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Steady-state rheology and structure of soft
hybrid mixtures of liquid crystals and
magnetic nanoparticles

Gaurav P. Shrivastav, *a Nima H. Siboni b and Sabine H. L. Klappb

Using non-equilibrium molecular dynamics simulations, we study the rheology of a model hybrid

mixture of liquid crystals (LCs) and dipolar soft spheres (DSS) representing magnetic nanoparticles. The

bulk isotropic LC–DSS mixture is sheared with different shear rates using Lees–Edwards periodic bound-

ary conditions. The steady-state rheological properties and the effect of the shear on the microstructure

of the mixture are studied for different strengths of the dipolar coupling, l, among the DSS. We find that

at large shear rates, the mixture shows a shear-thinning behavior for all considered values of l. At low

and intermediate values of l, a crossover from Newtonian to non-Newtonian behavior is observed as

the rate of applied shear is increased. In contrast, for large values of l, such a crossover is not observed

within the range of shear rates considered. Also, the extent of the non-Newtonian regime increases as l

is increased. These features can be understood via the shear-induced changes of the microstructure.

In particular, the LCs display a shear-induced isotropic-to-nematic transition at large shear rates with

a shear-rate dependent degree of nematic ordering. The DSS show a shear-induced nematic ordering

only for large values of l, where the particles self-assemble into chains. Moreover, at large l and low

shear rates, our simulations indicate that the DSS form ferromagnetic domains.

1 Introduction

In recent years, composites of liquid crystals (LCs) and magnetic
nanoparticles (MNPs) have been established as an important new
class of soft ‘‘hybrid’’ materials. An attractive feature of these
systems, which have been originally proposed by Brochard and
de Gennes,1 is that their structural and material properties can be
tuned by external fields, such as magnetic, electric and surface
fields. This makes them interesting not only from a fundamental
perspective, e.g., in the context of spontaneous ferromagnetism2

and magnetic field-induced nematic order,3 but also for technical
and medical applications.4–6 For these reasons, mixtures of LCs
and MNPs have been extensively studied in experiments2,7–13 and,
more recently, also in particle-based computer simulations.14–16

Most of these studies have been devoted to systems in thermal
equilibrium.

One feature which is particularly accessible for computer
simulations is the self-assembly of the MNPs into clusters and
chains due to magnetic dipole–dipole interactions. Their impact
is typically measured by the dimensionless coupling parameter l,

which is defined by the ratio of the magnetic dipole–dipole
energy, when two MNPs are placed in contact (in an antiparallel
side-by-side configuration) to each other, to the thermal energy.
The unique structure-formation tendency of the MNPs, and its
interplay with the LC host matrix, was investigated in detail in
several computer simulation studies of Gay–Berne (GB) and
dipolar soft spheres (DSS), i.e., spheres with a permanent point
dipole moment.14–17 All of these studies were concerned
with equilibrium systems at relatively low densities of MNPs.
When the matrix is globally isotropic, the MNPs assemble into
randomly distributed chains whose length depends on l. Inter-
estingly, if these chains are aligned by an external magnetic field,
they can induce some degree of nematic ordering in the LC
matrix, a feature confirmed by experiments.3 In turn, when the
LC matrix undergoes a spontaneous isotropic–nematic (I–N)
phase transition, it provides an anisotropic environment already
in the absence of a field. The MNP chains then align along
the LC director.15 Moreover, the nematic matrix modifies the
equilibrium translational dynamics of the MNPs; they display
anomalous diffusion at intermediate timescales, with the extent
of the anomalous regime depending again on l.17

While the equilibrium structure of LC–MNP mixtures is
important and quite intriguing, many applications of such soft
hybrid systems, as well as some experiments, actually involve
nonequilibrium conditions, particularly shear flow. Taking this
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as a motivation, we here present results from nonequilibrium
Molecular Dynamics (MD) simulations for model mixtures
composed of GB and DSS particles in planar Couette shear
flow, characterized by the shear rate _g. We investigate both,
structural and rheological properties. To unravel the impact of
shear, we use the same model potentials and parameters as in
earlier simulation studies.14,15,17 Special interest is devoted to
the role of the magnetic coupling parameter l, which drives the
chain formation and has already turned out to be crucial for the
equilibrium structure. We thus expect that l will also crucially
affect the rheology (e.g., the shear stress) of the mixtures, which
may provide a path to control the flow properties of these
hybrid materials even without an external magnetic field.

As a background for the shear-induced behavior of the LC–MNP
mixtures we note that already pure LCs show pronounced non-
linear behavior under shear. In particular, one observes shear
thinning behavior at large _g,18,19 i.e., the apparent viscosity
(steady-state shear stress over shear rate) decreases with increasing
_g. This shear thinning can be related to the occurrence of a shear-
induced I–N transition,20–22 that is, the LC develops a certain
degree of nematic ordering at densities or temperatures where the
corresponding equilibrium system (_g = 0) is still globally isotropic.
Further, the director of the shear-induced nematic phase includes
typically a non-zero angle with the direction of applied shear,
commonly called the Leslie angle.23–25 This term goes back to a
phenomenological theory of the shear-induced dynamics of LCs
provided by Leslie and Erikson,18,26,27 which successfully addresses
various aspects of the rheological properties of LCs.19 A more
rigorous, statistical mechanics approach was developed by
Doi et al.28 and Hess29 who derived continuum equations
for the nematic order parameter tensor from a (rotational)
Fokker–Planck equation describing the non-equilibrium aniso-
tropic fluid. Several aspects of these continuum theories, such
as the resulting anisotropic viscosities, were later confirmed by
computer simulations,30–35 where the LCs are modeled by GB
ellipsoids.36,37

Pure systems of dipolar spheres (which are often used as
models of ferrofluids, i.e., suspensions of MNPs) also display
shear thinning at large _g38,39 and sufficiently large l (in the
absence of an external magnetic field). Here, the shear thinning
is related to the dipolar self-assembly into chains. At low
densities where the equilibrium DSS fluid forms isotropically
distributed chains,40,41 shear flow leads to a breaking of the
chains. This is reflected by a reduction of the average size of
the chains as function of _g.38,39 Non-equilibrium Brownian
dynamics and MD simulations suggest the DSS also show
anisotropy in the viscosity under shear.32 A theoretical descrip-
tion to explain the anisotropic viscosity of ferrofluids and the
structural changes due to shear was proposed by Ilg et al.42,43

Also experiments indicate that the shear-induced changes in
the viscosity of ferrofluids is strongly correlated with their
structure, see, e.g., ref. 44 and 45. In presence of an external
magnetic field, the overall viscosity markedly increases due to
chain formation in field direction.46,47 While most of these
findings refer to dilute systems of dipolar spheres, there are
also simulation studies at high densities.48 Here, one observes

not only alignment of the chains along the shear direction, but
also indications for shear-induced ferromagnetic ordering.

The above overview shows that the shear-induced behavior
of LCs, on the one hand, and MNPs, on the other hand, is
already quite well understood. This is not the case for hybrid
systems containing both components. From a general perspec-
tive, a LC matrix in its orientationally ordered state can be
viewed as a viscoelastic medium. In a recent study, Ilg et al.49

have proposed a mesoscopic model to investigate the dynamics
of (individual) MNPs in a viscoelastic medium, focusing on
magnetic relaxation phenomena. The findings were found to be
consistent with nanorheological experiments.50 Still, it is clear
that more particle-based investigations are needed to elucidate
the behavior of magnetic hybrid systems with complex matrices
under shear, especially at larger dipolar coupling strengths.

From this perspective, we consider the model of GB and DSS
particles considered in the present study as an archetypal
example of a soft magnetic hybrid system. Our focus here is
on the steady-state behavior in the absence of a magnetic field,
particularly the shear stress and its interplay with chain for-
mation and orientational ordering of the two components.
At large l, we find strongly nonlinear (non-Newtonian) behavior,
while the more weakly coupled systems show a crossover from
Newtonian to non-Newtonian behavior as functions of _g. Thus, the
flow properties of the mixture can indeed be tuned by varying the
magnetic coupling.

We restrict our simulation study to a system which, in
equilibrium, is in the isotropic state. According to continuum
theory (see, e.g., ref. 51–53), the main orientational pheno-
menon observed upon shearing from the isotropic state is flow
alignment (rather than some sort of oscillatory motion); and
this is confirmed in our simulations.

The rest of the paper is organized as follows: in Section 2
we present the details of the simulation and methods. Our
observations regarding the behavior of the LC–DSS mixture
under externally applied shear are discussed in Section 3.
Finally, in Section 4, we conclude the paper with a short
summary of the present work and an outlook towards future
investigations.

2 Simulation details

We consider a binary mixture of LC and DSS with a composi-
tion ratio 80 : 20 and perform non-equilibrium MD simulations
using the LAMMPS package.54,55 The LCs are modeled by
ellipsoids which interact via a generalized Gay–Berne (GB)
potential.55–57 We consider uniaxial LCs with an aspect ratio
of 3 : 1, and the relative energy well depths for side-to-side
interaction is considered to be five times stronger than the
end-to-end interaction. The DSS interact via a combination of
a soft sphere potential and dipolar interactions.58,59 The dia-
meter of the DSS is considered to be equal to the width of the
LCs. Finally, the interaction among the LC and DSS is modeled
by a modified GB potential14,15,17 where the shape and energy
parameters chosen for the DSS are appropriate for spheres.
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We treat the long range dipolar interactions with the three
dimensional Ewald sum.40,59,60 A detailed description of inter-
action potentials and model parameters is available in ref. 17.
The equilibrium phase diagram, self-assembly and dynamics
of the LC–DSS mixture considered here are well studied in the
literature.14–17 Therefore, the specific system considered forms
an excellent starting point for investigation in non-equilibrium.

The units of length and energy are set by the parameters of
the GB potential, s0 and e0, respectively as defined in ref. 17.
The parameters that characterize the structure and phase
behavior of the mixture are the reduced temperature T* =
kBT/e0, the reduced number density r* = Ns0

3/V (where N
and V are the total number of particles and total volume,

respectively), and the reduced dipole moment m� ¼ m
. ffiffiffiffiffiffiffiffiffiffi

e0s03
p

.

The Newton’s equations of motion for the force and torque acting
on a particle (combined with a thermostat, see below) were
integrated in the NVT ensemble using a velocity Verlet algorithm

and a reduced MD time step Dt� ¼ Dt
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ms02=e0
p

¼ 0:002. The

simulations are performed at fixed r* and T* for various values of
m*. Specifically, m* ranges from 0.0 to 3.0, i.e., the values of dipolar
coupling parameter l = m2/kBTs0

3 ranges from 0.0 to 11.25.
Our simulated system consists of 3200 LC (Ne) and 800 DSS

particles (Ns). We start with a mixture equilibrated at r* = 0.34
and T* = 0.8. At these parameters, the mixture is in the isotropic
phase, however, very close to the equilibrium I–N phase
transition line.17 The state point considered is marked by the
red square in the equilibrium phase diagram of the LC–MNP
mixture shown in Fig. 1(a) where the blue region represents the
isotropic phase while the light green region shows the nematic
phase.17 We obtain this tentative phase diagram by estimating
the nematic order parameter at different state points.

We shear the mixture with constant shear rate using
Lees–Edwards periodic boundary conditions (see the schematic
diagram in Fig. 1(b) where the imposed velocity profile is shown by
blue arrows). Specifically, we implement a planar Couette flow in
the x–z plane, with x being the direction of flow, and z and y being

the gradient and vorticity directions respectively. The range of
dimensionless shear rates _g* = (s2m/e)1/2_g is given by 10�3–10�1.
To maintain the temperature we employ a Langevin thermostat
acting in the gradient and vorticity directions.61

We note that accessing lower shear rates is computationally
expensive due to the long-range nature of the interactions
among the DSS which complicates the force calculations and
as a result a drastic slowdown in the computation occurs.
Furthermore, the system size considered in this work is suffi-
ciently large, and finite-size effects are not very significant, see
Appendix A.

3 Results
3.1 Stress–strain response

For the understanding of the rheology, the main quantity of
interest is the shear stress, sxz, which we calculate via the
Irving–Kirkwood expression,22,62

sxzðtÞ ¼
1

V

X
i

mivi;xvi;z þ
X
i4 j

rij;xFij;z

" #* +
: (1)

In eqn (1), V is the total volume, vi,(x,z) are the x and z
components of the velocity of the ith particle and rij,x, Fij,z are
the x-component of the distance vector and z-component of the
force between particles i and j, respectively. The angular bracket
in eqn (1) represents an average taken over 50 independently
prepared samples.

We start by investigating the time evolution of sxz as a
function of strain, _g*t*, at fixed shear rate. In Fig. 2(a)–(c), we
present results for mixtures sheared with _g* = 10�1, 3 � 10�2

and 10�2 for l = 0.0, 5.0 and 11.25, respectively.
At the largest shear rate considered ( _g* = 10�1), the stress

first increases with strain, reaches a maximum and finally
settles to a non-zero value. This ‘‘overshoot’’ behavior, which
appears for all values of l, signals a non-linear rheological
behavior at high shear rates, it also appears in glassy systems
and supercooled liquids.63,64 As the shear rate is lowered, the
height of the stress overshoot decreases and finally disappears
for the mixtures with l = 0.0 and l = 5.0 (see Fig. 2(a) and (b)).
However, in the mixture with l = 11.25 the stress overshoot
persists even at the lowest shear rate considered. These obser-
vations already suggest that the degree of dipolar coupling
plays a crucial role for the rheology of the mixture. We will
come back to this point in the subsequent sections where we
focus on the steady-state behavior. The transient behavior,
which appears interesting as well, will be discussed in more
detail elsewhere.65

3.2 Steady state flow curve

To proceed, we investigate the behavior of the steady-state
stress, sss

xz = limt-Nsxz, as a function of the shear rate.
Fig. 3(a) shows the resulting flow curve of the LC–DSS mixture
for various values of l. For all values of l except l = 11.25, we
observe a crossover from ‘‘Newtonian’’ behavior, where sss

xz

is linearly proportional to _g*, to ‘‘non-Newtonian’’ behavior,

Fig. 1 Shearing protocol for a LC–DSS mixture. (a) Tentative equilibrium
phase diagram in the r*–T* plane obtained via MD simulations17 (the plot is
adapted from the data published in our previous work17). The red square
marks the quiescent state at r* = 0.34, T* = 0.8 and m* = 3.0. (b) Snapshot
of the mixture at the equilibrium on which a planar Couette flow is applied
in the x–z plane along the x-direction using Lees–Edwards periodic
boundary conditions.
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where sss
xz varies in a power-law manner as a function of _g*. This

transition occurs at a ‘‘critical’’ shear rate, which is approxi-
mately given by _gc* = 0.02.

At shear rates _g* \ _gc* the stress varies as sss
xz p _g*n for

all values of l, where the power-law exponent is n E 0.8. This
exponent, also called flow index, characterizes the non-Newtonian
behavior of the LC–DSS mixture. Specifically, the fact that for
_g* \ _gc*, n is smaller than one, indicates a shear thinning. This
behavior is also reflected by the average viscosity, defined as
Z = sss

xz/_g*, which is plotted in Fig. 3(b) as a function of _g*. For a
wide range of complex fluids such as microgels, foams, and
emulsions, the exponent n is considered to be a ‘‘material para-
meter’’ that weakly depends on the temperature and density.66

Here, we did not study this dependency systematically.
At large l(= 7.8125, 11.25) both the flow curve and the

viscosity as function of _g* reveal two distinct power-law
regimes. This feature has also been observed in computer
simulations of pure ferrofluids at high dipolar coupling
strength.39 Specifically, the steady-state stress grows slowly at
low shear rates, before it crosses over to the power-law regime
with slope B0.8 at high shear rates. This behavior is more
evident for l = 11.25, where the non-Newtonian regime spans
the whole range of shear rates considered in the simulations.

In contrast, at small values of l and low shear rates the
stress grows linearly in _g* and the viscosity remains constant,
which is characteristic of Newtonian behavior. Shear-thinning
behavior occurs only for _g* 4 _gc*. We estimated critical shear
rates _gc* for various l, see the inset of Fig. 3(b). The data reveal
a sudden jump in _gc* when l increases beyond 5.0. Such a
variation of _gc* with increasing l has already been observed for
pure dipolar fluids, where it has been attributed to the chain
forming tendency of the DSS at large l.39 Similar behavior
occurs in the present LC–DSS mixture, as will see below.

3.3 Microstructure under shear

The nonlinear features observed in the flow curves discussed in
Section 3.2 already suggest profound structural changes when

the LC–DSS mixture is exposed to shear. In the present section
we focus, in particular, on the chain formation of magnetic
particles. To this end we consider mixtures at l = 5.0 and
l = 11.25, where the non-Newtonian behavior is particularly
pronounced. Before we move ahead with the analysis, it should
be noted that here in our LC–DSS mixture, the number density
of the DSS is rather small (rDSS* = 0.068). In pure DSS fluids, at
such low densities, the DSS form chains with head-to-tail
ordering of neighboring particles and the size of the chains
depending on l. These DSS chains are isotropically distributed,
that is, there is no long-range orientational order.41,59,60 In our
previous study of a LC–DSS mixture, we have shown that in the
isotropic phase (such as one considered here at r* = 0.34), the
DSS form isotropically distributed chains of significant length
if l Z 6.0.17 Therefore, we expect that in the equilibrium, sizes
of the DSS chains should be rather small for l = 5.0 and
relatively larger for l = 11.25.

We define weak and strong shear rate regimes using the flow
curve of the LC–DSS mixture. Shear rates in the Newtonian regime,
_g* o _gc*, are considered as weak shear rates and _g* 4 _gc*
corresponds to strong shear. To illustrate the effect of shear on
the microstructure, we choose two shear rates, _g* = 10�1 and
_g* = 5 � 10�3, for our analysis. For l = 5.0, the shear rate _g = 10�1

falls into the non-Newtonian regime, while _g* = 5 � 10�3 belongs
to the Newtonian regime. For l = 11.25, both the shear rates fall
into the non-Newtonian regime, see Fig. 3.

In Fig. 4(a), we show a snapshot of the LC–DSS mixture for
l = 5.0 in the quiescent state at _g*t* = 0. It is seen that the
mixture consists of short DSS chains (shown in Fig. 4(d)) and
randomly oriented LCs. At the low shear rate, _g* = 5 � 10�3, LCs
do not show the shear-induced alignment, see Fig. 4(b). On the
contrary, at the high shear rate, _g* = 10�1, the LCs display a
shear-induced alignment in the steady-state, see Fig. 4(c). The
DSS, plotted in Fig. 4(e) and (f), show no alignment in the
direction of the shear at any of the shear rates considered.

In contrast to l = 5.0, at large l (= 11.25) the equilibrium con-
figuration is characterized by large DSS chains (see Fig. 5(a) and (d)).

Fig. 2 Evolution of sxz as a function of strain _g*t* for the LC–DSS mixture at r* = 0.34, T* = 0.8 sheared with _g* = 10�1, 3 � 10�2, 10�2 for (a) l = 0.0,
(b) l = 5.0 and (c) l = 11.25. Here, the shear rate is constant, therefore, the evolution of sxz with strain _g*t* is equivalent to evolution with time. Gray curves
in all plots represent data averaged over 100 samples. To further improve the statistics, a running average over 10 data points based on the gray curves
has been performed.
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In the presence of shear, these DSS chains align with the shear
direction at both shear rates considered (see Fig. 5(e) and (f)).
The response of the LCs depends on the shear rate: while the LC
system at _g* = 5 � 10�3 (Fig. 5(b)) displays weak alignment, the
ordering at _g* = 10�1 is more significant. We will quantify the
degree of shear-induced nematic ordering in Section 3.4. Here we
already note that the observed shear-induced ordering of the two
species is consistent with previous simulation studies on pure
LCs20,22,31 and pure dipolar fluids.39,48 The difference in the present
case is that the two components strongly influence each other.

3.4 Nematic order in the steady state

Along with the chain formation, a further interesting issue is
the degree of shear-induced nematic ordering in both species

of the LC–DSS mixture. To this end, we calculate the nematic
order parameters Se,s via the largest eigenvalues of the ordering
tensors Qe,s for the LCs (e) and the DSS (s) respectively. The
instantaneous components of these tensors are given as

Qab ¼ ð1=NÞ
XN
i¼1
ð1=2Þ 3uiau

i
b � dab

� �
; (2)

where a, b = x, y, z. Further, for the ith particle, ui
a is one of the

components of the orientation unit vector û in the case of LCs,
while it is a component of the unit dipole vector l̂ in the case of
DSS. The largest eigenvalue xe,s of the tensors Qe,s characterizes
the extent of the nematic ordering in the two components. The
nematic order parameters Se,s are then obtained by taking the
average of xe,s for many samples. Specifically, we have used 100
independent samples for calculation of order parameters and
other quantities. Furthermore, the eigenvector corresponding
to xe,s defines the nematic directors n̂e,s for the LCs and DSS
respectively. The steady state values of Se,s are denoted by Sss

e,s.
Furthermore, at large shear rates where nematic order is

present, we analyze the orientation of n̂e,s with respect to the
shear direction (i.e. with the x-axis in our case) by calculating
the angle,48

Ye,s = hatan(|n̂z,(e,s)/n̂x,(e,s)|)i, (3)

where n̂z,(e,s) and n̂x,(e,s) are the z and x components of the
respective nematic directors. This angle defines the orientation
of the projection of n̂e,s in the shear plane (x–z plane) onto the
shear direction (x-axis).

We note that in all cases considered, our simulations
reveal ‘‘flow-aligning’’ behavior rather than an oscillatory (or
otherwise time-dependent) motion of the directors. We believe
that this is due to the fact that the equilibrium system is in its
isotropic phase, see Fig. 1. The absence of oscillatory motion is
consistent with the result from continuum theories52 according
to which oscillatory motion generally only occurs when
shearing from an orientationally ordered state.

In Fig. 6, we plot the steady-state nematic order parameters
Sss for the LC (Se black circles) and the DSS (Ss red squares) for
l = 5.0 at different shear rates. We recall that at l = 5.0, the flow
curve reveals both, a Newtonian regime (_g* o _gc*) and a non-
Newtonian regime at high shear rates (see Fig. 3). As seen
from Fig. 6, the DSS do not develop any pronounced nematic
ordering throughout the range of the shear rates considered.
This is different for the LCs. In the Newtonian regime, the LCs
do not show shear-induced ordering while at high shear rates,
significant (para-)nematic ordering is observed. To this end
we note that the value of Se related to the equilibrium I–N
transition is 0.43 according to the Marier–Saupe theory.68 This
value of Se (= 0.43) is represented by the horizontal light-blue
dashed line in Fig. 6. One sees that this (equilibrium) value is
approached and finally exceeded when the shear rate becomes
larger than _gc* (indicated by the grey dashed line). More
specifically, from the intersection of the function Sss

e ( _g*) and
the horizontal blue line we estimate the shear rate of the shear-
induced I–N transition as _gN* E 0.08. We conclude that the

Fig. 3 (a) The flow-curve for the LC–DSS mixture at r* = 0.34, T* = 0.8
and l = 0.0, 1.25, 5.0, 7.81, 11.25, vertical lines represent error bars. Dashed
lines represent slopes 1.0 and 0.8. (b) Average viscosities Zxz, obtained from
sss

xz, as a function of _g* for the same l values as in (a). The inset shows the
variation of the critical shear rate _gc* at which a crossover from Newtonian
to non-Newtonian behavior is observed, as function of l.
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non-Newtonian regime of the flow curve at l = 5.0 is accom-
panied by orientational ordering of the LCs, but not the DSS.

The appearance of an isotropic–(para)nematic transition at
high shear rates is consistent with previous simulation studies

Fig. 4 Snapshots of the LC–DSS mixture for l = 5.0, r* = 0.34 and T* = 0.8 in equilibrium and under shear. (a) Initial state ( _g*t* = 0.0), which is same for
all shear rates considered. (b and c) Illustrate the structure in the steady state ( _g*t* = 15.0) for _g* = 5 � 10�3 and 10�1, respectively. The snapshots (d), (e)
and (f) show the DSS alone at the parameters corresponding to (a), (b), and (c) respectively. All the snapshots are prepared using software OVITO.67

Fig. 5 Snapshots of the LC–DSS mixture for l = 11.25, r* = 0.34 and T* = 0.8 in equilibrium and under shear. (a) Initial state ( _g*t* = 0.0), which is same for
all shear rates considered. (b and c) Illustrate the structure in the steady state ( _g*t* = 15.0) for _g* = 10�1 and 5 � 10�3, respectively. The snapshots (d), (e)
and (f) show the DSS alone at the parameters corresponding to (a), (b), and (c) respectively.
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of GB ellipsoids,69 attractive colloidal rods20,21 and soft repul-
sive long ellipsoids.22

The inset in Fig. 6 shows the angle Ye between the director
of the LCs and the x-axis (see eqn (3)). Note that, since
significant nematic ordering is present only at large shear
rates, the relevant points in the inset are those corresponding
to _g* = 8 � 10�2 and 10�1. From these, we observe that the
nematic director for LCs does not entirely align with the shear
direction, but makes a small angle of approximately 241.
This observation is consistent with previous studies on pure
Gay–Berne LCs under shear.69,70

The situation at large l, shown in Fig. 7(a), is different. Here,
the LC matrix exhibits a significant degree of ordering already
at the lowest shear rate, _g* = 10�3. Moreover, the nematic order
parameter of the DSS is even larger. We understand these
properties, which are in marked contrast to those observed at
l = 5.0, as a consequence of the pronounced chain formation of
the DSS at l = 11.25, see Fig. 5(e) and (f).

Due to the strong correlation within the chains, these form
rather stiff and long objects which align in the shear flow. In
fact, they align essentially along the shear (x-)direction, as seen
from the small values of the angle Ys plotted in Fig. 7(b). This is
consistent with a result from Leslie theory for elongated
particles71 which states that the angle between the particle and
the shear direction decreases with increasing length. The align-
ment of the chains, in turn, enhances the alignment of the non-
magnetic LC particles, leading to relatively large values of Sss

e .
Upon increase of the shear rate, the nematic order para-

meter of the DSS remains essentially constant in the range of
the shear rates considered. For pure dipolar fluids in the shear
flow, it has been observed that the nematic order parameter
decreases at high shear rates due to breaking of the
chains.39,43,48 In the present study, we do not observe such a
behavior as the maximum shear rate is restricted to _g* = 0.1.

Finally, we consider the birefringence angles Ys, defined in
eqn (3) and plotted in Fig. 7(b). For all considered shear rates
the director of the DSS makes an angle of about 31 from the
x-axis, indicating that the DSS chains almost completely align
along the shear direction in the steady state.

In contrast, the nematic director of the LCs, makes an angle
Ye of about 161 at large shear rates with the shear direction.
However, Ye decreases as the shear rate is lowered. At the same
time, the degree of nematic ordering decreases as well, see
Fig. 7(a). We suspect that at these low shear rates, the LCs
locally align along the DSS chains, that is, along the x-direction,
which may lead to the observed reduction in Ye. Furthermore,
at large shear rates the difference in the angles Ye and Ys is
approximately equal to 121 which indicates that the nematic
directors of the two components do not completely align
parallel to each other. In order to understand this better, we
calculate the biaxiality order parameter which measures the
degree of parallel alignment of the two nematic directors, n̂e

and n̂s, with respect to each other. The biaxiality order para-
meter, B, is defined as:

B ¼ 3

2
n̂e � n̂sð Þ � 1

2

� �
(4)

where n̂e,s are the nematic directors for the LCs and DSS
respectively. The angular bracket denotes the averaging taken
over 50 samples. The value of B equal to 1 corresponds to the
parallel alignment of n̂e and n̂s and B = �0.5 corresponds to the
perpendicular alignment of the two directors. The inset in Fig. 7(b)
shows the variation of B as a function of _g*. We observe that at large
shear rates, n̂e and n̂s slightly deviate from the parallel alignment
while at low shear rates the degree of parallel alignment increases
which is consistent with the decrease in the difference between the
angles Ye and Ys. We note here that at low shear rates the nematic
ordering in the LCs is slightly higher as compared to the nematic
ordering at low l, however, it is not above the critical value.
Therefore, we expect that the enhanced alignment of the two
nematic directors at low shear rates is the result of the local
ordering of LCs near the DSS chains.

Fig. 6 Variation of the nematic order parameter in the steady state for
l = 5.0 for the LC (Se) and the DSS (Ss) as a function of _g*. The horizontal
blue dashed line represents the critical value of the nematic order para-
meter at which I–N transition is observed and the vertical grey dashed line
shows the _gc* for l = 5.0. The inset shows the birefrigence angle Ye

(in degrees) for the LCs at l = 5.0. The three points in the inset correspond
to _g* = 10�1, 8 � 10�2 and 5 � 10�2.

Fig. 7 (a) Variation of the nematic order parameters for the LC (Se) and the
DSS (Ss) in the steady state for l = 11.25 as a function of _g*. The horizontal
blue dashed line represents the value of the nematic order parameter
corresponding to the I–N transition. The vertical grey dashed line indicates
_gc* for l = 11.25. (b) Birefringence angle Y (in degrees) as a function of _g*
for the LC and the DSS at l = 11.25. The inset shows the biaxiality
parameter, B, (see eqn (4)) as a function of _g*.
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3.5 Ferromagnetic ordering

Given the pronounced nematic ordering of the dipolar chains
at large values of l (see Fig. 7a), it is an obvious question
whether this nematic ordering is accompanied by ferro-
magnetic ordering, i.e., parallel orientation of the dipoles in
the chains. To this end we consider the polar order parameter

P1h i ¼
1

N

XN
i¼1

l̂i � n̂s

�����
�����

* +
; (5)

where l̂i is the unit dipole vector of the ith-particle, and n̂s is the
nematic director of the DSS (the angular brackets denote the
average over different samples). Perfect ferromagnetic order
corresponds to hP1i = 1.

As a background information we note that l depends upon
the distance of contact of two dipoles.44 For dipolar particle
with soft sphere steric interactions, the definition of contact
distance is slightly ambiguous. However, one can safely use
Barker–Henderson definition of the hard-sphere diameter72

for the present case. Such a choice will not overestimate the
value of l as the contact distance is not much different from the
hard-sphere diameter (see the inset in Fig. 9(b), the first peak of
the pair correlation function (in equilibrium) appears around
0.98s). Furthermore, pure DSS fluids do indeed display ferro-
magnetic ordering (in three dimensions) at large dipolar cou-
pling strengths (l \ 6.67) and large densities (rs3

\ 0.7).58,59

Within a mean-field picture,73–75 the ferromagnetic ordering
can be explained via the non-zero average field generated by the
neighbors around a dipolar sphere, provided that the boundary
conditions are appropriate (i.e., conducting). The relevance of
the boundary conditions is a consequence of the long-range
character of the dipolar interactions. The mean field is propor-
tional to the density73 and dipolar coupling strength, which
allows for ferromagnetic ordering in dense systems and suffi-
ciently low temperatures. From a structural point of view,
ferromagnetic ordering is related to a specific configuration
of neighboring dipolar chains, where particles are shifted by

half a particle diameter.76,77 In this situation, the interaction
between two chains is indeed attractive.76

In the present mixture, the number density of the dipolar
component is much smaller than in the cases mentioned
above, rs3 E 0.068. Thus, at least in equilibrium, one would
not expect ferromagnetic ordering even at the largest l con-
sidered, and this is confirmed by simulations.15 The question
then is whether such an ordering can be induced by the shear
flow. Indeed, shear-induced ferromagnetic ordering has been
observed for pure, dense DSS fluids at coupling strength
l B 4.63, where the corresponding unsheared system is still
isotropic.48,78 The density considered in ref. 48 and 78, however,
was r* = 0.8, that is, far beyond that of the present system.

Numerical results for hP1i in the steady state are plotted in
Fig. 8(a) as function of the shear rate. For l = 5.0, the values of
the order parameter are negligible throughout the regime
considered. However, for l = 11.25 and the lowest shear rate,
_g* = 10�3, we observe a quite large value of hP1it 0.7, reflecting
a significant degree of ferromagnetic order. This large value
decreases upon increase of _g*.

Given the low density, the large order parameter at _g* = 10�3

is indeed quite surprising. To check that the ordering is indeed
induced by shear we have also investigated hP1i as function of
strain _g*t*, see Fig. 8(b). The data clearly reveal the absence of
ferromagnetic order at zero shear. The curve for _g* = 10�3 also
indicates that the ferromagnetic order is gradually ‘‘built up’’
when the strain is increased. Further, the values at the largest
strain ( _g*t* = 15) reflect what is already seen in Fig. 8(a), namely,
that the degree of ferromagnetic order in the steady state
decreases with the applied shear rate. Similar to the ferromag-
netic ordering, the nematic order in the DSS also increases
gradually as the strain is increased, see Fig. 8(c). However, the time
evolution of hSsi remains almost independent of the shear rate,
which is in contrast to the evolution of the ferromagnetic order.

There remains the question as to why the system at low
shear rate orders at all, despite of the low density. From a
mean-field perspective, one can argue as follows: due to the
nematic ordering of the LC host matrix (which, in turn, aligns

Fig. 8 (a) Ferromagnetic order parameter hP1i in the steady state as a function of _g* for l = 5.0 and 11.25. (b) The evolution of hP1i with strain for
_g* = 10�1, 10�2 and 10�3 for l = 11.25. (c) The evolution of the nematic order parameter for the DSS, Ss, as a function of strain, _g*t*, for l = 11.25 at the

same shear rates as in (b).
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the dipolar chains), the possible directions of ferromagnetic
order of the dipolar component are strongly restricted as
compared to the three-dimensional, pure dipolar fluid. Indeed,
in the pure case, the director can assume any direction on the
unit sphere, whereas in presence of the nematic matrix, the
direction of magnetization is essentially restricted to two
directions, along the shear and opposite to shear. This corre-
sponds to a change from ‘‘XYZ symmetry’’ to ‘‘Ising symmetry’’,
i.e., a profound reduction of degeneracy. Mean-field theory for a
pure dipolar system would then predict a strong reduction of
the critical density beyond which ferromagnetic order can
occur. Indeed, this critical density is given by rc* = 9/(4pl)
for conventional, three-dimensional dipoles, while it is only
rc* = 3/(4pl) for an ‘‘Ising’’ dipolar system which can order only
‘‘up’’ or ‘‘down’’.74,75 Clearly, this line of argumentation
assumes an effective equilibrium picture of the system at low
shear rates. Still, it describes one important mechanism which
could promote ordering at lower densities (even though the
theory is known to be strongly incorrect in terms of quantitative
predictions).

A further piece of understanding emerges when we consider
the structure around a dipolar chain and its dependence on _g*.
To this end we have plotted in Fig. 9 various pair correlation
functions involving the DSS alone.

Specifically, we have calculated separately the DSS pair
correlation functions in directions of shear (x-direction), the
shear gradient (z-direction), and vorticity (y-direction) (for a
definition of these correlations, see ref. 77). Fig. 9(a) shows all

three correlation function at the lowest shear rate, where the
order parameter hP1i is largest. We observe pronounced, nearly
solid-like correlations in shear direction, which corresponds to
the direction of the chains. These correlations are, in fact,
much stronger than those in the equilibrium system (see inset
of Fig. 9(b)), indicating that the shear flow, via the ordering of
the LC host matrix, strongly promotes the chain formation. The
correlations in the other two directions (see inset of Fig. 9(a))
are much less pronounced (and quite similar). Interestingly,
the second peak of these lateral correlation function is much
higher than the first one. This strongly differs from the equili-
brium situation, where the first peak exceeds by far the other
ones. This feature reflects that shear strongly promotes correla-
tions between neighboring chains; in fact, they appear to be
more close than in equilibrium. We recall that in the ferro-
magnetic phase of dense, pure DSS systems, chains are close
and are shifted by half a particle diameter, because only then
their interaction is attractive.76 Therefore, a small chain–chain
distance is an important ingredient into the development of
ferromagnetic order.

Finally, Fig. 9(b)–(d) illustrate the dependency of the correla-
tion functions on the shear. It is seen that the height of the first
peak in lateral directions somewhat increases with increasing
shear rate, indicating that shear enhances the correlation. This
is somehow surprising in view of the fact that hP2i decreases
with _g* (see Fig. 8(a)). One possible explanation could be a
breakage of chains which is not directly reflected by the
correlation functions plotted in Fig. 9. This point remains to
be considered in a future study.

4 Summary and outlook

Based on non-equilibrium MD simulations, we have shown that
the strength of the dipolar coupling plays a crucial role for the
rheological properties of LC–DSS mixtures. In particular,
it changes the ‘‘critical’’ shear rate at which the flow curve
transforms from Newtonian to non-Newtonian behavior in the
steady state.

Further, we find that shear modifies the spatial structure
within the mixture and induces an alignment in both compo-
nents. For low values of l, the DSS chains are relatively short
and do not align with the shear direction. In contrast, for large
values of l, we observe long DSS chains aligning with the shear
direction, yielding a nematic ordering of the chains. The degree
of this shear-induced nematic ordering is almost independent
of the rate of applied shear, and it is significantly higher than
the nematic ordering of the LC matrix.

The LC matrix shows a shear-induced nematic transition
at high shear rates for all values of l. This transition occurs
at a shear rate which shifts to lower values as l increases.
In particular, at the largest l considered, nematic ordering of
the LC matrix already appears at very low shear rates, although
the equilibrium system is isotropic. This is due to the fact that
the long DSS chains formed at large values of l, align with the
shear direction already at low shear rates and thereby induce a

Fig. 9 Pair correlation functions between the DSS at l = 11.25. (a) g(r) as a
function of distance in the x-direction for the shear rate _g* = 10�3. The
inset shows the correlations in y and z-directions for the same shear rate
as in the main figure. (b), (c) and (d) correlation function for three different
shear rates _g* = 10�3, 10�2 and 10�1 in the x, y and z-directions
respectively. The inset in (b) shows the radial distribution function g(r) as
a function of r in equilibrium.
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nematic ordering in the LCs. Similar behavior is also observed
in isotropic (unsheared) LC–DSS mixtures in the presence of an
external magnetic field, where the alignment of the DSS chains
in the field direction leads to a nematic ordering in the LCs.3

Here, the ordering effect of a magnetic field is replaced by
shear flow.

Finally, we have found indications that, at very large l, the
sheared mixture displays not only nematic ordering, but also
ferromagnetic order of the DSS chains. This is a striking
observation in view of the small density of the DSS, which we
attempted to explain by mean-field arguments. It seems clear,
however, that further investigations are necessary to unravel
the underlying structural mechanism.

In conclusion, our results on the steady-state rheological
properties of the LC–DSS mixture provide interesting suggestions
to design soft hybrid materials with tunable flow properties.
To further understand the full rheology of these systems, investi-
gations of the time evolution (that is, the transient structure) of the

microstructure under shear and on non-equilibrium flow patterns
are in order. Walk in these directions is on the way. A further
interesting research direction concerns the rheology of LC–DSS
mixtures with non-spherical particles. First results have been
reported in ref. 79.
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Appendix A: Finite-size effects

To understand the effect of finite sizes, we have performed few
simulations with a smaller system size, N = 1000 for l = 11.25
and investigated the flow curve, nematic order parameters and
polar order parameter, see Fig. 10. The open symbols in Fig. 10
correspond to the system size N = 1000 and the solid symbols
correspond to the system size N = 4000. The flow curves for the
two system sizes, shown in Fig. 10(a), almost fall on the top of
each other. Similarly, the nematic order parameters Sss

e,s for the
LCs and DSS, shown in Fig. 10(b), for the two system sizes also
do not show much difference. However, the polar order para-
meter for the two system sizes (shown in Fig. 10(c)) exhibits
a slight mismatch at high shear rates. These comparisons
indicate that the finite-size effects are not very significant in
our case.
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