 8)90) = 55" [ar g (318)
R3 0

In this expression care has to be taken if the pair potential ¢(r) [and hence the pair
distribution function g(r)] have discontinuities. In this case we rewrite the integrand of
the equation above using (3.3) and (3.4):

g(r)M = y(r)e(r) ( 1 de(r)) _ _y(r) de(r)

dr _Be(r) dr B dr’

leading to

N 2t N /drrsde(r)ym:pv, (3.19)

P=y5T 378" dr
0
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The superscript Y indicates that the pressure is calculated using the virial, hence the
pressure obtained via this route is also called the virial pressure. It should be noted that
this equation is in particular useful if y(r) is a continuous function [see section 4.1.4 for
the special case of the ORPA].

We define the reduced quantities

*

B
pi="p and p* = fp,

so that pf; = 1 and p;; = p. For the binary case one finds

P = Did — —p Z c,cj/drr 300 (1 i (). (3.20)

1,j=1

3.2.3 Helmholtz free energy A

The ideal part of the Helmholtz free energy, A;4, is given by

A
ﬁde = In (pA®) — 1. (3.21)
where 3 is equal to .= with kg being the Boltzmann s constant, p is the number density

and A is the Broghe thermal wavelength

A 27Tﬂh’
m

where m is the mass of one particle and A is Planck’s constant. To justify a classmal
treatment of static properties of the system it is necessary that A/a < 1, where a ~ p~ 5.
The term In A can be split into

2rph _ —%lnT—i—C,

lnA_—l
2 m

where C contains system parameters which are not important for our purposes (evaluation
of the structure functions, calculation of phase diagrams and so on). The free energy A
is related both to the internal energy as well as to the pressure via the following relations

(ﬁ)
1
Ot V,N

. (04
P’ =— <3V>T,N' (3.22)

e cnergy route

0A
v-avas-a-n(2)

e virial route
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Hence A can be obtained p via thermodynamic integration along isotherms (virial route):

14

Aew(‘/’ T) - Aem(oa T) _/dV, pew(vl)
0

p
Au(pT) = Au(0,T)+ N [dp pe;ff')
0
or from U along isochores (energy route):
s
AalVT) _ A(f T) . Ja7 Val)

We use the following reduced quantities for the Helmholtz free energy A:

Y VI < R
AT =AG 3 AT =Ap =A%,

Using the two different integrations with the reductions defined above, leads to

p
* (1

AL(pT) = AL(0.T)+ /d,/ prp)
0

3

A:w(p7T1*) = AZw(p;TS‘)—i_E

1
— T*U; (T
T* e:c( )7

“— -

4

(3.23)

(3.24)

(3.25)

(3.26)

where the prefactor % comes from the reduction of the internal energy. For binary systems

the Helmholtz free energy for the ideal system is given by

2

P S et (i) — 1,
=1

where A; is the Broglie thermal wavelength of particle species i:

A, = /27rﬁh,
my

with m; being the mass of the particles of species .

(3.27)
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3.2.4 Chemical potential

The chemical potential for a one-component and binary systems respectively, can be
calculated from the free energy via

3A> ( 0A ) ,
U=\ 3737 v M= y 1= ]-a 2a (328)
(8N TV IN; T,V{N;}

where in the last equation all particle numbers N; with j # 7 must also be held constant.
The ideal part is given by

1 1
Hid = B ln ('OAS) ; ,uid;i = E ln (IOZA?) ,

the reduced chemical potentials are defined as
Mia = Bia  and pig; = Blid;i-

By multiplying these equation by p one obtains the other set of reduced quantities, p;; and
U;fz;i- Equation (3.28) can be written for the one component case using reduced quantities

as
* 1 [O(NA* 1 0A* 1 (0A*
5 - 30580, -3l ), )5 )
5 /B ON v ﬂ 5,0 v 5 5,0 v
pto= A"+ p" (3.29)

The last equation is one form of the Gibbs-Duhem relation.

3.2.5 Isothermal compressibility xr

The isothermal compressibility is defined as
1 [0V 1/0
Xr=—v (—) == (_,;) , (3.30)
V\op/r p\Op)r

XTid = —-
P

for the ideal gas one finds

One can show [6], that the isothermal compressibility can be calculated from the correla-
tion functions (which are of course density-dependent) via

14 XT 3
“xr = = 1+p[drh(r)=S(k=0) (3.31)
’ R/

5<@> = 1—pc(k = 0;p).
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For binary systems the isothermal compressibility is found to be [6]:

9 -1
AT [1 - PZ ciciCij(k = 0; P)] :

XTid i1

The pressure can be calculated from (3.31) via thermodynamic integration:

p
1 1 1

=p(0 —|dp = =p(0 — [do' [1 = p'elk =0; 0] =p°. (3.32

p(p) p<>+50/p1+p,h(k:0;p,) PO+ [ 1= s = ) =o' )

The pressure obtained via this route will be denoted as the compressibility pressure, p°.
If we insert this pressure into equation (3.25) we get
P o
N / 1 /BN iod /!
Aca(p) — Aex(0) = ~5 dp 7 dp” p"c(k = 05 p").

0 0
With A.,(0) =0 (ideal gas) and partial integration we get

o P p
N 1 _ _
Awlp) = 5\ | /dp”p”C(k=0;p”) + /dp'C(k=0;p’)
0 0 0
5 p p o
FAalp) = AL = [dg (7 = ek =0:0) = - [ag' [ap Tk =03s7). (333)
0 0 0

Using the last equation we can obtain ¢(k = 0; p) via the compressibility equation (com-

pressibility sum rule)
- d* A% (p)
c(k=0;p) =— PR (3.34)

3.3 Thermodynamic inconsistency

In the last subsections we have derived the formulae needed to calculate the thermo-
dynamic properties of a system from its structure. Further, we have shown that one
thermodynamic quantity (as, for example, the pressure p) can be calculated via different
routes (corresponding to different thermodynamic relations). If the structure functions
could be calculated exactly, then all these different routes would yield the same results
for one thermodynamic quantity. However, due to the various simplifications and approx-
imations made in the concepts (by introducing the so-called closure relations) and, to
a lesser extend, in the numerical calculations one has to make in order to calculate the
structure of a system, the value of a certain thermodynamic quantity will depend on the
thermodynamic path one has chosen. This deficiency is also known in the literature as
thermodynamic inconsistency. Some of the reasons of this effect are:

e the approximate character of the theories used to calculate the correlation functions
of a system (for instance, the closure relations mentioned in section 3.1 are only
approximative relations);
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e the correlation functions can only be computed up to a certain maximum distance.
For example, in particular, near the spinodal in the phase diagram or in the critical
region, these functions become long-ranged and we lose information by truncation.

To minimize these deficiencies, so called self-consistent liquid state theories have been
developed during the past years. The self-consistent integral equation theories used in
this thesis (see [48]) will be discussed in section 4.2. These concepts contain one or more
self-consistency parameters (for instance in their closure relation) which can be adjusted
in such a way that the various thermodynamic paths lead to the same result for one or
more thermodynamic quantities. However, most of these methods are only partly self-
consistent, meaning that in most cases only two thermodynamic routes lead to a self
consistent result.







Chapter 4

Theoretical concepts

In this chapter we will describe the various theoretical concepts we have used in this thesis
to obtain the thermodynamic properties and the structure functions (pair distribution
functions and direct correlation functions) of the homogeneous and the inhomogeneous
phase.

4.1 Perturbation theory

The basic idea of perturbation theories (PTs) is that the interparticle pair potential, ¢(r),
can in many cases be separated in a natural way into a short-range repulsion, ¢o(r), and
a smoothly varying, long-range attraction, ¢ (r):

¢(r) = ¢o(r) + o1(r). (4.1)

In an additional plausible approximation the short-range forces can be modeled by the
infinitely steep repulsion of the hard-sphere potential [49]. The properties of a given
liquid can thus be related in a first step to those of a hard-sphere reference system, the
attractive (or repulsive) long-range part of the potential being treated as a perturbation to
the former. The choice of the hard-sphere fluid as a reference system is obvious, because
the thermodynamic properties and structural functions are well known for this model.
A physical justification can also be given: the thermodynamic properties and correlation
functions are dominated by excluded volume effects, and this excluded volume results
from the hard core.

The idea of representing a liquid as a system of hard spheres moving in an uniform,
attractive potential well dates back to the ideas of van der Waals (van der Waals equation
of state). Widom, for instance, gave the following equation of state in [50]

@:ﬁpo

PP

Y

where p is the pressure, py is the pressure of the underlying hard-sphere system. The
second term (where a is a positive constant) models the attractive part of the potential,
resulting in a decrease of the pressure.

27
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The calculation of the effect of the perturbation on the thermodynamic properties and
structure functions of the system can, for instance, be done via a systematic expansion
of the pair potential ¢(r) in powers of the inverse temperature (“)-expansion”). In the
A-expansion one introduces
oa(r) = do(r) + Ad1(r),

where A is a coupling parameter varying from 0 (reference system only) to 1 (full pertur-
bation):

Pa=0 = do(r) ; Pr=1 = do(r) + ¢1(r) = ¢(r).
Thermodynamic and structural properties are then calculated from Taylor expansions of
these quantities in terms of \.
In this thesis we have used a hierarchy of PTs with increasing level of sophistication.
In the following, we give a brief overview of these concepts (including their respective
advantages or disadvantages).

e The high temperature approximation (HTA) corresponds to the lowest level in the
A-expansion: the expansion of the thermodynamic properties (Helmholtz free energy
A) is truncated after the first term: no corrections of the structure of the fluid due
to the perturbation are made.

e The random phase approximation (RPA) goes one step beyond the HTA. The
thermodynamic properties are now given by the thermodynamic properties of the
reference system plus the HTA term and the RPA term. From the diagrammatic
derivation of the RPA we can calculate the structure properties of the system,
namely

c(r) = co(r) — Bou(r)
and
9(r) = g0(r) + 91(r),
where g;(r) is the correction to go(r) due to the perturbation. However, the RPA

leads to pair distribution functions that are nonzero inside the core, a clear violation
of the conditions imposed by the hard-sphere reference system.

e The optimized random phase approximation (ORPA) is a refined version of the
RPA: due to an additional condition, the pair distribution function now has to
fulfill the core condition of the hard-sphere reference system. This refinement leads
to significantly better results in comparison, for instance, with computer simulation
results (than those from the RPA).

e The exponential approximation (EXP) goes beyond the ORPA. The EXP is a
diagrammatic expansion of the pair distribution function g(r) which is exact in the
low density limit [6]. The EXP leads to a pair distribution function g(r) having the
form

g(r) = go(r)e”®.
Although the EXP was originally proposed as an improvement over the RPA, An-
dersen and Chandler [7] have shown that the usage of the EXP together with the
ORPA minimizes the errors made in the diagrammatic expansions of g(r).
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4.1.1 Basic ideas of the ORPA

The total system (reference+perturbation) is described by the potential ¢(r) and corre-
lation functions:

o(r) = ¢o(r) + éu(r),
h(r)+1=g(r) = go(r) +gi(r) = ho(r) + 1 + g1 (r), (4.2)
c(r) = colr) + e(r), (4.3)

where the subscript o denotes the reference part and the subscript ; the perturbation part.
Both the correlation functions of the reference and of the total system have to fulfill the
OZ equation:

ho(k) = Eo(k)‘f‘,gﬁo(k)go(k),
k) = k) + ph(k)a(k), (4.4)

If one uses the HS potential as a reference potential (as we do in this thesis), this implies
that g(r) has to be zero inside the core (both for the reference and the total system):

go(r)=0 and g¢i(r) =0 for r <o,

where ¢ is the hard-core diameter. The closure relation of the RPA (which is also used
for the ORPA and the EXP) is that the perturbation potential ¢;(r) is taken into account
by setting

ci(r)=—PB¢i(r) V r. (4.5)

This equation acts, beside the core condition for g(r), as a boundary condition for the
algorithm which calculates the correlation functions of the system. We summarize the
boundary conditions as

? ; r<o
alr) = { —Béa(r) ; T>20 (4.6)
sy = {9 IS (4.7

4.1.2 Structure for the one component system

In the case of the RPA one simply ignores (4.7) and only uses (4.6) [with an expansion
for ¢;(r) inside the core, for instance ¢i(r < o) = ¢i(0) or ¢i(r < o) = 0]. The pair
distribution function g(r) = go(r) 4+ ¢1(r) is then simply calculated using the OZ equation
for the total system. However, as stated before, g(r) is (in most cases) nonzero inside the
core for the total system.

To avoid the problems of the RPA, the concept of the ORPA was introduced. By inserting
(4.2) and (4.3) into (4.4) we get

G1(k) = &(k) + p | ho(k)1 (k) + hy(k)Zo (k) + hi (k)T (k) (4.8)
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and hence So(HZ(K)So(k)
Gu(k) = 209 S 4.9
0k =T g ma ) (49)
the so called residual OZ equation. If we define the functional
1 ~ ~
Flei] = - 2n)? /d3k {pSo(k)cr(k) +In[1 — pSo(k)ci(k)]}, (4.10)
p(2m s
its functional derivative with respect to ¢; evaluates to
5F[Cl] 1 ,0250(16)51 (]C)S()(k) P~
= A = k), 4.11
Sk~ pr 1-pSoma(t) @™ @1
and after Fourier transformation we get
(SF[Cl]
= . 4.12
561 (T‘) Pyg1 (’f‘) ( )

One can see that the core condition for g(r) can be interpreted as an extremum condition
for the functional F' (the first derivative of F' being equal to zero) with respect to variations
of ¢, inside the core (r < o). Further, one can show that the functional (4.10) is a convex
functional of ¢;(7), i.e., it has exactly one extremum which represents its unique solution
[51].

From a numeric point of view, the ORPA reduces to a search of the minimum of the
functional F. Its gradient (4.11) can easily be evaluated via the residual OZ relation.
The correlation functions are discretized (both in r and k space) on a grid. For details on
the discretization we refer to appendix B.1. For the numerical solution of the ORPA one
proceeds as follows:

1. Define a starting value for ¢;(r) inside the core.

2. Fourier transformation (from r to k space) of ¢;(r) to get ¢i(k).

3. Insert this ¢; (k) into the residual OZ equation (4.9) to get g1 (k).
4. Fourier transformation (from & to r space) of g;(k) to get g1(r).

5. Check if g(r) satisfies the core condition. For applications it is sufficient to stop
this iteration as soon as the largest value of g(r) inside the core is below a given
threshold:

max|g(r)] < € — stop iteration. (4.13)

r<o

6. Use this gi(r) to correct c;(r) inside the core. This can be done using various
techniques, the simplest and most common one is the method of steepest descents.

7. Take the new ¢ (r) and go back to step (2).
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One has to be careful at the numerical implementation of this algorithm: especially
the Fourier transform of g;(k) from & to r space can cause some problems, because the
resulting g (r) is not steady at contact. The solution of this problem requires a little trick.
Obviously, the term in square brackets in equation (4.8) is a convolution and therefore
a continuous function. Before the Fourier transformation, we simply subtract ¢; (k) from
g1(k), after Fourier transformation we add ¢;(r), obtaining thus g, (r):

L / &l e~ 5 (k) — 3 (1)] + e (r).

(2)
R3

In some cases, in particular for strongly attractive perturbation potentials, g(r) can be-
come negative for some ranges of r. To address this behavior some modifications of the
ORPA were proposed, for example the EXP [7] and the LEXP (linearized version of the
EXP) [52].
The EXP starts from a diagrammatical analysis of the approximative expression for the
pair distribution function which leads to the following form

g(r) = go(r)e®.

The EXP is, in contrast to the HTA or the ORPA, exact in the low-density limit [6]. By
expanding of the exponential function for small g;(r) and discarding all terms beyond
first oder we get the LEXP:

g:1(r) =

9(r) = go(r) [1 + g1(r)]

4.1.3 Structure for the binary system

For a binary system the correlation functions g;;(r) and ¢;;(r) are split into reference and
perturbation parts

9i5(1) = 9o (1) + 91:5(r) 5 cij(r) = coyij (1) + c15(7)-

Using the closure
¢ij(r) = coj (1) — Bdrii(r)
the defining equations for the ORPA (4.7) and (4.6) become

. ? ;T <0y

cig(r) = { —Borii(r) ;5 >0y (4.14)
0 ;T < 0y

giij(r) = { ? > Uz’j’ . (4.15)

We also define matrices similar to (3.9):
IH:,H()—{—IHl , C:CO+61.
After introducing these definitions we get the binary residual OZ relation

H, = Ci+Co-Hi+Cr-Ho+C-H,y
H = (I—Co—C) ' C (T+H),
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where T is the 2x2 unity matrix. Introducing the static structure factor of the reference
system, Sy (3.12), we get finally for #; [see also (4.9)]:

Hy = (S —C) 7 GSo.

The definition of the functional (4.10) can be generalized for the binary case in a straight-
forward way:

FlG] = -

p (21%)3]R/3d3k {tr [C1Sp] + In [det (I — C1Sp)]}- (4.16)

The functional derivatives from this equation with respect to 5”(k) are

oF|C ~

N[ 1] — _ P 3H1;ij(k)-
The implementation of the optimization algorithm for the binary case is similar to the
one described in the previous subsection.

4.1.4 Thermodynamic properties

The calculation of the thermodynamic quantities for the PTs described in the previous
subsection are described in detail in [53]. Some of these thermodynamic quantities can
be calculated using the expressions summarized in section 3.2.

e Internal energy U
e Chemical potential p (using the Helmholtz free energy from this subsection)

e Isothermal compressibility xr

For the others, the pressure p and Helmholtz free energy A, the expressions which are
based on the ORPA formalism will be derived in the following subsections.

4.1.4.1 Pressure p

The calculation of the pressure requires derivatives of the potential ¢(r) with respect to
the r, which - for the case of a hard sphere reference potential - can be circumvented
by introducing the function y(r), which, for most liquid state theories, is a continuous
function. In the ORPA, y(r) turns out to be discontinuous where the potential ¢(r) is
discontinuous. In the following we will derive an expression which can cope with such a
discontinuity in general.

At first we have to rewrite those parts of the integral (3.18) which are concerned. Let us
assume that y(r) [and hence ¢(r) and ¢;(r)] have discontinuities at 7 = y and that these
functions are continuous elsewhere. We start from equation (3.19):

_w N

2w N
Pex = =

y(r) = ?V—ﬁp

v

3de(1 )
— 7
Vﬁp d7 7 l

-~

I

[1°+1"],

7]
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where the integral I is split into two parts, I° and I”. The integral I° consists of all
the continuous parts of I, whereas I” takes into account the N jumps discarded of the

integrand of I:
N
P =3"1p,
i=1

where IP is the integral across the ith discontinuity.

1P :];7" nge_(r)y(r) = 7;17" rsﬂde(r) :7Fdr r3g(r)dln€(r)

’ dr e(r) dr dr
= /dr r3g(r)7d(_§f(r)) :/dr rg(r) dCC1h(n7’) (4.17)

using the ORPA closure. Now we “model” ¢;(r) near the discontinuity
c1(r) = eo + Ael(r — x),

where ¢ is the value of ¢;(r) on the left side of the discontinuity and &, = g9 + Ac is
the value of ¢;(r) on the right side of the discontinuity. Using this ansatz for ¢;(r) near
the discontinuity we introduce a continuous function g(r) around «y (because from the OZ
equation we know that g(r) — ¢(r) is a convolution and therefore continuous):

g(r) = g(r) — ci(r).
Inserting this into equation (4.17) for I leads to

7+
12 = [+ ) 90 (r)
dr
Y-
7+ dor) 1 7+ 4 (r)
_ 3~ ai\r 4 3aci(r
= /dTrg(r) o +2/d7“7' R
- -

Now we can integrate and using 0(r — z) = 0(r — z) we get

260Ae + (Ag)?
2

P =7

g(v)Ae +

We can replace g(7) with the left- or right-side limit of g(r); to eliminate £y from the final
equation we set

. g(v-) — €0+ 9(74) — €0 — Ae
giy) = 200 =% ;” —
so finally the integral IP evaluates to
Ae
I =7"=lg(v-) + 9(v4)].

This result is identical to the one obtained in [53], but the proof is now more general.




34 4.1: Perturbation theory

4.1.4.2 Helmholtz free Energy A

The free energy A is calculated from
A= Aper+ Apert, (4.18)

where A,.; is the free energy of the reference system and A, is the free energy due to
the perturbation. We assume that the free energy of the reference system (in our case a
hard-sphere system) is well known. The perturbation free energy A, is calculated using
equation (3.24):

1
T

Apert(Th)  Apere(T) / 1
T Ty - dT UP(T)a

1
To

where U, is the internal energy due to the perturbation potential. By setting 7 to oo
(ideal gas), T} to the actual temperature and substituting o = 77 /T we get

1

Ape'rt 1
_— d
T, T1/ a Up(a),
0

where Uy («) is similar to (3.16) except that the g(r) is now a-dependent:
1
N 3
Apert = p? do d’r ga(r)qsl (7”) (419)
0 R3

Here g,(r) is the pair distribution function for a system that is characterized by a potential
Pa(T):
¢a(7') = d)o(T) + CV¢1(T').

For the pair distribution function g,(r) we assume the ansatz
9a(r) = go(r) + 91(r; ).
Inserting this into (4.19) leads us to

1

N
A =0y | [Er 016,00+ [do [Eraapee)| . @
3 0 RS
The first term of this equation is the HTA. This approximation can be used if the
perturbation potential has nearly no effect on the pair distribution function (g;(r; ) = 0).
The second term can be calculated in the framework of the RPA by using the residual
OZ equation (4.9) to express g1 (k; «) via
1—pSo(k)ci(k;a) 1= pSo(k)ac(k)’

g1(k; )
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inserting the Fourier transformed of this equation into (4.20) leads to

1
N
Arpa = ,05 da /d37“ ¢1(r)

0 ]R3

1 3, oifr So(k)acy (k)So(k)
@) R/Sd ke s (k)aca(k)

Integrating over a and using the RPA closure (4.5) together with Parseval ‘s theorem (see
appendix B.3) we get finally

N 1 , _ _
ARPA = % (27-‘-)3 /d k {pSO(k)Cl(k) + In [1 - pSO(k)Cl(k)]}

]R3

The result for the Agpa is in fact the functional F' (4.10) with an adequate prefactor.
Inserting the optimized ¢;(r), Arpa becomes Apgpa:

N
Aorpa = —— Flei).

25

These two terms, Ayra and Aprpa, can be rearranged using the OZ relation and the fact
that for any PT with a hard sphere reference system h(r =0) = —1:

c(r=0) = —-1— p/d3r1 c(ry)h(ry). (4.21)
R3

The last equation is valid both for the reference (cy, ho) and the total (¢ = ¢o + ¢,
h = hg + hy) system. Using equation (4.5) we can write

Agra + Aorpa =

— % —p /3 d*r go(r)ei(r) + Y /3 d*k {pSo(k)c1(k) +1n[1 — pSo(k)ci(k)]}
- R R

= % —pci(k=0) — P/d37~ ho(r)ei(r) + (271T 3 /d3k [1 + pfzo(k)} (k)| + Aorpa.
i R? R3

(4.22)
where Apgpa is defined as

— N 1
Aorpa = ﬁp@

= / Bln[1 = pSo(k)E (k).
]R,3
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Using Parseval’s theorem the last two integrals in (4.22) cancel. With (4.21) we get
N

Apgra+ Aorpa = 28 [—pci(k =0) + ci(r = 0)] + Aorpa
Np —
= 2/6 [ Cl(k:())—(h*C)(T:0)+(ho*Co)(TZO)]+AORPA
Apra+ Aorpa = Awpra+ Aorpa. (4.23)

The graph theoretical analysis leading to the EXP brings along an additional term to the
free energy [6]. Due to historic reasons, it is called By term and is given by:

2

By, = — ’02]; d>r [ ()(egl(r)—gl(r)—l)—gl(;)
]R3

To conclude, the expressions used in this thesis for the Helmholtz free energy are given,
according to the level of sophistication, by the following terms:

A=Aig+ Areses +Aura +Aorpa +DBs . (4.24)
——_————

REF

N ~~ >4
N HTA |,

~—
RPA,ORPA

~ J/

-~
EXP

For binary systems we can follow similar lines, the free energy is formally given by an
expression similar to the one of equation (4.24). The first two terms are given by equation
(3.27) and, depending on the reference system, equation (4.33), (4.34) or (4.35). The three
remaining terms read

Agra = p— chcj/d TgOzg ¢1z_7( )

t,j=1
N
Aorpa = 25F[Cl]
B, = &3 (e 1 _ 9 (1)
2 — ZCZC] r gOzg 6 _g].l]() )_T .
t,j=1

Finally Ay74 and Apgpa are given by

ZHTA = 25P[ szpjclzj —0 +szclur—0]

1,j=1

_ N 1
Aprpa = %p(2w)3/d3kln[det(]I—ClSO)].

R3
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4.1.4.3 Chemical potential u

In the ORPA (and related perturbation theories) the chemical potential u can be calcu-
lated directly from the structure functions (i.e. no numerical derivatives are needed). The
chemical potential is calculated using equation (3.28):

B _ (O[Anra + AorPA] 1 (O[Anra + Aorp4l
HORPA = W — Mid — Hrefex = ON I ap -
T,V T,V

v

)

Using equation (4.23) and Parseval “s theorem leads to

_ LQ 2 (k= 1 3 = nl_P[zo(k)+51(k)]
,U'ORPA—2Bap p 1(k—0)+(27r)3/d/f{,01(k)+1 1 — peo R } ,
R?

where all the structure functions are density dependent. Taking the derivative with respect
to the density and after doing some cumbersome algebra we get

HORPA = % [— 2¢1(k=0) — P%a(/ﬁ =0)
1 3. )~ T = ~ 0 . ~ 0
) /3 d’k {cl(k)h(k) + hi (k) [Co(k) + pa—pco(k) + ph(k)a—pcl(k)}].

Using Parseval “s theorem again and rearranging the terms leads to

- 0
HORPA = % [— 2¢1(k=0) — P/d37' Q(T)a—pcl(r)
R®

- /d3r {c(r)h(T) — co(r)ho(r) + hl(r)p(%co(r)}] )
R3

The integral in the first line is equal to zero because outside the core (where g(r) is not
equal to zero) the variation of c;(r) with respect to p is zero. The final result for the
chemical potential y is

1 ~ 1 P 0
W= id + Prefex + 3 —pci(k =0)+ 561(7‘ =0)+ 5 /d37° hl(r)a—pco(r) . (4.25)

]R3

The integral in the above equation is zero if ¢q(r) for the reference system is zero outside
the core. However, if one uses the Verlet-Weis parameterization for the reference system
(and ¢y(r) being nonzero outside the core), the integral will not vanish and has to be cal-
culated explicitly. Using the Gibbs-Duhem relation (3.29) one can calculate the pressure
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p from this chemical potential pu.
This evaluation of i can also be done for binary systems. We start from

1 <5 [Ara + AORPA]>
v

Hi0RPA = i = [hisid — Mirefer = 77 Ap;

and finally arrive, using similar arguments as above, at

2
1 - 1
Hi = Misia + Pigepen + 5 =Y pici(k =0) + SCu(r = 0)
Jj=1
i ]
433 o [@ bian(r) 5 -cuan(r)|.
2l,m:l apz

]R3
4.1.4.4 Simple perturbation theory for A in the fluid state

A simple perturbation scheme to evaluate the Helmholtz free energy A of a one component
system in the fluid state (for the solid state see subsection 4.4) starts from the following
general expression [see also equation (4.18)]:

A(p) = Ares(p) + Ap(p),

where A(p) is the free energy of the system with the potential ¢(r) = ¢o(r) + ¢1(r),
Aef(p) is the free energy of the reference system with potential ¢o(r) and A,(p) is the
contribution to the free energy coming from the perturbation potential ¢;(r). In the fluid
state, the explicit form of A,(p) is equal to the HTA term of equation (4.20):

o) = o [@r a0 0), (4.26)
]R3

where go(r) is the pair distribution function of the reference system. In this work we will
refer to this approach as the perturbation approximation (PA).

4.1.5 Mean spherical approximation

The mean spherical approximation (MSA) was first proposed by Lebowitz and Percus [54]
as a generalization of the mean-spherical model for Ising spin systems. The MSA applied
to systems with a hard core and an adjacent perturbation potential is given in terms of
the pair distribution function and direct correlation function by

g(r) = 0 cr<o
c(r) = —Bo(r) ; r>o.

Together with the OZ relation these expressions yield an integral equation for g(r) and
¢(r). The first expression in (4.27) is exact, while the second extends the asymptotic

(4.27)




4.1: Perturbation theory 39

behavior of ¢(r) to all » > ¢ and is clearly an approximation.

The MSA can also be solved numerically in the framework of a perturbation theory, which
is formally identical to the ORPA. For the reference system one uses the PY solution
for HS, whereas the second expression of equation (4.27) is the ansatz of the ORPA for
¢1(r) outside the core [second expression of equation (4.6)]. To improve the quality of
the solution, thermodynamic properties for the reference HS system are being calculated
using the Carnahan-Starling equation of state [22]. Because the structure of the reference
system implies ¢(r) = 0 outside the core, one can use equation (4.25) for the chemical
potential.

4.1.6 Reference system (one component case)

As areference system in the ORPA and the MSA we have used the HS system. To calculate
its structure and thermodynamic properties we have used the analytical solution of the
PY closure or the semi empirical parameterization of computer simulation results due to
Verlet and Weis [23] (VW).

In the PY approximation the solution for the direct correlation function ¢(r) at a given
packing fraction 7 is found to be [55, 56]:

1,03 .
(r ):{a+br+2nar ; r<o (4.28)

0 s r>0

where the two parameters a and b are defined as

) b:6n@+§f.
1-n' 1-n'

Analytic expressions for the pair correlation function in the intervals ¢ < r < 6o are
given in a paper by Smith and Henderson [57].
The PY solution for the HS system leads to the virial pressure (3.19) given by

142437
(1—n)’

and to the pressure we get from the compressibility equation (3.32)

*U

o _lEn+n
(1-n)°

From these expressions it is obvious that the PY solution is thermodynamically inconsis-
tent. Calculating the Helmholtz free energy using equation (3.25) from these two expres-
sions for the pressure yields

1
A = — =1 2In (1 —

A = g (ﬁ - 1) —ln(l—n). (4.29)




40 4.1: Perturbation theory

The PY solution for HS systems has a few weak points (see [23]):

e The contact values of the pair distribution functions g(r) calculated using this direct
correlation function are too low. This leads to an increasing discrepancy between
the prediction from the PY solution and the results from simulations as 7 increases.

e The maximum of the static structure factor S(k) is too high because of the oscilla-
tions of the pair distribution functions for large r (these oscillations are also slightly
out of phase with respect to computer simulations).

e The cavity function y(r) is too small inside the core (r < o).

To overcome these deficiencies, Verlet and Weis [23] have proposed a semi-empirical pa-
rameterization of the pair distribution function g(r) which is used in combination with
the empirical parameterization of the equation of state due to Carnahan and Starling
(CS) [22]
l+n+n’—n* 1., 2.,

- = Zp* 4 Zpre. 4.30
This expression for the pressure fits the results of computer simulations nearly perfectly.
For the free energy, one finds

4—3n

Al o =N———. 4.31
ex;CS n (1 _ 77)2 ( )
The VW parameterization for the pair distribution function g(r) is given by
T 0 ; r<o
TN ’ 32
9(0777) { gO(ULO;nO) + %e‘m(r_") cosm(r—o)] ; r>0 "’ (4.32)

where oq is the HS diameter and 7, the packing fraction of a suitable chosen reference HS
system in the PY approximation. These two parameters are found to be

/ Ui Ui
- \ 1 16 ' - ( N _) '
0p =0 16 Mo =1 16

The pair distribution function (4.32) now has two contributions: a reference part stemming
from a HS system with a slightly smaller packing fraction 7, and an additional exponen-
tially damped oscillating part. The two parameters C' and m have to be determined so
that the results for the pressure from the virial and compressibility equations agree and,
in addition, are equal to the CS pressure (4.30). Relations for the two parameters C' and
m in equation (4.32) were derived by Grundke and Henderson [24].

4.1.7 Reference system (binary case)

The concept used for the description of the HS reference system can easily be generalized
to the binary case. In the PY approximation, the direct partial correlation functions ¢;;(r)
of a HS system [58] with density p are given analytically by [59]:

3 [%‘7? +b0i2 +X2§20i} T < Vjj
—cii(r) =<¢ x+ % (aij + bijr + dijr? + fiyr*) vy <r < o0y
0 O <T
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where x =1/(1 —n) and

Vs
n=m-+mn = n(cl+02):6/)
1 1

goita) 5 viy=g(0i—0y)

2
2
& = PZ cio}
i=1

2
&1 = PZ CiO;
i=1

O-ij =

and
a = [p + méax (51 -+ gﬁgx)}
b = X [61 + gﬁx]

m b
a; = =V [ofja+az-j§+€zx2]
T a fg 9
bij = Z{(U —l—a)g (0 +0)b+a,]2x}
™ a b
dij = — [(0 +a)§+aij§+§2x2}
m™a
li = 43

The thermodynamic properties of this system can be calculated as described in section 3.2;
again, the results are, as in the one component system, thermodynamically inconsistent.
The virial pressure p* as calculated by equation (3.20) for binary systems is equal to

P =X [1+—52—X (6 + 52)],

whereas the compressibility pressure p*¢, equation (3.32), is found to be

p*c:X[l‘l‘—&—X(fl'i‘ —&3 )]a

the difference between the two pressures being equal to

2 n
pC—p” = (&X)°.
12 P

The results for the free energy A (3.25) using the expressions for the compressibility and
virial pressure are:

a5 =~ + 72 5 e (133)

3.2

A = AX+ 27 [(1 - §77) xX* + %]n (1— n)] . (4.34)

12np 2
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The inconsistencies of the PY approximation lead to the same deficiencies as in the one
component case. Grundke and Henderson [60] have proposed an improved parameteriza-
tion of the partial pair distribution functions which is very similar to the one used in the
one component case [23, 24| and of similar quality as the VW parameterization (4.32).
The thermodynamic properties are calculated from an empirical equation of state due to
Mansoori, Carnahan, Starling and Leland [61]:

1 2 T o m
*MCSL _ = sv | 2 sc _ i L g2 —
p = 30" +3p X [1 +37, (& +1g&ex (n 3))}

3.2
At = Saz e Sa = () |G 1| 2R S ] s
3 3 36n°p p L2 36nx&

For a more detailed description of the thermodynamic properties of a binary system we
refer to [62].

4.1.8 Free volume approximation for A

Velasco et al. [63] have proposed a free-volume approach for the Helmholtz free energy
of the HS solid, which is both valid for the fcc (face centered cubic lattice) and the bce
(body centered cubic lattice) phase. In this thesis we will refer to this approach as the free
volume perturbation approximation (FVPA). The explicit expression for of the Helmholtz

free energy per particle is

N A3 7
where p, is the density of the solid and V(ps) is the accessible volume of a particle,
which is the volume constrained by its neighbors, assuming that they are fixed at their
lattice equilibrium sites. For the position dependent one-particle density in the solid the
parameterization as given by equation ( C.1) is used. The respective free volumes V' (p)
are given by [63]

8
V2

32
ﬁ [a(ps)

where a(p;) is the (density dependent) nearest neighbor distance. As shown in [63], the

localization parameter o can be calculated via the mean square displacement 72, . =

(r?) = 2 and the approximate accessible volume of a particle (which is equal to V =

i3\ 2%
2
3 A7 3
a=—-(——1] .
2 \3V(ps)

s ). Thus, « is equal to
Combining this equation with equations (4.36) and (4.37) leads to

o 3 (3\/§>§
T 2alp) — 1P\

Viee(ps) [a(ps) — 1)° (4.36)

Viee(ps) —1p°, (4.37)
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o 3 (&/ﬁ)g
T 2alpy) — 1P\ 7 )

4.2 Integral equations

In this section we will give an overview of the integral equation theories (IETs) used in
this thesis. For a general introduction in IET see, for instance, [6].

IETSs represent an alternative approach with respect to perturbation theories to calculate
the structure and thermodynamic properties of a liquid. While in PTs one generally
relates the properties of the system to those of a reference system and corrects for the
(hopefully small) perturbations, IETs are based on the OZ equation, which is solved along
with a suitable closure relation. These closures are derived from exact diagrammatic
relations under simplifying approximations (the closure arise from exact diagrammatical
expansions of the pair distribution function g(r) in terms of the direct correlation function
c(r) but with certain classes of diagrams ignored). In general, the solution of the OZ
equation in combination with a closure relation can be obtained only through numerical
methods. However, for a few model potentials IETs can be solved analytically.

During the past years a large number of closure relations have been developed, which in
some cases were constructed in order to satisfy particular requirements of the systems.
The closure relation can, in the general case, be written as

Fle,h, ] (r) =0, (4.38)

i.e., a functional relation between the direct correlation function c(r), the total correlation
function h(r), and the pair potential ¢(r). Alternative formulations of the closure rela-
tion can be given by introducing the bridge function B(r) (consisting of all elementary
diagrams that are not nodal, see [6]) via the exact relation

g(r) = h(r) + 1 = e PPOIFRN)—elrF+B) (4.39)

For the solution of IETSs, we use the following definitions. We define the continuous
function

y(r)y =h(r) —c(r) = p(hxc) (r). (4.40)
In order to yield the structure functions of a specific IE we have to solve the following
two coupled integral equations:

() = P/d37'1 c(|7 = 71[) [y(r1) + c(r1)] (4.41)
IR3
c(r) = F[y,¢l(r), (4.42)

where F*[vy, ¢|(r) denotes the explicit dependence of ¢(r) from y(r) and ¢(r). In general,
it is numerically more convenient to use the OZ equation in k-space, which reads

70 = o s

Now we will introduce the various closures used in this thesis.

(4.43)
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4.2.1 Percus-Yevick approximation

The Percus-Yevick (PY) approximation can be derived via graph theoretical analysis from
an exact expression for the pair distribution function [10]. One obtains [see also equations

(2.7) and (3.4)]
c(r) = [1 =] g(r) = f(r)y(r),

F* 11,6 1) = clr) = (7 = 1) (4(r) +1).
The bridge function in the PY approximation [see equation (4.39)] is given by

Bpy (r) =In[1 +(r)] = ~(r).

The PY approximation is known to give good results for short-ranged, repulsive interac-
tions.

4.2.2 Hypernetted chain approximation

The hypernetted-chain (HNC) approximation [9] can also be obtained via graph theoret-

ical methods and one obtains
g(r) = e—ﬂ¢(r)+7(r),

i.e., the HNC bridge function vanishes. The functional F™* is given by
F ) () =) = 40010 ) - 1.

The HNC gives satisfactory results for long ranged interactions, such as the Coulomb
potential.

4.2.3 Rogers-Young approximation

The Rogers-Young (RY) [11] closure relation is a so called ‘mixed closure’ relation. It
interpolates via a mixing function f(«;r) between the PY and the HNC approximation.
Via the mixing parameter « in the RY closure one can obtain self-consistency between
two thermodynamic routes. The RY closure is defined as

r)fla;r)] —1
fla;r)

hence, the bridge function for the RY closure reads

exp () flesr)] =1)
Flair) } ")

F 1 01(r) = o) = 0 {14 221 boat-1

Bry(r) =In {1 +

For f(a;r) one uses generally [11]

flasr)y=1—€e* ; «a€l0,00), (4.45)
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f(a;7) is a switching or mixing function with the following limiting behavior:

liH(l) f(a;r) = 0 ; PY behavior for small distances
r—

lim f(a;r) = 1 ; HNC behavior for large distances
T—00

It should be noted that these limits are independent of «. Similarly one finds

liII(l) flasr) = 0 ; PY behavior for small «
a—

lim f(asr) = 1 ; HNC behavior for large «,

a—oQ

independent of r. In this thesis the self consistency requirement described in subsec-
tion 4.2.4.1 was used for the RY approximation.

4.2.4 Zero separation closure

The zero separation closure (ZSEP) was originally proposed by Verlet [64] and represents
a direct approximation for the bridge function. One assumes the following form for the
bridge function:

BZSEP(T ) = -

ay?(r) [1 By(r)

2 1+ 57(7«)} = Bzspr(r; 1)), (4.46)

where the three parameters «, § and ¢ are determined in such a way that the self-

consistency between three different routes (described in the subsequent sections) is satis-
fied.

4.2.4.1 Virial and compressibility route

The first consistency requirement uses the inverse isothermal compressibility which can
be calculated via (3.31). We compare

-1

ATid _ | 4 p/d37“ hr)| (4.47)
XT
R?)
[X5 is the isothermal compressibility calculated via the compressibility route, see equation
(3.31)] with
i 08p”
XT p )7

p¥ is the virial pressure (3.19) and x% the isothermal compressibility calculated via the
virial route.
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4.2.4.2 Gibbs-Duhem relation

The second consistency requirement uses the Gibbs-Duhem relation (3.29). This ther-
modynamic relation establishes the link between pressure p, chemical potential y, and
number density p. In our case we require that the virial pressure p® satisfies

(gfi )T - (4.49)

In the framework of the ZSEP the excess chemical potential p., can be calculated via
Lee’s star function approach [65] leading to [66]

Biter = p [ 1 |Iny(r) = h(r) 4 G0N0 + K Brswe()] = 5% (450
R3

we have used in the present case

S* = p/d3r % 7;7' Bzsep(r; [Y]).
R3 0
= p}ﬁ/?’d%" h(r)% [? {1 +y(r)d (%7(7‘)5 - %) - W} - 5272(7“)].
Using (4.39), equation (4.50) can be written as
Biter = [ 1 |SHODN(0) 4 900) Brsin(r) = ()| = 5. (@51)

]R3

From the correlation functions we can thus evaluate the chemical potential u to check if
the Gibbs-Duhem relation (4.49) is fulfilled. This is done by calculating the pressure and
chemical potential for various systems at different densities near py. Then one calculates
the virial pressure as a function of the chemical potential [p¥ = p”(u)], using, for instance,
a cubic spline. The derivative of this function with respect to u is then compared with
the density py.

4.2.4.3 Zero separation theorems for the cavity function

The value of the cavity distribution function y(r) (3.4) at a given distance r = R is equal
to the energy required to insert a dimer of two particles separated by a distance R minus
the work required to independently insert two monomers (of infinite dilution) [67]. The
latter quantity is simply twice the chemical potential of the monomer. Hence, for R = 0
we have

Iny(0) = B 2111 — pa(p2 = 0)], (4.52)
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where p, is the partial density of the dimers and fSu; can be evaluated using (4.51). For
Bua(pe = 0) we have to solve the corresponding binary OZ equations for the mixture of
monomers (with p; finite) and infinitely diluted dimers (p, — 0). To this end one first has
to solve the OZ-equation together with the ZSEP closure for a set of parameters |«, (3, ¢]
to get the bulk fluid correlation functions. Then one has to solve the binary OZ equations
[as shown in subsection 4.1.3] with ¢15(r) = 2¢(r), and - in principle - with a different set
of parameters [o/, ', §'] for the closure; in practice we take the same set of parameters as
in the one component case. Once the correlation functions for the dimer are known we
can evaluate the chemical potential p5 using the equation (4.51):

1
5#2,ex(,02 = 0) =M /d?’?“ [§h12(7°)712(7“) + 912(T)B12,ZSEP(T) - 012(7') - ng-
]R?:

In the final step we compare the value of the cavity function as calculated by (4.52) with
the value one gets from the ZSEP closure and the definition of the cavity function (3.4)
together with the definition of the bridge function (4.39), i.e.,

B 21 — p2(p2 = 0)] = h(0) = ¢(0) + Bzser(0).
Summarizing, we outline the iterative procedure to get a solution for the ZSEP:
1. Choose an initial set of parameters [ag, So, Yo
2. Solve the OZ equations for the monomer with this set of parameters.
3. Calculate derivatives with respect to p numerically.
4. Solve the binary OZ equations to get us(ps = 0).

5. Check the three self consistency relations; if these equations are not fulfilled, modify
the set of parameters [, 8,7] and go back to step (2).

Especially step (5) is the most difficult part of this algorithm. It is therefore more conve-
nient to scan, in a first step, the parameter space spanned by the three parameters.

4.2.5 Numerical algorithms

In the the next two subsections we will present the two algorithms to solve IEs numeri-
cally. We have used in this thesis the Broyles algorithm and the Labik-Malijevsky-Vonka
algorithm.

4.2.5.1 Broyles algorithm
The scheme of the Broyles algorithm [68] is as follows:

1. We take an initial value (guess) for, ¢(r), denoted by c°(r).

2. Fourier transform of ¢°(r) to obtain ¢°(k) and use equation (4.43) to get 7°(k).
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3. Fourier transform of 7°(k) to get 7°(r).

4. Use the closure relation (4.42) with 7°(r) to get c'(r):
c'(r) =F"[y°(r), é(r)]
5. If the difference between c'(r) and c°(r) is small enough, we can stop this iteration:

€ = max \°(r) — ¢! (r)| < e¢ — solution found,
T

where g is a given threshold (for example, 1078).

6. If the difference is too large, we have to obtain a new estimate of ¢(r). This is done
by ‘mixing’ ¢'(r) with the first guess, c°(r), to get ¢'(r):

¢ (r) = act(r) + (1 — a)c’(r),

where « is the mixing parameter (o € (0,1]) which has to be chosen to achieve
maximum stability of the algorithm. Instead of simply keeping « fixed one can
modify « during the iterations: we start with o = ag (for example oy = 1) and
decrease « as soon as the convergence gets slower.

7. We restart the iteration with a new %(r) at step (2) until the exit condition is
satisfied.

4.2.5.2 Labik-Malijevsky-Vonka algorithm

The Labik-Malijevsky-Vonka (LMV) algorithm was proposed in [69] is based on two basic
concepts:

e The closure relation c(r) = F*[vy, ¢|(r) is linearized with respect to .

e Using the linearized closure, the OZ equation is solved only in k-space; hence less
time consuming Fourier transforms from r- to k-space and back are needed.

Although during the process of finding the solution of equations (4.41) and (4.42) some
linearized expressions are used, the algorithm is nevertheless solving the exact problem.
In fact, this method can be interpreted as a Newton-Raphson algorithm (see section D.2).
To simplify some of the equations used in this subsection we introduce the following
functions:
Clk) = ke(k), (4.53)
T(k) = ky(k). (4.54)
Using these definitions the two coupled equations (4.41) and (4.42) read as:
Tk) = p C*(k)
k — pC (k)
C(k) = FL,¢)(k), (4.55)

= A[C](k),
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where the first equation defines the operator A [which is the OZ equation using capitalized
functions as defined in (4.53) and (4.54)]. The second equation defines the operator F'*,
which is the operator F* (4.42) formulated for capitalized correlation functions [equations
(4.53) and (4.54)]. Combining these two equations we get

0 =I(k) — A[F*[[N)(k) = WIT](k).

We expand this functional in a Taylor expansion around the starting function I'°(k), and
truncate after the linear term [AT(k") = T'(k") — T%(k')]:

_ 170 d\Il[f‘](k) T (1.t (1.2
0 = ‘I’[P](k)+7dl~‘(k') fzfoAF(k)JrO(AF(k))
wFE)] = _ 4 L® _dACIR AR | 5
dh (k') dC(k")  dU(K) [+ s
= —J(k,K)AT(K'). (4.56)

To get an expression for F'* suitable for this equation, we linearize the closure relation
given by equation (4.42), using the functional derivative in r-space defined as

oy _ OF" [, 9l (r)
PO

¥=9°

The Taylor expansion of ¢(r) (truncated after the linear term) is

c(r) = c"(r) + P°(r) [(r) = °(r)] = ’(r) + P°(r) Ay(r),

in k-space this equation reads as

(k) = (k) +

(2;)3 / &K AT — T ). (4.57)

]R3

By expressing P°(k — k ) as the Fourier transformed of PO(r) we get

o o0

ak) = (k) + %/dk k’M(k')/dr [cos (r|k — K|) — cos ([ + K)] P°(r).

The last equation contains some cosine Fourier transforms (defined in appendix B.1). The
linearized closure in k-space (written with capitalized functions) reads as

o

FTI(k) = Ok) = OOk) + / dk AT (k)3 (k. k'), (4.58)

0
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with Q°(k, k') being equal to

1

@%hﬁd=;[ﬁﬂk—yb—§ﬂk+yﬂzﬂﬁﬂﬂﬁﬁ

o) (4.59)

where the subscript . indicates a cosine Fourier transform. This equation can now be
discretized, thus Q°(k, k') becomes a matrix:

Clki) = CO~ki) +>_ Q°(ks, kj) AT (k). (4.60)

In this equation the upper index N is set to the index ¢ where f’(kz) is sufficiently zero
(the Fourier transformed I'(k) has to decrease fast enough for increasing k, so that I'(r)

is sufficiently described by setting I'(k) equal to zero beyond ky). The final equation for
J(k,k") in (4.56) in its discretized form J(k;, k;) (k — ki, k' — k) is

2k; — pC (k)
[kz' - Pé(ki)]

T (ki k) = 83 — pC (k) 3Q° (ki k), (4.61)

where C(k;) is evaluated by means of equation (4.60). The final step is to invert J(k;, k;)
and use the inverted matrix with (4.55) to get AI'(k;):

W (k) = —zNj T (i, kj) AT (k) (4.62)

§=0

The computational scheme consists of the following steps (consisting of two nested loops;
the two constants ¢; and €, have to be set to appropriate values):

1. Take a first estimate (an initial guess) for °(r). Fourier transform it to get I'°(k).
2. Use the given closure [equation (4.55)] to evaluate C°(r) and C°(k).

3. Calculate Q°(k, k') using equation (4.59).

4. Take a first guess for ['(k) for the inner loop; in most cases one will take I'(k).

(a) From (4.58) calculate the (linearized estimate) C(k).
(b) Insert this in (4.61) and invert the matrix J(k, k') to get J=1(k,k').
(c) Use this inverted matrix to calculate AT (k) from (4.62) and furthermore a new
estimate I'(k) using N N N
(k) + AT (k) — T(k).
(d) If B
max |AT'(k)| < &,

exit the inner loop, else go back to step (4a).
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5. Calculate I'(k) for all k values that were excluded from the inner loop using a direct
iteration.

6. Fourier transform I'(k) to get I'(r).

7. If the solution differs to much from the initial guess, one sets the actual solution to
the initial guess and restarts the iteration at (2):

max [[o(r) = D(r)| > e = Lo(r) = (r) To(k) = ['(k)

The numerical implementation of this algorithm has to be done very carefully. There are
also numerous ways where one can improve the whole algorithm. For instance, the way
a new estimate is calculated in the inner loop can be improved by using some kind of
mixing (like in Broyles algorithm).

4.2.6 Thermodynamic properties

Most of the thermodynamic properties of IEs are calculated as described in section 3.2.
These properties are the internal energy U, pressure p, chemical potential y (via the
derivative of the Helmholtz free energy) and the isothermal compressibility 7.

The Helmholtz free energy is in most IE approaches not directly accessible; it must
hence be calculated via thermodynamic integration [using, for example, equation (3.25)
or (3.26)]. Care has to be taken to avoid the coexistence region.

4.3 Classical density-functional theory

Classical density functional theory (DFT) is a very general approach to describe the
structural and thermodynamic properties of homogenous and inhomogeneous systems; for
an excellent introduction into DFT we refer to [4], Evans in [3] and [70]. The applications
for DFT in liquid state physics are wide ranged: freezing, interface and surface problems
[2], nucleation and others [71].
DFT is a general method of describing equilibrium properties of nonuniform fluids, it is
a reformulation of statistical mechanics in terms of correlation functions and functionals.
The Helmholtz free energy A is expressed as a functional of the inhomogeneous one-
particle density p(7):

A= Alpl. (4.63)

In general, A can be split into an ideal and an excess part:

Alp] = Aialp] + Aezlp],

where A;q4[p] is given by

BAlp] = / d*r p(7) [In(p(7)0*) — 1] + 3N In % (4.64)
]R,3




52 4.3: Classical density-functional theory

A classical system with N particles can be described by the Hamiltonian Hy:
Hy=T+U+V.
It is the sum of the kinetic energy 7" of the N particles

N 2
bi

L 2m’
=1

T =

where p; is the momentum of the 7th particle and m is its mass, the interaction potential
U of the particles with each other (which may or may not be pair-wise additive) being
given by

U: U(’Iz’l,...,T—"N),

where 7; is the position of the 7th particle, and the interaction V' of the particles with an
external potential

The key properties of the functional are:

(i) The external potential V.. (7) is a unique functional of p(7); i.e. it is uniquely
determined by the equilibrium density po(7) (see [4, 72]).

(ii) The grand canonical potential [p|, defined as,

Op] = Alp)+ [ @ pVeud?) = [ 1 007 (4.65)
R’ R’
and A[p| (4.63) are unique functionals of p(7) (see Evans in [3], [2, 4]).

Another important property is the so called variational principle. The grand canonical
potential Q[p] (4.65) is minimized by the equilibrium density po(7):

Qpo] < 2o,

leading to the Euler-Lagrange equations

Qv [p] _o . Al
0p(7) lpmpe " 0P(7) |y

Further, the excess part of A[p] (4.63) is the generating functional of a hierarchy of direct
correlation functions c¢™ (7, ..., 7,;[p]), defined via the nth functional derivate of Ay |[p]

—

with respect to p(7)

+V;3wt(7—")_,uzo

6" Aeg [ p]
5p() - - 0p(n)
However, for a general system no exact expressions for the functionals are available (except

for one-dimensional systems), hence approximations for these functionals are required. For
an overview we refer to [3].
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4.3.1 WDA and MWDA

A very common approximation for the density functional is the weighted density approx-
imation (WDA) [73, 74] and its simplified version, the modified WDA (MWDA) [12]. In
the WDA the DF is given by

AWDAp] = / &r o7 folp(7)), (4.67)
R3

where fy denotes the excess free energy per particle of a uniform liquid and p(7) is the
“weighted density”, defined as a weighted average of the true one-particle density p(7)
with respect to a weight function w(r; p), according to

P = [@ o= 7557, (4.65)

By this prescription the inhomogeneous system is mapped locally on a fluid of density
p(7); w(r; p) is determined to ensure that the approximation becomes exact in the limit
of a uniform system [p(7) — po, where py is the density of the uniform system]:

(i) The weight function must satisfy the following normalization condition:
/ &' w(F— 7)) = 1. (4.69)
]R3

(ii) A further specification of w(r; p) follows from requiring that in the homogenous limit
the two-particle direct correlation function [see equation (4.66)] is reproduced via

the second functional derivative of A..[p] with respect to p(7). Explicitly, AV P4 is
required to satisfy the relation
52AWDA[p]
_ lim 4.70
D= == i [ ] o

where c((f) (77— 17" po) is the two particle direct correlation function of the uniform

system which, in general, is well known from standard liquid state theory. By
inserting equation (4.67) into (4.70) one obtains a differential equation in k-space
for w [73].

However, in general, the weight function w(r;p) is not unique and the computational
effort for the WDA is substantial.

Denton and Ashcroft [75] formulated a simplified version of the WDA| called the MWDA.
Whereas the WDA is an approximation for the quantity f(7;[p]), interpreted as the local
excess free energy per particle, the new formulation focuses instead directly upon the
global excess free energy per particle Ag;[p]/N. Now Ag;[p]/N is position independent,
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and hence the MWDA must necessarily involve a position-independent weighted density
p (p represents the density of a liquid onto which the solid is mapped globally). So in the
MWDA one assumes for A ¢,[p]

As ex [ps] Al ex (ﬁ)
2 = 4.71
= =) (471)

p is now defined by

]. ~ A
p= o [@ro®) [0 ol )37~ 757 (1.72)
R’ R’
where we assign the symbol w to the weight function of the MWDA. From a comparison
of equation (4.68) and (4.72) it is obvious that p can be interpreted as an additionally
averaged density [over the weighted density p(7)].

To ensure that the MWDA reproduces in the limit p(7) — po the properties of the uniform
system, w must also be normalized [see equation (4.69)]:

/d?’r' w(r—7"5p) =1,
]R,3
and AMWDA must satisfy an equation similar to (4.70). This results in the following
expression for w:

L 1 L @ n = 1 & Ayel(p)
(=7l ) = =y |50 7 ) + g O]
2d;dp l,j\a;(p) /B Vv dp2 N p=p0
In k space this equation reads
- 1 1 ¢ d? Al,ew(p)
w(k; po) = T d Ao |:EC((J )(/f; po) + 5(k)p0ﬁ N . (4.73)
QET P p=po

The d-function ensures that, for £ = 0, the compressibility sum rule (3.34) is fulfilled. For
k # 0 the Fourier transform of w(k; py) is proportional to Ef)?)(k; po). Equations (4.71),
(4.72) and (4.73) constitutes the MWDA.

We use the MWDA to explain how the solid state can be described in the DF formalism.
The following parameterization for p(7) [sum over Gaussian peaks localized at the lattice
sites, see also equation (C.1)]:

o) = (°F) %e““) , (4.74)

where the vectors {ﬁ} constitute the lattice G, is used. If the localization parameter « is
big enough (a > 50), the Gaussian peaks have a negligible overlap.
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At first, we keep « fixed and rewrite A;4[p], equation (4.64), which becomes

A:‘d ﬁAzd ﬁAld(a) — /d37’ <ai> e—ar2 |:§ In (ﬂ) —ar?— 1:| — §]n T +C
™ 2 2
3

N N T

R
3 ao? 5 3

= |-In|l— ) —=—=InT*
() -3-gurse

where the constant C' collects all the parameters which are not necessary for the deter-
mination of the phase diagram. Because the excess free energy of the liquid fulfills the
compressibility equation (3.34), using equation (4.72) and (4.73) one gets the following
implicit equation for the weighted density p of the liquid (the subscript o for the liquid
direct correlation function has been omitted) in k-space:

P = ps 2 A* Z e 2ack D)7, (4.75)

e (P) (70

where p, is the density of the solid and ¢(k; p) is the Fourier transform of the direct
correlation function. The summation in this equation runs over all nonzero vectors of the
reciprocal lattice of G. Equation (4.75) has to be solved iteratively. If two solutions are
found [the solutions are the intersections of a straight line (left side) and a convex shaped
curve (right side)|, one takes the lower p (because only the lower p approaches py as «
tends to 0).

The drawback of this equation is that, for high solid densities ps, one has to sum over a
large number of reciprocal lattice vectors to achieve convergence (high solid densities are
leading to sharp density profiles and hence large localization parameters o). To avoid this
(time consuming) summation, equation (4.75) can be transformed to r-space:

- [1 e

"AZ‘ew(A)
3 3./ _ I.A‘ 4
Sy | O A e )
R’ R’

For our parameterization of the density, the double integral in (4.76) simplifies to (see
appendix C.2):

QN/d?’ /d%'pf)p Jel|7— 7:7) =
R} R

x 00

2& /drre 57 p)+ = nz/drrcr p) le” §r—R:)’ _ p=§(r+R:)°
T

()

w»—n
:U

Care has to be taken because the peaks in this parameterization can become very sharp
for high « values. A simple Simpson algorithm is hardly sufficient unless the direct
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correlation function c(r) is discretized on an extremely fine mesh (Ar ~ 107%). In this
thesis, we have used a rather time-consuming method to calculate this integral: first, the
discretized direct correlation function ¢(r) is interpolated by a set of cubic splines; with
this interpolation the integral can be integrated analytically.

In the last step, the MWDA Helmholtz free energy is minimized with respect to the
localization parameter «, to find the equilibrium density:

A(ps;a) = Aid(psa )+Al ew( (psa )) (4.77)

4.3.2 cMWDA

One problem of the MWDA is that equation (4.75) does not necessarily have a solution in
the density range, where a fluid exists (0 < p < pmaz, Where ppq, is typically 0.90%—1.103).
This can be the case if the Helmholtz excess free energy of the fluid is a positive quantity,
while the Helmholtz excess free energy of the solid is a negative quantity, for all the values
of p and T that are of interest. Therefore, the mapping (4.71) cannot always be made.
One reason for the above problems can be the attractive part of the interaction potential.
To overcome this problem, Likos and Senatore [13] introduced the so called correlation
MWDA (cMWDA).

One basic requirement of the cMWDA is, that one has to able to split the potential in
a reference and a perturbation part, the latter should contain the attractive contribution
of the interaction potential:

o(r) = ér(r) + ép(r),

where ¢,(r) is the reference and ¢,(r) is the perturbation part (this splitting is very
similar to the one used for PTs). At first we deal with the perturbation part in a high
temperature approximation (HTA) manner, defining

Auralp) = 5 [ [ o007 )6,(7~ 7). (4.78)
R’ R’
It should be noted that the authors of [13] called this term the Hartree contribution.
Thus, we are led to a separation of the Helmholtz free energy A|[p] of the form

A[IO] = Azd[p] + Ar,ez[p] + AHTA[,O]a (479)

which defines the reference excess free energy A, ..[p| (in [13], this term was called the
‘correlation’ free energy). For the liquid phase this HTA-contribution simplifies to
o0
1
Al,HTA(Pl) = §Np24’ﬂ'/d7’ 7"2¢p(7’).
0

For A, ., the MWDA mapping is used

As r ex[ps] Al r,ex (ﬁ)
[L) — L) 4
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and we get the following relation between the direct correlation function and the free

energy (4.66)

(SQAs,r,ew[p]

1 > = = =1
e =——c(|F=7"|;p0) — dp(|7—7"|),
i P G UL R G

and define
¢, (r; p) = c(r; p) + Bdp(r).

For the liquid the compressibility equation (3.34) is fulfilled:

d? ~
d—IOQAZ—r,ez(p) = _CT(k =0; p)

The excess free energy of the liquid can simply be calculated by

Al,r,ew(p) = Al,ez(p) - Al,HTA(p)‘

It should be noted that equations (4.75) and (4.76) are also valid for the cMWDA if one
replaces all correlation functions with the reduced correlation functions and the Helmholtz
excess free energies with the perturbation excess free energies. The Helmholtz free energy

curve of the solid at a given temperature is obtained as follows:

e (Calculate the properties of the liquid phase of the given system at a given temper-

ature for a certain range of densities [0, pnaz]-

e Replace the direct correlation functions ({c(p),c(p)} — {cp(p),¢p(p)}) and the

Helmholtz free energy ({Aiez(p)} — {Aip.es(p)} of the liquid.
e For every solid density ps perform the following steps:

— Start with a first guess for the localization parameter «.

— Perform the mapping (4.80) to get the weighted density p.

— Calculate the total Helmholtz free energy for the solid defined by equation

(4.79) and (4.78).

— Reiterate the inner loop until the minimum of A,[ps; a] with respect to a has

been found:

A (Ps) = moén {AS,id(ps§ a) + Al,p,ew(//o\(ps’a a)) + AS,HTA(pS)}

The resulting curve can be used in conjunction with the Helmholtz free energy curve of

the liquid to determine the phase transitions at the given temperature.
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4.3.3 Fundamental measure theory

A geometrically based fundamental measure free energy DF for hard spheres was first
proposed by Rosenfeld [14]. The basic idea of the fundamental measure theory (FMT) is
that these functionals can be constructed from fundamental geometrical properties of the
particles. For the fluid phase of hard spheres, the FMT as applied in [14] produces the
PY solution for the correlation functions and the Helmholtz free energy [compressibility
route, see equation (4.29)].

The basic idea for a given system is to interpolate between the ‘ideal-liquid’ [76], high
density limit where the pair correlation function is dominated by convolutions of single-
particle geometries, i.e., overlap volume and overlap surface area, and the limit of low
density where it is given by the pair exclusion volume. The key for the realization of
this idea is the convolution decomposition of the excluded volume for a pair of convex
hard bodies in terms of characteristic functions for the geometry of the two individual
bodies. On the basis of a unique convolution decomposition for hard spheres, Rosenfeld
[14] derived a fundamental measure free energy functional for a hard sphere mixture.
It should be noted that for hard spheres the Mayer function is closely related to the
geometric properties of the particles.

An important characteristic feature of present day FMT DFTs is that they give the
correct dimensional crossover from three dimensions (3D) to lower ones. One may also
start from the 0D case and construct the 3D functionals systematically [77, 78] using the
idea of ‘functional interpolation’ between dimensions [78]. Thus the FMT generates the
thermodynamic properties (free energy) from the very basic situation of a cavity that has
the size of one particle; here, for hard spheres the occupation number is zero or 1, and
one can calculate the excess free energy exactly [79].

4.3.3.1 Weight functions

FMT belongs to the weighted density DFTs. The weight functions are obtained from the
convolution decomposition of the Mayer function. For hard spheres, the weight functions
are characteristic functions of the geometry of the particles and can hence be obtained
by the convolution decomposition of the excluded volume of a pair of particles. This
excluded volume is equal to the Mayer function f(r) (for hard spheres); so the weight
functions are related to the f(r) by

1
_§f(7") = wo ® W3 + W1 @ Wy — Wy1 @ Wy, (4.81)

where the ® denotes a three dimensional convolution product.

The set of weight functions is not unique. Here we use the following notation: we have
three types of weight functions (scalar, vector and tensor weight functions), all weight
functions can be constructed from the scalar weight function ws(r).

The scalar weight functions are defined by:

wa(r) = _3@(;,:7“) (4.82)
wi(r) = wy(r)—— (4.83)
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wo(r) = wl(r);, (4.84)
the vector weight functions are given by:
Bpal7) = wQ(r)g (4.85)
T = wr (7“)?, (4.86)
and the tensor weight function is defined as
T

W) = (),

where 77" denotes a dyadic product. One can also define a traceless tensor weight function
— R |

W =) (5 - 3 ). (4.587)

where 1 denotes the unity matrix in IR>. One can easily show that for a hard sphere
system with diameter o, ws3(r) is given by

4.3.3.2 Weighted densities

The Helmholtz excess free energy density functional for FMTs is calculated using

% _ / &r [{n}], (4.88)
]R3

where the n(7) are the (scalar, vector and tensor) weighted densities

no () = /d3r’p(F')wa(F—F') . a=0,1,2,3 (4.89)
]R3

() = /d?»r'p(f")wm(f—w) L i=1,2 (4.90)
]R3

7—(7;:) — /d3TIp(FI)W(F—’FI) (491)
]R3
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® is the Helmholtz excess-free energy density and a function of the weighted densities of
the particles, which are dimensional quantities with the dimensions

[ng] = (volume) @33+ [7,.] = (volume)®=/3 ; [T] = (volume)~'/3,

and provide a functional basis set {¢;} for expanding the energy density ® via

6

O =) Ai(ns)e; (4.92)

1=0

used in equation (4.88). This functional set is found to be (the dot denotes the scalar
product)

{SOi} = {no , NNy, Tyt - Ty ng , N2 (ﬁw'ﬁvz) y Ty - T - Tlyo ngtTT‘q’fﬂ} (4-93)

For the HS system, the coefficients A;(n3) as functions of the dimensionless weighted
density n3 are determined from the scaled particle differential equation (see [14])

)

= 4.94

0o
) ——
+za:n ana “+ Ny

where the constants of integration can be fixed by known limits of thermodynamic prop-
erties (equation of state). The expression for ® as derived in [14, 80] consists of three
parts (see also subsection 4.3.4),

O[{na}t] = &1 + 2 + &3,

where

(Dl = Ty In (]_ - n3) (495)

NNy — Tyt - Tiye
d, = 4.96
2 1-— ns ( )

n3 — 3ng (Mg - My

g = —=2 2 (T2 22). (4.97)

247 (]. — TL3)

If one also incorporates the tensor weight function 7 the contribution ®3 takes the form
[78]

Ty o T Ty — Ngllyg - Ty — trT? + notrT?

D, 5
21 (1 — ng)

, (4.98)

where tr.A denotes the Trace of the matrix .A. One can replace 7 by T, leading to
%n% — Nofiyg - Ty + % g = T * Thyg — tl"7_-3]

87 (1 —ng)”

(I)3:

This free energy density was derived for the HS system; its functional form has been used
also for other systems: one simply has to insert the weighted densities for the correspond-
ing potential.
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4.3.4 Evaluation of &

Using the ansatz (4.92) together with the scaled particle differential equation (4.94) leads
to the following differential equations for the coefficients A;(n3):

1 aA()(’I’Lg)
T M =
1-— g 8n3 94 ( )
n
ning : Al(ng) = (1 — 713) 61 3
94 (1s)
ﬁvl . ﬁvz B Az(ng) = (1 — ’I’Lg) 82 3
9 A5 (1ns)
n3 i 243(n3) = (1-—n3) 83 2
044 (ns)
Ny (Fafle) @ 244(ng) = (1—ny) %
ns
These differential equations have the following unique solutions:
A()(?’Lg) = —1In (1 - 7’2,3)
1 1
A1(n3) =G 1— ng ) A2(n3) = 021 .
1 1
A3(n3) =C3-— 5 3 A4(n3) =C4— -
(1—ns)” (1—n)*

In the uniform HS liquid the excess free energy for hard spheres is hence given by [see
also equation (4.102)]:

. 3n 36mn?

To determine the integration constants ¢; and ¢3 one compares the pressure (by taking the
derivative of the excess free energy defined by these coefficients) with the virial expansion
for the HS pressure. Using

dAZ, (1)

* (n) = n—e= 2 4.
Pex(m) =1n i (4.99)

we obtain the Taylor expansion of pf,(n) for small 7:

p:z(n) = (1 + 301) n—+ (1 + 601 + 727TC3) 7']2 + (1 + 961 + 2167’(’63) 7’]3
+ (1 + 12¢; + 432me3) n* + O(n°).

With two parameters (¢; and ¢3) one can only reach equivalence with a given equation of
state up to O(n?). For example, the ‘classical’ Rosenfeld solution for ® reassembles the
third virial coefficient for hard spheres [6]:

p:w;hs(n) = 47’ + 107’2 + 0(773)

Hence, the result for ¢; and c3 is

a=1 3 c3
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For the constants ¢, and c4, one has to take the quasi zero-dimensional limit of & =
&) + &y + B3, as shown in [79]. In this limit, the contributions of both &, and &3 have
to vanish. For ®, to vanish, co and ¢, have to fulfill the following relations (see [79]):

Co = —(C

cs = —3c3.

4.3.4.1 Uniform case

We will now check the uniform limit of the free energy density ®. In this limit, equation
(4.89) for the scalar weight functions becomes the defining relation for &;

n; = p/d37“ we (7) = pw;(k = 0) = p&;. (4.100)
R?)
The result of equation (4.90) evaluates to zero for the vector weight-functions (symmetric)
il = 0.

For the tensor weight function (4.91) we obtain:

Wi

/d37° wy(7) = g]lfz =2y

1

= 0

T ’ 3
]R,3

o = O
= o O

The powers of 7 and their traces become
; n2\* ; N2\’ :
=) er=3(%) 5 i=123
T ( 3 ) 7" 3 i

With these results we can find for the excess free energy in the uniform limit:

q)l = —Ny In (1 — n3)
@2 _ VANLD)
1-— ns
_ n
T 24r (1—ny)?
hence
B B n1n2 n%
— Ay = —A.(p) = —noln (1l —n3) + + . 4.101
V [IO] p(,,-,—):p V (p) 0 ( 3) 1 — N3 247]' (1 - 7’L3)2 ( )

If we insert the uniform limits of the scalar weight functions for the hard sphere system
with diameter o (see equation (4.100), & = %03, & = mo?, & = 30, & = 1) the free
energy reads as

A ===+ 5 [ s -1, (4.102)
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where 1 = &3 is the packing fraction. This expression is the compressibility excess free
energy of the PY equation for hard spheres (4.29).

The direct correlation function ¢(r) can be calculated from the Helmholtz excess free
energy using equation (4.66). For the FMT the two particle direct correlation function
can be expressed as a sum over convolutions of weight functions:

2
M /d3 IZ ¢a1,a2wa1 7:» 7 )®wa2(7—,» 7—,»/)’

c(r1,75) =
(17 2) 5[01(7,1 6p2 TZ =

where the position independent partlal derivatives ¢q, q, are defined as
5P

0Ng, 0N,

¢a1,az =

{na}={na(2)}
For the three contributions (4.95), (4.96) and (4.98) to the excess free energy given in
(4.101) the partial derivatives in the uniform case are:

e O, (4.95) :
0P, 0%, 1
Ongons - ons0ong - 1= n3
P, o
onzdns (1—77,3)2
e Oy (4.96) :
0%®, 0*®, 0%®, 0%, 1
Onidny  Onadny  OfyOfyy  OfeeOit 1 —ng
0%d, B 0% d, B N2
Ondns  Onzdny (1 —ns)
0% d, 0% d, n
8n28n3 - 877,36712 - (1 — n3)2
PP, NNy
onsdng (1 —ng3)

o ®j (4.98) rewritten as

— — — — 2
Tiva T Tiva — NaflyaTiy + 5M5

3

®; = 167r (1 - n3)2
PP 7P Ny
Onadny OOy Ar (1 — ng)?
I’y PPy na
Onydns  On3dny 87 (1 —ng3)
I’y n3
On3dns  4r (1 —ny)
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Summarizing, the direct correlation function takes the form

—c(r)

1

— (w0®w3+w3®wo+w1®w2+w2®w1 1171)1®1E1}2_w112®w1)1)(7')
~|—[ i ](w ® w3 + w3 @ wa) ()
1—77,32 87T(1—n3)2 2 ° ° 2
3
VIARLD) Ny
+ w3 Q@ ws) (7
|:1—’I’L:; (1—n3)3 47r(1—n3)4}( s 3)()

1
(’LU1 R ws + w3z @ wl) (7") + — (w2 Q@ wy — va 02y va) (T)

m[ 4

Using the symmetry relation
Wo Q W = Wg Q Wq

and the following partial derivatives of the free excess energy in the uniform limit (4.101)

0? Aee(p) 1

A o — X0 = T —

Ongons 1—mns

02 Az (p) Ny

—— =X1 = 0

On10ng (1 —n3)

0%A., n n2

angan:; (1 — 7’?,3) 81 (1 — 7’L3)

0%A,, 3

S ) _\, = o Y, T SR
n3ons (1 —n3) (1 —-mn3)" 47 (1 —n3)

we get finally

—c(r) = 2{X2 (we ® w3) (1) + x1 [(wl ® ws) (r) + 8% (wy ® wa — Wyy ® Wyy) (T)

+X0 (w() ® W3 -+ w1 ® Wo — U_jvl ® va) (T)} —+ X3 (w3 ® w3) (7’) (4103)

For hard spheres this direct correlation function is equal to the direct correlation function
one gets from the PY solution [see also section 4.1.6].

4.3.4.2 Nonuniform case

The first step towards the Helmholtz free energy in the nonuniform ordered solid state is
the evaluation of the weighted densities for the position dependent one particle density. In
this case the density of the solid is parameterized via equation (C.1). The superposition
of the one particle density of equation (C.1) holds also for the weighted density. The
weighted densities, defined as convolutions [see equations (4.89), (4.90) and (4.91)] in r-
space, become products in k-space.

After the weighted densities are calculated, one has to evaluate equation (4.88) for a
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given lattice. A simple and straightforward implementation for the fcc and bece lattice is
to discretize the simple cubic cell' using an equidistant three-dimensional mesh. For each
point of this mesh one has to calculate the free energy density ®[{n(7)}] by summing over
all neighbors particles which contribute to the free energy density at this mesh point. This
part of the evaluation can be sped up by using the various symmetry relations that hold
for the chosen lattice. In figure 4.1 and 4.2 the smallest simplices (asymmetric unit, see

Figure 4.1: Simple cubic cell for the sc lattice; shown inside the cell is a smallest simplex
(asymmetric unit) which was considered in the integrations; all other regions of the cell
are obtained via mirroring from this simplex. Left side: cubic cell, right side: simple cubic
cell.

[81]) are shown for the sc (simple cubic), fcc (face centered cubic) and bee (body centered
cubic) lattice. For an overview of the lattices used in this thesis we refer to appendix C.1.
Those simplices are enclosing the volume for which one has to calculate the free energy
density. The rest of the volume can be filled with mirrored versions of this simplex. The
Helmholtz free energy is then calculated using, for instance, a three dimensional Simpson
rule, integrating over the whole simple cubic cell.

It should be noted that the evaluation of equation (4.88) represents the most time-
consuming step of the evaluation of the Helmholtz free energy. The execution time of the
algorithm scales with the third power of the number of mesh points in one dimension:

t o< N3.

®(7) can be a rapidly varying function of 7, so one has to choose the mesh very carefully.
Most FMT calculations in this thesis were done using a cubic mesh with N = 101 mesh
points along one side of the simple cube, leading to a total number of approximately
1000000 mesh points. Using the asymmetric unit as described above reduces this number
for the fcc lattice to =~ 43000.

LThe simple cubic cell consists of one eighth of the cubic cell.
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Figure 4.2: Simple cubic cell for the fcc and bec lattice, shown inside the cell is a smallest
simplex (asymmetric unit) which has to be calculated; all other regions of the cell can
be mirrored from this simplex. Left side: fcc lattice cell, the two transparent triangles
spanning the whole cell represent two symmetry planes. Right side: bcc lattice.

4.3.5 Roth’s approach

It is clear that, using the Taylor expansion approach described in subsection 4.3.4, one
is unable to recover a given equation of state exactly. Roth has introduced a method,
which overcomes this deficiency. His method has the advantage that one can apply it to
a larger class of equations of state.

The idea of his method is as follows: the excess free energy density ® is constructed using
the same principles as the original Rosenfeld approach. The parameter c¢; is set to one,
whereas the parameter c3 is now a function of 7: ¢3(n) depends explicitly on the equation
Pk, of state one wants to describe. c3(n) is calculated directly from the excess free energy
relation for the considered equation of state:

36mn?

Aia(n) = = (1) ) = A1) = €5(0) = ()

Using this technique one can, for example, easily recover the CS equation of state [equation
(4.30) and (4.31)] by setting c3(n) equal to

n+(1-n)°In(l-n)
36mn? ’

c3(n) =

leading to a classic (i.e., missing the tensor contribution) expression for ®3, which reads
as:

[+ (1 —n)’In(1—n)] [n3 — 3ny (7 - ﬁvz)].

b, =
’ 3672 (1 —ng)®

(4.104)
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4.3.6 Soft fundamental measure theory

Whereas the FMT was used for hard core interactions, the soft fundamental measure
theory (SFMT) deals with soft interactions. The SFMT is, like the FMT, built on well-
defined limiting cases, where the behavior of the exact free energy functional is known.
These cases are the virial expansion of the pressure and the 0D limit of the free energy.

4.3.6.1 Deconvolution equation

The deconvolution equation (4.81) is reformulated using the defining ‘hierarchy’ (4.82-
4.84) of the scalar weight functions to

—%f(r) = % —wi(;") ® ws(r) + wg;r) ® wh(r) — “’:';(;“)f@ 7 IT(T) (4.105)

where the prime denotes differentiation with respect to r. This equation, an integro-
differential equation of first order in the unknown function ws(r), has to be solved for w3(r)
using a given Mayer function f(r) [and hence a pair potential ¢(r)]. A direct numerical
solution of this equation via iterative algorithms turns out to be unstable and hence
impossible (small changes for ws(r) become completely washed out under the convolution
operation).

However, it is possible to construct an explicit solution. The Mayer function and the
weight function ws(r) obey the simple relation derived by Schmidt [15]

O4r) _ i :
oy —/dr wa (rwe(r — 1), (4.106)

where we can formally set wy(r < 0) = 0 to simplify the limits of the integration. This
equation reads in reciprocal space [for the definition of the Fourier transforms see equations
(B.3) and (B.4)]:

ikf(k) = (k) — Tolk) = +\/ikF (k). (4.107)
However, numerically it is more stable to Fourier transform the derivative of the Mayer

function instead of the doing the derivative in k£ space; further, one has to be careful of
the singularities in f'(r). We find

N
Fk) = f’,(‘;) _ /dr of(r) ok — f?(;) +Zvi€ik”,
i=1

where fg(r) represents the smooth part of the Mayer function and the r; (with i =
1,...,N) are the positions where f(r) has a discontinuity of height v;. It should be noted
that f(r) = 0 for » < 0 and hence the lower integral bound is zero [in contrast to equation
(B.3)]. The Fourier transformed derivative of the Mayer function, F(k), is defined on
k € (—o0,00) with the following symmetry relations:

RIF(=R)] =R[FK)] ; S[F(K)]=-S[Fk), (4.108)
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where & and & denote the real and imaginary part of the argument. Now we have to take

the root in (4.107)
wo(k) = £/ F(k)

for all k. It should be noted that one has to be careful with the sign in this equation.
It may change depending on the value of k. As a physically meaningful prescription we
choose a continuous and differentiable function in & space.

In this thesis we choose the following algorithm to implement the discretized version of
equation (4.107):

1. Take k = 0 (index j = 0) as the starting point.

2. For the actual index j, calculate the square roots R7 = Rl + zRf of the complex
value F(k;). This root is not unique, in fact, both R = R? and R} = —R’ are
possible solutions. For k£ = 0 we take the positive root.

3. Compare these two roots with the estimated result R"” calculated using the two
previous roots R7=2 and R’~! using, for example, a simple linear extrapolation;
whereas for 7 = 1 one can use R'' = R°.

4. Take the root with the smaller difference to the predicted value as the result,
Wy (k) = RY.
5. Go to the next index j and continue at step (2).
The resulting complex valued function Wh(k) = @(k) + il (k) consists of a real and an

imaginary part for all k. Using equation (B.4) and the symmetry relations (4.108) [which
also apply to Ws(k)] for the retransformation we get for the real part:

wi(r) = % {/dk wa (k) cos (kr) +/dk ws (k) sin (kr)} ,

0 0

whereas the imaginary part evaluates to zero. This equation can be calculated using the
one dimensional cosine (B.5) and sine (B.6) Fourier transforms.

The weight function ws(r) can be calculated from wy(r) via a simple integration with
respect to 7 [see also equation (4.82)]. One has to make sure that ws(r) fulfills the
boundary condition ws(r — oo) = 0. If the potential (and also the Mayer function) of
the system has a core, w3(r) has a discontinuity at » = §. This discontinuity is hard
to reproduce numerically, so in this case one can use a ‘second boundary condition’ by
requesting that ws(r < §) = 1.

For some potentials the deconvolution equation (4.81) is analytically solvable. Solutions
of the SFMT for various potentials will be presented in the next subsections. One should
note that the solution of the SFMT for the hard sphere potential yields the well known
result we(r) = 0 (r — o/r) and w3(r) = © (6/2 — r), i.e., the weight functions as proposed
by Rosenfeld.
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4.3.6.2 SFMT for the error function potential

For the ERF potential as presented in section 2.2.8 there exists an analytical solution for
ws(r) under the restriction that f(r = 0) = —1 (valid for ¢ < 0.3). The derivative of the

Mayer function is equal to
of(r) 1 [ (7“ — 0) ?
= ——exp |—
or a\/T a

and after doing some algebra (the self convolution of a Gaussian function is again a
Gaussian function with shifted maximum and increased width) we get for wy(r)

I

Figure 4.3: Mayer function f(r) and weight functions ws(r) and ws(r) for SEMT for the

error function potential with ¢ = 0.1 and a = 0.3.
8 ' T ' |

— a=0.3,f(n)
---a=0.3, w,(n)
..... a=0.3, w,(r)

(r) 1 wilr) [ wy(r)
-

15

and for ws(r)

ws(r) = % [1 —erf (T%%>] :

In figure 4.3, the weight functions ws(r) and ws(r) are shown together with the Mayer
function f(r) for @ = 0.1 and @ = 0.3. Obviously, softer potentials are leading to a
broadening in the weight functions. The according pair distribution functions g(r) for
these values of a are shown in figures 4.4 (¢ = 0.1) and 4.5 (@ = 0.3). For a = 0.1, the
SFMT solution without the test particle limit (TPL) applied (the TPL is explained in
section 4.3.7) yields a result where for » < 0.5 the core condition is violated; hence g(r)
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Figure 4.4: Pair distribution functions g(r) for the error-function fluid with ¢ = 0.1 at
n = 0.3, the analytical SEFMT solution presented in this subsection (with and without
the TPL as discussed in the next session) and the result of the RY approximation (o ~

0.38081).
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Figure 4.5: Pair distribution functions g(r) for the error-function fluid with a = 0.3 at

n = 0.3, same theories as in figure 4.4.
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is in fact unusable. By the employment of the TPL, the result is consistent with the core
region. For such small values of a, the results one gets using the SFMT together with the
TPL are of comparable quality as the solutions from the RY approximation. For a = 0.3,
the pair distribution function one gets from the SFMT is unphysical. The application
of the TPL repairs the core violation of the SFMT, but obviously the result is still very
different from the RY solution.

Summarizing, we can say that the analytical solution of the SFMT for the error function
potential yields satisfactory results when the ‘softness’ of the core is small (a < 0.1) and
if the TPL is used to correct the unphysical behavior of g(r) inside the core region.

4.3.6.3 SFMT for the double square well potential

The SEMT for the double square well potential (parameters see subsection 2.2.2.1) has an
analytical solution, if the ratios between £; and €, and \; and A; fulfill certain conditions.

Figure 4.6: Mayer function f(r) and weight function ws(r) for SFMT for the double

square-well /square-shoulder potential. System I: \; = 1.2, Ay = 1.4, Be; = 0.810930 and

Bes = —0.28769. System II: A\ = 1.3, Ay = 1.6, fe; = —2.7726 and [e, = —0.82668.
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To derive these conditions we start with the derivative of the Mayer function:

dfd—(;) =e70(r — o) + (¢ = #7) 6(r — oX) + (1= €72) 6(r — o)),

This function can be deconvoluted numerically. We present here an elegant solution of
equation (4.105). The basic idea is that the self convolution of a function with two J-
singularities leads to a function with three delta peaks. So we make the following ansatz
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Figure 4.7: Pair distribution functions g(r) for a double square-shoulder fluid with A\; =
1.1, \a = 1.2 at n = 0.3, T* = 0.9788 (left shoulder), &, = 0.1707 for the analytical SFMT
solution presented in this subsection (with and without the TPL as discussed in the next

session), ORPA and EXP. The inset shows the region around r = o.
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for wo(r) with the two parameters v; and wvy:
o
wo(r) = v16(r — 5) + (1 —v1) 8(r — va).

Inserting ws(r) into (4.106) leads to this two equations for wvy:

1 A
1)220(/\1—5) and U2:<752,

so the condition for A\; and A, is:
2A1 =1 =+ )\2.

For v; one gets three equations:

efr=02 ;PP =2 (1—v) and 1-—e€f2=(1—-v)%,

hence fBe; and ey are connected via the following condition:

veber =1+ 4/1 — efer;




4.83: Classical density-functional theory 73

Figure 4.8: Static structure factor S(k) for a double square-shoulder fluid with A; = 1.1,
Ao = 1.2 at n = 0.3, T* = 0.9788 (left shoulder), &, = 0.1707 for the analytical SEMT
solution presented in this subsection (with and without the TPL as discussed in the next
session) and ORPA.
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this equation has, beside the simple solution £; = €5 = 0, only a meaningfull solution if
[Beo is less than zero. In other words the second potential step must be a shoulder.
Although the field of application for this special solution of the SFMT is very limited, it
is still interesting to see how good the results of the SFMT for this potential are when
compared with other theories described in this thesis. In figure 4.7 and 4.9, We compare
the SFMT (with and without test particle limit applied) to the ORPA and the EXP
results for two double square-shoulder potentials. From these figures, it is clear that the
(pure) SFMT yields unphysical results (violation of the core condition) for this type of
potentials. By applying the TPL to the SFMT results, the quality improves significantly.
For narrow perturbations (figure 4.9), the solution of the SFMT/TPL is nearly as good as
the EXP results. A problem both the SFMT and SFMT/TPL results are suffering from,
is that both theories are predicting long-range oscillations with an amplitude that is too
high when compared with the EXP; hence the first peak of the static structure factor of
the SFMT and SFMT/TPL is also too high (figure 4.8 shows the static structure factor
S(k) for figure 4.7).

Summarizing, we can say that the analytic solution of the SFMT for this potential type
yields only satisfactory results if the perturbation of the hard-core behavior is small and
the TPL is applied to the SFMT results. However, the employment of the TPL is very
time consuming and convergence is hard to achieve if the perturbation part of the potential
is too big.
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Figure 4.9: Pair distribution functions g(r) for a double square-shoulder fluid with A; =
1.05, Ao = 1.1 at n = 0.3, T* = 0.5457 (left shoulder), &, = 0.2435 for the analytical
SFMT solution presented in this subsection (with and without the test particle limit as
discussed in the next session), ORPA and EXP. The inset shows the region around the
first and the second shoulder.
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4.3.6.4 SFMT for the square-well/square-shoulder potential

For the square-well /square-shoulder potential a semi analytical solution of the SEMT can
be derived. For this solution, no restrictions are imposed on the potential. However, it
should be noted that the solution (fluid structure and thermodynamic properties) is not
always physical.
We start from the derivative of the Mayer function:

af(r

% =e5(r—o)+ (1—€e*)d(r—Ao). (4.109)

,

From the form of this function it is clear that it is not possible to find a simple solution like

for the double square-well potential. We start with a general ansatz for wq(r) consisting
of an infinite number of delta peaks:

wa (1) :Zpié (r—u=z;) with x <z <.... (4.110)

=1
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Figure 4.10: Mayer function f(r) and SFMT weight function ws(r) for a square well
potential, A = 1.1 and 1.3, S = 1.0 and 1.5.
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We also impose that the sequence of p; tend towards zero for large i. The self convolution
of this ansatz leads to

af(T) zzoo:pi(s (T‘ — 2331') —+ Qipipjé (T — T — xj)' (4'111)

J>i

We focus on the positions z; of the delta peaks by comparing equations (4.109) and
(4.111). For the first two delta peaks at z; and x5 one finds

1 1
.’13120'5 ) .’132:0'|:§+)\—1:|
Similarly, we find
1
.’1'3:2372—.’13120' |:§+2()\—1):| .

The same arguments apply to the next resulting peak at x5 + x5 and so on. The peaks of
wy(r) are hence positioned at

xiza[%—i—(i—l)()\—l)].

The number of source peaks [stemming from ws(r)] contributing to the resulting desti-
nation peaks [of %Sf)] is equal to the index of the source peak (the numbers inside the
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Figure 4.11: Mayer function f(r) and weight function ws(r) for SEFMT for a square
shoulder potential, A = 1.1 and 1.3, e = —0.5 and —0.7.
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parentheses are equal to the indices of the source peaks which have to be convoluted):
l.(at o) — (1,1)
2.(at o) — (1,2)+(2,1)
3. = (1,3)+(2,2)+(3,1)
4. — (1,4)+(2,3) +(3,2) + (4,1).
It should be noted that all peaks with index higher than two have to vanish, so an
increasing number of contributing source peaks is necessary to make the destination peak

vanish. The evaluation of the peak heights p; is now straightforward. For the first and
second peak we find

1— e
p=VeE 5 py= : (4.112)
2p
For ps, ps and, in general for odd coefficients, the results are
i—1
ps = B ps = ot TP pi=—— [1p'1+2 pip
=5 =" Di=—— | 5PitL iDit1—j | -
3 7 5 o i p1 [2 e iPi+ JJ

For the even coefficients we get:

i-1
D2P3 1 1
Pa=——— ; D¢=—— (D5 +D3ps) ; Di=—— E PiPit+1—j-
p1 D1 Pz
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Figure 4.12: Pair distribution functions g(r) for the square-shoulder fluid with A = 1.05
at n = 0.3, T* = 2 for the analytical SFMT solution present in this subsection (with
and without the test particle limit as discussed in the next session), ORPA, EXP and
Nezbeda 's semi-analytical solution of the PY approximation. The inset shows the region

around r = o.
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Figure 4.10 and 4.11 shows the solutions w3 (r) for different square well and square shoul-
der potentials. It should be noted that the ansatz (4.110) does not always lead to a
convergent solution (|p;y1] < |p;|); problems emerge for square-shoulder systems with
Be < —0.7, because under those circumstances the series p; diverges with increasing .
In particular, the SFMT for square-shoulder potentials is unable to recover the limit of
fe — —o0, i.e., a HS system with diameter Ao and the solution ws(r) = § (r - ’\7") here
p1 tends to zero whereas py tends to plus infinity [of equation (4.112)]. Beside the results
we present in section 6.4, the result for a square-shoulder fluid with A = 1.05 at n = 0.3
and 7" = 2 is shown in figure 4.12. Obviously, the analytic SFMT solution predicts a
completely unphysical behavior inside the core, where g(r) has to be equal to zero (in
contrast to the SFMT solution). This deficiency can be repaired by applying the TPL
presented in the next section. For r > o, the results are all of comparable quality, only
the ORPA is overestimating the attractive part of the potential, hence the contact value
of gorpa(r) is too high. It should be noted, that for these two systems (figures 4.12
and 4.13), the (p;) are nearly equal to zero (|p;| < 107'2) for r & 2.0. If the perturbation
potential width is increased to A = 1.5, the analytic SFMT solution fails completely to
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Figure 4.13: Pair distribution functions g(r) for the square-well fluid with A = 1.05 at

n = 0.3, T* = 2. Symbols as in figure 4.12.
T I T I T I T I T I T

\ - T I T I T I T I T -
351~ b 35E - ]
» A . i p
gl e SEMT \ 2 i
. —— ORPA 1]
—-—- EXP e i
25 ----- Nezbeda -
e SFMT/TPL ' 1
2 e —
S - :.::_:_;';';';- .... _
o i e
™~ o 1’5 1 I 1 I 1 I 1 I 1 1
8\ 1 102 104 106 108 11
15
1
05 -
O 1 l L L I L I L I L
0 05 1 15 2 25 3

rlo

predict the structure of the fluid, as shown in figure 4.14.

Summarizing, the analytic solution of the SFMT for the square-well /square-shoulder po-
tential suffers from the same problems as discussed in the subsection for the error function
potential and the double square-well /square-shoulder potential (violation of the core con-
dition). Small perturbations of the hard-sphere potential yield good results (if the SEFMT
is combined with the TPL).

4.3.7 Test particle limit

The pair distribution function g(r) one gets in the framework of the SEMT for a given pair
potential violates in general the core condition in the fluid phase, i.e. the pair distribution
function is nonzero where the potential is infinity. To overcome this deficiency, Rosenfeld
[16] proposed the so called test-particle limit (TPL); this approach was introduced by
Henderson [17] for the statistical mechanics of fluids.

We start again from the Euler-Lagrange equation

02 [p] _

op(r)
here the grand potential € [p] of a system subject to an external potential V,(7) is
minimized with respect to the one particle density p(7). In the framework of the TPL
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Figure 4.14: Pair distribution functions g(r) for the square-well (lower graph) and the
square-shoulder (upper graph) fluid with A = 1.5 at n = 0.3, T* = 2 for the analytical
SFMT solution presented in this subsection, ORPA and EXP. The negative tail of the
SEMT solution in the square-shoulder graph goes down to about —10 for r = 0.
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the external potential V., (7) is the pair potential ¢(r) of the test particle situated at
the origin and the density profile p(7) induced by this particle is connected to the pair
distribution function via




80 4.3: Classical density-functional theory

The grand potential is then given as

Q[{p}] = Aia [{p}] + Aec [{p}] + / d’r p(7) [¢(F) — ho), (4.113)
R3
where A;q[{p}] is given by equation (4.64) and pq is the chemical potential of the bulk
fluid (subscript o) defined by equation (3.28) which can be split into

1
—lnp+C,
3 P

where the constant C contains the remaining system parameters. The functional deriva-
tive of equation (4.113) with respect to p(r) = p(7) is equal to

0Aea [{p}]

dp(r)
This relation connects the pair distribution function g(r) with the one particle direct
correlation function c(!)(r) defined as [see equation (4.66)]

() = ~Bpe [ o) = =522 0

Mo = Mho,id T Hoex = Mo,ex T+

0= kgTIn [p(r)o’] + + [(r) — ho] -

g(r) = exp [Buoex + V(1) — Bo(r)] .

In the framework of the FMT the one particle direct correlation function ¢ (r) can be
expressed using the weight functions and weighted densities:

D) = / & %ﬁ"}] / & Z 3{;{;&{"}] R (4114)
R3

In this equation the index « also incorporates the vector weight functions. To calculate

c1(r), the derivative of ® with respect to the n, have to be calculated. These are given
by:

p=p(7)

g—i = —1In(1—n3)

0d N9

3—711 11— ng

o0 0m 1 n3—n2,

ony 1—n3+§(1—n3)2

00 ng NNy — Tyt T2 1 ne \° 1 Nofizy
any 1—n3+ (1 —ng)? 127 (1—n3) _E(l—ng)?’
90 i

8ﬁv1 - 1-— ns

00 dm 1 iy

By 1—my 41 (1—ny)®
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The weighted densities n,(r) are calculated using the convolutions defined by equations
(4.89) and (4.90). Since p(r) is nonzero for r — oo, in the TPL one has to rewrite this
equation for the scalar weight functions:

mlr) = [ oyl =) = p @ B ) + o
R? R?
where &; is defined in equation (4.100). This reformulation is not necessary for the vector

weight functions, because W, (k = 0) = 0.
The bulk fluid excess chemical potential pg ¢, is calculated via

3

P 0d

- 52"
p(r)=po p =0 on;

1
Hoex = — Ec(l) (T)

where in the partial derivatives of ® one sets n; = & and 71, = 0.

4.4 Simple perturbation theory for A in the solid
state

In this subsection we will present a simple perturbation theory for the evaluation of the
Helmholtz free energy A in the solid state (for the same theory in the fluid state see
subsection 4.1.4.4). As stated there, we start from

Alpl = Arerlp] + Aplpl;

where A[p] is the free energy of the system with the potential ¢(r) = ¢o(r) + é1(7),
Areslp] is the free energy of the reference system with potential ¢o(r) and Aplp] is the
contribution to the free energy coming from the perturbation potential ¢ (7). The explicit
from of A,[p] [up to first order of the perturbation potential ¢;(r)] is

]' — —_ = — —
Alpl =5 [dr [@ s (s (7= 7). (4.115)

R® R?
where go(7,7 ") is the pair distribution function of the reference system. For the nonuni-
form solid phase, equation (4.115) can be treated in two ways. One can, similar to the
uniform phase, use a suitable approximation for the pair distribution function go(7,7') in
the solid. The second approach is to use equation (4.115) as a simple mean-field approx-
imation by setting go(7,7 ') equal to one.
For the first case, p(7)p(7 ')go(7,7 ') can be approximated using a parameterization for

the pair distribution function of hard spheres in the solid [Rascon et al. [82, 83], equation
(C.4)]. This leads to

Aplp]

o(7)=ps

_ gps / Br gons(r) 1 (1), (4.116)
]R,3
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where p, is the density of the solid. Although this equation looks formally the same as
equation (4.26), its numerical treatment is much more difficult because gg 55(r) consists of
an infinite sum of Gaussians. Equation (4.116) can be solved using equation (C.4) with a
slightly modified version of (C.3) (because the first peak of go ns(r) is parameterized with
other parameters).

In the case of the mean field approximation, using a radially symmetric perturbation
potential ¢;(r) and the parameterization (C.1) for the density p(7) one gets

N . L
Alel = [ [@ oo~ 7). (4.117)
R* R?
Together with equation (C.3), this leads to

N x .o 00 . ) , § i
Aplp] = 9 %/dr ¢1(r) [2017'26_2T +Z %r (e_S(T_Ri) _ e~ S(rtR) )],

where the parameters n; and R; are defined in appendix C.3.

4.5 Einstein model for the solid

The Einstein model [84] is based on the Gibbs-Bogoliubov (GB) inequality [6] which states
that the Helmholtz free energy A of a system (with a Hamiltonian #) is related to the
Helmbholtz free energy Aq of the reference system (with a Hamiltonian H,) via

A< Ay + <H — Ho)o, (4.118)

where the canonical average on the right-hand side is taken in the reference system. The
model is useful only for soft interactions where a harmonic approximation for the solid is
justified. The Einstein model was adopted for the GCM in [46].

Application of the GB inequality is useful if

e a sufficiently simple Hamiltonian H, can be chosen, which physically corresponds
to a situation close enough to the ‘real’ Hamiltonian, and where A, and the average
(H — Ho)o can be calculated without too much effort and

e this Hamiltonian contains at least one variational parameter which can be chosen
to minimize the right hand side of equation (4.118), obtaining in this way a lower
upper bound for the free energy of the given system.

For a harmonic solid, the Einstein solid characterized by the Hamiltonian

N —
=30 (B + E(n- 1) (4.119)

is a reasonable reference system. In this equation, p; is the canonical momentum of a
particle of mass m positioned at 7;, k is the ‘spring constant’ which plays the role of a
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variational parameter and the set {ﬁ,} forms a Bravais lattice. The Einstein model of the
solid is based on the assumption that the crystal with N particles consists of N uncoupled
three-dimensional isotropic oscillators, all having the same frequency (therefore, k is the
same for every lattice site).

For the Hamiltonian H we assume the following form

Nﬁ2 1N Nﬁ2
H:,:ZITW;W’_ D=2 o+ V{RD).

we can write
VUEY =5 [dr [@ or-7 )52 (.
]R3 R?
By taking the ensemble average in the reference system we get

VDN = [@r [ @ 67— 7)o @7 5 (7).
R?* R?

For the Einstein model of the solid, the one-particle density ,0 Y (7) is a sum of Gaussians;

()(

hence p; ') is also a product of Gaussian sums:

p (7,7 {RY) = p(7)p(7)

where p(7) is the parameterization of the one-particle density in the solid as described
by (C.1) using the set of lattice vectors {R;}. Using equation (C.2) and by omitting the
innermost (i = 0) shell we get for (V({R;}))o = (V())o

ﬂ 1 « > n; r —S(g_R;)? —2(z+R;)?
<V(a)>ON:§‘/§Z;E/dI$ﬂ¢($) (e s@—R)” _ ¢ 2(+R)). (4.120)
= 0

The calculation of (# — Hy), finally yields

(H - Ho)OE = (V(a))o —

The calculation of the Helmholtz free energy Ay of the Einstein solid is straightforward

and gives
3N aoc? N A
Ag==-=In| — —In|—
by n( = )+35 n(a)

N 3
2
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where « is related to the parameter k£ of the Hamiltonian (4.119) by

_ﬁkaQ
==

«

The final result for A() is

A(a)% < g [m (%) - 1] +3In (%) +(V(a))o.
The term 31n(A /o) is a-independent. The righthand side of this relation to be minimized
with respect to « to yield a lowest upper bound for the Helmholtz free energy. Optimiza-
tion is possible because of the two competing contributions to the free energy A(c). The
term with In % favors v — 0. This can be seen quite easily: for this ‘ideal’ term the free
energy is equal to A;q = Uiy — T'S;y (where Uyy is a constant), therefore the entropy is
proportional to —In(%). So the entropy will be maximized by decreasing o towards zero.
In contrast to that, the ‘excess’ term (V' («))y favors @ — oo, because by doing so the
interaction between the particles will be minimized [as can be seen from equation (4.120)].




Chapter 5

Phase equilibria

In this chapter we will present the methods used in this thesis to obtain a phase diagram
of a one-component or binary system. A phase coexistence between two phases at a
fixed temperature 7T is taking place, if the two phases have the same pressure p and the
same chemical potential y (or, for binary systems, the two particle species have the same
partial chemical potentials y; with ¢ = 1,2). There are numerous papers dealing with
phase transitions of various systems; for an overview we refer to [18].

5.1 One Component systems

5.1.1 Binodals

To find a phase equilibrium (binodals) for a one component system one has to solve two
coupled, non-linear equations:

p(p1) = plp2) (5.1)
2)

5.
ulpr) = plps), (5.
where p; (with ¢ = 1, 2) are the coexistence densities. Using the Maxwell relations (3.22)
and (3.28) one can rearrange these two equations to get the so called double-tangent
construction. This procedure can be carried out using the Helmholtz free energy reduced
to the number of particles, A*, as a function of the inverse number density %. In this
thesis, we have used the second method which uses the Helmholtz free energy reduced to
the volume A" as a function of the number density p. Using this convention we get for
the reduced pressure p* and chemical potential p*:

dA™* (p)

p(p) = pr—fﬁ(p)
wip) = LA;p(p)-

These two equations can be interpreted as a straight line with equation y(z) = kz + d
with £ = p*(p) and d = —p*(p). A phase transition occurs if one can find a common

85



86 5.1: One Component systems

tangent which touches the isothermal A* curve in two points (hence a double tangent).
To calculate the phase transitions for a given temperature 7" one has to do the following
steps:

e Calculate the free energy curves of all possible phases [vapor/liquid phase, solid
phases (sc,fce,bee)] to get A;(p) where p € [p; start; Piena] and i = 1... N (N is the
number of phases).

e Draw all the curves using the chosen reduction (A* vs. % or AT vs. p). However,
the second reduction has to be preferred because the p-range is limited to [0, pmqz]-

e Find all the double tangents that can occur in this graph:

({pcla 902}) = ZZ dtC(Aiv Aj)7

=1 j=i

where the indices .; and .o denote the coexistence densities and dtc stands for the
double tangent construction. One has to be careful because it is possible to find
more than one phase transition for a given pair of (A4;, A4;).

e These phase transitions have to be sorted into stable and metastable ones. Meta-
stable phase transitions are those that are covered by other (stable) phase transitions
and hence will never occur. A procedure to distinguish between stable and meta-
stable phase transitions is explained below.

1. Mark all phase transitions as stable. Start with the first phase transition (i = 1)
in the list (the list has not to be sorted with respect to the densities of the
coexistence).

2. Tterate over all phase transitions j # ¢ which are marked as stable. If p; 4 or
Pj.c2 € [Pic1s Pic2] then
(a) If Aj(pjei/c2) < Aj(pje1/c2), mark the phase transition j as metastable, else

mark phase transition 7 as metastable.
(b) If i is marked as metastable, exit the iteration.

3. Search the next stable phase transition i. Go back to step (2)

In figure 5.1 we give an example for the complexity of possible phase transitions for a one
component system.

5.1.2 Spinodals

Besides the binodals one can also calculate the so called spinodals. The spinodal line
consists of all points where the isothermal compressibility diverges and includes thus the
critical point(s). Using equation (3.31) the condition for a spinodal reads

. 1 N
Xid _ o=~ 1+ pe(k = 0).
XT 1+ ph(k =0)
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Figure 5.1: Stable vs metastable phase points. Square-shoulder potential with A = 1.12,
T* = 0.3. The Helmholtz free energy curves are calculated for the fluid phase, an fcc and
a bee crystal. The according p*(p) are, at p =1 from top to bottom: fluid, fcc and bce.
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Using equation (3.34) and
A5 _ 1

dp? p
this can be rewritten to
_d*AL(p) P [AT(p) — A(p)]

1

p dp> dp?
1 @A p) 1
P

0

dp? p
_d*A*(p)
dp?

So the spinodal points at a given temperature 7" are the inflection points of the Helmholtz
free energy reduced to the volume.
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5.2 Binary systems

In this thesis we constrain ourselves to symmetric binary systems (see section 2.1.2).
Because we have not examined the solid state for binary systems, according to [85] our
phase diagrams consists of up to four different phases:

Mixed vapor/Mixed liquid: Both species have the same concentration (due to the
symmetry of the system); these two phases are essentially the same (the only differ-
ence being the density where they occur) and can only be distinguished if a phase
transition between them happens (which terminates in a critical point).

Demixed liquid: In the demixed liquid there is coexistence between a species-one rich
component (with ¢; > 0.5) and, due to the symmetry of the system, a species-two
rich component (with ¢, > 0.5).

For a general binary system we have to solve the following equations for each temperature
(so we have omitted the temperature as a parameter) to obtain the coexistence densities
and coexistence concentrations:

pmp'el) = mp",elh) (5.3)
pa(ptse) = pa(p™,clh) (5.4)
p(p,cl) = p(p',clh), (5.5)

where 7 = I, I denotes the two phases, the p' are the coexistence densities and the ct
are the coexistence concentrations. Due to the symmetry of the system, the following
relations are always fulfilled:

pi(pscr) = po(p, 1 —c1) 5 plp,er) =plp, 1 — ), (5.6)

for all p and ¢;. By combining the symmetry relation for p; and pus with the coexistence
conditions (5.3) and (5.4), one gets the following equation:

pa(p’sct) = pa(p", ) = m(p™ 1 =) = m(p", 1 = ).

So a phase transition can only occur at the intersection of the two surfaces u1(p, 1) and
p2(p, ca) as show in figure 5.2. This intersection is projected onto the (p, c¢1)-plane, where

it becomes one (or more) curves ct(p), with i = 0,..., N. By using these functions c(p)
together with the coexistence equations (5.3), (5.4) and (5.5) one gets

m(p’, i) = mip") = pl(p") = m(p", (") (5.7)

p(p',ci(p) =p'(p") = P (p") =p(p", cl(p™)). (5.8)

In our case there are only two curves, where the first one corresponds to c¥(p) = 0.5,
Equations (5.7) and (5.8) can be easily solved, leading to phase transitions specified by

o', ¢ (p"); 0", A (p")].
These phase transitions can occur between any of the three phases described above:

o i=3=0;c"(p") =" (p"") = 0.5: mixed vapor-mixed liquid,
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Figure 5.2: uq, puo as functions of ¢; and p for a symmetric binary tHSY system calcu-
lated using the ORPA, the reference system are HS in the PY approximation. System

parameters (as defined in subsection 2.2.3.1) are as follows: 0; = 1, k;; = 2.5, \;; = 2.5,
T* = 0.65. Due to the symmetry of the system, the three interparticle potentials are

related via ¢11(1) = ¢oa(r), ¢12(r) = ¢a1(r) = €,¢11(r) with £, = 0.7 (see also figure 6.92
in section 6.8). The consolute point is denoted by the black sphere.

[
o
O =

. 'z' {7 2.0

eto ety

e S sty
.-
s | ' " ' ot . g

T
f—
Y

=

o i=0,7=1; " (p"), pF < pe, & (p™) # 0.5: mixed vapor-demixed liquid,

e i=0,j=1;c"(p"),p" > pe, & (p') # 0.5: mixed liquid-demixed liquid,

where p. is the density of the mixed vapor-mixed liquid critical point.
In figure 5.3, the curved surface consists of all curves c}(p) (demixing plane). The nearly

vertical line on this plane is the A line. In the ¢; = 0.5 plane one can see the mixed

vapor-mixed liquid and mixed vapor/mixed liquid-demixed liquid phase transition. The
curves on the demixing plane are the concentrations ¢’ (p'") for the demixed liquid.
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Figure 5.3: Phase diagram of a symmetric binary tHSY system calculated using the
ORPA, the reference system are HS in the PY approximation. For the system parameters
see figure 5.2.

o0

5.3 Entropy and freezing

Beside the standard double-tangent mechanism to construct the phase equilibria as de-
scribed above, we also adopted an approach originally proposed in [86] to locate the onset
of freezing by monitoring the behavior of the multiparticle residual entropy, defined as

AS = Spp — So.
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In this equation s, is the excess entropy per particle of the system in units of the Boltz-
mann constant kg and sy is defined as

=2 / & {g(r) lng(r) — 1] + 1.
]R,3

Sez 1S being calculated using

2

A=U-TS ; Aew:Uex_TsekaB:er_SewE:

using reduced units for A., and U, we get

B 3 * *
Sex = N [Uew — Acz] = §er — A,
According to previous results reported in the literature [86, 87|, it turns out that the
vanishing of As acts as a quite sensitive indicator of the freezing transition in several

one-component fluids.







Chapter 6

Results

6.1 Gaussian core model

In this section we will present the results for the Gaussian core model (GCM) as presented
in subsection 2.2.5. The GCM is of great importance as an excellent approximation of
the interaction potential acting between the centers of mass if two polymer chains in a
solvent. The properties of such a system were first analyzed by Stillinger et al. in the
late seventies [33, 34, 35, 37, 37]. Simulations on the fluid state structure of this system
have been recently performed by Watzlawek et al. [46, 88]. For a review of the formal
properties of the GCM we refer to [18].

6.1.1 Structure

In this section we will present the structure factor S(k) and pair distribution function
g(r) for the GCM for various densities p calculated via integral equations (see section 4.2)
using the RY, HNC and ZSEP closure. These results will be compared with Monte Carlo
(MC) simulations performed by Martin Watzlawek.

We focus our attention on temperature 7* = 0.01 (see subsection 2.1.1) for two reasons:
on the one hand, according to the approximate phase diagram [89], at T* = 0.01 the
system remains fluid at all densities and therefore we can study the development of the
correlation functions with density for an unlimited range of the latter, without entering a
region where the fluid is metastable. On the other hand, this temperature is low enough
so that significant structure is expected for the correlation functions of the fluid and hence
the integral equation theories can be given a strong test. We present the results so ob-
tained in figures 6.1, 6.2 and 6.3 and discuss them below.

We begin with the RY closure. When the packing fraction 7 is not large enough, typically
n < 0.50 at this temperature, the RY closure gives results which are in very good agree-
ment with simulations, as can be seen in figures 6.1 and 6.2. However, above 1 ~ 0.50, the
g(r) from simulations starts penetrating towards » = 0, which means physically that the
probability of finding two particles ‘sitting on top of each other’ is finite and there is no
‘correlation hole’ in g(r). This is to be expected for a system with a bounded interaction.
However, as can be seen from figure 6.3(a), the RY closure fails to capture precisely the
penetration phenomenon, yielding g(r)s that are too low at small separation and making

93
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the erroneous prediction that a correlation hole exists.

The reason for the behavior can be traced back in the construction of the RY closure,
equations (4.44) and (4.45), where it can be seen that the RY closure always looks like the
PY closure at small separations. The latter is however inaccurate for a long-range inter-
action lacking a hard core We attempted to modify the RY closure by employing mixing
functions yielding a HNC-like small-r behavior and a PY-like large-r behavior. However,
this did not yield self-consistency parameters for the whole range of densities. Despite
its inability to correctly describe the high-density penetration of g(r) ,the standard RY
closure yields nevertheless a self-consistency parameter « for all densities considered here.
In addition, this parameter grows with density, thus pointing to a tendency of RY closure
to reduce to the HNC closure at high packings.

In view of the failure of the RY closure, we are led to consider the ZSEP closure which
has precisely the property that in its implementation the value of g(r) at zero separation
plays an important role and is determined self-consistently. In fact, the resounding success
of the ZSEP closure in describing the g(r) of the penetrable spheres model (PSM) (also
a bounded interaction) has been mainly attributed to this property [67]. As can be
seen from figures 6.1 and 6.2(a), the ZSEP closure performs only slightly less well than
the RY closure up to a packing fraction n &~ 0.25. The self-consistency parameters «, (3
and v of the ZSEP closure are displayed in figure 6.4. The parameter o which appears
as an overall factor in the parameterization of the bridge function [see equation (4.46)]
decreases with density and close to n = 0.25 it is small enough and the ZSEP closure
practically reduces to the HNC closure.

However, at packing fractions n > 0.25, a second branch of solutions appears, which is
denoted by the dashed lines in figure 6.4. This branch is disconnected from the first and
hence it causes the g(r) to behave discontinuously at this packing fraction, a result which
is clearly unphysical. This second branch produces g(r)s that show too much penetration
and too little structure, when compared with simulation results. The reason for this un-
physical behavior can be traced to the fact that this second branch corresponds to bridge
functions which are positive at small separations r. Indeed, from equation (4.46), and
taking into account that y(r) = h(r) — ¢(r) > 1 at small separation, we can see that
Bzsgp(r) has the sign of the product (8 — 7)/v. For the first, physical branch (solid
lines in figure 6.4) this combination is negative because 3 < «y. For the second, unphysical
branch, this combination is positive because § > = there. A positive bridge function acts
then as an additional ‘attractive potential’ in equation (4.39) and causes the overpene-
tration of g(r) mentioned above.

The appearance of a branch of the solution of the ZSEP closure for which the bridge func-
tion is positive is a sign of internal inconsistency of the closure and in this sense the ZSEP
closure signals its own limits of applicability. Indeed, the bridge function of any system
has been shown to be a quasi-universal function, which can always be mapped onto the
bridge function of a suitably defined hard-sphere system having a hard-sphere diameter
that depends on the characteristics of the interaction and the thermodynamic point under
consideration [90]. The bridge function of the HS system is, however, practically exactly
known and it is essentially a negative function for all . Hence, a positive bridge function
is physically unacceptable and the second branch of solutions of the ZSEP closure has to
be discarded. The results from this second branch come again into very good agreement
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Figure 6.1: Comparison of the radial distribution function g(r) between the simulation
results and those obtained from the various closures, at 7" = 0.01 and at small values of
the packing fraction. (a) n = 0.05; (b) n = 0.12.
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with simulation at packing fractions above 1 = 1.00 because, as seen in figure 6.4, the
parameter « is already very small there and the bridge function has a negligible contri-
bution to g(r); even the unphysical branch reduces to the HNC approximation at high
densities. However, there is no way to bridge the physical solutions at packings n < 0.25
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Figure 6.2: As figure 6.1, but for intermediate packings. (a) n = 0.20; (b) n = 0.50. Note

the different sca,zl%s of the vertical axes.
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with the HNC-like solutions within the ZSEP closure, that is without having to compare
with independently produced simulation results.

We comment next on the quality of the HNC closure. As can be seen from figures 6.1-
6.3, the HNC closure underestimates the structure at small-to-intermediate packings but
yields otherwise reasonable results. It does not suffer from any of the problems of the
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Figure 6.3: As figure 6.1, but for high packings. (a) n = 1.00; (b) n = 6.00, where the

simulation result is indistinguishable from the HNC result.
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more sophisticated closures and, in fact, it seems to be the best at high densities. In
order to further explore this property (which is supported by the fact that the other two
closures tend to the HNC at this limit), we also solved this closure at extremely high
packing fractions. Here, the highest packing at which we simulated was n = 6.00, due to
time constraints. In view of the fact that the HNC closure gives results which coincide




98 6.1: Gaussian core model

Figure 6.4: The self-consistency parameters of the ZSEP closure applied to the GCM at
reduced temperature 7" = 0.01 as functions of the packing fraction 7. The solid lines
denote the physical branch and the dashed lines the unphysical branch.
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with those from Monte Carlo simulation at 7 = 6.00 [see figure 6.3(b)], we gain confidence
at this closure and apply it for arbitrarily high densities, in order to obtain information on
the structure of the very dense fluid. In figure 6.5(a), we show results for for g(r), where
it can be seen that at very high packings g(r) tends to unity and hence h(r) = g(r) — 1
tends to zero. However, this does not mean that the structure factor S(k) tends to unity
as well, as a naive guess based on the definition S(k) = 1 + ph(k) would imply. The
quantity (k) tends to zero, but at the same time the prefactor p diverges, thus giving
rise to a non-trivial S(k).

Results for the corresponding structure factor S(k) are shown in figure 6.5(b). It can
be seen that, for high densities, the peak of S(k) disappears and the latter looks like a
‘smoothed step function’ with values ranging from zero to one. The value of k£ at which
the crossover occurs does not scale as a power law of the density but rather shifts to
the right almost a constant every time the packing fraction is increased by an order of
magnitude. This dependence is described in section 6.2.

The liquid-state correlation functions of the GCM display an anomalous behavior in
comparison with that of ‘normal’ liquids, interacting by means of hard, unbounded in-
teractions. For the latter, the structure grows monotonically with increasing density and
eventually the system freezes. Here, the structure grows monotonically up to a packing
fraction n ~ 0.12 at T = 0.01 and for higher densities it becomes weaker again. To
demonstrate this phenomenon, we show in figure 6.6 the structure factors obtained from
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Figure 6.5: (a) The the radial distribution function g(r) and (b) the structure factor S(k)

as obtained by the HNC closure for extremely high values of the packing fraction 7.
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the MC simulations for a wide range of densities, where it can be seen that the height of
the peak of S(k) attains its maximum value at n ~ 0.12.

This behavior of S(k) is closely related to re-entrant melting [91]. Indeed, the height of
the maximum of S(k) is a diagnostic tool for the freezing transition. According to the
Hansen-Verlet criterion [92, 93], a liquid crystallizes when S(k) at its highest peak has the
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Figure 6.6: The structure factor S(k) of the GCM at T" = 0.01 for different packing
fractions, as obtained by Monte Carlo simulations
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quasi-universal value 2.85. At higher values of the peak the system is solid and at lower
values it is fluid. The evolution of S(k) with density shown in figure 6.6 in conjunction
with the Hansen-Verlet value, implies that at this temperature the system barely freezes
and that T = 0.01 is very close to the upper freezing temperature. We will confirm this
prediction in the next chapter, where we will also use the structural results obtained here
in order to calculate the free energy of the fluid.

Finally, we have performed MC simulations and solved the HNC closure at much higher
temperatures, 7" = 1.00, corresponding to the physical domain for the effective interactions
between polymer chains. There, we found that he HNC closure accurately reproduces the
simulation results at all densities and that the liquid has very little structure, a result
which can be easily understood in view of the fact that the thermal energy, which is
equal to the interaction strength here, washes out the correlation effects caused by the
interactions.

6.1.2 Phase diagram

Figure 6.7 shows the quantitative phase diagram for the GCM. The structure of the fluid
phase was calculated using the HNC (see section 4.2.2), the Helmholtz free energy was
calculated using the virial route (3.23), because at low densities the compressibility route
(3.24) yields free energies that are too low, leading to the erroneous result that the HS-like
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Figure 6.7: Phase diagram of the Gaussian core model. The fluid-fcc, bee-fee and fee-fluid
transitions are all double lines but only some of them can be resolved on the scale of the
figure because the gaps (especially the fce-bee gap) are very small. The full dot marks
the point at which the fluid-bcc coexistence curve turns around.
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freezing of the Gaussian fluid into a fcc lattice does not take place. There are two factors
playing an important role here: on the one hand, the predicted isothermal compressibilities
are too high, causing a fluid free energy which is too low, and on the other hand, the
solid free energy, being a product of the variational procedure outlined in section 4.5, is
unavoidably higher than the true one [see equation (4.118)]. It is therefore pertinent to
follow the HNC virial route in calculating the fluid free energy. The latter leads in fact
to an overestimation of the fluid free energy, but this compensates for the overestimation
of the solid free energy and leads to the physical correct picture of freezing into an fcc
solid at the low-density part of the phase diagram. We have thus calculated the fluid
free energies through the HNC virial route for a range of temperatures 10™° < T < 0.015
for a range of densities 0 < p < 1.0 and performed the common-tangent construction on
the Helmholtz free energies for the fluid and solid phases (fcc and bec) as described in
section 5.

The resulting phase diagram (figures 6.7 and 6.8) is very similar to the approximate one
drawn by Stillinger and Stillinger [89]. It shows the sequence of freezing, structural (fcc
— bee) and remelting transitions as well as the upper freezing temperature 7, associated
with the corresponding density p,. The coordinates of this point, where the fluid-bcc
coexistence lines turn around, are (7}, p,) = (0.0102,0.2292). This is in perfect agreement
with the preliminary results from section 6.1.1, where at 7" = 0.01 the structure factor at
n = 0.12, corresponding to p = 0.2292, was found to slightly exceed the Hansen-Verlet
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Figure 6.8: Insets for the phase diagram of the GCM (see figure 6.7). (a) In the neigh-
borhood of zero densities and temperatures. (b) In the neighborhood of the fluid-fec-bee
triple temperature, with the dashed line denoting the triple line between these coexisting
phases.
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value. The fcc-bce coexistence lines run linearly from the points ps.. = 0.17941 and
poce = 0.17977 at T = 0 to the points ps.. = 0.15531 and py.. = 0.16667 at the triple
temperature 7, = 8.753 x 1073. The density gap between the fcc and bee coexisting
densities remains constant and equal to Ap = 3.6 x 10~%. The density of the coexisting
fluid at the triple temperature is pyiq = 0.16431.

It should be emphasized that, notwithstanding its deceptive appearance in figure 6.7,
the point (T, p,) is not a critical point. At (7, py), two common tangents between the
fluid and bcc solid free energies, one lying on the low-density side and the other on the
high-density side of it, coalesce into this single point. No susceptibility diverges and all
Helmholtz free energy-density curves remain strictly concave up.

It is now pertinent to ask whether the Hansen-Verlet freezing criterion is satisfied for both
the low- and the high- density crystallization of the system. To this end, M. Watzlawek
has performed additional MC simulations at temperatures below 7, and in figure 6.9 we
show structure factors at two such temperatures, 7' = 0.007 and 7" = 0.005, for increasing
values of the density. It can be seen that the Hansen-Verlet criterion is indeed valid for
both freezing transitions.

It is of course also possible to calculate the exact free energies of the various candidate
phases in a simulation by means, e.g., of the virial route in the fluid state and by employing
an appropriate method for the solid state. However, the latter is very time consuming.
The very good agreement between the phase boundaries obtained from the approximate
theory presented here and the MC results regarding the height of the peak of S(k) and
the spontaneous crystallization of the system in the simulation box give us confidence
that the phase diagram of figure 6.7 is quantitatively correct.
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Figure 6.9: Structure factors of the GCM at (a) 7 = 0.007 and (b) 7' = 0.005 obtained
from MC simulations. The densities are indicated in the keys. The straight line marks the
Hansen-Verlet value 2.85. The corresponding structure factors in the regions 0.153 < p <
0.363 for T' = 0.007 and 0.114 < p < 0.477 for T' = 0.005 show Bragg peaks, indicating

that the GCM h%s to be in the solid state for these densities.
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6.2 Phase behavior of bounded potentials

In this section we will discuss the phase behavior of bounded potentials like, for example,
the Gaussian core potential (see subsection 2.2.5), the penetrable spheres model (see sub-
section 2.2.7) or the Fermi distribution potential (see subsection 2.2.6). The mechanisms
leading to a phase transition in a system which consists of particles interacting via a
finite potential are, for example, discussed in [18]. As a short preface to the subsequent
subsections, we introduce the following definitions.

Clustering Clustering means the tendency of particles to form composite particles (clus-
ters) in which a number of particles sit on top of each other. This mechanism creates
‘free space’ and is therefore able to stabilize, for example, solid phases [18].

Reentrant melting With ‘reentrant melting’ one describes the tendency of certain pair
potentials [Gaussian core model (GCM, see subsection 2.2.5)] to remelt at densities
above their respective freezing density. This effect can happen more than once at
a fixed temperature, for example star polymers are displaying a very rich phase
diagram [91].

These behaviors have, as stated above, been encountered for potentials that are very
similar to each other. In fact, the Fermi distribution model (FDM, see subsection 2.2.6)
can show up both types of phase behavior (depending on the potential parameter £, see
subsection 6.2.4).

6.2.1 Clustering versus reentrant melting behavior

In this section we will, as stated above, in full generality discuss the phase behavior of
systems whose particles interact by means of potentials which do not diverge at the origin,
are free of attractive parts and decay fast enough to zero as the interparticle separation
r goes to infinity. We will establish a criterion which determines whether a given system
freezes at all temperatures or if it will display reentrant melting and an upper freezing
temperature by employing a mean field-density functional theory (which is shown to be-
come exact at high temperature and/or densities).

Bounded interatomic potentials arise naturally as effective interactions between the cen-
ter of mass of soft, flexible macromolecules such as polymer chains [45] etc. Indeed, the
centers of mass of two macromolecules can coincide without violation of excluded volume
conditions, hence bringing about a bounded interaction (like, for example, the GCM in
section 2.2.5). Because bounded potentials can be tuned by applying the same mechanisms
as for unbounded potentials (solvent quality, temperature, chain length, salt concentra-
tion etc.), it appears to be useful to consider bounded potentials in some generality in
order to draw conclusions about the expected phase behavior of systems interacting by
means of such interactions.

The basic question that should be answered in this chapter is the following: Given a non
attractive and bounded pair potential which satisfies the following requirements guaran-
teeing stability and the existence of the thermodynamic limit:

e it is bounded;
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e it is positive definite;

e it decays fast enough to zero at large separations, so that it is integrable and its
Fourier transform exists;

e it is free of attractive parts;

to which topology (clustering or reentrant melting) belongs the phase diagram of the
system?

6.2.2 The model and the mean-field limit

We will work with a general interaction

which satisfies the requirements put forward above. ¢ and o are an energy and a length
scale and ¢*(r) is some dimensionless function. This function does not have to be analytic,
i.e. discontinuities in the potential or its derivatives are allowed. Without loss of generality,
we assume

¢*(0) = 1.

Let us call ;5*(16) the Fourier transform of the interaction potential. For more concreteness
(and for purposes of demonstration) we use in the Fermi distribution model (FDM) as
defined in section 2.2.6. This potential represents the family of bounded interaction ¢¢(r)
depending on a tunable parameter &.

The key idea for examining the high temperature and/or high density limit of such model
systems is the following. We consider in general a spatially modulated density profile p(7)
which does not vary too rapidly on the scale o set by the interaction. At high densities,
pod > 1, the average interparticle distance a = p~'/3 becomes vanishingly small, and it
holds a < o, i.e., the potential is extremely long range. Every particle is simultaneously
interacting with an enormous number of neighboring molecules and in the absence of
short-range excluded volume interactions the excess free energy of the system [94] can be
approximated by a simple mean-field term, equal to the internal energy of the system:

1 — — —
Adlp)= 5 [ [@ oo 07 - 7). (6.1)
R’ R’
with the approximation becoming more accurate with increasing density. Then, equation
(6.1) immediately implies that in this limit the direct correlation function c¢(r) of the

system, defined as in equation (4.70), becomes independent of the density and is simply
proportional to the interaction potential, namely

olr) = ~Bo(r) = ~m:"(r). (62)




106 6.2: Phase behavior of bounded potentials

Using the last equation together with the OZ equation, we obtain an analytic expression
for the structure factor S(k) of the system as

1
Lt por (k)

This mean-field approximation (MFA) has been put forward and examined in detail in
the context of the Gaussian core model independently by Lang et al. [46] and by Louis
et al. [95]. The model is particularly relevant from the physics point of view, due to its
connection to the theory of effective interactions between polymer chains [45]. Here, we
establish the validity of the MFA at high densities for bounded, positive-definite inter-
actions in general and we examine its implications for the global phase behavior of such
systems.

S(k) (6.3)

6.2.3 Spinodal instability and freezing

We employ the MFA as a physically motivated working hypothesis for now and, by direct
comparison with simulation results, we will show later that it is indeed valid. Within the
framework of the theory, an exact criterion can be formulated, concerning the stability
of the liquid phase at high temperatures and densities. The function ¢*(r) was assumed
to be decaying monotonically from unity at r = 0 to zero for r — oo. For the function
¢*(k), there are two possibilities:

1. It has a monotonically decay from the value

5k =0) = /d%« 6 (r) > 0
]R,3

to the value (;NS*(k) = 0 for k — oo. We call such potentials kT-potentials. Obviously,
the Gaussian interaction belongs to this class.

2. It has oscillatory behavior at large k£, with the implication that it is a non mono-
tonic function of £, attaining necessarily negative values for certain ranges of the
wavenumber k. We call such potentials k*-potentials. Long-range oscillations in k-
space imply that ¢*(r) changes more rapidly from unity at 7 = 0 to zero at r — oo
in the k*-class than in the kT one. Moreover, let us call k, the value of k£ at which
¢*(k) attains its minimum, negative value.

If we are dealing with a k*-potential equation (6.3) implies that S(k) has a maximum
at precisely the wave-vector k, where ¢*(k) attains its negative minimum, —|¢*(k.)| and
this maximum becomes a singularity at the ‘spinodal line’ pj3 \5*(k*)| = 1.The theory has
a divergence, implying that the underlying assumption of a uniform liquid is not valid
and the system must reach a crystalline state. Indeed, on the basis of the fluctuation-
dissipation theorem, S(k) can be interpreted as a response function of the density to
an infinitesimal external modulating field at wavenumber £ [6] and a diverging value of
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this response function clearly signals an instability. If the Fourier transform of ¢*(r) has
negative Fourier components, then an increase in temperature can be compensated by
an increase in density in the denominator of equation (6.3), so that S(k,) will have a
divergence at all 3. We thus conclude that k*-systems freeze at all temperatures.
If we are dealing with a k*-potential [¢*(k) monotonic], then equation (6.3) implies that
S(k) is also a monotonic function of k£ at high densities [46]. For such potentials, one can
always find a temperature high enough, so that the assumptions of equation (6.1) hold
and then equation (6.3) forces the conclusion that freezing of the system is impossible at
such temperatures. This does not imply, of course, that such systems do not freeze at
all; one simply has to go to a low enough temperature and density, so that the mean-field
assumption does not hold and the interaction is much larger than the thermal energy.
Then, the system will display a hard-sphere type of freezing, to be discussed more explic-
itly below. An upper freezing temperature 7, must exist for k*-potentials, implying that
such systems must remelt at 7% < TF upon increase of the density. Hence, we reach the
conclusion that kT-systems display an upper freezing temperature and reentrant melting.
The criterion says nothing about the crystal structure of the solid, however, which always
depends on the details of the interaction as well as the density [46, 89].
For potential of the k'-class, the mean-field arguments presented above hold not only
at high temperatures but also at low ones, provided that the requirement po® > 1 is
satisfied, because these are molten at high densities for all nonzero temperatures. The
validity of the mean-field theory for k*-type systems, even at very low temperatures, was
confirmed recently by direct comparison with simulation results for the particular case
of the Gaussian potential ([46], see also section 6.1). If the potential is in the k*-class,
the mean field approximation holds provided that the system is not already frozen, as
we will confirm shortly. Moreover, both kinds of systems display an unusual kind of
‘high-density ideal gas’ limit. Indeed, taking the expression (6.3) for S(k) and using the
relations S(k) = 1 + ph(k), where h(k) is the Fourier transform of the total correlation
function A(r) of the uniform fluid, we obtain:
1 %
h(k) = k)
1+ pz=¢*(k)

At low ks, where 5*(k) is of order unity, the term proportional to the density in the

(6.4)

denominator dominates in the limit of high densities and 77,(14:) scales as —% — 0. At high

ks, the Fourier transform ¢*(k) in the numerator is itself small, with the result that h(k),
and hence also the correlation function A(r), is approaching zero. This, in turn, means
that the radial pair distribution function g(r) = h(r)+1 is very close to unity in this limit
and deprived of any significant structure for all values of r and it only has some small
structure at small 7, which is in fact more pronounced for k*-potentials than for £t ones.
In this limit, the hypernetted chain (HNC) closure (see subsection 4.2.2) becomes exact,
as the exact relation

g9(r) = exp [Bé(r) + h(r) — c(r) — B(r)],
combined with the limits

g(r)—=1 ;5 h(r) =0 and c(r) = —B¢(r)
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forces the bridge function B(r) to vanish. Moreover, equation (6.3) and (6.4) reveal that
the systems obey a scaling law, namely that the functions S(k) and T*h(r) do not depend
on p and T* separately but only on the ratio ;.

Systems in the k*-class freeze before the spinodal is reached. In order to make quantitative
predictions, we invoke the empirical Hansen-Verlet freezing criterion [92, 93], which states
that a system crystallizes when S(k) at its main peak attains, approximately, the value
S(k.) = Sm = 2.85. Although this criterion was originally put forward for hard, atomic
interactions (HS, Lennard-Jones etc.), recent detailed analysis have demonstrated that it
holds for the freezing and the remelting of the non diverging Gaussian interaction [46].
Hence, we assume that it is valid for the general case of systems we consider here and
combining it with equation (6.3), we obtain the equation of the freezing line 77 (n) as

6|3k
m(1-57)

The value of |¢*(k,)| determines the slope of the freezing line at the high (T, n) part of
the phase diagram.

T:(n) =n ~ 2.864n |¢* (k)| - (6.5)

6.2.4 Comparison with simulations

We now wish to put these arguments in a strong test, using the concrete family of the
Fermi distribution model (FDM, see subsection 2.2.6). First of all, we have calculated
the Fourier transform of the potential (2.10) numerically, establishing that member of the
FDM with ¢ < &, belong to the k* class and members with & > £, = 0.49697 to the k™
class. The GCM is also a member of the latter class.

6.2.4.1 Systems displaying clustering

As examples of systems displaying clustering transitions, we have taken the extreme (and
by now well-studied) case £ = 0 (the PSM) as well as the case £ = 0.1 of the FDM.
We have performed standard Monte Carlo (MC) NVT simulations for a large number
of values for the temperature and density. We begin with the PSM for which the static
structure factor S(k) takes the form [using equations (6.1) and (6.3)]

n sin(k) — kcos(k)]

S(k)=[1+2 T 3

(6.6)

The high temperature-high density freezing line of equation (6.5) takes for this choice
of £ the form T} (n) = 1.033n. To test the analytical expression of equation (6.6), we
move along the ‘diagonal’ 7™ = 1, a combination that lies almost on the Hansen-Verlet
estimate for the location of the freezing line. In figure 6.10 we show the comparison of
the analytical results with those obtained from the MC simulations for S(k) and we also
demonstrate the validity of the mean-field approximation for the PSM. In order to further
investigate the validity of the MFA, we have performed MC simulations in a variety of
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Figure 6.10: (a) The product T*h(r) for an FDM with £ = 0 (PSM), along the diagonal
T* = n at high packing fractions, as obtained from MC simulations. The results close
to r = 0 are noisy due to poor statistics there. All results collapse onto a single curve.
(b) The corresponding structure factors S(k), shown together with the analytical result

of equation (6.6).
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thermodynamic points and we present a selection of the obtained results in figures 6.11
and 6.12 and discuss them below.

In figure 6.11(a) we show a comparison between the MC and MFA results for the pair
distribution function g(r) along the ‘diagonal’ T* = 7. It can be seen that the agreement
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Figure 6.11: (a) The function g(r) of the PSM for the selected points along the ‘diagonal’
T* = n as obtained from theory (thick lines) and simulation (thin lines). (b) Same but

now for fixed temperature 7" = 5 and increasing packing fraction 7.
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between the two is already very good at 7% = i = 4.0 and thereafter it improves markedly
with increasing temperature and density. The results obtained from the present theory
are of the same quality as those obtained by Fernaud et al. [67], who used the sophisti-
cated zero-separation closure (ZSEP, see section 4.2.4) to investigate the liquid structure
of the system.

In figure 6.11(b) we perform the same comparison but now at fixed temperature T* = 5.0
and increasing packing fraction 7. As can be seen, at this temperature, the MFA, which
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Figure 6.12: (a) Same as figure 6.11(b) but now for fixed n = 3.0 and increasing tempera-

ture. (b) The structure factors at the thermodynamic points of (a), comparison between

theory (lines) and simulation (symbols).
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was originally formulated as a high-density approximation, proves to perform extremely
well even at intermediate packing fractions, n = 0.5 for instance. This is a direct con-
sequence of the boundedness of the interaction combined with a temperature 7" > ¢.
Indeed, for small densities, the direct correlation function ¢(r) tends to the Mayer func-
tion f(r), c¢(r) ~ e™#¢(") — 1 [6]. If we are dealing with a bounded interaction at high
temperatures, we can linearize the exponential, obtaining ¢(r) =~ —f¢(r) at low densities,
which matches the MFA expression (6.2) at high densities, thus leading to the conclusion
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that the MFA is an excellent approximation at all densities. For unbounded interactions
the linearization of the exponential is evidently impossible.

In Figure 6.12 we present a comparison between MC and MFA at fixed packing fraction
n = 3.0 and increasing temperature. As can be clearly seen, the validity of the MFA
improves with increasing temperature. For bounded interactions, an increasing temper-
ature implies a ‘washing-out’ of the correlation effects caused by the (increasingly weak)
interaction effects and a tendency of the system towards a particular ‘high-density ideal
gas’ limit characterized by the tendency of the function g(r) towards unity. However, it
is an interesting peculiarity of these systems that unlike the usual ideal gas, the limit
g(r) — 1 (or, equivalently, h(r) — 0) does not imply a corresponding limit S(k) — 1.
Though the Fourier transform of h(r), h(k), tends to zero as p~!, this is compensated by
the large density p, so that the structure factor S(k) = 1 + p?l(/f) displays the signature
of strong ordering through the pronounced peaks seen in figures 6.10(b) and 6.12(b).
Further, we performed MC simulations at selected points deeply inside the region T* <
T7(n), finding that the obtained structure factors displayed Bragg peaks and hence con-
firming the prediction that the system is frozen there. Putting all our results together, we
draw in figure 6.13 a semi-quantitative phase-diagram of the PSM, accompanied by an as-
sessment of the validity of the MFA at selected thermodynamic points. The MFA appears

Figure 6.13: The phase diagram of the PSM, along with the points where the mean
field theory brings excellent agreement with simulation (filled circles), fairly good agree-
ment (empty squares) and no good agreement (X-symbols). These symbols should help
delineate the domain of validity of the mean-field theory.
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to be an excellent approximation at all densities above the temperature 7% = 3.0. Hence,
we take as an estimate for the freezing line above T* = 3.0 the MFA-Hansen-Verlet line
T} = 1.033n = n; for lower temperatures, we simply connect the point (n,7*) = (3.0, 3.0)
with the point (n, T*) = (0.5,0.0), which comes from the consideration that at 7% = 0
the PSM reduces to the hard sphere system which is known to freeze at a fluid density
Nas ~ 0.5. The monotonic shape of the freezing curve for low temperatures arises from
detailed considerations there, which can be found in [96].

Next we present in figure 6.14 a comparison for the FDM with & = 0.1. For this choice of
§, the Hansen-Verlet based freezing line takes the form T} = 0.7127. The selected points
lie in the fluid region and the comparison indicates once more the excellent accuracy of
the MFA both for g(r) and for S(k). The pair distribution function g(r) of this model is
deprived of the jump at r = o seen in the PSM; the latter is caused by the discontinuity
of the PSM potential there. However, a similarity between the g(r)’s of the £ = 0 and
¢ = 0.1 models is that they both attain their maximum values at full overlaps between
the particles » = 0 and thereafter they decay rapidly, featuring a depletion region around
r & o. This is a characteristic pointing to a strong clustering property in the fluid phase,
a property thereafter inherited by the incipient thermodynamically stable crystal; the
number of particles ‘sitting on top of each other’ and thereby occupying the same crystal
site scales linearly with density. In order to corroborate this claim, we can argue in two
different ways, using the liquid as a reference point.

First, let us consider the number of particles N, in the fluid phase whose centers are,
on average, within a distance o from the given particle. The number N, is given by the

formula;:
a

N, =1+ 47Tp/dr r2g(r). (6.7)
0

In figure 6.15 we show the function 47r2¢(r) within a particle diameter o for a sequence
of points along the freezing line of the PSM. As all these curves tend to a common limit
with increasing density, the integral N, — 1 tends to a constant and hence N, o p at high
densities, where the second term on the right hand side of equation (6.7) dominates.
Second, we can use the wave vector k, at which the fluid structure factor has a maximum
in order to estimate for the lattice constant a of the incipient crystal through the relation
a X ki For the models at hand, this maximum is entirely determined by the pair
potential; unlike in usual fluids featuring diverging interactions, for which &, scales as
p%, in our case k, knows nothing about the density. Thus, all post-freezing crystals
have the same lattice constant, although their average density is a linear function of
the temperature. This clearly shows that clustering must take place in the crystal: by
allowing more particles to occupy the same lattice site, a practically constant effective
density of clusters is maintained in the crystal, thus leading to a density-independent
lattice constant.

6.2.4.2 Systems displaying reentrant melting

We now turn our attention to the opposite case, namely pair potentials ¢(r) belonging
to the kT-class. As an example within the FDM family, we have taken the model with
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Figure 6.14: (a) Comparison between theory (thick lines) and simulation (thin lines)
results for g(r) of a FDM system & = 0.1. (b) Comparison for the structure factors (lines:
theory, symbols: simulation) for the same system at the thermodynamic points of (a).
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parameter £ = 0.6 and performed a comparison between MC and MFA results. A charac-
teristic example is shown in figure 6.16. As can be seen in figure 6.16(a), unlike the case
of k*-class potentials, the radial distribution function is completely deprived of any struc-
ture, although the thermodynamic parameters are in the same regime as those present in
figures 6.11, 6.12 and 6.14. In fact, in the present case, g(r) has a minimum at r = 0, not
a maximum. This complete lack of structure is reflected in the shape of S(k), shown in

figure 6.16(b).
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Figure 6.15: The quantity 47r?¢(r) within the diameter o of the PSM along the freezing
line T* = n. All the curves converge to a single one at high densities, indicating that the
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These characteristic features for the kT-class are not an artifact of the relatively high
temperature chosen in the results of figure 6.16. They persist even at extremely low
temperatures, provided the density is high enough. This has been amply demonstrated
recently for the case of the Gaussian core model, another member of the k*-class [46].
In order to stress this point we present in figure 6.17 the g(r) and S(k) of the GCM at
T* = 0.01 and n = 6.0. Though g(r) displays some structure up to r & 20, the structure
factor S(k) shows no signature of some kind of ordering. At any arbitrary small but
finite temperature, a high enough density can be found for which the MFA is valid and
then the assumption that a uniform phase exists leads consistently to a fluid which has
ideal-gas behavior, i.e., vanishingly small correlations. These liquids are different from
usual ideal gases in that, e.g., their pressure p and isothermal compressibility xr scale
respectively as p ~ p? and xr ~ T*p~2. Nevertheless, they are thermodynamically stable.
Hence, for potentials in the k*-class, the equilibrium phase for sufficiently high densities
at arbitrarily small but finite temperatures is the uniform fluid.
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Figure 6.16: (a) Comparison between theory (thick lines) and simulation (thin lines)
results for g(r) of a FDM system with & = 0.6. (b) Comparison for the structure factor
S(k) (lines: theory, symbols: simulation) for the same system at the thermodynamic point

of (a).
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6.2.4.3 Generic phase diagrams

We now turn to the opposite limit of the low temperature-low density part of the phase
diagram. There, following the original ideas of Stillinger [33], a HS mapping can be
performed as follows. The Boltzmann factor e #%(") of the potential varies monotonically
from the value e & 0 (since Be > 1 there) at r = 0 to unity at r — oo and has a close
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Figure 6.17: (a) Comparison between theory (thick lines) and simulation (thin lines)
results for g(r) of the GCM. (b) Comparison for the structure factor S(k) (lines: theory,

symbols: simulation) for the same system at the thermodynamic point of (a).
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resemblance to that of a hard sphere system. We can thus define an effective hard sphere
diameter ogg trough the relation:

e Polons/o) —

1

5"

(6.8)
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Writing ¢(r) = €¢*(r) and using the fact that ¢(r) is a monotonic function in order to
establish that the inverse function ¢~'(r) exists, we can rewrite equation (6.8) as:

ogs =0o¢ H(T*In2). (6.9)

We now use the known fact that hard spheres freeze at ngs =~ 0.5 together with equation
(6.9) above in order to obtain the low temperature-low density freezing line of the system

as
1

T;n) = 50 ((20) ). (6.10)

As the limit ¢(r) — 0 is attained for » — oo only, it follows that the low temperature-low

Figure 6.18: Evolution of the phase diagram of ¥*-FDM s with £ < &,. To the right of
the freezing lines the system is solid and to the left fluid. Inset: the phase diagram of
a kT-FDM with £ > &, obtained by solving the HNC and employing the Hansen-Verlet
criterion. Below the bell-shaped curve the system is solid and above fluid.
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density freezing line of the system goes to n = 0 at T} = 0. Equation (6.10) is valid for
all potentials we consider here; however, for kT-potentials, combining the HS-like freezing
at low temperatures and low densities with the fact that at high densities the fluid has
to be stable, derived in the preceding subsection, we can draw the conclusion that such a
system must display reentrant melting and an upper freezing temperature.

We have now taken equation (6.10) for the low-7* and low-7 freezing line of the FDM
and combined it with the analytic expression at the opposite limit, (6.5), in order to
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draw schematically the evolution of the phase diagram of the FDM as a function of &,
for £ < &.. The results are shown in Figure 6.18. With increasing &, the slopes of the
high-T™* freezing line decrease; at the limit & — 0, corresponding to the PSM, the low-7™
freezing line approaches the horizontal axis vertically, as is dictated by the fact that the
PSM becomes equivalent to the HS system there [33]. In the inset of figure 6.18, we show
the phase diagram for a system with & = 0.6 > &, showing reentrant melting behavior.
The evolution of the phase diagram from a clustering to a reentrant melting behavior can
be easily visualized from this picture.

Finally, it is important to point out that Stillinger has proven that any system interacting
by means of a potential which

e is differentiable at least four times,
e vanishes strongly enough at infinity to be integrable and
e is +1 at the origin,

will inevitably lead to a reentrant melting phase diagram under the assumption that the
competing crystal structures have single lattice site occupancy [33]. We can therefore now
complete the statement and say that if a potential belongs to the k*-class, then it will
freeze into crystals of single occupancy and then remelt upon increase of the density. But
if it belongs to the k*-class, then it will freeze into a clustered solid at any temperature.
Clustering appears therefore to be the crucial mechanism for crystal stabilization in these
systems.
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6.3 One component hard sphere system

The one component hard sphere (HS) system has been the object of intensive investiga-
tions from a lot of different theoretical approaches. In this section we will compare the
results we obtained for the fluid and solid structure and liquid-solid transition for the one
component hard-sphere system using various techniques described in this thesis.

6.3.1 Fluid structure

In this section we will present results for the structure of the HS system at two different
densities, p = 0.2 and p = 0.8. We applied the RY approximation and the Rosenfeld
functional (with some new, yet unpublished expressions for the excess free energy density
® introduced in section 4.3.5) for the hard sphere potential. In Figure 6.19, the pair
correlation functions g(r) and the direct correlation functions ¢(r) for a hard sphere fluid
at p = 0.8 calculated using various methods are shown. The abbreviations are stand-
ing for: PY/Rsf denotes the Percus-Yevick result (equal to the classical Rosenfeld (Rsf)
functional for hard spheres), VW denotes the Verlet-Weiss parameterization, HNC is the
Hypernetted chain approximation, RY denotes the Rogers-Young approximation (with
a = 0.249) and Rsf/CS is the Rosenfeld functional where for ®3 equation (4.104) is used.
The insets are showing the contact value of g(r) and the behavior of ¢(r) around r = o.

From this figure, it is obvious that the pair distribution function g(r), calculated using
the version of the Rosenfeld functional which reassembles the Carnahan-Starling equation
of state, violates the core condition g(r) =0 V r < 0. Additionally, the contact value of
this g(r) is the lowest one of all five examined theories, lying even below the PY result.
The HNC overestimates the contact value, whereas the RY approximation reveals its in-
terpolating character (between the PY and the HNC), leading to a contact value which
is nearly identical to the one of the VW parameterization (this can also be seen for ¢(r),
where the RY result also shows a exponential decreasing tail for r» > o.

Figure 6.20 shows the static structure factor S(k) for the various theories; the two insets
display the region for & — 0 and the region around the first peak. This figure also
shows the very good agreement between the RY solution and the VW parameterization;
these two curves are enclosed by the PY and the HNC solution. For the compressibility
Xt/X1ia = S(k = 0) (see subsection 3.2.5), the VW and the Rsf/CS solution are nearly
identical. This is obvious, because both methods are leading to the same Helmholtz free
energy, which is directly related to the static structure factor at £ = 0 using equation
(3.34). However, the results still differ from the exact result, because the VW parameter-
ization reproduces the CS free energy by adjusting the contact value and the long-range
oscillations of g(r), whereas the Rsf/CS method uses the CS equation of state as a direct
input for its free energy. The results one gets for the correlation functions (especially for
the tail 7 > o) are somehow constrained by the weight functions (which are nonzero only
for r < %) and are therefore unable to reconstruct the exact value for £ = 0.

In figures 6.21 and 6.22, we present the corresponding results for p = 0.2. Although the
density is now significantly lower than for figures 6.19 and 6.20, the basic trends (as dis-
cussed for p = 0.8) are still present; for example the core violation of the Rsf/CS solution.
For g(r) and ¢(r), the results of the VW parameterization and the RY approximation are
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Figure 6.19: Pair distribution functions g(r) and Rogers-Young mixing function f(r)
(upper part) and direct correlation functions ¢(r) (lower part) for the HS fluid at p = 0.8
for various methods.
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now nearly indistinguishable, hence for the insets of figure 6.21 we have marked the VW
solution with an additional plus sign.

As for the Rsf/CS method, we can say that this theory is useless for the study of the
uniform HS fluid, due to the inability to recover the basic requirements for g(r).




122 6.3: One component hard sphere system

Figure 6.20: Static structure factor S(k) for the HS fluid at p = 0.8 for various methods.
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6.3.2 Thermodynamic properties of the fluid

Figure 6.23 shows the Helmholtz excess free energy for the HS fluid. The curves were
calculated using various methods: PY/c and HNC/c: Percus-Yevick resp. Hypernetted-
chain solution, compressibility route (3.33); PY/v and HNC/c: PY and HNC solution,
virial route (3.25); CS and RY: Carnahan-Starling parameterization and Rogers-Young
approximation, equation (3.33) and (3.25) yield the same result. The RY result is nearly
identical to the CS result, which was introduced as an approximation for the results from
computer simulations. Interestingly, the PY and HNC results fulfill the following relation:

Anncye(p) < Apyju(p) < Acs(p) < Apyse(p) < Arncyu(p)-

So the PY result for A(p) is for both the virial and compressibility route a better solution
than the HNC result. The rather high results for Aync/y(p) are clear from figure 6.24,
where the virial pressure p*(p) for the various methods is shown; the too low results for
Apncse(p) can be justified by the high value for the static structure factor S(k) for k£ =0

(see figure 6.20):
. /
1
A+ = [d / ﬂ -1 1—
N =
0

In figure 6.24 one can see, again, the good results one gets from the RY approximation
(when compared with the CS results). However, the computational effort for RY approxi-
mation is substantially higher (mainly due to the requirement that the structure functions
have to be evaluated for more than one density to evaluate the self consistency parameter)
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Figure 6.21: Pair distribution functions g(r) and Rogers-Young mixing function f(r)
(upper part) and direct correlation functions ¢(r) (lower part) for the HS fluid at p = 0.2
for various methods.
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than for the VW parameterization (which is given analytically).

Figure 6.25 shows the density dependent optimization parameter a(p). This parameter
is a slowly varying function of p (and not a constant, as stated in [11]). The value for
p = 0 was extrapolated, because for p = 0 the self consistency relation is fulfilled for all
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Figure 6.22: Static structure factor S(k) for the HS fluid at p = 0.2 for various methods.
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Figure 6.23: Helmholtz free energy A (p) for the HS fluid for various methods. The inset
shows the region for p > 0.7.
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parameters «. Interestingly, a(p) is not a strictly monotonic function of p. It can be
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Figure 6.24: Virial pressure p*(p) for the HS fluid for various methods. The inset shows
the region for p > 0.7.
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easily seen from figures 6.25 and 6.19, that for small densities and distances r the PY
part of the closure is in favor of the HNC part. This dominance decreases a little bit until
p =~ 0.635, where the HNC part has its maximum contribution with a = 0.255. Beyond
this point, the HNC part loses ground against the PY part. However, it should be noted
that for the whole p-range the PY part is always the dominating part of the closure for
small distances 7. In table 6.1, some numerical values for the pressure and the isothermal
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Table 6.1: Numerical comparison between the CS parameterization and RY approximation
results for the pressure p*(p) and the isothermal compressibility x*(p) of the HS fluid.

p_|| Pry | Pecs £p Xry | Xos Ex
0.08 || 1.1865 | 1.1865 0.0 % 8.9705 | 8.9702 | 0.003 %
0.16 || 1.4173 | 1.4174 | —0.007 % | 3.2376 | 3.2364 | 0.037 %
0.24 || 1.7043 | 1.7048 | —0.029 % || 1.5649 | 1.5628 | 0.134 %
0.32 || 2.0627 | 2.0645 | —0.087 % | 0.8533 | 0.8505 | 0.329 %
0.40 || 2.5129 | 2.5180 | —0.203 % || 0.4969 | 0.4936 | 0.669 %
0.48 || 3.0824 | 3.0946 | —0.394 % || 0.3011 | 0.2977 | 1.142 %
0.56 || 3.8084 | 3.8349 | —0.691 % || 0.1872 | 0.1839 | 1.794 %
0.64 || 4.7423 | 4.7961 | —1.122 % || 0.1182 | 0.1152 | 2.604 %
0.72 || 5.9568 | 6.0606 | —1.713 % || 0.0752 | 0.0726 | 3.581 %

compressibility for the HS fluid are shown together with their relative errors defined as

_ Xry — XG5

Ex = " .
X&s

Summarizing, we can say that the RY solution of HS and the CS approximation give
results that are in good agreement (both thermodynamically and with respect to the
structure) with the computer simulation results. The PY and the HNC solutions are
both yielding results that are in fairly good agreement with the simulation data, but to a
lesser extent than the two former theories.

6.3.3 Fluid-solid phase transition for the HS system

In this subsection we will present the results we obtained for the fluid-solid phase transition
of the HS system. This (entropy driven) transition from a liquid to an fcc-solid has been
extensively studied [97, 98, 99, 100, 101].  In table 6.2, the fluid-solid coexistence
densities for various different methods (both for the fluid and the solid phase) are shown.
Ap is equal to ps — p; and the error ¢ is defined as

e = |Pl - Pl,Mc\ n |Ps - ps,MC’|’ (6.11)
pPL,MC Ps,MC

where p, pc is the respective liquid or solid density of the (Monte-Carlo) computer sim-
ulation. In this table, FVPA denotes the free volume perturbation approximation (see
subsection 4.1.8) and Rsf/CS denotes the approach of Roland Roth, where the Carnahan-
Starling equation of state is reproduced by a reformulation of the Rosenfeld (Rsf) free
energy density ® (see subsection 4.3.5). Figure 6.26 and 6.27 shows the double tangent
construction for the fluid-solid phase transition for most of the methods of table 6.2. Re-
member that, for the fluid phase, the PY/compressibility gives the same results as the

Verlet-Weis parameterization for the fluid excess free energy, PY correlation functions used as input
to the MWDA [75].
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Table 6.2: Coexistence densities for the fluid-solid phase transition of the HS system.

Fluid method Solid method o Ps Ap | error ¢
PY, compressibility route | MWDA 0.877 | 1.018 | 0.141 | 8.18 %
PY, virial route MWDA 0.961 | 1.061 | 0.100 | 4.25 %
VW MWDA 0.880 | 1.030 | 0.150 | 7.34 %
VW MWDA/PY! | 0.910 | 1.036 | 0.130 | 3.58 %
PY, compressibility route | FVPA 0.901 | 1.032 | 0.131 | 4.92 %
PY, virial route FVPA 1.074 | 1.149 | 0.075 | 24.73 %
VW FVPA 0.940 | 1.060 | 0.120 | 1.92 %
Rsf Rsf 0.892 | 0.985 | 0.093 | 10.39 %
Rsf/CS Rsf/CS 0.934 | 1.023 | 0.089 | 2.27 %
Computer simulation [100] 0.940 | 1.040 | 0.100 | 0%

Rosenfeld functional and the VW parameterization is equal to the Rosenfeld/CS func-
tional. The caption means the following:

PY /c: MWDA with Percus-Yevick correlation functions, excess free energy calculated
using the compressibility route as input.

PY/v: MWDA with Percus-Yevick correlation functions, excess free energy calculated
using the viral route as input.

VW /CS: MWDA with Verlet-Weis parameterization for the correlation functions as
input.

Rsf: Rosenfeld functional using the ‘classical’ ® (see subsections 4.3.3 and 4.3.4.2).

Rsf/CS: Rosenfeld functional where the free energy reproduces the Carnahan-Starling
(CS) equation of state for the fluid phase (see subsection 4.3.5).

FVPA: Free volume approximation (see subsection 4.1.8).

By taking the error defined in equation (6.11) as a measure of the quality of the results, the
VW-FEVPA theory is the best approximation of the computer simulation data, followed
by the Rosenfeld/CS approximation. The VW parameterization gives a very good result
for the solid density, whereas the fluid density is a bit too low; however, the free energy
for the fluid reproduces the CS equation of state which is a very good approximation for
the free energy from computer simulations.

Interestingly, for the solid phase the result of the original Rosenfeld functional and the
Rosenfeld/CS functional in figure 6.26 and 6.27 are nearly identical. One can see from
figure 6.28 (where the localization parameter a(p) of the one-particle density parameter-
ization (C.1) for the various theories is shown), that a(p) for the Rsf/CS functional (in
the density range 0.95 < p < 1.05) is related to a(p) of the original Rsf functional by

arsf(p) = arspos(p) + 5,
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Figure 6.26: The double tangent construction for the fluid-solid phase transition of the
HS system. Lower graph: free Energy A™ as a function of p; upper graph: derivative of

free energy A™(p) with respect to p (=chemical potential p*)
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thus leading to an ideal free energy for the Rsf/CS functional that is always lower than
the ideal free energy for the Rsf functional. Because of this relation, the density profile
(and so the weighted densities) of the solid calculated using the Rsf functional are slightly
sharper than the ones predicted by the Rsf/CS functional. Thus, the overlap of the various
weighted densities from the different lattice sites is bigger for the Rsf/CS, resulting in an
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Figure 6.27: The double tangent construction for the fluid-solid phase transition of the
HS system. Lower graph: free Energy A" as a function of p; upper graph: derivative of
free energy A™(p) with respect to p (=chemical potential p*)
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increased free energy density ® in the areas where the overlap occurs. So the excess free
energy of the Rsf/CS functional is higher (and, as can be seen from figure 6.26 and 6.27)
by approximately the same amount as the ideal energy is lower. The behavior of the
excess free energy Al (p) for the various methods is shown in figure 6.29. By comparing
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Figure 6.28: Localization parameter «(p) for the various methods used to evaluate the
solid phase of the HS system.
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Figure 6.29: Excess free energy A7 (p) of the
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HS system for the fcc solid.
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figure 6.28 and 6.29, the following basic trend emerges (up to ps ~ 1.04): The lower the
localization parameter « is for a given theory, the higher the excess free energy is for the

same theory. « tries to compensate the lower ideal free energy by increasing the overlap
of the particles at the lattice sites as discussed above.
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Figure 6.30: Pair distribution function g(r) of the HS system for the fcc solid at n = 0.52.
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6.3.4 Solid structure

Using the parameterization of the pair distribution function g(r) as defined in section C.3,
we have calculated the g(r) for the solid packing fractions n = 0.52, 0.68 and 0.71 using
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Figure 6.31: Pair distribution function g(r) of the HS system for the fcc solid at n = 0.68.

various theories in order to be able to compare them with the computer simulation results

from [102].
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Figure 6.32: Pair distribution function g(r) of the HS system for the fcc solid at n = 0.71.
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For n = 0.52 (figure 6.30, p = 0.9931), the Rsf/CS functional is the only theory that
predicts the first peak correctly (in the framework of our used parameterization of g(r)
[82, 83]). All other theories are showing a peak that is too small when compared with
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the computer simulation results. If one looks at the second and third peak (at r ~ 1.6
and r ~ 1.95), it is clear that the FVPA, the PY/c and the VW results are exaggerating
the oscillations of g(r) (because their a(p)’s are too low), whereas the PY /v result gives
a very good approximation in this range of r. Overall, the Rsf/CS functional gives the
best result, being a slightly worse approximation to the computer simulation g(r) than
the PY /v result for outside the first peak (r > 1.3).

For n = 0.68 (figure 6.31, p = 1.2987), the picture changes a little bit. For the first peak,
the Rsf/CS result is still the best approximation; the FVPA now gives a comparable result
for this range of 7. The PY/c, PY/v and VW results are too low (with the same ‘ranking’
as for n = 0.52). For the second and third peak, the FVPA still predicts too narrow values
(which is clear from the according curve in figure 6.28), and the VW result is still too low
(as predicted by 6.28). In contrast to figure 6.30, the PY /v result now gives a result that
is of similar quality as the VW parameterization. The PY/c and the Rsf/CS result are
nearly identical and are offering a very good approximation to the computer simulation
data.

For n = 0.71 (figure 6.32, p = 1.3560) the behavior is very similar to n = 0.68. Now
the difficulties of the VW and the PY /v approximations are obvious; both of them are
predicting peaks that are too broad. For the first peak, the Rsf/CS functional comes once
again very close to the computer simulation, with the FVPA solution only slightly worse.
The VW parameterization fails badly at the first peak, even when compared to the other
theories. For peak two and three, the FVPA now gives the best approximation of the
simulation results.

This leads us to the following conclusions:

e The localization parameter a(p) fitted to the computer simulation results lies some-
where between agss/cs(p) and apypa(p), where the former dominates for smaller
p and the latter is dominating the region towards the closed packing limit.

e The VW parameterization predicts, albeit its satisfactory result for the location
of the fluid-solid phase transition, for high densities a solid structure where the
localization of the particles around their lattice sites is underestimated.

e The Rsf/CS functional is the theory which gives the best overall agreement with
the computer simulation results, both for the structure and the fluid-solid phase
transition.

e The Rsf functional gives a solid structure which is comparable to the Rsf/CS func-
tional, but the predicted fluid-solid phase transition occurs at densities that are too
low.

e The FVPA gives a remarkably good approximation for the fluid-solid phase transi-
tion. The FVPA also gives a good result for the solid pair distribution function for
densities near the closed packing limit.

Finally, in figures 6.33 to 6.37 we have visualized' the free energy density ®(7) for the
solid HS system (fcc lattice) at various densities (ps = 0.95,1.0,1.05,1.1); two results for

1Using IBM “s visual data explorer (dx).
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Figure 6.33: Iso-surface plot of the free energy density ®(7) for the HS system, fcc lattice
with p; = 0.95. Shown is the result for the Rosenfeld functional.

Figure 6.34: Iso-surface plot of the free energy density ®(7) for the HS system, fcc lattice
with p, = 1.0. Shown is the result for the Rosenfeld functional.
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the bce lattice are presented in figure 6.38 (p; = 1.0) and 6.39 (ps = 1.2). Shown are
the results we got using the (classical) Rosenfeld functional; the Rosenfeld/CS results are
looking identical on this length scale. The hard sphere particles are displayed as quarter-




136 6.3: One component hard sphere system

Figure 6.35: Iso-surface plot of the free energy density ®(7) for the HS system, fcc lattice
with p; = 1.05. Shown is the result for the Rosenfeld functional.

Figure 6.36: Iso-surface plot of the free energy density ®(7) for the HS system, fcc lattice
with ps; = 1.1. Shown is the result for the Rosenfeld functional.

24

|

spheres at their respective lattice positions.

For ps = 0.95 (figure 6.33) and p;, = 1.0) (figure 6.34), the free energy density ®(7) is
a slowly varying function of 7. The maximum of ®(7), 03®,,.,(7) ~ 8 — 10, occurs in
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Figure 6.37: Iso-surface plot of the free energy density ®(7) for the HS system, fcc lattice
with ps = 1.2. Shown is the result for the Rosenfeld functional.

Figure 6.38: Iso-surface plot of the free energy density ®(7) for the HS system, bec lattice
with p, = 1.0. Shown is the result for the Rosenfeld functional.

the region where two sphere surfaces have their smallest distance to each other. Inter-
estingly, for these two figures the free energy density is also nonzero inside the particles;
for instance for p; = 0.95 there is an iso-surface at about the half particle radius. This
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Figure 6.39: Iso-surface plot of the free energy density ®(7) for the HS system, bcc lattice
with ps = 1.2. Shown is the result for the Rosenfeld functional.

iso-surface is being pushed towards the outside of the particles at figure 6.34.

For ps = 1.05 (figure 6.35), the free energy density is nonzero outside the core only for the
regions around the maxima of ®(7); this maxima are becoming sharper with increasing
density and are now at 0®®,,,,(7) &~ 16. The free energy forms some kind of ‘bonds’
between the particles. The iso-surface inside the particles mentioned above has also been
pushed even more towards the particle surface.

For p; = 1.1 (figure 6.36), the regions where the free energy density is nonzero are not con-
nect anymore. ®(r) is now being nearly completely pushed outside the particles, forming
radially symmetric connections between the particles and their nearest neighbors. This
‘pushing out’ has further increased for p, = 1.2 (figure 6.37). The maxima are now very
sharp (with 03®,,,,(7) &~ 60), and the free energy density is zero for nearly the whole
volume.

For the bee crystal, the behavior of ®(7) as a function of the solid density p; is similar.
However, it can be seen from figure 6.38 (ps = 1.0) and 6.39 (p; = 1.2) that the sharp
localization of ®(7) does not take place (albeit the close packing limit of the bee crystal
happens at a density that is lower than the close packing limit of the fcc crystal). Nev-
ertheless, the maximum values of ®(7) for the bee crystal are comparable to the maxima
of the fcc crystal. This behavior is subject to ongoing investigations.
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6.4 Square well and square shoulder systems

In this section we will present the results for the one component square-well/square-
shoulder potentials (partly published in [103]).

6.4.1 Fluid structure

Here, we will present the results for the pair distribution function g(r). The thermody-
namic parameters for which the various theories has been solved for the square-well fluid
are shown in table 6.3. We begin with the square-well fluid having a potential width

Table 6.3: Thermodynamic parameters and theories for which the square-well system has
been solved.

A | T* | p | Theories

1.5 | 1.0 | 0.8 | EXP, ORPA, HNC, PY, MC (Simulation [103])
1.03 | 1.0 | 0.8 | Nezbeda [25], EXP, ORPA, RY (o = 0.16667), Rsf, Rsf/TPL
1.03 | 0.5 | 0.8 | Nezbeda [25], EXP, ORPA, PY, HNC

A = 1.5. In figure 6.40, we show results for g(r) at 7* = 1.0. As can be seen from the
left inset, the EXP yields the best contact value when compared to the simulation data;
however, it is seriously inaccurate at » = Ao. The ORPA also yields results which are in
good agreement with simulation data; they are actually superior to the EXP approxima-
tion.

The situation with the RY closure is completely different. At density p = 0.8, there is
no thermodynamically self-consistent solution to this closure at 7* = 1.0. This failure
was also observed earlier in a different closure for the same system, by Bergenholtz et al.
[104]. They used the so called HMSA closure [105] (the HMSA closure equation interpo-
lates continuously between the soft core, mean spherical approximation (SMSA) at short
interparticle distances and the hypernetted chain closure (HNC) at larger interparticle
distances). The reason of the lack of existence of a solution is the following: the RY
closure is a mixture of the PY and the HNC closures. In a case where it works (for exam-
ple hard spheres), the difference between the ‘fluctuation’ compressibility [see equations
(3.31) and (4.47)] and the ‘virial’ compressibility [see equations (3.30) and (4.48)], has
opposite signs for the HNC and the PY closure. In particular, the PY closure typically
predicts virial compressibilities which are too high, so the quantity x7 — xF is negative.
On the other hand, the HNC predicts too low virial compressibilities with the result that
the the quantity x% — x7 is positive. With reference to figure 6.40, we now see that the
major discontinuity in g(r) (at » = o), whose magnitude gives the dominant contribution
to the virial pressure, turns out to be higher than the simulation result in both the PY
and the HNC closures. Hence, both yield a positive value for the difference x5 — x% and a
self-consistent solution of the RY closure does not exist. This is the same mechanism that
brings about the failure of the HMSA closure (see above) of Bergenholtz et al. [104] The
self consistency parameter « of the RY closure cannot attain negative values, as is clear
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Figure 6.40: Pair distribution functions g¢(r) for the square-well fluid with A = 1.5 at
p = 0.8, T" = 1 for various theories. The insets show the regions around r = o and
r=Ao.

g(r)

Figure 6.41: Rogers-Young self consistency parameter o as a function of inverse temper-
ature for the square-well fluid with A = 1.5 at various densities.
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Figure 6.42: The fluid part of the phase diagram of the A = 1.5 square-well fluid as
calculated within the ORPA and the locus of points where we was unable to find a self-
consistent solution of the RY closure (i.e., & tends to be smaller than zero). Below this
boundary, @ < 0 and the RY closure has no self-consistent solution.
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from equation (4.45). We can, therefore, trace out the domain in thermodynamic space
where the RY closure fails, by keeping track of the value « as a function of density and
temperature and working out the locus of points where a = 0. In figure 6.41 we show the
parameter « as a function of inverse temperature for the square-well fluid with A = 1.5
for a number of reduced densities. It can be seen that with decreasing temperature the
mixing parameter decreases for all values of the reduced density. Beyond the point where
a = 0, the solution of the RY closure is no longer self consistent. In figure 6.42 the locus
of points @ = 0 in conjunction with the fluid part of the phase diagram of the system, as
calculated within the ORPA, is shown.

For narrow square-well systems (A = 1.03), the solution of the RY closure is unproblem-
atic. In figure 6.43 we show results for various theories, including the Rosenfeld (Rsf,
with and without the test particle limit (TPL) applied) and the Nezbeda solution (see
subsection 2.2.2 and [25]). The Nezbeda solution is an approximate analytic solution for
the direct correlation function ¢(r) within the PY approximation. The Nezbeda approxi-
mation is valid for short range wells or shoulders, typically A < 1.05 only; its advantage
is that all the parameters that enter the expressions for the correlation functions can be
given analytically as functions of density and temperature, for a summary see [13].

In figure 6.43, the simulation result is practically indistinguishable for the RY result and
is thus not shown. The Rsf result without the TPL shows a violation of the core con-
dition. If one applies the TPL to the Rsf functional, the quality of the result increases
significantly. The ORPA and the EXP approximations, however, predict too low and too
high values for g(r) in the narrow well. In figure 6.44, the results for 7% = 0.5 are shown.
Although the solutions of the PY and the HNC closure yield both results which are very
close to the Nezbeda solution (which is in a very good agreement with the simulation
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Figure 6.43: Pair distribution functions g(r) for the square-well fluid with A = 1.03 at
p = 0.8, T" = 1 for various theories. The insets show the regions around r = o and

r = \oO.
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results), we were unable to find a mixing parameter a for which the RY solution is self

consistent.

The thermodynamic parameters for which the various theories have been solved for the

square-shoulder fluid are shown in table 6.4.

Results for g(r) are shown in figures 6.45

Table 6.4: Thermodynamic parameters and theories for which the square-shoulder system
has been solved. The Monte-Carlo (MC) results were taken from [103].

A | T* | n | Theories

1.5 1.0 | 0.4 | EXP, ORPA, RY (o = 1.0651), MC (Simulation)
1.5 0.5 | 0.4 | EXP, ORPA, RY (o = 1.6581), MC (Simulation)
1.2 1.0 | 0.4 | EXP, ORPA, RY (a = 0.6316), MC (Simulation)
1.2 0.5 | 0.4 | EXP, ORPA, RY (a = 0.7832), MC (Simulation)

(A = 1.5) and 6.46 (A = 1.2). It can now be seen that the RY closure delivers results
which are in perfect agreement with simulation. We have further explored the thermo-
dynamic space and was always able to find a self-consistent solution [a € (0, 00)] of the
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Figure 6.44: Pair distribution functions g(r) for the square-well fluid with A = 1.03 at
p = 0.8, T* = 0.5 for various theories. The insets show the regions around r = ¢ and
r=M\o.
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RY closure. We conclude, therefore, that for purely repulsive potentials the RY closure is
problem free and, in addition, yields results of excellent quality in comparison with the
simulation data.

The ORPA and the EXP approximation, on the other hand, do not yield satisfactory
agreement with simulation. In one case, A = 1.5, T* = 0.5 and n = 0.4, the ORPA even
predicts a region where g(r) is negative (lower graph of figure 6.45), a clearly unphysical
solution. The reason for this failure can be traced back to the perturbative nature of
the ORPA. Indeed, from the defining equations for the ORPA [see equation (4.5)] it
is clear that the latter is a high-temperature approximation which is bound to fail at
sufficiently low temperatures as the quantity —S8¢;(r) will tend to minus infinity for the
case of the square-shoulder potential. In figures 6.47 and 6.48 we delineate the region in
the density-temperature plane where the ORPA leads to negative ¢g(r) in the case of the
square-shoulder systems with A = 1.5 and A = 1.2, respectively.

6.4.2 Thermodynamic properties

We have examined the thermodynamic properties for the square-well and square-shoulder
potential for a number of parameters, shown, together with the results, in tables 6.5




144 6.4: Square well and square shoulder systems

Figure 6.45: Pair distribution functions g(r) for the square-shoulder fluid with A = 1.5
at n = 0.4, T* = 1 (upper graph) and 7* = 0.5 (lower graph) for various theories. The
insets show the regions around r = ¢ and r = Ao.
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and 6.6. The calculation was carried out using the ORPA and EXP approximations.
Remarkable is the thermodynamic inconsistency of the pressure (with an error of ~ 200%)
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Figure 6.46: Pair distribution functions g(r) for the square-shoulder fluid with A = 1.2

at n = 0.4, T* = 1 (upper graph) and 7* = 0.5 (lower graph) for various theories. The
insets show the regions around r = ¢ and r = Ao.
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for the pressure self-consistency of the A = 1.03 and 7" = 0.5 square-well system. In
figure 6.49 we plot the results for the pressure, obtained via the viral and the energy
route within the EXP for a square-well system of range A = 1.5 and three different tem-
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Figure 6.47: The region of failure for the ORPA, square-shoulder potential with A = 1.5.
The region is denoted by dots.
1 ‘
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Figure 6.48: As figure 6.47, but for A = 1.2.
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peratures T*; the error bars indicate the difference between two different thermodynamic
routes for the pressure and hence the degree of thermodynamic inconsistency. Figure 6.50
present similar results for a square-shoulder system with A\ = 1.2. We observe that the
thermodynamic self-consistency gets worse as the temperature decreases.
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Table 6.5: Thermodynamic properties for various square-well fluids at density p = 0.8. p}
and p? denote the pressure calculated by the virial [see equation (3.19)] and compressibility
routes; U;, and U;,, are the excess internal energy per particle calculated by the virial
[equation (3.16)] and energy routes; x5 and x% denote the ‘compressibility’ and ‘virial’

isothermal compressibilities, respectively.

X T v, p; | Uz, Uie | XF X~
ORPA

150 1.0 3.1576 2.5810 | —3.11786 —3.11666 | 0.07154 _ 0.05054
103 1.0| 22251 6.1576 | 053433 053573 | 0.05037  0.18271
103 05| —4.3965 44958 | —0.09446 —0.08885 | 0.05571 —0.08456
EXD

150 1.0 2.2680 2.8667 | —2.98020 —3.07134 | 0.07154  0.05200
103 1.0| 67050 57104 | 016009 0.22626 | 0.05037  0.05237
103 05| 55124 2.3045 | —2.69078 —2.19607 | 0.05571  0.05887

Table 6.6: Thermodynamic properties for various square-shoulder fluids at packing frac-
tion n = 0.4. Symbols as for table 6.5.

AT P, P U, Ul Xe Xs |
ORPA

150 1.0 | 11.164 12.0939 | 4.12697 4.12880 | 0.03811 0.04856
1.03 1.0| 10.749 82087 | 1.26262 1.26395 | 0.05143 0.03297
1.03 0.5| 13.537 9.4209 | 1.37030 1.37562 | 0.04713 0.02379
EXP

1.50 1.0 ] 12.8124 12.3074 | 4.45280 4.16482 | 0.03811 0.04367
1.03 1.0| 80333 7.9292 | 1.15479 1.16115 | 0.05143 0.04687
1.03 05| 9.4576 8.4402 | 1.14153 1.11314 | 0.04713 0.03760

6.4.3 Phase diagrams

The phase diagram of square-well potentials has, due to its attractive parts in the in-
teraction potential, a vapor-liquid phase separation terminating in a critical point. The
position of this critical point in the (p, T*) plane depends on the width of the perturbation
potential in a strongly monotonic way; the critical temperature 7™ increases with width.
In figures 6.51 to 6.54 the results for vapor-liquid transition of the square-well fluid at
A = 1.25 (figure 6.51), 1.5 (figure 6.52), 1.75 (figure 6.53) and 2.0 (figure 6.54) for various
theories are shown. The EXP and PA (perturbation approximation, see subsec-
tion 4.1.4.4) results were calculated using a VW parameterization. Due to its simple
treatment of the perturbation, the PA consequently overestimates the temperature of
the critical point. The EXP also has some problems to predict the (estimated) critical
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Figure 6.49: Reduced dimensionless pressure p* calculated for a square-well system of
range A = 1.5 for three different temperatures 7™ as indicated, calculated via the virial
and the energy route. The lines indicate the average of the values for the two routes and

the error bars the diligerence between these two values.
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Figure 6.50: Reduced isothermal compressibility x/x:a (xia = B/p) calculated for a
square-shoulder system of range A = 1.2 for three different temperatures 7* as indicated,
calculated via the compressibility and the virial route. The lines denote the average of
the values for the twq rolutes Iand chhe error l?ars tlhe d?fferelnce bletwefan these two values.
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point from the computer simulations exactly. For intermediate ranges of A &~ 1.5 (see
figure 6.52) this theory is able to fit the vapor-liquid phase transition from computer sim-
ulation data very precisely.
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Figure 6.51: Vapor-liquid phase transition of the square-well fluid with A = 1.25. Shown

are the results for the EXP, for the simple perturbation theory discussed in section 4.1.4.4

and computer simulation results (MC) from [106].
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In table 6.7, we have summarized the numerical values for the critical point coordinates
for the vapor-liquid phase transition of the four systems mentioned above.
The absence of attractive parts in the interaction potential of the square-shoulder system

Table 6.7: Critical point coordinates (p,T*) for the vapor-liquid phase transition of the
square-well fluid for different \-values (see figures 6.51 to 6.54).

MC EXP
X =1.25 || (0.370,0.764) | (0.526,0.772)
A=15 | (0.299,1.219) | (0.358,1.258)
A=1.75 | (0.284,1.811) | (0.295,1.834)
A=20 | (0.225,2.764) | (0.277,2.707)

brings along that there exists only one fluid phase, i.e., there is no liquid-gas separation.
Both, square well and square shoulder systems, freeze at high densities. Additionally, for
narrow wells and shoulders there appears in the solid region of the phase diagram a new
type of phase coexistence, namely an isostructural fcc-fcc phase transition, terminating
in a critical point. This transition was discovered in simulation work by Bolhuis and
Frenkel (for square-well systems in [107] and for square-shoulder systems in [108]). This
isostructural transition was studied recently in the framework of density functional theory
by Denton and Lowen [109]. There, a perturbative approach was employed, where the
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Figure 6.52: Vapor-liquid phase transition of the square-well fluid with A = 1.5. Symbols

see figure 6.51.
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Figure 6.53: Vapor-liquid phase transition of the square-well fluid with A = 1.

see figure 6.51.
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Figure 6.54: Vapor-liquid phase transition of the square-well fluid with A = 2.0. Symbols
see figure 6.51.
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interaction potential was separated into a reference, hard-sphere part and a perturbation.
The free energy of the inhomogeneous system was calculated by employing the MWDA
for the reference part and a mean-field type approach (similar to the one discussed in
subsection 4.4) for the perturbation.

In this thesis, for the solid we have used three approaches that again have a perturbative
character:

MPA The reference part is calculated in the framework of the MWDA; the minimization
of the Helmholtz free energy A with respect to o [equation (4.77)] is done together

with the perturbation potential; the perturbation part is evaluated using equation
(4.117).

MPA /fg In a first (temperature independent) step the reference solid (i.e., without the
perturbation part) is calculated using the MWDA; so the minimization of A in
equation (4.77) with respect to the localization parameter « is now done without
the perturbation potential. The perturbation part of the potential is then taken
into account using equation (4.116).

FVPA /fg This approach is very similar to the MPA /fg; the difference is that the refer-
ence part is calculated using the free volume approximation for the free energy in
the solid (see subsection 4.1.8).

In all cases, in the fluid phase the perturbation part of the potential is taken into account
using an HTA-style approximation defined by equation (4.26). If not explicitly pointed
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Figure 6.55: Liquid-solid and solid-solid phase transitions of the square-well fluid with

A = 1.01. The MC results were taken from [107].
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out, the reference part was always calculated using the VW parameterization. Beside these
theories, we have also treated the excess free energy in the solid in a non-perturbative
fashion using the MWDA (subsection 4.3.1) and the cMWDA (subsection 4.3.2). For
these theories the fluid phase was calculated using the EXP; the HS reference system was
treated using the VW parameterization.

At first we will present the results for the square-well system. In figure 6.55 the results for

A = 1.01 is shown. Although the cMWDA results are close to the MC data for the solid

fce-fee transition up to 7% = 1.5, the critical point is overestimated (= 150% with respect

to the temperature). For the FVPA/fg result we were, due to numerical restrictions,
unable to evaluate the fcc-fcec phase transition with satisfactory precision; however, the
liquid side of the liquid-solid transition is predicted with great accuracy when compared
with the MC results.

In figure 6.56 we have also include the cMWDA results with Nezbeda ’s solution (both for
the liquid phase and as input to the solid phase, see also [110]) and the MPA /fg result. It
is obvious from this graph, that the simple perturbation theories (MPA /fg and FVPA /fg)
are underestimating the critical temperature of the isostructural solid-solid transition.
One can also see that, obviously, the theories where the reference system is calculated
using the VW parameterization (¢cMWDA, MPA /fg) converge to the same results for the
liquid-solid transition for high temperatures. The cMWDA with the Nezbeda input gives




6.4: Square well and square shoulder systems 153

Figure 6.56: Liquid-solid and solid-solid phase transitions of the square-well fluid with

A = 1.02. The MC results were taken from [107].
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a critical temperature of the fcc-fcc transition which is closer to the MC results than the
one predicted by the cMWDA, but the shape of the transition curve is significantly worse
than the one one gets using the cMWDA with the EXP as input.

In figure 6.57 the quality of the different results from the different theories are compara-
ble to the previous figure. The cMWDA with Nezbeda input now give results down to
temperatures below the triple point at 7} ~ 1.58.

At A = 1.04 (figure 6.58), the phase diagram calculated using the FVPA /fg contains no
stable fcc-fcc transition anymore, the liquid-solid transition is energetically preferable.




154 6.4: Square well and square shoulder systems

Figure 6.57: Liquid-solid and solid-solid phase transitions of the square-well fluid with

A = 1.03. The MC results were taken from [107].
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However, for this perturbation potential width the computer simulation still predicts a
distinct fec-fee transition.  So for this kind of perturbation, the FVPA (together with
the simple treatment of the perturbation as discussed in section 4.4) is unable to predict
the phase behavior even in a qualitative way, hence we discard the solution of this theory
for the perturbation potential widths with A > 1.04.

For A = 1.05 (see figure 6.59), both the MPA /fg solution and the cMWDA theory with
Nezbeda input are predicting a metastable fcc-fcc transition, whereas this transition is
still stable when calculated using the cMWDA /EXP. It should be noted, that these two
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Figure 6.58: Liquid-solid and solid-solid phase transitions of the square-well fluid with

A = 1.04. The MC results were taken from |

107).
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theories (MPA /fg and cMWDA /Nezbeda) yield (qualitatively) similar results for the fcc-
fce transition at systems with A < 1.05.
For square-well potentials with perturbation potential widths A < 1.05, we can summarize
that the cMWDA when used along with the EXP/VW parameterization gives the best
results for the liquid-solid and solid-solid phase transitions. However, the numerical effort
for this theory is significantly higher than the effort to solve one of the other theories

used.

Finally, in figure 6.60 the phase diagrams for the square-well system with A = 1.06 to
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Figure 6.59: Liquid-solid and solid-solid phase transitions of the square-well fluid with
A = 1.05. The MC results were taken from [107].
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Figure 6.60: Liquid-solid and solid-solid phase transitions of the square-well fluid with A
from 1.06 to 1.1 for the cMWDA with the EXP/VW parameterization as liquid input.
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A = 1.1 for the cMWDA (with EXP/VW) are shown. For A = 1.06 and A = 1.07, the
fce-fee transition remains stable and disappears for A > 1.08. The simulation data from
[108] are predicting a ‘crossover’-width of A = 1.06, i.e. the fcc-fce transition is metastable
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Figure 6.61: Liquid-solid and solid-solid phase transitions of the square-shoulder fluid

with A = 1.03. The MC results were taken from [108].
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For square-shoulder systems we have applied the same theories as for square-well sys-
tems. Because the restrictions that lead to the introduction of the cMWDA do not
exist for the square-shoulder system (see section 4.3.2), we used the MWDA instead
of the cMWDA for the square-shoulder potential. However, applying the MWDA to-
gether with Nezbeda ‘s solution as input to the square-shoulder system, the result serious
overestimates the critical temperature for the isostructural fce-fee transition. We obtain
T ~5—6 for 1.04 < X\ < 1.08, in disagreement with the result from simulations [108],
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Figure 6.62: Comparison of the Nezbeda, ORPA, PA and RY direct correlation functions
of a A = 1.03 square-shoulder liquid at packing fraction n = 0.35 and temperature 7™ =
1.0. The insets shows the region around r = o.
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where the result is 7' &~ 1.5. On the other hand, if we use the EXP result for ¢(r;n) as
input, the critical temperature turns out to be between 0.8 and 1.4, i.e. in much better
agreement with the simulation. However, as can be seen in figure 6.61, the MPA /fg (and,
but to a lesser extent, the FVPA /fg), gives a significantly better approximation to the
MC results than the MWDA with EXP input. The MPA is even unable to predict the
isostructural transition.

The extreme sensitivity of 77 to the liquid-state input of the MWDA requires some ex-
planation. The basic idea behind the MWDA is that the effective liquid whose excess free
energy equals that of the solid has a density pjiqui¢ Which is much lower than pgq. In-
deed, the solid, being highly inhomogeneous, pays a high price in ideal free energy, which
disfavors spatial modulations, and a relatively low price in excess free energy.Referring
to equation (4.76), we observe the following: the contribution of the second term on the
right hand side consists of sums over shells in real space, the zeroth shell being included.
The contributions from the higher order shells (i.e., first, second etc neighbors of a given
site) are practically vanishing if the Nezbeda solution for ¢(r; p) is used, as in this approx-
imation the direct correlation function is identical zero for » > Ao. In reality, however,
the function ¢(r; p) has a ‘tail’ in the region r > Ao, where it attains positive values. This
tail is reproduced in both the EXP and the RY solution; see figure 6.62. In this figure,
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Figure 6.63: Liquid-solid and solid-solid phase transitions of the square-shoulder fluid
with A = 1.04. The MC results were taken from [108].
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the PA solution is equal to the EXP outside the core (r > o); inside the core, the PA
solution is interpolating between the EXP and the Nezbeda/RY approximation.

As the tail of the EXP is positive, p(r) is also positive and so is the double integral on
the right hand side of equation (4.76); it turns out that if the Nezbeda solution is used,
certain negative contributions to the determination of p are left out (because ¢(r) = 0
for r > Ao). This yields an effective density p which is too high. Indeed, for A = 1.05
and T* = 1.0, we find, typically, 0.75 < p < 1.05 in the region of the fcc-fcc coexistence.
For such high values of p, the validity of the PY approximation (inherent in the Nezbeda
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Figure 6.64: Liquid-solid and solid-solid phase transitions of the square-shoulder fluid
with A = 1.08. The MC results Were taken from [108]

solution) is questionable. Moreover, the excess free energy of the solid turns out to be
artificially high. And as the critical temperature is very sensitive to the details of the free
energy, this causes a too high critical temperature for the fcc-fce transition.

This problem was not observed in the case of the fcc-fcc coexistence of the square-well
system because there the high positive value of ¢(r; p) in the region o < r < Ao brings
about very low values of p, irrespective of the tail of the direct correlation function out-
side 7 = Ao. In the present case, where c(r; p) is negative everywhere but for r > Ao,
taking into account the existence of the tail turns out to be very important. On a more
quantitative basis, the non-perturbative approach yields critical temperatures which are
even lower than the simulation results. Indeed, in the simulation the critical tempera-
ture has the value T ~ 1.5 and is practically independent of the width of the potential.
My results, however, show a dependence on the width of the repulsive shoulder which is
also absent in the previous perturbative approach [109]. This is the same effect as was
observed in the non-perturbative approach to the isostructural fce-fce transition of the
square-well potential [13].

In figure 6.64 the coordinate of the critical temperature of the Nezbeda solution is equal
to p. = 1.28, T = 5.1. For this potential width (A = 1.08), the FVPA/fg is able to

predict the liquid-solid transition with great accuracy when compared with the computer
simulation results.
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Figure 6.65: Phase diagram of the square-shoulder fluid, calculated using the MWDA
with EXP/VW as input. Shown are the results for A = 1.01, 1.03, 1.05, 1.07, 1.09 and

1.1. cp denotes the critical points.
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The temperature dependence of the critical point of the fcc-fee transition is shown in
figure 6.65, the results shown were obtained using the MWDA with the EXP/VW pa-
rameterization as input. The critical points of all results from A = 1.03 up to A = 1.1 are
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denoted by small diamonds. Obviously, the critical point temperature is connected to the
potential width through a function linear in A with a positive slope. In contrast to this,
if one makes the same approximation for the critical point temperatures obtained using
computer simulations, the slope had to be negative.

If the phase diagram is calculated using the FVPA /fg, the temperature of the critical
points also depends on the perturbation potential width, but to a much lesser extent
(for A = 1.03, T is equal to = 0.9; for A = 1.1 T} ~ 1.0). The MPA/fg yields crit-
ical temperatures that are higher than those from the FVPA/fg, but still too low to
yield a good approximation of the computer simulation results (A = 1.03 — 7} = 1.05,
A=11->Tr=1.19).

6.4.3.1 Evolution of the square-shoulder phase diagram

Figure 6.66: Phase diagram for the square-shoulder system with A = 1.1, calculated using
the FVPA /fg.
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Up to this point, all results for the phase diagram of the square-well/square-shoulder
potential have shown no stable bcc phase. However, if one goes down to lower temper-
atures or wider perturbation widths, the phase diagram for the square-shoulder system
contains a stable bcc phase. Not all theories are able to explore these parts of the A\-T™*
parameter space; in fact only the FVPA /fg yields solutions that are physically meaning-
full for those parameters where the bcc crystal was stable.

In figures 6.66 (A = 1.1) to 6.71 (A = 1.2), the evolution of the phase diagram of a square-
shoulder system is shown. For A = 1.1 (figure 6.66), the theory predicts two regions
where the bece crystal is stable. The upper part of this figure (7* > 0.4) shows the typical
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Figure 6.67: Phase diagram for the square-shoulder system with A

using the FVPA /fg.
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Figure 6.68: Phase diagram for the square-shoulder system with A = 1.14, calculated

using the FVPA /fg.
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Figure 6.69: Phase diagram for the square-shoulder system with A = 1.16, calculated
using the FVPA /fg.

14

12

0,6

0,4

0,2

Figure 6.70: Phase diagram for the square-shoulder system with A = 1.18, calculated
using the FVPA /fg.
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Figure 6.71: Phase diagram for the square-shoulder system with A = 1.2, calculated using
the FVPA /fg.
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square-shoulder phase behavior as discussed in subsection 6.4.3. As the shoulder width
increases to A = 1.12 and A\ = 1.14 (figure 6.67 and 6.68), the two separated regions of
bee stability are united, so the isostructural bee-bee transition located in the temperature
range T =~ 0.1 — 0.4 is terminated by a critical point. For A = 1.16 (figure 6.69), the
phase diagram is loosing its isostructural bee-bee transition. For A = 1.18 (figure 6.70),
the phase diagram has also lost its isostructural fcc-fcc transition. The stable bec crystal
is now constrained to a small area in the p-7* plane. And finally, for A = 1.2 the bcc
crystal is metastable in the whole phase diagram.

Due to the simple treatment of the perturbation in this theory (FVPA/fg), the solution
(especially for the wider perturbation widths) is questionable.
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6.5 Asakura-Oosawa potential

In this section we will present the results we obtained for the Asakura-Oosawa potential
as described in subsection 2.2.4. We examined the systems with ¢ = 0.1, ¢ = 0.4,
g = 0.6 and ¢ = 0.8. As reference data, we took the computer simulation results for the
effective Hamiltonian (mapping from the binary system of colloid particles and polymer
coils onto an effective one-component system with Asakura-Oosawa potential) from [30]
(these results are in fairly good agreement with the ones from the direct simulation of the
true binary mixture). It should be noted that this mapping is only exact for ¢ < 0.154.
In figures 6.72 to 6.76, the results we obtained for the phase diagram (using various
theories) are shown together with the computer simulation data from [30]. The axes are
denoted with 7 (packing fraction of the colloids with diameter o, see subsection 2.2.4) and
n, (reservoir packing fraction, see subsection 2.2.4). At 7y = 0, the system is recovering
the known freezing transition of the pure hard-sphere system (see table 6.2). For the
abbreviations of the various theories used to obtain the results, we refer to subsection 6.4.3.
The As = 0 line (calculated using the EXP) present in all graphs in this subsection acts
as an indicator for the freezing transition (see section 5.3).

For ¢ = 0.1 (figure 6.72), the EXP/cMWDA predicts a stable isostructural solid fcc-
fcc transition, whereas in [30] this transition turned out to be metastable. However,
the location of this transition is near to the one predicted by the simulation results.
The results of the simple perturbation theories (MPA /fg and FVPA /fg) are showing the
same widening of the fluid-solid transition when 7, is increased sufficiently. This implies
that the coexisting fluid and solid phases become progressively more dilute and dense,
respectively, upon increasing ;. This effect is consistent with earlier findings by Gast
[111] in perturbation theory studies of the same pair-potential model. From the shape of
the fluid-solid phase transition in figure 6.72 (and, but to a lesser extend, figure 6.74) it
is obvious that for such small ¢-values the fluid phase only persists at very low values of
n if n, is sufficiently high. The EXP is able to predict a metastable fluid-fluid transition
for high reservoir packing fractions, similar to the one found in [30].

For ¢ = 0.2 (figure 6.73, no computer simulation results are available) the isostructural
solid-solid transitions predicted by the EXP/cMWDA for ¢ = 0.1 has vanished.

For ¢ = 0.4 (figure 6.74), the results from the FVPA /fg become unphysical for the fluid-
solid transition (the width of this phase transition decreases as m increases), hence we
discarded them for all figures with ¢ > 0.4 (the fluid-fluid transition of the FVPA /fg is, of
course, identical with the one from the MPA /fg). Although the MPA /fg provides us with
a solution for the coexisting phases for the whole range of reservoir packing fraction, the
fluid-solid transition shows an unphysical behavior (the width of the fluid-solid transition
decreases as 7, increases, similar to the FVPA /fg for ¢ = 0.4) for ) ~ 0.4. Nevertheless,
the fluid-fluid transition is still predicted to be metastable. The EXP provides us with a
very good approximation of this transition, thus proving once more that the EXP is still
an excellent theory for the liquid state.

For ¢ = 0.6 and ¢ = 0.8 (figures 6.75 and 6.76), the fluid-fluid coexistence becomes stable.
The EXP/cMWDA is in fairly good agreement with the results from [30] for these ¢-
values.

For small reservoir packing fractions 7y, the effective pairwise (depletion) potential of
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Figure 6.72: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.1. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. The computer simulation
results (MC) were taken from [30] (non-additive, effective one-component system).
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Figure 6.73: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.2. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. No computer simulation

results are available.
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Figure 6.74: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.4. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. The computer simulation
results (MC) were taken from [30] (non-additive, effective one-component system).
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Figure 6.75: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.6. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. The computer simulation
results (MC) were taken from [30] (non-additive, effective one-component system).
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Figure 6.76: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.8. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. The computer simulation
results (MC) were taken from [30] (non-additive, effective one-component system).
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Figure 6.77: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.1. Shown are the
results for the EXP/cMWDA, the MPA /fg and the FVPA /fg. The computer simulation
results (MC) were taken from [31] (additive, effective one-component system), see also

figure 6.72.
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Figure 6.78: Phase diagram of the Asakura-Oosawa potential with ¢ = 0.05. Shown
are the results for the EXP/cMWDA, the MPA/fg and the FVPA /fg. The computer
simulation results (MC) were taken from [31] (additive, effective one-component system).
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additive binary hard-sphere mixtures reduces to the Asakura-Oosawa pair potential [30,
31]. Thus, one can expect very similar phase transitions for the two types of mixtures
[binary hard-spheres mixtures and colloid-polymer mixtures (a non-additive binary hard-
sphere mixture, see subsection 2.2.4)] at small values of the reservoir packing fraction n;.
Since the phase boundaries of the additive hard-sphere mixture shift to small reservoir
packing fractions for small values of ¢ [31], the phase boundaries for very asymmetric
additive hard-sphere mixtures should resemble those of very asymmetric non-additive
colloid-polymer mixtures. In figure 6.78, the results for ¢ = 0.05 are shown; the computer
simulation data were taken from [31]. The results of the EXP/cMWDA are in very
good agreement with the computer simulation data (except the metastable fluid-fluid
transition). For such small values of ¢, the system is very sensitive to small changes in
the reservoir packing fraction n;. The system is only behaving like a pure hard-sphere
system, as long as 7 is very low. The isostructural transition can only occur in a very
small range of 7y & 0.03 —0.05, and for 77, above ~ 0.12 the system is in fact permanently
separated in a very dilute fluid and a very dense solid.

The A, = 0 freezing lines were calculated within the framework of the EXP. For small
g-values (¢ < 0.2), the As = 0 line indicates a freezing transition that occurs at too low
colloid packing fractions. For ¢ = 0.2, the As = 0 line has an interesting shape, predicting
the fluid-solid transition at high colloid packing fractions n > 0.45 for low (n; < 0.15) and
high (n7 > 0.35) reservoir packing fractions, whereas for intermediate values of 7} ~ 0.25
this transition is predicted to happen at lower colloid packing fractions n < 0.4. The
quality of the fluid-solid transition predicted by As = 0 gets better as ¢ increases; the
shape straightens and comes close to a perfect line with nas—g = 0.5 at ¢ = 0.8. Obviously,
for ¢ > 0.6 the fluid side of the freezing transition one gets using computer simulations is
in nearly perfect agreement with the As = 0 line.




6.6: One-component Yukawa potential 175

6.6 One-component Yukawa potential

The one-component hard-sphere Yukawa potential (see subsection 2.2.3) has been the
object to rather extensive studies in the recent years (for an overview see [48]), both for
the vapor-liquid coexistence [112] and the vapor-fluid-solid phase diagram [113, 114]. In
this section, we will compare the results we have obtained for the one component Yukawa,
potential with x ranging from 1.8 (long range) to 9.0 (short range) with the results of the
methods used in these papers.

6.6.1 Vapor-liquid coexistence

In [112] a whole range of advanced liquid state theories have been used to calculate the
vapor-liquid coexistence of the one component Yukawa fluid. Additionally, critical point
parameters from [114] (obtained using computer simulations) and [113] (obtained using
the perturbation weighted density approximation (PWDA), see also [115, 116]) were com-
pared with our results (obtained using the ORPA/EXP and the PA).

The EXP results of the vapor-liquid coexistence curves as shown in figures 6.79

Figure 6.79: Vapor-liquid phase transition of the Yukawa
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potential with k = 1.8.
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Figure 6.80: Vapor-liquid phase transition of the Yukawa
T T T T

potential with x = 4.0.
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Table 6.8: Theoretical and simulation critical point parameters for the one-component
Yukawa system (see [112]). The abbreviations are discussed in the text.

k=1.8 k=4.0 k=170

I Pe 1 Pe T Pe
MC 1.212(2)"  0.312(2)' | 0.576(6)? 0.377(21)% | 0.411(2)® 0.50(2)?
GMSA 1.199 0.312 0.576 0.324
MHNC 1.193 0.326 0.581 0.412
MHNC* 1.21 0.28
HRT 1.214 0.312 0.599 0.394 0.435 0.424
SCOZA 1.219 0.314 0.591 0.3895 0.419 0.4575
ORPA 1.243 0.318 0.624 0.419 0.451 0.5375
EXP 1.224 0.327 0.5915 0.452 0.410 0.565
PA 1.292 0.302 0.665 0.405 0.4815 0.518

(k = 1.8, only vapor-liquid coexistence), 6.81 (k = 1.8), 6.80 (k = 4.0) and 6.83 (k = 7.0)

Finite-size scaling MC simulation of [117].

2Gibbs-ensemble MC simulations of [118].

3Gibbs-ensemble MC simulations of [114].

*MHNC calculations with Verlet-Weis bridge functions of [119].
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Table 6.9: Comparison of the critical point temperature 7 of the vapor-liquid transitions

for the one-component Yukawa system (see [113]).

Table 6.10: Comparison of the critical point parameters of the vapor-liquid transitions
for the one-component Yukawa system (see [114]). MC/fop denotes the first order per-

I | 39 70 76 78 8.0 |
ORPA [0.635 0.451 0.434 0.428 0.423
EXP | 0.603 0.410 0.390 0.384 0.378
PA 0.677 0.482 0.462 0.456 0.451
PWDA | 0.645 0471 0.460 0.456 0.450

turbation theory, also from [114].

K 3.9 2.0 7.0 9.0 39 50 70 9.0

T Pe

c

ORPA
EXP
MC
MC/fop

0.635 0.542 0.451 04 |0.415 0.46 0.538 0.6

0.603 0.506 0.390 0.359 | 0.447 0.5 0.565 0.337
0.555 0.411 0.35 0.497

0.645 0.571 0.483 0.427 | 0.40 0.44 0.50 0.57

Table 6.11: Vapor-liquid coexistence densities for the one-component Yukawa system with

k = 3.9. The computer simulation results (MC) are taken from [114].

1/T" 1.85 1.9 1.95 2.0 2.05

py (ORPA) 0.078 0.0625 0.0505 0.0411 0.0335
p» (EXP) 0.09 0.0698 0.055 0.04375 0.03507
py (MC) 0.16£0.04 0.14£0.06 0.114+0.02 0.07+0.02 0.07+£0.02
pr (ORPA) 0.776 0.8023 0.82575 0.8469 0.8663
o (EXP) 0.7465 0.7778 0.80475 0.8285 0.8501
o (MC) 0.59£0.03 0.61£0.04 0.724+0.02 0.74+0.02 0.74+0.02

Table 6.12: Vapor-liquid coexistence densities for the one-component Yukawa system with

k = 7.0. The computer simulation results (MC) are taken from [114].

1/T" 2.5 2.6 2.7

ps (ORPA) | 0.136 0.094 0.065
p» (EXP) 0.222 0.1095 0.068
ps (MC) | 0.32+£0.04 0.16+0.02 0.13+0.02

(ORPA) | 0.885 0.929 0.9675
p (EXP) 0.747 0.841 0.9
p (MC) [ 0.69+0.05 0.84-+0.02 0.88+0.02
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are in good agreement with the results of the theories discussed in [112]. Especially the
critical temperature 7, obtained using the EXP are in very good agreement with the re-
sults of the self consistent Ornstein-Zernike approximation (SCOZA, see [120, 121, 117]),
as can be seen from table 6.8. Beside the SCOZA results, in this table the generalized
mean spherical approximation (GMSA, see [122, 123, 124, 125]), the modified hypernetted
chain (MHNC, see [90]) and the hierarchical reference theory (HRT, see [126, 127, 128])
results are presented. The critical density of the EXP is shifted towards higher densities
for increasing values of k (towards shorter interaction ranges). The nearly vertical lines
consisting of the As = 0 loci (freezing) is, for K = 1.8 and k = 4.0, in fact not distinguish-
able from the SCOZA and MHNC results. The ORPA and the PA are not giving results
with the same quality (when compared with [112]), furthermore none of these theories
gave a physically meaningful As = 0 line.

Another comparison of vapor-liquid critical point temperatures is shown in table 6.9. The
most interesting result is that the PWDA yields results for high x values that are in fact
identical to the PA. Hence, if one keeps in mind that the results of the vapor-liquid tran-
sition presented in [113] are in no good agreement with the computer simulation results
from [114]. A comparison of the critical point temperatures and densities with the results
from [114] is made in table 6.10.

Summarizing, for k = 1.8, all three theories (EXP, ORPA and PA) reproduce with consid-
erable accuracy the critical point parameters of the vapor-liquid phase coexistence when
compared with the results from [112]. The shape of the coexistence curve is a little too
broad (for k = 3.9 see table 6.11, for k = 7.0 see table 6.12). For higher «’s, the results for
the critical point start to differ in a way that the ORPA and the PA are overestimating
the attractive effect of the Yukawa tail, hence leading to an increased critical temperature.

6.6.2 Fluid-solid coexistence

In this subsection we will present the fluid-solid coexistence of the hard-sphere Yukawa
system (with inverse screening lengths x varying between £ = 1.8 and x = 9.0). For
this parameter range, the EXP and the MPA are the only theories where a physically
meaningful solution for the liquid-solid transition was found.

For k = 1.8 (figure 6.81), no computer simulation data were available. For the higher x
values, k = 3.9 (figure 6.82), 7.0 (figure 6.83) and 9.0 (6.84) the computer simulation data
are taken from [114]. For the latter two figures, the fluid-solid transition calculated using
the EXP/cMWDA yields good agreement when compared to the MC data. In contrast
to the MPA, which is not able to give satisfactory results for the phase diagram.
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Figure 6.81: Fluid-solid phase transitions of the Yukawa potential with k = 1.8. No
computer simulation results available.
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Figure 6.82: Fluid-solid phase transitions of the Yukawa potential with k = 3.9. The
Monte-Carlo results are taken from [114].
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Figure 6.83: Fluid-solid phase transitions of the Yukawa potential with k = 7.0. The
Monte-Carlo results are taken from [114].
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Figure 6.84: Fluid-solid phase transitions of the Yukawa potential with k = 9.0. The
Monte-Carlo results are taken from [114].
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6.7 Double square-well /square-shoulder potential

Figure 6.85: Evolution of the phase diagram of a double square-well /square-shoulder fluid,
e, = —1.0 (upper left graph) to e, = 0.0 (lower right graph), Ae, = 0.2. Shown are the
EXP results.
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Double square-well /square-shoulder systems (for the definition of the potential and its
parameters see subsection 2.2.2.1) can, even for the vapor-liquid transition, show a wide
variety of different phase behaviors. Because of an increased number of system parameters
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Figure 6.86: Evolution of the phase diagram of a double square-well /square-shoulder fluid,
gr = 0.0 (upper left graph) to e, = 1.0 (lower right graph), Ae, = 0.2. Shown are the
EXP results.
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(the parameter space is three dimensional, two width parameters and one for the ratio of
the potential heights), we will focus our investigations on the following potential: Hard-
sphere core with an adjacent square-well with width A; = 1.25, the second step has the
width Ay = 1.5 and its height is connected to the height of the first step, 1, via

€9 = €1&y,
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Figure 6.87: Double tangent construction for a double square-well/square-shoulder po-
tential with 7% = 0.7, ¢, = —1.0.
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the inverse reduced temperature TL is equal to the strength of the first step. The pa-
rameter &, has been varied from ¢, = —1.0 (square-well with a square-shoulder of equal
strength) over £, = 0.0 (pure square-well potential with A\ = 1.25) to £, = 1.0 (pure
square-well potential with A = 1.5), stepsize was Ae, = 0.2.

This potential shows two critical points for £, < —0.2 (see also figures 6.85 and 6.86),
while for €, > —0.2 the systems shows only one critical point. It should also be noted
that this kind of phase diagram only shows up if one uses the EXP for the calculation
of the Helmholtz free energy; if one uses the ORPA (or the PA) for this potential, no
double-transition will occur.

In order to show a phase behavior similar to the upper left graph of figure 6.85, there has
to be a underlying mechanism that modifies the free energy curves in such a way that two
double tangents can occur (for a given temperature). Figure 6.87 shows the free energy
curve together with its first derivative for potential (a), e, = —1.0 at 7* = 0.7. The two
binodals can easily be identified (see also figure 6.85), the spinodals are also shown.

To get a better understanding of the whole problem, we have calculated the pair distri-
bution functions for this system parameters (¢, = —1.0) at the densities p = 0.00005,
0.25, 0.5, 0.8 and 1.0 (see figure 6.88). For increasing density p, g(r) shows an unusual
behavior when compared to the pair distribution function of the potential with ¢, = 0
(same temperature T, see figure 6.89): the maximum of g(r) inside the first potential
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Figure 6.88: Pair distribution functions g(r) obtained using the EXP for a double square-

well /square-shoulder potential with 7* = 0.7, ¢, = —1.0, at various densities.
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Figure 6.89: Pair distribution functions g(r) obtained using the EXP for a double square-
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step (o < r < A\j0) is located at r — Ao, whereas one would expect the maximum of the
pair distribution function at r — o. To understand this behavior, one has to remember
the special shape of the potential which is responsible for the pair distribution functions
as shown in figure 6.88. However, no explanation was found within the timeframe of this
thesis, but there are ongoing investigations with respect to this problem.
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6.8 Binary phase diagrams

In this section we will present the phase diagrams we obtained for symmetric binary fluid
mixtures.

6.8.1 Truncated hard sphere-Yukawa potentials

In this subsection we will discuss the phase diagrams for symmetric binary system (see
subsection 2.1.2) where the particles are interacting via tHSY potentials with an attractive
tail as defined in subsection 2.2.3.1. The interaction potentials between the different
species are defined as

G12(1) = P21 (1) = £,011 (1) = €r020(r) 5 & <1, (6.12)

i.e. similar species interactions are energetically more favorable than dissimilar species
interactions. For this type of interaction, Wilding et al. [85] pointed out three different
topologies of phase diagrams for a symmetric binary fluid mixture (when projected to
the density-temperature plane) using a simple mean-field theory. These three different
topologies can be specified via the number and type of stable phase transitions:

(a) Two stable phase transitions: mixed vapor/demixed liquid and mixed vapor/mixed
liquid.

(b) Three stable phase transitions: mixed vapor/demixed liquid, mixed vapor/mixed
liquid and mixed liquid/demixed liquid.

(c) One stable phase transition: mixed vapor/demixed liquid.

These topologies also showed up in our results, for which ¢, was decreased from ¢, = 0.75
(see figure 6.90) to &, = 0.65 (see figure 6.94); in contrast to [85] we have used the more
sophisticated ORPA.

The interaction conditions as defined in (6.12) provide a consolute point (critical demixing
behavior) at some finite temperature 7,. For temperatures 7' < T, there is coexistence

Table 6.13: Estimated vapor-mixed liquid critical point density p. and temperature 77
for symmetric binary fluid mixtures.

Er Pe T, type
1.0 | 0.346 0.851 | stable, one-component
0.9 |0.343 0.808 stable
0.8 [0.342 0.767 stable
0.75 | 0.345 0.747 stable
0.725 | 0.347 0.7375 stable
0.7 0.35 0.728 stable
0.675 | 0.354 0.718 stable
0.65 | 0.354 0.709 metastable
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Figure 6.90: Phase diagram of a symmetric binary mixture. System type is truncated
HS-Yukawa (tHSY) with O = 1, K = 25, )\“ = 2.5 and Ep = 812/811 = 0.75. The
structure and thermodynamics were calculated using the ORPA (PY reference system).
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between an species 1-rich liquid and an species 2-rich liquid (demixed liquid), while for
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Figure 6.91: Phase diagram of a symmetric binary mixture. System parameters as in
figure 6.90 with &, = 0.725.
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T > T, is a homogeneous mixture of species 1 and 2 (mixed vapor or mixed liquid).
In addition to this behavior, binary fluids can also exhibit vapor-liquid (both mixed and
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Figure 6.92: Phase diagram of a symmetric binary mixture. System parameters as in

figure 6.90 with ¢, = 0.7.
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demixed) coexistence, similar to a one component fluid. It should be noted, that for
symmetric binary systems there is no fundamental difference (apart from the density)
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Figure 6.93: Phase diagram of a symmetric binary mixture. System parameters as in
figure 6.90 with ¢, = 0.675.
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between the vapor and the mixed-liquid state. For both of them the concentration of the
two species is equal (¢; = co = 0.5). In fact, one can only distinguish between these two
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Figure 6.94: Phase diagram of a symmetric binary mixture. System parameters as in

figure 6.90 with ¢, = 0.65.
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phases in case of a phase transition between them.

Figure 6.90 shows the phase diagram for ¢, = 0.75 [type (a)].

We observe a (one-
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Figure 6.95: One-component limit for the phase diagram of a symmetric binary mixture.
Vapor-mixed liquid phase transition for ¢ = 1.0, 0.9, 0.8 and 0.75 and the one component
case. The estimated critical points are denoted by squares. System parameters as in
figure 6.90.
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component like) vapor-mixed liquid phase transition, which can be explained by the
attraction between particles of different species (for £, = 1 the phase diagram would
be equal to the according one component phase diagram, as shown in figure 6.95), this
transition terminates in a critical point (CP, denoted by the square in figure 6.90).

The A-line intersects the vapor-mixed liquid coexistence at a so called critical end point
(CEP). A CEP is a point where a line of critical points (of second order phase transitions)
meets a line of a first order phase transition. Hence, at the CEP (temperature Tcgp) a
critical liquid coexists with a noncritical vapor. Below the CEP, the vapor is in coexis-
tence with a species 1-rich liquid and a (symmetric) species 2-rich liquid (demixed liquid).
These two liquids have, owing to the symmetry, the same density. The vapor-mixed liquid
coexistence is, as shown in figure 6.95, metastable below the temperature of the CEP.

In figure 6.91 [type (b)] we have decreased the factor ¢, (unlike particle species interac-
tion) to €, = 0.725. The A-line now ends in a tricritical point (TCP, [129]), in which three
phases (a vapor, a species one rich liquid and a species two rich liquid) simultaneously
become critical [130].

It should be noted that due to numerical problems the TCP can actually only be reached
up to a certain gap with respect to the density p. We observe a triple-point, where the
vapor coexists with a mixed liquid at intermediate densities and a demixed liquid of higher
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density. In the temperature range between the triple point and the TCP the vapor coex-
ists with a mixed liquid and, at higher densities, a mixed liquid coexists with a demixed
liquid. Similar to figure 6.90, the vapor-mixed liquid transition is metastable below the
triple point.

Figures 6.92 (¢, = 0.7) and 6.93 (¢, = 0.675) [both type (b)] are similar to figure 6.91
(e, = 0.725). For ¢, = 0.7 (figure 6.92), the temperature of the TCP, Trcp, is greater
than the temperature of the critical point (CP) of the vapor-mixed liquid phase transition
Tcp- For e, = 0.675 (figure 6.93) the vapor-mixed liquid coexistence and also the mixed
liquid-demixed liquid coexistence are metastable in nearly the whole temperature range.
For &, = 0.65 (figure 6.94) [type (c)] the vapor-mixed liquid is metastable for all temper-
atures. Therefore the triple point has vanished, and the phase diagram consists of only
two stable phase transition, the vapor-demixed liquid transition.

In table 6.13 we have summarized the densities and temperatures of the vapor-mixed lig-
uid critical points. In figure 6.95 the transition of the vapor-mixed liquid phase transition
from symmetric binary systems with €, < 1.0 to the one-component case € = 1.0 is shown.







Conclusion

In this work we have applied a wide range of liquid- and solid-state methods to various
interparticle potentials. The results we got (thermodynamic properties, structure func-
tions and phase diagrams) were compared between the different theories and, whenever
possible, with computer simulation data.
Before we summarize the results for the different potentials, we give an overview with
respect to the theories used in this thesis:

e The EXP is, albeit its introduction decades ago, still able to give some remarkably
good results throughout the whole range of discussed hard-core potentials. These
results are even superior to the already very satisfactory results we got from the
ORPA.

e Most of the ‘modern’ theories [Rogers-Young approximation (RY) and zero separa-
tion theory (ZSEP)] are very limited in terms of solvable potentials and reachable
thermodynamic parameters (for example the inability of the RY approximation to
yield results for the square-well potential near the vapor-liquid phase-transition).

e The FMT Ansatz of Rosenfeld gives, when applied to other systems than the hard-
sphere system, no satisfactory (i.e. physically meaningful) results. This behavior
might be attributed to the ansatz, which is difficult to extend (in a physically correct
manner) beyond the hard-core potential.

During the work on this thesis, we often tried to improve unsatisfactory results by increas-
ing the complexity of the used theory, but in nearly all cases the results hardly improved
(in contrast to the computational effort, where both the complexity of the programs and
the execution time increased). The best results were achieved by using numerically simple
methods and theories.

In this thesis, we have examined the structure and phase diagrams of a broad range of
one-component systems interacting via pair potentials, both bounded and unbounded
ones. The phase diagram we got for the Gaussian core results shows qualitatively the
same behavior that was predicted by Stillinger (for instance reentrant melting). We have
also discussed the phase behavior of bounded potentials in general, which lead us to a
simple criterion (based on a mean field approach) to determine if a given potential will
show clustering or reentrant melting. We have applied the Rosenfeld functional (a funda-
mental measure theory) onto the hard-sphere potential to examine the freezing transition
of this system. This new method gave us also the opportunity to take a look inside the

197



198 6.8: Binary phase diagrams

crystal. Furthermore, we have examined the thermodynamic properties and phase behav-
ior of a various square-well /square-shoulder systems, for which the phase diagram shows
(beside the liquid-solid phase transition) an isostructural solid-solid phase coexistence.
The results we got for the Asakura-Oosawa potential showed a very rich phase diagram,
including a vapor-liquid, a liquid-solid and a solid-solid phase transition. We have also cal-
culated phase diagrams for the double square-well/square-shoulder system; we observed a
rather strange behavior (two critical points in the fluid phase), that is subject to ongoing
investigations.

The results we got for the phase diagrams of symmetric binary hard-sphere Yukawa sys-
tems for different interaction potentials [where the dissimilar species interaction ¢q2(r)
were always weaker than the similar species interaction ¢11(r) = ¢aa(r) by a factor
gr < 1.0, ¢12(r) = e,¢11(r)] showed an enormous richness of phase transitions. Be-
side first-order (phase coexistence) and second-order (A-line and critical points) phase
transitions, the binary system also showed critical end points (coexistence of a critical lig-
uid with a noncritical vapor) and tricritical points (three phases become simultaneously
critical).




Appendix A

Abbreviations

A.1 List of abbreviations

Table A.1: List of abbreviations, A-H

Abbreviation Meaning section
AO Asakura-Oosawa (potential) 2.2.4
CEP Critical end point 6.8
CPp Critical point 6.8
CS Carnahan Starling 4.1.6
DFT Density functional theory 4.3
DSS Double square-well (potential) 2.2.2.1
DSW Double square-shoulder (potential) 2.2.2.1
ERF Error function (potential) 2.2.8
EXP Exponential approximation 4.1
FDM Fermi distribution model 2.2.6
FFT Fast Fourier transform B.1.4
FMT Fundamental measure theory 4.3.3
FVPA Free volume perturbation theory 4.1.8
GB Gibbs-Bogoliubov 4.5
GCM Gaussian core model 2.2.5
GMSA Generalized mean spherical approximation 6.6.1
HNC Hypernetted chain approximation 4.2.2
HRT Hierarchical reference theory 6.6.1
HS Hard sphere (potential) 2.2.1
HSY Hard sphere yukawa (potential) 2.2.3
HTA High temperature approximation 4.1
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Table A.2: List of abbreviations, I-Z

Abbreviation Meaning section
IET Integral equation theory 4.2
LEXP Linearized version of the EXP 4.1.2
LMV Labik-Malijevsky-Vonka 4.2.5.2
MC Monte-Carlo 6.1.1
MCSL Mansoori, Carnahan, Starling and Leland 4.1.7
MFA Mean field approximation 6.2.1
MHNC Modified hypernetted chain approximation 6.6.1
MPA Modified perturbation approximation 6.4.3
MSA Mean spherical approximation 4.1.5
MWDA Modified weight density approximation 4.3.1
ORPA Optimized random phase approximation 4.1
0Z Ornstein-Zernike 3.1
PA Perturbation approximation 4.1.44
PSM Penetrable spheres model 2.2.7
PT Perturbation theory 4.1
PWDA Perturbation weighted density approximation 6.6.1
PY Percus-Yevick 4.2.1
RPA Random phase approximation 4.1
RY Rogers-Young 4.2.3
Rst Rosenfeld 6.3.1
SCOZA Self consistent Ornstein-Zernike approximation 6.6.1
SD Steepest descent D.1
SFMT Soft fundamental measure theory 4.3.6
SS Square-shoulder (potential) 2.2.2
SW Square-well (potential) 2.2.2
TCP Tricritical point 6.8
TPL Test particle limit 4.3.7
VW Verlet-Weis 4.1.6
WDA Weighted density approximation 4.3.1
ZSEP Zero separation closure 4.2.4
cMWDA correlation MWDA 4.3.2

tHSY truncated hard-sphere Yukawa potential 2.2.3.1




Appendix B

Mathematical definitions

This Appendix gives some technical and mathematical information about some methods
used in this thesis.

B.1 Fourier transformation

In this section we will discuss the various aspects, definitions and (numerical) problems
of the Fourier transformations that were used in this thesis.

B.1.1 Fourier transformation of a scalar function

For the Fourier transformations in three dimensional space we use the following notations
which simplify for radially symmetric functions as indicated:

() = / dr () f(k):% /drrsin(lm")f(r) (B.1)
R3 0
1 3k e~ R 7 (I _ 1 4_7r sin(kr) f|
109 = o ]R/Sd ke FE) — f(r)—(%)3r0dkk (kr)f(k).  (B2)

In one dimension we use

Flk) = /dr f(re* —  f(k) = /dr f(r)cos (kr) + i/dr f(r)sin(kr) (B.3)
fr) = % / di Flk)e * —s f(r) = % / dk F(k) cos (kr) — i / dk F(k) sin (kr).

(B.4)
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We also introduce the so called one dimensional sine and cosine Fourier transforms, defined
as

ﬂm:/&amwmﬂ@ o ﬂ@:%/&m%w@ﬂm (B.5)
f(k) = [drsin (kr) f(r) +— fwyzg dk sin (kr) f(k). (B.6)

B.1.2 Fourier transformation of a vector function

In this subsection we will derive the equations needed for the Fourier transformation of a
radially symmetric vector function of the following form:

7 =",

The transform from r to k space with r written in spherical coordinates reads as

~ . = T 7 e cos psin ©
f(k) = /d3r e*Tf(r) - = /drrZ/dG sin @/dgo e*Tf(r) | sinpsin®
r
Re 5 5 5 cos ©
Without loss of generality we can set the direction of k parallel to the z-axis
k = ke,
thus eliminating the ¢ dependence from eIk
ei_'f‘ — 6ikr cos®.

The resulting function f (k) has only a nonzero component along the z axis, so we can
write the transformation in the following form

o ™

fk) = 27rE/d7° 7"2f(r)/d® sin © €79 o5 O.
0 0

After doing some simple calculations we get the result

f@y:%ﬂm:4m%ﬁnﬂw{@%@)—rmﬂmﬂ. (B.7)
0
The inverse transformation has the form
. 1 F T~ [sin(k
ﬂﬁ:%ﬂ@:-@Q%f;foMWE“70—kwumﬂ. (B.9)

These two equations can easily be evaluated using one dimensional sine and cosine Fourier
transforms.
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B.1.3 Fourier transformation of a tensor function

In this subsection we will derive the equations needed for the three dimensional Fourier
transformation of a radially symmetric tensor function of the following form:

T

FR)="Ti)  F@) - FR), (B9

where 77 denotes a dyadic product, leading to (using spherical coordinates)

. cos? psin?®  cossingsin?© cos psin O cos O
TT . . 2 . 2 . 2 . .
— = | cosypsingsin®© sin” ¢ sin” © sin ¢ sin © cos ©
r . . i

cos ¢sin @ cos©  sin @ sin O cos © cos’ ©

The Fourier transform from r to £ space is defined as

o0 m 2
F(k) :/dr r2/d® sin® [dy ei’;?f(r):—g
0 0 0

Without loss of generality we set the direction of k along the z-axis, thus

B ® p . sin?© 0 0
F(ke,) = 7T/d7“ rzf(r)/d(a sin © 7 cos© 0 sin’© 0
) ) 0 0 2cos?©

After doing the © integration this equation reads as

x 1
f(ké’z) = i—g/dr @ sin (kr)

0 1 0 O
0 —krcos(kr){ 0 1 0
/ : 0 0

0
01
0 0 k*%2-2
The resulting Fourier transformed tensor for k= ke, has only nonzero components for
the zx/yy element

o0
A7

Fou(k) = (ﬁ) (k&) = (fr) k) =5 / dr @ lsin (kr) — krcos (kr)]  (B.10)
and the zz element
F,.(k) = <.7T"> By (ke,) = %/dT @ [sin (kr) (K*r* — 2) + 2kr cos (kr)].

0

This tensor has to be rotated using the Euler rotation matrices

R(a, B, 7) = Rz(a)tR’w(ﬂ)Rz(V)a
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-,

where the index denotes the fixed axis for the rotation. The rotated tensor F(k) is
calculated using . B

F(k) =R e, B,7)F(ké.)R(e, B,7).
The desired destination vector for the tensor rotation has the coordinates

cos  sin ©
k=k| sinpsin® |,
cos ©

hence the Euler angles have the following values:

T
a=0; =060 ; T=etg

It should be noted that the value of o has no impact on the rotation of a tensor like F

(because of the symmetry (F),,(ke,) = (F)yy(ke,) and the zeroness of all elements beside
the main diagonal). The result of the tensor rotation is

F(R) = [Fealk) = Fualk)

Using the relation

8

O (k) + Fou (k) = 4% / dr rsin (kr) £(r) = F(k)

the result reads as

P =T |5 1|« Fwin=Fw e < ar e
with
F(k) = F,,(k) — Fyu(k) = % / dr @ [sin (k) (k%% — 3) 4 3krcos (kr)].  (B.12)

0

Equation (B.11) shows that the result can be split into two parts; a position dependent

part [F(k)] and a distance dependent part [Fy,(k)].
The inverse Fourier transformation (kK — r) of a tensor

yields the result
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which is the same as for the »r — £ transformation. With the following definitions for the
22 /Yy [(F)az(ré,) = (F)yy(reé,)] and zz element and the difference between the zz and
xx element

Faelr) = (P, (%) = 5y / ak T fsn (kr) — kr cos (kr)]
F,.(r)=(F),, (ré,) = 27r = dk F k [sin (kr) (k*r* — 2) + 2kr cos (kr)]
F(r) = F,,(r) — Fpu(r) = 27r2 5 [dk F k [sin (kr) (k°r* — 3) + 3kr cos (k)]

0

we get the result

—»

F(r)=F(r) 4+Fm( ). (B.13)

B.1.4 Fast Fourier transformation

The Fourier transform described in the previous section are numerically realized using so
called ‘fast Fourier transforms’ (FFTs)! based on the work of Cooley and Tukey [131].
In this thesis the only FFTs used were the ones for the one dimensional sine and cosine
Fourier transform (for the three dimensional radially symmetric form one has to multiply
all functions with their argument to get the one dimensional sine Fourier transform).
The fast Fourier transform algorithm is based on discrete Fourier transforms (DFTs).
The DFTs replaces the (continuous) integral by a (discrete) sum: every function has
to be discretized on a mesh [f(r;) — f;, distance between two mesh points Ar, and
f(k;) = f;, distance between two mesh points Ak] with size N,. In this thesis we have
used FFTs based on the FFTPACK? version 4. The expression for the DFT for the one
dimensional cosine Fourier transform is given by

Np—1
~ Az Zp iy .
fz:7 f0+( pr+2 f]COS —1 ; 1207"'7NP7 (B14)

whereas the expression for the DF'T for the one dimensional sine Fourier transform reads
as

~, . igw .
:Aa:;()fjsmm ; i=0,...,N,. (B.15)

Here f; is the original function and f: is the Fourier transformed function. Both equations
are valid for the transformation from r to & space (where Az is equal to Ar) and & to r

LA good starting point for the search of modern, up-to-date FFTs is the page www.fftw.org, or just
search for fast Fourier transform at www.google. com.
Zhttp://www.netlib.no/netlib/fftpack/
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space (where Az is equal to Ak). The number of grid points N, for the r- and k-mesh
has to be the same and equal to
N, =1+2",

where m is an integer greater than or equal to zero. This restriction for N, is based on the
internal structure of the FFT. The implementation of the algorithm is very straightfor-
ward if N, is restricted to these values®. The two parameters Ar and Ak from table B.1.4

Parameter r mesh k mesh
number of points N, N,

mesh point distance Ar Ak

largest vector Tmaz = (Np — 1)AT | ke = (N, — 1)Ak

Table B.1: Mesh parameters for fast Fourier transforms.

can not be set independently from each other. The relation they have to fulfill can be de-
rived using the following arguments. The largest vector in k£ space is equal to the highest
frequency that can be detected in r space. This oscillation incorporates 3 mesh points,
spanning a distance of 2Ar:

21 T
— ArAk = .
sAr T ATRRE N

kmaw =

The appropriate choice of the mesh parameters can be a tricky task. The number of grid
points should not be too small, because then we lose to much information by discretization.
On the other hand, if IV, is too large, the time a program spends inside the FFT code
will increase significantly [see table B.2]. The hardware used was:

m mesh size N, | (I) (II) (III) (IV)
10 1025 3 3 2 2
11 2049 7 9 6 3
12 4097 19 21 13 12
13 8193 61 63 53 48
14 16385 215 213 165 155

Table B.2: Approximate execution time in seconds for various mesh sizes. 10000 iterations
were made for each run, every iteration consists of both transforms (r — k and k£ — r)
using a one dimensional cosine Fourier transform kernel.

(I) Athlon (512 kB external cache) with 750 MHz on an Asus K7V (VIA KX133),
Fujitsu Fortran compiler V1.0.

3However, most modern FFT programs are capable of computing the Fourier transform of functions

with an arbitrary length.
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(IT) Alpha EV56 (2 MB external cache) with 600 MHz on an LX Board, Compaq Fortran
V1.0-920.

(IIT) Athlon Thunderbird (256 kB internal cache) with 900 MHz on an Abit KT7 (VIA
KT133), Fujitsu Fortran compiler V1.0.

(IV) Athlon Thunderbird (256 kB internal cache) with 1000 MHz on an Asus A7V (VIA
KT133), Fujitsu Fortran compiler V1.0.

Besides the number of mesh points one can choose a second parameter (because all other
parameters depend on these two), for instance r,,q,. In this thesis, 7,4, is in most cases
set to 10.24, leading to a Ar = 0.01c for m = 10. This choice of 7,4, is sufficient unless
the system is near the spinodal or near the critical region. Then the pair correlation
function g(r) can become long ranged [see also section 3.3] and a larger 7,4, is needed.
If 7mas has been set to an appropriate value, one has to make a compromise regarding N,,.
A high N, value is needed if the functions in r space (pair potential ¢(r) and correlation
functions) are fast varying functions of r (otherwise one will lose too much information
by the discretization) or if we need the Fourier transformed functions up to a very high &
vector. But, as shown above, a high value for N, will lead to very long program runs. In
table B.3 we have collected some common mesh parameters.

(A) (B) (©)

Tran = 10.24 20.48 40.96

Ak = = 0.306796158 0.153398079 0.076699039

(1) m = 10 Ar = 0.01 Ar = 0.02 Ar = 0.04
N, = 1025 kmee = 1007 kpaw = 507 kow = 257

() m = 11 Ar = 0.005 Ar = 0.01 Ar = 0.02
N, = 2049 kmaz = 2007 kmaz = 1007 kmaz = 507

(3) m = 12 Ar = 0.0025 Ar = 0.005 Ar = 0.01
N, = 4097 kmaz = 4007 kmae = 2007 kmaz = 1007

Table B.3: Common mesh parameters

B.1.5 Numerical problems

The FFT is by no means a perfect equivalent to the analytical Fourier transform. Besides
the numerical and theory imminent restrictions stated in the previous subsection, FFTs
have some other drawbacks we will show in this subsection.

One problem every almost every FFT is suffering from is that the algorithm can not give
you the correct value for £ = 0 or 7 = 0. So this value has to be calculated using an
additional integration (which can be tricky if the integration kernel has discontinuities).
This was done using a simple Simpson algorithm. To test the one dimensional sine
and cosine Fourier transform, we have chosen the following two test functions which are




208 B.1: Fourier transformation

analytically Fourier transformable:

fsin(r) = (B16)

fcos(r) f:os(k) = _e_k- (Bl?)

- 1472

For the numerical Fourier transforms in this chapter we choose set A2 from table B.3.

Figure B.1: Absolute errors f;nalyt,-ml(k) — ﬁwmmcal(k) for one dimensional fast Fourier
transforms. Left side: sine Fourier transform, error of function (B.16), right side: cosine

Fourier transform, error of function (B.17).
0,002 T T T T T T T T T 0,12 T T T T T T T T

— F (0F (K - — f (0F (K

0,001

-0,001

o 1 " 1 " 1 " 1 " - " 1 " 1 " 1 " 1 "

0,005 1 2 3 4 5 0.04 1 2 3 4 5
ko ko

In figure B.1 one can see some absolute errors for the Fourier transform for r to k£ space.
It should be noted that the transformation of the (numerical) Fourier transformed from
k space back to r space leads to a result that is (for » > 0) equal to the input function
+10¢e, where ¢ is the machine precision (= 2.22 x 1071%). For r = 0 the error is about
1000e, due to the rather simple treatment of this value.

We have tested the one dimensional fast Fourier transform with another analytical trans-
formable test function:

> sin (0.1k) ~

fcos(k) = 5 3 fcos(o) =0.1
f(r)y=00.1-7r) ; B —gos B .

fsin(k) = 1T(01k) 3 fsin(O) =0

In figure B.2 and B.3 the comparison between the analytic and numeric solution for the
one dimensional sine and cosine Fourier transform is shown. From equation (B.15) it

is clear that f(0) and f(knez) is always equal to zero. The analytical (sine and cosine)
Fourier transform of our test function is a smooth function of k£, and the numerical Fourier
transform shows the same behavior. However, because the two boundary points are fixed,
the (sine) FFT shifts the result down for higher k£ values to meet the boundary point. The

cosine Fourier transform shows a similar behavior. Here f(kmqz) is equal to foAr/2 =
0.0025 (fo being the function value at 7 = 0), so the FF'T has to increase the amplitude of
the oscillation to meet the end point. However, the result of the retransformation (k — r)
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Figure B.2: Sine Fourier transform of ©(0.1 — r). Shown are the analytic solution, the

numeric result and the difference fynaytic(k) — ﬁmmmc(k).
: , . , .

0,004

0,002 i
- ]
= 0
\ 1
-0,002} |— analytic i
-—- numeric
....... dlfference i
- L 1 L 1 L
000855 550 600

ko

Figure B.3: Cosine Fourier transform of ©(0.1 - ). Shown are the analytic solution, the

numeric result and the difference fnaytic(K) — frumeric(k)-
T | T |

0,002

= 0

\ |
\ ] ! T
\ [ i

— analytic

-0,002- |--- numeric 7
------- differencey,/
L 1 L 1 L
500 550 600

is in excellent agreement to the starting test function, with absolute errors in the order
of magnitude of £10e (the only exception is the result of f(r = 0) for the sine transform,
which is equal to zero and hence the absolute error is equal to one).

Summarizing we can say that the overall stability (r — k& — 7’ and vice versa) of the
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FFTs used in this thesis is very good with errors that are, in general, in the order of
magnitude of (10 — 100)e (depending on the chosen mesh size NN,).

B.2 Convolutions

In this section we will derive the equations for the convolution of a scalar radially sym-
metric function f(r) with a radially symmetric scalar, vector or tensor function [g(r), §(r)
or G(r)] in r space.

B.2.1 Scalar-Scalar

The convolution ¢(r) is defined as

B.2.2 Scalar-Vector

The convolution of a scalar function f(r) with a vector function §(r) defined as

(7 = o(r)"

can be written as

é’(r"):/d3r’f(f")§'(|7"’—f”|):/d37"f(|77—77'|)9(7“')7;_,-
R? R’

Now we express the scalar function f(r) and the vector function g(r) via their Fourier
transforms and we get

2(k) = (k)G (k) = f(k)a(k)

| =

To get the final result we have to Fourier transform this product back to r space using
equation (B.8).
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B.2.3 Scalar-Tensor

The convolution C(7) of a scalar function f(r) with a tensor function G(r) [see equation
(B.9)] can be written as

gl g |

rr

C) = / dr' f(7 =7 )g(r)
R3

The evaluation of this equation is straightforward, yielding the result

W -
Gy(k) 75 + Gd(k)]I] ,

where the subscripts , and 4 are denoting the position and distance dependence of the
tensor parts. One gets the final result after Fourier transforming the right hand side of
this equation back to r space [see equation (B.13)].

B.3 Parseval theorem

The Parseval theorem states that, if for a function f(¢) and |f(¢)|? the integral with
respect to ¢ over the interval (—oo, 00) exists then

o0 1 o0 _
[arlzr =5 [axlFwr
In IR? this equation reads
[ e = s [dh FE)GE
(2m)
R? R?
= (271r)3 /d3k1 /d Ty eiE”?f(rz) /d3r1 e*1™ g ()
R? 3 3
= [ @) [dn o) g [k R
R? R? R?
= /d37'1 f(’Fl)g(—Fl)
R?
So we see that
1 -
(f*xg)r=0) = —=(f*g)(k=0).
(2m)

if g(71) = g(—71) (which is valid for all radially symmetric functions).







Appendix C

Ordered solid state

C.1 Lattice parameters

In table C.1 we compare various lattice parameters for the three lattice types sc, fcc and
bee. The cubic cell has a side length of a. The definition of the simplex and its graphical
representation is described in section 4.3.4.2.

sc bce fcc
N, 1 2 4
V. Vi? 48 96 192
0<z<a/2 0<z<a/2 0<z<a/2
Simplex 0<y<z 0<y<uz 0 <y <min(x,a/2 —x)
0<z<y 0 <z<min(y,a/2 — x) 0<z<y

Table C.1: Lattice parameters for the sc, fcc and bec lattice.

C.2 One-particle density for the ordered solid state

In this thesis we have used the following parameterization of a crystal:

)= (5) S

(R}

!'Number of atoms in the cubic cell.
2Ratio of volume of the cubic cell to volume of the simplex.

213
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i.e., normalized Gaussian peaks (with width ) centered at the lattice points {R} of a
given lattice (bcc, fee, sc, etc.). The Fourier transform of p(7) is given by

A = (O3 [yt nom

A frequently required expression is the double-convolution of a radially symmetric func-
tion, f(r), with the solid density, p(7) as parameterized in (C.1):

5 [ [ @77 =
R3 ]R3
D2 [#ns 3 [yt i,
{R}]R?, (R }JR?’
now we can change the second integration variable y for every contribution to the sum over

{R '} so that the second integral always yields the same result (i.c., the second integral
gets invariant from {R '}):

N [0 ]_ T o 2 o 2
_ = el -5@@—R) _ ,—S(z+R)
= S\ o E R/d:m:f(x) (e 2 e 2 ) (C.2)
0

In the case of a regular lattice (fec, bee, ete) the set of lattice vectors { R} can be arranged
in shells (labeled i) centered around the origin. Each shell contains n; lattice points at a
distance R; from the origin. The first (degenerated) shell with index 0 has a radius of 0
and contains only one point. Equation (C.2) can be written as

3 [ @ s (7= 7]) = (C.3)
R} R?
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N ji . T . o
) 27r 20 / dua® e 37 f () + % / d f (z) ("8 R0" — e gerrd’)

0

C.3 Pair distribution function in the solid

The angle-averaged pair distribution function in the solid is needed for the perturbation
and mean-field approximations for the Helmholtz free energy of the solid (as described in
section 4.4).

For the solid pair distribution function g(r) of a hard sphere system we make the ansatz
[82, 83]

~5(+R)”

A o 1 NN [ e,
g(r) = ZeF o’ — [N 2 [e—f“—W—e for r>0 (C4)

r dmp R T

and g¢(r) = 0 inside the core. n; and R; have the same meaning as above.
This Ansatz for g(r) consists of two parts (the superscript 2 indicates that for this part
the ‘shell-summation’ starts at the second shell):

g(r) = g;(r) + g5 (r)- (C.5)

The first part models the contribution of the nearest neighbors, whereas the second part
is the long range correlation part. This long range correlation part models the behavior
the particles would have if they could move around a lattice site independently of each
other. This contribution (including the nearest neighbor contribution (first shell), hence
the superscript is now 1) is equal to

where d2 is the differential solid angle aperture around 7. Using this equation with
equation (C.3) one gets

(r—Rq)? e—%<’”+R“2] : (C.6)

47Tp 27r

where the first ‘shell’ (index ¢ = 0) has been discarded (self-contribution).
The nearest neighbor contribution is modeled as

A (23} (T*T1)2

gr(r) = 767 2

for r>o

and gs(r) = 0 inside the core. The three parameters A, o and r; are calculated to fulfill
three restrictions:
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e The first restriction sets the mean displacement for the nearest neighbors of the long
range correlation (C.6) equal to the modified ansatz (C.5):

—<7“> /drTgO /drTg

where n, is the number of nearest neighbors.

e The second restriction sets the normalization for g¢(r) equal to ny:

o0

ny = 47r,0/d7“ g (r).

0

e The last restriction is the virial equation, which for the solid reads as [6]

prP _




Appendix D

Numerical methods

D.1 Steepest descent algorithm

For the minimization of the ORPA functional (4.10) and (4.16) we use the so called
steepest descent (SD) method. This method is based on the Taylor expansion of a function
(or, without loss of generality, functional) F' around an extremum:

F (@ + AZ) ~ F (&) + ATVF (&) |,_, + Z

Ax;Ax;. D.1
(%zaxj =3 i (D-1)

The gradient VF (%) is always pointing in the opposite direction of the steepest descent.
So if one follows the negative gradient, one should reach a (possibly local) minimum. The
absolute value of the gradient decreases as the minimum approaches and vanishes at the
minimum.

In the SD method the size of the step AZ is a priori not fixed. In practical applications
the size of the step has to be determined rather empirically (proceed along the direction
of the negative gradient until the function values start to rise again). In our case we set
the step size equal to a parameter A\ times the negative gradient:

AZ=-AVF ()|, 20 (D.2)

where A is restricted to A € (0, 1]. Inserting this equation (D.2) into equation (D.1) and
neglecting the quadratic terms leads to

F (3 + A7) = F (7)) - A (VE(@) |,_y,) -

A can be adopted to the ‘local’ situation: where the function is varying fast, the step size
becomes bigger because in such a region the function will hardly have a minimum.

D.2 Newton-Raphson method

The Newton-Raphson method is used in this thesis to find the root Z, of the equation
ﬁ(i“o) = F_:().

217
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In this method one calculates, starting from an initial guess 77, a sequence of values,

X9, ..., which should converge to the solution Zy. The first step is to linearize F (%)

—

F (&) =Fy=F (&) + VF (@), (@ — &)+ 0 (@ — 71)°), (D.3)

where the gradient VF (Z) |:_v,:j,1 is the Jacobian matrix J; defined as

91=(2)

Neglecting the last term in equation (D.3) leads to

-

T=T1
ﬁo =F (#1) + J1AZo,
With the inverted Jacobian jfl this equation can be written as

AZg = I [ﬁo _F (fl)} .

We thus obtain 75 via
.fg - .f1 + Af(n,

which now replaces Z; in equation (D.3) in order to obtain successive approximations of
Z; to Ty. It should be noted that the choice of the first guess can be crucial for the overall
convergence of the algorithm.
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