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Flow heterogeneities in supercooled liquids and glasses under shear

Mehrdad Golkia,1 Gaurav P. Shrivastav ,2 Pinaki Chaudhuri,3 and Jürgen Horbach1

1Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf,
Universitätsstraße 1, 40225 Düsseldorf, Germany

2Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, 1040 Wien, Austria
3The Institute of Mathematical Sciences, IV Cross Road, CIT Campus, Taramani, Chennai 600 113, Tamil Nadu, India

(Received 3 April 2020; accepted 28 July 2020; published 17 August 2020)

Using extensive nonequilibrium molecular dynamics simulations, we investigate a glass-forming binary
Lennard-Jones mixture under shear. Both supercooled liquids and glasses are considered. Our focus is on the
characterization of inhomogeneous flow patterns such as shear bands that appear as a transient response to the
external shear. For the supercooled liquids, we analyze the crossover from Newtonian to non-Newtonian behavior
with increasing shear rate γ̇ . Above a critical shear rate γ̇c where a non-Newtonian response sets in, the transient
dynamics are associated with the occurrence of short-lived vertical shear bands, i.e., bands of high mobility that
form perpendicular to the flow direction. In the glass states, long-lived horizontal shear bands, i.e., bands of
high mobility parallel to the flow direction, are observed in addition to vertical ones. The systems with shear
bands are characterized in terms of mobility maps, stress-strain relations, mean-squared displacements, and
(local) potential energies. The initial formation of a horizontal shear band provides an efficient stress release,
corresponds to a local minimum of the potential energy, and is followed by a slow broadening of the band
towards the homogeneously flowing fluid in the steady state. Whether a horizontal or a vertical shear band forms
cannot be predicted from the initial undeformed sample. Furthermore, we show that with increasing system size,
the probability for the occurrence of horizontal shear bands increases.
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I. INTRODUCTION

The structural relaxation in glass-forming liquids is as-
sociated with a rapidly growing timescale τ . At the glass
transition, τ exceeds the experimentally accessible timescale
and the liquid becomes an amorphous solid with an essentially
frozen liquid structure [1]. The slow relaxation processes
in the vicinity of the glass transition make the liquid very
sensitive to even very small external fields. If a highly viscous
liquid is, e.g., sheared with a constant shear rate γ̇ , a new
timescale is introduced by 1/γ̇ . If this timescale becomes
smaller than the timescale for structural relaxation, i.e., γ̇ τ >

1, there is a qualitative change of the response of the liquid to
the shear in that it becomes a non-Newtonian liquid [2], with
the steady-state shear stress, σss, being no longer proportional
to the shear rate γ̇ . Structural relaxation processes change
qualitatively in the non-Newtonian regime, which is reflected
in a decrease of the effective shear viscosity (shear thinning)
as well as anisotropies in the structure and dynamics of the
sheared liquid [3–7].

The transient response of a sheared supercooled liquid, i.e.,
its behavior before the steady state is reached, also changes
qualitatively in the non-Newtonian regime. Here, the stress-
strain relation shows a maximum at a strain of the order of
0.1, followed by a stress relaxation towards σss [6]. A similar
behavior is also seen for a glass system in response to an
external shear at a constant shear rate. At any finite shear
rate, the glass is expected to undergo a transformation from

a deformed amorphous solid to a homogeneously flowing
fluid in the steady state (provided one waits long enough
until the steady state is reached). However, below the glass
transition, a Newtonian regime can no longer be seen on
experimentally accessible timescales and the extrapolation
towards vanishing shear rates, γ̇ → 0, suggests the approach
of a constant value of σss which can be interpreted as a
yield stress. Thus, in this context, the occurrence of a yield
stress is a kinetic phenomenon. It is associated with the
response of a nonequilibrium glass state and the accessible
timescales in experiments (or simulations). One should keep
in mind, however, that the “natural response” of an amor-
phous system to shear is that of a Newtonian fluid in the
limit γ̇ → 0.

The transient behavior of sheared glass can be markedly
different from that of a supercooled liquid with respect to
the spatial response to the shear field. In supercooled liquids,
there are inhomogeneous flow patterns prior to the steady
state, albeit these features are usually very weak [8]. In
glasses, however, such inhomogeneities are very pronounced.
In particular, there is the possibility for the formation of shear
bands, i.e., bandlike structures with a higher strain or mobility
than in other regions of the system. The occurrence of shear
bands is of technological relevance since they can cause the
mechanical failure of a glassy material. Shear bands have been
observed in experiments of soft matter systems [9–12] and
metallic glasses [13–16], as well as in computer simulations
of various model glass systems [17–32].
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Whether or not shear bands form depends on the degree
of annealing of the initial undeformed glass sample and the
applied shear rate. This can be inferred from theory and
simulation studies [19,33–35] where the role of cooling rate
and aging effects in the response of glasses under shear has
been investigated. However, most of the previous simulation
studies have been limited with respect to the accessible aging
timescales or cooling rates. Only the recent work by Ozawa
et al. [28,29], using a Monte Carlo swap algorithm in com-
bination with an athermal quasistatic shear (AQS) protocol,
has reported the response of well-annealed model glasses to
shear. These authors have shown that shear bands with an
orientation parallel to the flow direction (in the following
denoted as horizontal shear bands) are initiated by a very
pronounced stress drop in the stress-strain relation. Moreover,
in analogy to a first-order phase transition, the stress drop
becomes sharper with increasing system size. This has led
to the interpretation that the stress drop in the stress-strain
relation indicates the presence of the spinodal of a first-
order nonequilibrium phase transition [28,36]. However, in
this picture, the coexisting phases underlying the proposed
first-order transition are not identified. As a matter of fact,
the inhomogeneous state with a shear band is unstable. With
further deformation, the shear band grows until the system is
fully fluidized (see, also, below). Thus, there is a “transition”
from a deformed glass to a homogeneously flowing fluid and
the shear-banded structures appear to be transient.

At this point, it is interesting to compare the response of
glasses and crystals to a deformation. It is tempting to see an
analogy of the shear bands in glasses to slip planes in crystals.
Slip planes in crystals are located between layers of particles
and thereby do not contain any particles. They allow one to
fully release the stresses in response to a deformation (at least
if one considers crystalline systems in the thermodynamic
limit) [37–39]. Unlike a crystal, an amorphous solid can never
fully release the stresses in response to a deformation. The
stresses that might be localized in a shear band are always
carried by particles and, as mentioned above, inhomogeneous
systems with shear bands are not stable and transform into a
homogeneously flowing fluid state with further deformation.
The scenario is completely different in a crystal. Here, at
sufficiently small deformation rates, the flow of the crystal
can be characterized as a repeated visit of stress-free states
[38,40].

However, contrary to the first-order transition scenario
proposed by Ozawa et al. which requires the existence of
overhangs in the stress-strain relation, Barlow et al. [41] have
demonstrated using mesoscale constitutive models, that, with
increasing age, there can be a gradual change from ductile
to brittlelike behavior. For increased annealing, it has been
shown in the framework of mesoscale models [33] that there
is an increase of the height of the stress overshoot, associated
with an increasingly sharper decay towards the steady-state
stress. In this scenario, when the slope of the latter decay
becomes largely negative for more annealed states, a mechan-
ical instability kicks in and shear banding ensues, with the
process becoming more catastrophic with larger and larger
slopes for more and more aging. In contrast, for the younger
ductile materials, where the stress decay is softer, no such flow
heterogeneities occur.

The latter discussion shows that the question about the
kinetic origin of shear banding in glasses is controversially
debated. To make further progress in the understanding of
this issue, the present work focuses on the characterization
of inhomogeneous flow patterns in glasses. We use nonequi-
librium molecular dynamics (MD) simulations to investigate
planar Couette flow in a binary Lennard-Jones system. Since
a solidlike response to an external mechanical load is already
seen in deeply supercooled liquids, we first consider these sys-
tems as a reference and analyze the crossover from Newtonian
to non-Newtonian behavior with increasing shear rate γ̇ . In
the non-Newtonian regime, the stress-strain relations show a
stress drop from a maximum stress to the steady-state stress,
σss, that decreases with decreasing shear rate and vanishes
logarithmically at a critical shear rate γ̇c. For γ̇ < γ̇c, the
response of a Newtonian fluid with σss ∝ γ̇ is seen. After the
stress drop, we find the occurrence of vertical shear bands
in the transient response of the non-Newtonian fluid. These
flow patterns, which form in the direction perpendicular to
the flow, are short lived and can be seen as signatures of
the inhomogeneities, observed in the transient response of
glasses.

For our study, we consider very low temperature glassy
states, where although thermal fluctuations are present, the
affine displacements due to the applied deformation dominate
over the thermally induced random motion of the particles.
This is reflected in a ballistic regime ∝ γ̇ 2t2 (with t the time)
in the mean-squared displacements before the plastic flow
sets in. In the considered glasses under shear, we observe,
in addition to samples with short-lived vertical shear bands,
samples with long-lived horizontal shear bands. After their
formation, the latter bands exhibit a slow broadening with
increasing strain until the system reaches the steady state.
Furthermore, we observe that the initial undeformed glass
sample does not determine whether and where shear bands
will form. Instead, we find that their formation is linked to
stochasticity; small changes in the protocol such as the use
of different initial random numbers for the thermostat can
change the flow patterns from vertical to horizontal bands,
and vice versa. When a system-spanning horizontal shear
band is first nucleated after a relatively sharp stress drop,
the total potential energy of the system exhibits a minimum
with a value which is below that reached in the steady state.
So in the case of horizontal shear bands, the transition of
the deformed amorphous solid to the homogeneously flowing
fluid state takes place via an unstable intermediate state that
has, however, a lower potential energy than the final steady
state.

The rest of the paper is organized as follows: In the next
section, we present the details of the model potential and
the MD simulations. Then, in Sec. III, the results for the
supercooled liquids and glasses under shear are presented.
Finally, we draw conclusions in Sec. IV.

II. MODEL AND SIMULATION DETAILS

We consider the Kob-Andersen (KA) binary Lennard-
Jones mixture [42] that has been widely used in many
computer simulation studies as a model for a glass-forming
system. The mixture consists of 80% A particles and 20%
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B particles. The interaction potential between a particle of
type α and a particle of type β (α, β = A, B), separated by
a distance r � Rc, is given by

uαβ (r) = φαβ (r) − φαβ (Rc) − (r − Rc)
dφαβ

dr

∣∣∣∣
r=Rc

,

φαβ (r) = 4εαβ[(σαβ/r)12 − (σαβ/r)6]. (1)

The values of the interaction parameters are set to εAA = 1.0,
εAB = 1.5εAA, εBB = 0.5εAA, σAA = 1.0, σAB = 0.8σAA, and
σBB = 0.88σAA. In the following, we use εAA and σAA as the
unit for energy and length, respectively. The cutoff radius in
Eq. (1) is chosen as Rc = 2.5σAA. As the time unit, we use

τLJ =
√

mσ 2
AA/εAA, where m is the mass of a particle that is

considered to be equal for both type of particles, i.e., m =
mA = mB = 1.0. The units of temperature, shear rate, and
stress are given, respectively, by εAA/kB (with the Boltzmann
constant kB = 1.0), τ−1

LJ , and m/(τ 2
LJσAA). More details about

the model can be found in Ref. [42].
We perform the nonequilibrium MD simulation at constant

particle number N , constant volume V , and constant tempera-
ture T , using the LAMMPS package [43]. The systems, be they
under shear or without shear, are thermostatted via dissipative
particle dynamics (DPD) [44]. The DPD equations of motions
are as follows:

ṙi = pi/mi, (2)

ṗi =
∑
j �=i

[
F i j + FD

i j + FR
i j

]
, (3)

with ri the position and pi the momentum of a particle i.
Further, F i j represents the conservative force on a particle pair
i, j due to the interparticle interaction, defined by Eq. (1). The
dissipative force, FD

i j , is given by

FD
i j = −ζω2(ri j )(r̂i j · vi j )r̂i j, (4)

with ζ the friction coefficient, ri j the distance vector between
particles i and j, r̂i j the unit vector of ri j , ri j the distance be-
tween the two particles, and vi j = vi − v j the relative velocity
between them.

The value of ζ is chosen to be equal to 1. This choice of
ζ provides that the dynamics is essentially Newtonian and,
over a large range of shear rates, the target temperature is
maintained [27,34]. Furthermore, for ω(ri j ), the following
function is used:

ω(ri j ) =
{√

1 − ri j/rc if ri j < rc,

0 otherwise.
(5)

The cutoff radius for this function, rc, is taken equal to the
cutoff radius of the interaction potential, Rc. In Eq. (3), F R

i j
represents the random force which is defined as

F R
i j =

√
2kBT ζω(ri j )θi j r̂i j . (6)

Here, θi j are uniformly distributed random numbers with zero
mean and unit variance. For further details about the DPD
thermostat parameters, see Refs. [6,7]. The equation of mo-
tion, given by Eqs. (2) and (3), are integrated via the velocity
Verlet algorithm using an integration time step �t = 0.005.

We consider the KA mixture at the two different den-
sities ρ = 1.2 and ρ = 1.3 in the supercooled liquid and
glass states. For these densities, the mode coupling glass
transition temperatures are at Tc = 0.435 and Tc = 0.68, re-
spectively. Note that most recent studies have considered
the KA mixture at ρ = 1.2. However, at this density, one
encounters a glass-gas miscibility gap at low temperatures
[45,46], which is not the case for ρ = 1.3. Therefore, below
we only consider supercooled liquid states at ρ = 1.2, while
at ρ = 1.3 both supercooled liquids and glasses at very low
temperatures are simulated. To prepare the glass samples at
ρ = 1.3, we start with equilibrated samples at T = 0.7 (in
the supercooled regime) and quench it instantaneously to a
glass state at the temperature T = 10−4, followed by aging of
the samples over the time tw = 104, which would correspond
to moderate annealing (note that the typical timescale for
structural relaxation at T = 0.7 is of the order of 104). For
the supercooled liquids at ρ = 1.2, we consider cubic samples
with linear size L = 30 and 50. Averages are taken over 25
and 10 independent runs for L = 30 and 50, respectively.
At ρ = 1.3, cubic samples with linear dimension L = 60 are
chosen. Here, we simulate 10 independent runs. To study
finite-size effects, we also report simulations for other sys-
tem sizes. The details of these simulations can be found
below.

We impose a planar Couette flow on the different bulk
supercooled liquids and glasses by shearing them along the
xz plane in the direction of x. The shear is applied via the
boundaries using Lees-Edwards boundary conditions [47].
The shear rates γ̇ considered in this work range from γ̇ =
10−3 to γ̇ = 10−7 for the supercooled liquid. For the glass
state, the shear rate γ̇ = 10−4 is chosen. More details about
the model and simulation protocol can be found in [27,34].

III. RESULTS

In the following, we first analyze the transient dynamics
of supercooled liquids under shear. We analyze the crossover
from a Newtonian to non-Newtonian response of the liq-
uid with increasing shear rate. The characterization of non-
Newtonian liquids then helps in the understanding of glass
states at very low temperature that are considered in the
second part of this section. Here, the major issue is the
study of transient inhomogeneous flow patterns that form
under the application of the shear before the steady state is
reached. In particular, different types of shear bands perpen-
dicular and parallel to the flow direction are observed. These
flow patterns are analyzed in terms of (local) potential ener-
gies, shear stresses, and (local) mean-squared displacements
(MSDs).

A. Supercooled liquids under shear

In a Newtonian fluid, the steady-state shear stress depends
linearly on the shear rate, σss = ηγ̇ , with η the shear viscosity.
Deviations from this behavior are expected around a shear
rate γ̇c when the timescale, associated with this shear rate,
is of the order of the timescale τ for structural relaxation of
the unsheared liquid, i.e., γ̇cτ ≈ 1. As we shall see below, the
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FIG. 1. (a) Stress-strain relations for the supercooled liquids at
T = 0.44 and ρ = 1.2 for the shear rates γ̇ = 10−3 (black), 3 ×
10−4 (blue), 10−4 (red), 3 × 10−5 (green), 10−5 (orange), 3 × 10−6

(purple), and 10−6 (brown). As a guide to the eye, a dashed horizontal
line at zero stress is drawn. (b) The reduced stress σ �, as obtained by
Eq. (8), for different strain rates in the non-Newtonian regime. The
golden dashed line is a fit with a compressed exponential (see text).

non-Newtonian response can be inferred from the occurrence
of an overshoot in the stress-strain relation.

Shear stress. To compute the shear stress, we use the virial
equation given by

〈σxz(t )〉 = 1

V

〈∑
i

⎡
⎣mivi,xvi,z +

∑
i> j

ri j,xFi j,z

⎤
⎦

〉
, (7)

with V the total volume, mi the mass of the ith particle, vi,x

and vi,z, respectively, the x and z components of the velocity
of the ith particle, ri j,x the x component of the displacement
vector between particles i and j, and Fi j,z the z component of
the force between particles i and j. Note that the kinetic terms
∝ mivi,xvi,z are very small and so we have neglected them in
our calculation of the shear stress (cf. Ref. [7]).

In Fig. 1(a), we plot the evolution of the stress, 〈σxz〉, for
the supercooled liquid at T = 0.44 and ρ = 1.2 as a function
of strain, γ = γ̇ t , for shear rates γ̇ = 10−3, 3 × 10−4, 10−4,
3 × 10−5, 10−5, 3 × 10−6, and 10−6. At high shear rates (γ̇ =
10−3, 10−4 and γ̇ = 10−5), the stress increases and reaches a
maximum at σmax, from where it relaxes to the steady-state
stress σss at large strains. Obviously, the “stress overshoot” at
σmax decreases with decreasing shear rate and fully disappears
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FIG. 2. Stress drop � = σmax − σss as a function of shear rate
for the indicated densities and temperatures. The dashed lines are fits
with the function f (γ̇ ) = A ln(γ̇ /γ̇c ). The stars mark the values of
the critical shear rate γ̇c.

at low shear rates [here, this happens at γ̇ = 3 × 10−6 and
10−6; see Fig. 1(a)].

The emergence of the overshoot in the stress-strain relation
marks the onset of a non-Newtonian response of the liquid. It
is associated with a relaxation of the stress from σmax to σss.
To analyze this relaxation process, we subtract σss from the
shear stress 〈σxz〉 and divide this difference by σmax to obtain
the reduced stress,

σ � = 〈σxz〉 − σss

σmax
. (8)

In Fig. 1(b), we plot σ � for different shear rates in the non-
Newtonian regime as a function of γ − γmax, where γmax

corresponds to the strain at the stress σmax. The curves for
the different shear rates fall roughly onto a master curve
that can be fitted with the compressed exponential function
f (x) = exp (−AxB), with x = γ − γmax, A = 15.3822, and
B = 1.69862 (dashed golden line). Note that the fit with the
compressed exponential does not provide a perfect description
of the data over the whole strain window, but it just gives a
rough idea about functional form of the decay of σ from σmax

to σss. The decay of the stress in this manner is intimately
related to a superlinear increase of the mean-squared displace-
ment (see Ref. [6] and Fig. 4 below).

Figure 1(b) also indicates that the strain window over
which the stress is released from the stress maximum towards
the steady-state stress is of the order of �γ = 0.1. This
corresponds to the typical strain required for the breaking of
cages around each particle in the supercooled regime above
the mode coupling temperature Tc [6]. Below, we will see
that the decay of σ � for glass states at very low temperatures
typically occurs on a smaller strain window.

So we have seen that the non-Newtonian regime is char-
acterized by the occurrence of a stress drop, � = σmax − σss,
that decreases with decreasing shear rate and vanishes below
a critical shear rate γ̇c. Thus, this critical shear rate marks
the crossover from Newtonian to non-Newtonian behavior. In
Fig. 2, the stress drop � is plotted as a function of ln(γ̇ ) for
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FIG. 3. (a) The flow curves for the supercooled liquids for the
temperatures T = 0.44, 0.45, and 0.5 at ρ = 1.2 as well as for the
temperature T = 0.7 at ρ = 1.3. The dashed line is a fit with a
Herschel-Bulkley law (see text). (b) The corresponding viscosity η =
σss/γ̇ as a function of γ̇ for the data at ρ = 1.2. The black dashed line
corresponds to the Herschel-Bulkley law from (a), converted to η(γ̇ ).
The dotted vertical lines with different colors mark the values of γ̇c

corresponding to the different temperatures.

different temperatures at ρ = 1.2, as well as for T = 0.7 at
ρ = 1.3. This plot indicates that � = A ln(γ̇ /γ̇c), with A and
γ̇c being fit parameters, holds at sufficiently low shear rates.
Here, the critical shear rate γ̇c corresponds to the value of
γ̇ at � = 0. From the fits, we obtain for ρ = 1.2 the values
γ̇c = 1.8 × 10−5, 2.7 × 10−5, and 2.3 × 10−4 for T = 0.44,
T = 0.45, and T = 0.5, respectively, and for ρ = 1.3 and
T = 0.7, the value γ̇c = 7.4 × 10−5. In Fig. 2, these values
are marked by stars.

Around the critical shear rate γ̇c, the flow curve, i.e.,
the shear rate dependence of the steady-state stress σss, is
expected to change from a linear to a nonlinear function. Fig-
ure 3(a) shows σss as a function of γ̇ /γ̇c for T = 0.44, 0.45,
and 0.5 at ρ = 1.2 as well as for T = 0.7 at ρ = 1.3. In the
Newtonian regime, the flow curves σss(γ̇ /γ̇c) collapse on top
of each other. A nonlinear behavior is seen for γ̇ /γ̇c > 1, i.e.,
in the non-Newtonian regime. Moreover, in the latter regime,
the different curves do not fall onto a master curve, which

indicates that the characteristic timescale, corresponding to
the non-Newtonian regime, is no longer the timescale τ for
structural relaxation (α relaxation) of the unsheared liquid.
Now, γ̇ > 1/τ holds and thus the timescale 1/γ̇ matches
relaxation timescales before and during the breakup of the
cages around particles that are formed by the other particles.
Note that this time regime is often called the β relaxation
regime. At very large shear rates, i.e., γ̇ > 1, microscopic
timescales of the liquid are probed.

A pronounced β relaxation regime (reflected, e.g., by a
plateau in the mean-squared displacement; see below) is seen
in the quiescent liquid at the temperatures T = 0.44 and
T = 0.45. For these temperatures, the flow curves can be
fitted in the non-Newtonian regime to a Herschel-Bulkley
law, σss = σyield + A(γ̇ /γ̇c)α , with the “yield stress” σyield =
0.0648827, the amplitude A = 0.0855875, and the exponent
α = 0.295289 [dashed line in the main plot of Fig. 3(a)] [48].
Here, σyield has to be considered as an effective fit parameter.
However, for the glass states at temperatures far below Tc,
the yield stress σyield indicates the limiting steady-state stress
value, i.e., the stress will not fall below this value with respect
to the shear rates that are accessible in the simulation.

The transition to the non-Newtonian regime can also be
clearly seen in the behavior of the shear viscosity η = σss/γ̇ ,
which is shown in Fig. 3(b) as a function of γ̇ for the data at
ρ = 1.2. Beyond the Newtonian regime, where η is constant,
the shear viscosity decreases with increasing shear rate, i.e.,
we observe shear thinning. We can effectively describe the
shear thinning behavior for γ̇ > 10−4 by a power law, derived
from the Herschel-Bulkley law with which the flow curves
at T = 0.44 and T = 0.45 are fitted in Fig. 3(a). The corre-
sponding fit is shown as a black dashed line in Fig. 3(b).

One-particle dynamics. The crossover from the Newtonian
to the non-Newtonian regime can also be inferred from the
one-particle dynamics. An important quantity that character-
izes the dynamics of a tagged particle of species α (α = A, B)
is the MSD, defined as

〈
δr2

α (t )
〉 = 1

Nα

Nα∑
i=1

〈|ri(t + t0) − ri(t0)|2〉, (9)

with ri(t ) the position of particle i of species α at time t , t0 the
time origin, and Nα the number of particles of species α. The
angular brackets correspond to an ensemble average over the
different samples.

Figure 4 shows the MSD of A particles in the z direction,
i.e., in the neutral direction perpendicular to the direction
of shear, for the supercooled liquid at ρ = 1.2, T = 0.44,
and different shear rates. Also included in the figure is the
corresponding MSD for the unsheared liquid at equilibrium.
This MSD displays the well-known behavior for a super-
cooled liquid, with a ballistic regime ∝ t2 at very short
times, a diffusive behavior ∝ t in the long-time limit, and,
at intermediate times, a subdiffusive plateaulike regime. Note
that the MSDs for B particles exhibit a similar behavior. The
MSDs corresponding to shear rates in the Newtonian regime
coincide with the one at equilibrium, as expected. At higher
shear rates (γ̇ = 10−4 and 10−3 in the figure), the MSDs are
on top of the one at equilibrium up to the time where the
overshoot in the corresponding stress-strain relation occurs.
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As can be seen in the figure, the stress drop in the stress-strain
relation from σmax to σss corresponds to a superlinear increase
of the MSD towards a linear diffusive regime when the steady
state is reached. Thus, the superlinear increase in the MSD
is associated with the compressed exponential decay that we
have seen in Fig. 1(b).

Potential energy. The occurrence of a finite stress in the
sheared supercooled liquid is accompanied by a change of the
potential energy 〈U 〉. Figure 5(a) shows 〈U 〉 as a function of
strain at ρ = 1.2 and T = 0.44 for different shear rates. The
transition from the elastic regime to the plastic flow regime
is associated with a monotonic increase of 〈U 〉 in the strain
window 10−2 < γ < 1.0 towards a constant value 〈Uss〉(γ̇ ) in
the steady state. To quantify the change of the potential energy
from the quiescent state to the steady state, we have computed
the difference, �Uγ̇ = 〈Uss〉(γ̇ ) − 〈U0〉 (with 〈U0〉 being the
potential energy of the unsheared liquid). In Fig. 5(b), we plot
�Uγ̇ /|〈U0〉| as a function of γ̇ /γ̇c. As the figure indicates,
�Uγ̇ changes its behavior around γ̇c, i.e., around γ̇ /γ̇c = 1.0
there is a crossover from a linear dependence on γ̇ /γ̇c to
a power law ∝ (γ̇ /γ̇c)α with α < 1.0. For the two lower
temperatures, T = 0.44 and T = 0.45, the data can be well
described by a power law with α = 0.38. This power law can
be seen as the analog to the Herschel-Bulkley law with which
we have described the flow curves in the non-Newtonian
regime in Fig. 3(a).

Flow patterns. Up to now, we have only considered macro-
scopic properties of the supercooled liquids under shear. As a
result, we have characterized the crossover from Newtonian to
non-Newtonian behavior for the various quantities as a func-
tion of shear rate. Now, we examine the possibility of inho-
mogeneous flow patterns in the supercooled liquids due to the
external shear. To this end, we compute mobility color maps
of single-particle, i.e., nonaveraged, squared displacements
δr2

α,z(t ) with respect to the unsheared starting configuration at
t = 0 at a given strain value γ = γ̇ t . Snapshots of such maps
for different values of γ are displayed in Fig. 6 at ρ = 1.2 and
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FIG. 5. (a) The potential energy 〈U 〉, as a function of strain for
the supercooled liquid at ρ = 1.2 and T = 0.44. The shear rates
are γ̇ = 10−3, 3 × 10−4, 10−4, 3 × 10−5, 10−5, 10−6. The dashed
line marks the potential energy of the undeformed system at 〈U0〉 =
−6.482. (b) Double-logarithmic plot of the potential energy change
�Uγ̇ /|〈U0〉| as a function of γ̇ /γ̇c. The dashed lines are fits with
power laws, as indicated.

T = 0.44 for the shear rates γ̇ = 10−6 (Newtonian regime)
and γ̇ = 10−3 (non-Newtonian regime). Also included in the
figure are the corresponding velocity profiles Vx(z). The color
code is chosen such that blue corresponds to a low and red to a
high squared displacement. At the low shear rate, some small
spatial heterogeneities can be seen at γ = 0.01, but already
at γ = 0.06 the flow is very homogeneous with only small
spots of immobile regions. This can also be inferred from
the velocity profiles where the deviations from the expected
linear behavior (dashed lines) can be referred to thermal noise.
Thus, one may conclude from the mobility color maps that
there are no pronounced inhomogeneous flow patterns in the
Newtonian regime, as expected.

The behavior is qualitatively different at the higher shear
rate, γ̇ = 10−3, i.e., in the non-Newtonian regime. At a strain
of γ = 0.08, most of the particles have a very low squared
displacement, which indicates the presence of an elastic
regime in this case, with an essentially affine deformation
of the sample. At the strain γ = 0.15, i.e., slightly after the
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FIG. 6. Upper panels: Stress-strain relation, spatial maps of the squared displacement, and the corresponding velocity profiles for the
supercooled liquid at ρ = 1.2, T = 0.44, and γ̇ = 10−6 for γ = 0.01, 0.03, and 0.06 [these values of γ are marked in the plot for 〈σxz〉(γ ) by
solid red circles]. Lower panels: Same as the upper panels, but now at γ̇ = 10−3 for γ = 0.08, 0.15, and 0.3. For both shear rates, the linear
size of the cubic samples is L = 50.

emergence of the stress overshoot in the stress-strain relation
[cf. Fig. 1(a)], in the direction perpendicular to the shear
(x direction), bands of high mobility occur while the rest of
the system is still immobile. These vertical shear bands are
still present at γ = 0.3. The vertical bands, of course, cannot
be clearly identified in the corresponding velocity profiles
because they are only sensitive to flow patterns in the direction
of shear.

We have identified a critical shear rate γ̇c which marks
the crossover of the response of the supercooled liquid to the
external shear from Newtonian to non-Newtonian behavior.
Characteristic features of the non-Newtonian regime are the
occurrence of an overshoot in the stress-strain relation, an
interim Herschel-Bulkley-like behavior in the flow curve and
the potential energy, and a superlinear regime prior to the dif-
fusive steady-state regime in the mean-squared displacement.
Furthermore, we observe short-lived vertical shear bands in
the non-Newtonian regime that, as we shall see below, are also
encountered in glasses under shear.

B. Glasses under shear

In this section, we analyze glasses under shear. Here, we
consider states at the density ρ = 1.3 and the temperature

T = 10−4. The choice of temperature is such that there
are finite but very small thermal fluctuations, but the affine
deformation due to the external drive would dominate. Unlike
the supercooled liquids, the response of the glass states to
the external shear field differs significantly from sample to
sample. Therefore, most of the properties that are shown in the
following are not obtained by an average over many samples,
but we discuss them for individual samples. In particular, even
inhomogeneous flow patterns are qualitatively different from
sample to sample.

Vertical and horizontal shear bands. This is illustrated by
the snapshots of spatial maps of the squared displacement at
the strain γ = 1.0 in Fig. 7. The corresponding initial con-
figurations before the switch-on of the shear are cubic glass
samples with linear dimension L = 60 at ρ = 1.3 and T =
10−4 with a similar thermal history (see above). However, the
flow patterns that one can see in the snapshots are obviously
different. One can identify two types of shear bands. While
the first and second samples has a horizontal shear band,
the third, fourth and sixth samples display two vertical shear
bands. A mixed situation where both types of shear bands
are present can be observed in the fifth sample. We note that
at the considered fixed strain of γ = 1.0, the width of the
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FIG. 7. Snapshots of spatial maps of the squared displacement, using different initial glass states, but all with same thermal history, at
the strain γ = 1.0. The density, temperature, and shear rate are ρ = 1.3, T = 10−4, and γ̇ = 10−4, respectively. The linear size of the cubic
samples is L = 60.

horizontal bands corresponds to about a quarter of the linear
dimension of the simulation box (L = 60). In the cases where
two vertical shear bands form after the stress overshoot, these
bands have almost merged at γ = 1.0 and the mobility map
essentially shows a homogeneously flowing fluid in the steady
state.

The stress-strain relations in Figs. 8(a) and 8(b) corre-
spond, respectively, to cases with horizontal and vertical shear
bands. Obviously, the stress-strain relations are qualitatively
different in both cases. In the case of horizontal shear bands
[Fig. 8(a)], the stress has a maximum at γmax ≈ 0.09, fol-
lowed by a relatively sharp drop and subsequently a weakly
decreasing function towards the steady-state stress. Note that
the shear band forms just after the stress drop, as we discuss
below. In the case of the vertical shear bands [Fig. 8(b)], there
is a second peak or at least a shoulder after the main stress
overshoot. Here, typically, two vertical bands are formed after
the first overshoot. The fact that the stress tends to increase
again after the occurrence of the first stress drop indicates that
compared to the case of horizontal bands, the vertical ones are
rather unstable with a short lifetime and indeed this is what we
observe in our simulations. We note that a similar behavior of
the stress-strain relation in the case of vertical shear bands,
i.e., an increase of the stress after the stress overshoot, has
also been found in a recent simulation using an AQS protocol
[29,49]. While the horizontal shear bands are associated with
a larger initial stress drop, in the case of vertical bands,
the system evolves much faster towards the steady state.
In the case of horizontal bands, the initial stress release is
followed by a relatively slow broadening of the shear band
(see below).

In Figs. 8(c) and 8(d), the reduced stress σ � as a function of
γ − γmax for the samples corresponding, respectively, to those
in Figs. 8(a) and 8(b) is shown. Also included in these plots
is the compressed exponential function with which we have
fitted the data for the supercooled liquids in Fig. 1(b). In the

case of the horizontal shear bands, there is a first decay which
is clearly faster than that observed for the supercooled liquid.
However, this fast drop is followed by a slowly decaying tail
which is associated with the broadening of the horizontal
shear band. Unfortunately, the quality of the data does not
allow one to analyze the functional behavior of the latter
tail. Also, in the case of the vertical bands [Fig. 8(d)], the
first stress drop tends to be faster than in the case of the
supercooled liquids. Then, there is the occurrence of a second
peak or shoulder before quickly approaching the steady state
for γ < 1.0.

The z component of the squared displacement for A
particles, δr2

A,z, as a function of γ for the samples with
horizontal and vertical shear bands is plotted in Figs. 8(e)
and 8(f), respectively. In both plots, we have also included,
for comparison, the corresponding MSD for the supercooled
liquid at ρ = 1.2, T = 0.44, and γ̇ = 10−4, which reveals
a completely different behavior of the squared displacement
for the glass states at T = 10−4, as we discuss now. For
γ < 10−3, an expected behavior is seen, i.e., after an initial
ballistic regime, a plateau at the value δr2

plat ≈ 1.3 × 10−6 is
reached which reflects the strong localization of the particle at
the extremely low temperature T = 10−4 (note that a similar
value is obtained for the plateau value of the corresponding
unsheared glass state). However, in the interval 10−3 < γ <

10−1, there is a ballistic regime where δr2
A,z = γ 2a2 = (ut )2,

with u a velocity and a a microscopic length scale of order 1
[in Figs. 8(e) and 8(f), we have chosen a = 1.0]. This regime

sets in when the condition γ a ≈
√

δr2
plat holds, i.e., at about

γ ≈ 10−3. Then, the deformation due to the shear dominates
and the small thermal fluctuations are no longer relevant.
However, the strain is not yet sufficient to break the cage
around the tagged particle, thus inducing a plastic flow event.
This requires still a strain of the order of 0.1. Around the latter
strain, plastic flow sets in, which is associated with horizontal
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FIG. 8. (a),(b) Stress-strain relations at ρ = 1.3, T = 10−4, and
γ̇ = 10−4 for different individual cubic samples with linear size
L = 60. The horizontal dashed lines mark the steady-state stress σss.
(c),(d) Reduced stress σ � as a function of γ − γmax, corresponding
to the data shown in (a) and (b), respectively. The dashed black lines
show the compressed exponential function from Fig. 1(b). (e),(f) The
z component of the squared displacement for A particles, δr2

A,z, as a
function of γ for different samples, corresponding to those used in
(a) and (b), respectively [in (e) and (f), the result is averaged over
all the A particles in each sample]. In (e) and (f), the dotted lines
represent the function f (γ ) = a2γ 2 with a = 1.0 σAA. Also the MSD
for the supercooled liquid at ρ = 1.2, T = 0.44, and γ̇ = 10−4 is
included in (e) and (f).

shear bands [Fig. 8(e)] or vertical shear bands [Fig. 8(f)]. As
the figures show, for the cases with vertical bands, there is
a jump in the squared displacements around γ = 0.1, which
is much more pronounced than in the case of the horizontal
bands.

Very pronounced differences between vertical and horizon-
tal shear bands can also be seen in the strain dependence of
the potential energy [Fig. 9(a)]. Up to γ ≈ 0.1, the curves for
the different samples are on top of each other and, as is the
case for the supercooled liquids [cf. Fig. 5(a)], a monotonic
increase of the function U (γ ) is observed. For γ > 0.1, i.e.,
when the plastic flow regime sets in, especially in the case of
the horizontal shear bands, there is an overshoot, followed by
a local minimum, and a subsequent increase towards the aver-
age steady-state value of the potential energy [35,50], marked
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FIG. 9. (a) Potential energy U as a function of strain γ for
different samples with horizontal shear band (black solid line) and
vertical shear band (red solid line) at ρ = 1.3, T = 10−4, and γ̇ =
10−4. (b) Potential energy Ul, for different layers of a sample with
horizontal shear band as a function of strain. The linear size of the
cubic sample is L = 60 and it is divided into 20 layers along the
z direction, each with a width equal to 3σAA. The layers that are
at γ = 1.0 outside of the shear band are shown by red solid lines,
while those inside the shear band at γ = 1.0 are represented by the
violet solid lines. The horizontal dashed and the vertical dotted lines
in both panels mark the average value of the potential energy in the
steady state, 〈Uss〉 = −6.829, and the strain at the stress overshoot,
γmax = 0.0916, respectively.

by the dashed horizontal lines at 〈Uss〉 = −6.829 in the two
panels of Fig. 9. So, when the horizontal band is nucleated, the
system jumps first to a value of the potential energy which is
significantly below the steady-state value. This means that the
formation of the horizontal band provides a significant release
of stress and a lowering of the potential energy. In the case of
the vertical bands, the potential energy tends to increase
monotonically towards the steady-state value. As we have
already inferred from the stress-strain relations (cf. Fig. 8),
the formation of vertical bands leads to a faster approach
of the steady state. However, the formation of a horizontal
band is associated with a more efficient stress release and
a lower potential energy. Thus, the monitoring of how the
potential energy (or pressure) behaves with increasing strain
can indicate the spatial orientation of the occurring shear
bands.
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As we shall see below, the horizontal shear band is transient
and broadens as a function of strain. Furthermore, the system
with a horizontal shear band corresponds to a state with a local
potential energy minimum. This state is very heterogeneous
with respect to the spatial distribution of potential energy [20].
To analyse this issue, we consider now a sample with horizon-
tal shear band (sample 2 in Fig. 7). We divide the simulation
box of this sample into 20 layers along the z direction, each
with a width of 3σAA, and investigate the evolution of the
potential energy, Ul, in each layer. In Fig. 9(b), this quantity is
shown for each of the 20 layers as a function of γ . Different
colors are assigned to the layers that at γ = 1.0, are inside
the shear band region (violet solid lines) and those that are
outside the shear band region (red solid lines). First, such
spatial resolution allows us to locate the strain value at which
the flow heterogeneity sets in, viz., where the divergence of
the curves for the different layers occurs, and we note that
this happens at a strain value larger than γmax. Further, the
plot also clearly shows that in the shear band, the potential
energy is already close to the steady-state value, while outside
the shear band the system is at significantly lower energy, of
the order of −6.92. The growth of the shear band provides a
homogenization of the system and eventually homogeneous
flow in the steady state. During this homogenization, the
stress slightly decreases towards the steady-state value σss

[cf. Fig. 8(a)]. So the increase of the potential energy from a
minimum value after the stress drop to the steady-state value
σss is connected with a further release of the system’s stress.

Growth of the shear band. In the case of a sample with
a horizontal shear band (sample 2 in Fig. 7), we examine in
Fig. 10 how the shear band grows with increasing strain. To
obtain the width of the shear-banded region, we first calculate
the mobility profiles along the z direction at different strains.
The mobility profiles are defined as the average squared
displacement of particles as a function of the distance in the
z direction. We note that in our case, the z direction is the
gradient direction. In Fig. 10(a), we plot the mobility profiles
at the three different strains γ = 0.2, 0.5, and 1.0. We fitted
the mobility profiles with a Gauss function. The dependence
of the width of these Gauss functions, ξ , on strain is plotted in
Fig. 10(b). For γ > 1, the data for ξ can be well described by
a power law, ξ ∝ γ 0.32, i.e., we find a subdiffusive growth of
the horizontal shear band, in agreement with a recent finding
by Alix-Williams et al. for a Cu-Zr glass model [51].

Dependence on initial glass states. Now, the question
arises whether the type of shear band that is observed after
the stress drop around γ = 0.1 is determined by structural
heterogeneities in the initial quiescent glass sample. To this
end, we choose an initial glass configuration and, starting
from this configuration, we perform four different simulations
where we shear the system with the same shear rate γ̇ =
10−4, but we use in each of these runs a different initial
random seed for the DPD thermostat. So only the random
kicks that the particles are facing are different in the four
runs. The spatial map of squared displacements at a strain
γ = 1.0 is shown in Fig. 11. While the first three samples
have horizontal shear bands, the fourth sample forms vertical
shear bands (thus, in the latter case, the flow map indicates an
almost homogeneously flowing fluid at a strain of γ = 1.0).
Furthermore, in the first three samples, the location of the
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FIG. 10. (a) Mobility profiles μz as obtained via spatial squared
displacement maps of a glass sample with horizontal shear band at
ρ = 1.3, T = 10−4, and γ̇ = 10−4 for γ = 0.2, 0.5, and 1.0. The
dashed lines are fits with Gauss functions. (b) Width ξ of the shear
band as a function of strain (see text). The dashed line represents a
power-law fit with exponent 0.32.

horizontal shear band is different, indicating the stochasticity
in shear band formation.

The stress-strain relations, the z component of the squared
displacement for A particles, and the potential energy for the
four samples S1, S2, S3, and S4 are shown in Figs. 11(a),
11(b), and 11(c), respectively. With respect to these quantities,
the sample with the vertical shear band (S4) as well as the
other three with a horizontal shear band display a similar
behavior as found above for the corresponding types of shear
bands.

Our findings are consistent with those of Gendelman et al.
[52], who addressed the question of whether elementary
plastic events, i.e., shear transformation zones (STZs), can
be predicted in terms of heterogeneities in the initial un-
sheared glass sample or are characterized as events during
the mechanical load that depend on the loading protocol. To
this end, Gendelman et al. [52] considered a glass-forming
Lennard-Jones mixture in a confined geometry with a circular
shape and found that the location of the first plastic event
(STZ) strongly depends on the details of the loading protocol.
Thus, the location of STZs cannot be simply predicted from
the heterogeneities of the initial sample before the application
of the mechanical load. Our results even suggest a stochastic
nature of the occurrence of plastic events and the resulting
inhomogeneous flow patterns.
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FIG. 11. (a) Snapshots of mobility color maps for four different glass samples at ρ = 1.3, T = 10−4, and γ̇ = 10−4 for a strain of γ = 1.0.
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A,z, and (d) the potential energy U , as a function of strain γ , for the four sheared glass samples S1–S4.

Finite-size effects. Up to now, we have shown results for
cubic glass samples with a linear size L = 60. While, in the
case of the supercooled liquids under shear, we have not
observed significant finite-size effects, this is different for the
low-temperature glass states. To study finite-size effects, we
analyze average properties for systems with linear sizes L =
20 and L = 30 in addition to those with L = 60. The averages
were taken over 100, 50, and 10 samples for L = 20, L = 30,
and L = 60, respectively. Figure 12(a) shows the stress-strain
relation as well as the decay of σ � as a function of γ − γmax

for the different system sizes. These data suggest that the
initial stress drop from σmax to σss is faster for the largest
system than for the two smaller systems. This is due to a
higher probability for the emergence of horizontal shear bands
in large systems. This can be more clearly seen in the strain
dependence of the average potential energy, 〈U 〉 [Fig. 12(b)].
The average potential energy for L = 60 displays the behavior
which is associated with the occurrence of horizontal shear
bands for γ > 0.1: a drop of 〈U 〉 at γ = 0.1, followed by a
shallow minimum, and a slow increase towards the steady-
state value 〈Uss〉. For the smaller systems, however, 〈U 〉 essen-
tially exhibits a monotonic and relatively fast increase towards
〈Uss〉. This is due to the fact that the emergence of horizontal
shear bands is less likely for the two smaller systems. We have
observed horizontal shear bands in 12 of 100 samples with
linear size L = 20, in 13 of 50 samples with L = 30, and in 4
of 10 samples with L = 60. Moreover, even when a horizontal
shear band forms in the case of small system sizes, the steady
state is reached much earlier and, at comparable strains, the
shear banded region covers a larger fraction of the system than
for large systems. Thus, at a given strain, the potential energy
tends to increase with decreasing system size. However, we

have not found significant finite-size effects for the average
value of the potential energy in the steady state, 〈Uss〉.

We have seen that with increasing the size of the sys-
tems with cubic geometry, on average the stress drop in the
stress-strain relation becomes sharper. This is also reflected in
the behavior of the z component of the MSD of A particles
[Fig. 13(a)]. After the ballistic regime 〈δr2

A,z〉 ∝ γ 2 in the
strain range 10−3 < γ < 10−1, the MSDs exhibit a jump that
becomes more pronounced with increasing system size. This
can also be nicely inferred from the exponent parameter �,
which is obtained via the logarithmic derivative of the MSD,

� = dln
(〈
δr2

A,z

〉)
dln〈(γ 〉)

. (10)

This quantity is shown Fig. 13(b) for the different system
sizes. Here, we can identify the short-time ballistic regime
with � = 2 for γ < 10−6, the plateau region with γ ≈ 0 for
10−4 < γ < 10−3, and the ballistic regime ∝ γ 2 with � ≈ 2
for 10−3 < γ < 10−1. In the latter regimes, no finite-size
effects are observed. However, for γ ≈ 0.1, there is a peak
in �(lnγ ) that increases with system size up to a value of
� ≈ 8.0 for the system with L = 60. So the stress drop in the
stress-strain relation is linked to a jump in the MSD, which
becomes more pronounced with increasing system size. We
note that a similar behavior, albeit much more pronounced,
has been recently found by Ozawa et al. [28], using an AQS
protocol.

IV. SUMMARY AND CONCLUSIONS

We have performed nonequilibrium MD simulations of
a glass-forming binary Lennard-Jones mixture under shear.
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FIG. 12. (a) Stress-strain relation for three different cubic sys-
tems with linear size L = 20, 30, and 60 in the main panel and
the corresponding reduced stress σ � as a function of γ − γmax in
the inset. The inset shows, in addition, the compressed exponential
function from Fig. 1(b) (dashed black line). (b) Potential energy U
as a function of strain for the three different systems with L = 20,
30, and 60. The steady-state value 〈Uss〉 = −6.829 is marked by a
horizontal dashed line.

The shear response of supercooled liquid states has been
compared to that of glass states at extremely low, albeit finite,
temperature, with the focus on the characterization of yielding
and inhomogeneous flow patterns (especially shear bands).

In the supercooled liquid state, we have identified a critical
shear rate γ̇c that marks the crossover from a Newtonian to
non-Newtonian response of the liquid to the external shear.
For γ̇ > γ̇c, i.e., in the non-Newtonian regime, we find inho-
mogeneous flow patterns in the supercooled liquid in the form
of vertical bands. These bands are short lived and are observed
right after the overshoot in the stress-strain relation. The decay
of the stress from the maximum stress at the overshoot to
the steady-state stress σss does not seem to depend on shear
rate at a given temperature (at least over a large range of
shear rates). No finite-size effects are seen in the stress-strain
relation, too. The characteristic strain window over which the
stress is released is of the order of �γ = 0.1. The potential
energy shows a steplike behavior when the system yields, i.e.,
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FIG. 13. (a) The z component of the MSD of A particles, 〈δr2
A,z〉,

as a function of strain for the samples with L = 20, 30, and 60
at ρ = 1.3, T = 10−4, and γ̇ = 10−4. Also included is the MSD
for the supercooled liquid at ρ = 1.2 and T = 0.44. The dotted
line represents the function f (γ ) = a2γ 2 (with a = 1.0). (b) The
logarithmic derivative �, corresponding to the MSDs in (a).

a monotonic increase again over a strain window of about
�γ = 0.1 towards the steady-state value.

In the glass, we have studied the response of glass samples
having similar annealing history at a given shear rate, γ̇ =
10−4, and temperature, T = 10−4. For these samples, we
observe inhomogeneous flow patterns that differ from sample
to sample. In some of them, the plastic flow is associated
with relatively short-lived vertical shear bands (i.e., with an
orientation perpendicular to the flow direction), while in other
samples horizontal bands are seen (i.e., aligned with the flow
direction). Also, mixed patterns with vertical and horizontal
bands are observed. The type of flow pattern that is seen in
the transient plastic flow regime is not predetermined by the
structure of the initial unsheared sample. Starting from the
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same configuration, but with different random numbers for
the velocity distribution, may lead to vertical or horizontal
flow patterns. This indicates the stochasticity of the process.
For the sheared glass samples, the behavior of the potential
energy is different from that of the supercooled liquids in
the non-Newtonian regime. Now, this quantity is not always
monotonically increasing towards the steady-state stress. For
the cases where horizontal shear bands occur, the potential
energy is higher in the shear band than in the other regions
in the system. In the latter regions, it drops to values that are
significantly below the final steady-state value. So the system
finds a state of lower energy; however, this state is not stable in
the presence of the applied deformation and so the horizontal
shear band broadens as a function of time in a subdiffusive
manner.

Our analysis indicates that the formation of a horizontal
shear band leads to an inhomogeneous system with regions
of disparate energies. While in the shear-banded region the
potential energy is close to the steady-state energy 〈Uss〉, the
regions outside the shear band are in a frozen glass state
with a much lower energy [cf. Fig. 9(b)]. This separation of
energies requires low temperatures, which are not provided by
the supercooled liquids considered in this work, and therefore
we do not see any horizontal shear bands in the latter systems.
Whether horizontal shear bands can be seen in more deeply
supercooled states is an open issue and a theme of forthcom-
ing studies.

Moreover, in the case of horizontal bands, the stress drop in
the stress-strain relation is sharper than that in the supercooled
state and it becomes sharper with increasing system size.
Furthermore, via a spatial resolution of the system’s potential
energy, we show that it is possible to identify the strain
value at which horizontal shear bands emerge, and this occurs
beyond the strain where the stress overshoot is observed.

We have seen that there are similarities between the shear
response of a supercooled liquid in the non-Newtonian regime
and a glass. In both cases, the generic behavior for sufficiently
low shear rates is as follows: There is first a strong elastic
response to the shear for strains γ < 0.1. This results in a
deformed amorphous solid (note that for γ < 0.1 also the
supercooled non-Newtonian liquid exhibits solidlike behav-
ior). Then, after a stress release as reflected by a stress drop
in the stress-strain relation, the deformed solid eventually
transforms into a homogeneously flowing state that can be
characterized as an anisotropic nonequilibrium fluid. The lat-
ter fluid state is a well-defined stationary state that is obtained
at a given shear rate, temperature, and density of the system;
in particular, it is independent of the history of the initial
unloaded state from which it was obtained via a certain shear
protocol. For the sheared glass, the pathways with which
the stationary fluid state is reached can completely differ
from sample to sample. In the cases with horizontal shear
bands, one observes a kind of nucleation of the flowing fluid

phase that grows slowly towards the homogeneously flowing
stationary state.

So the yield point, when identified with the maximum in
the stress-strain relation, marks the onset of plastic flow, but
it describes a “transition” to a transient state that evolves into
a homogeneous fluid state. From this point of view, it is inter-
esting that inhomogeneous states with horizontal shear bands
can be stabilized via oscillatory shear. This has been recently
shown in two independent simulation studies [31,32]. These
works have found stationary horizontal shear bands when the
maximum strain amplitude in the oscillatory shear is above
the critical yield strain, corresponding to the maximum in the
stress-strain relation. As a result, an inhomogeneous system is
obtained where a fluidized shear-banded region coexists with
a glassy region. With respect to potential energy, these states
look similar to the ones with horizontal shear bands that we
find at a fixed strain [cf. Fig. 9(b)]. However, it is not clear
whether the inhomogeneous state that one observes in the
oscillatory shear simulation corresponds to a “true” stationary
state. If one were able to perform more cycles, the glassy
region outside the shear band might further age, as indicated
by subdiffusive relaxation processes in Ref. [31].

While one fixes the window of allowed strains in simula-
tions using an oscillatory shear protocol, one can also perform
simulations of glasses subjected to a constant external stress
[53,54]. As in similar experiments [55], one obtains the strain
γ as a function of time t from such simulations. If the external
stress is below the yield stress, there is only creep flow and the
strain shows a sublinear increase of the strain as a function
of time [53–55]. In Ref. [53], it was shown that this creep
flow is associated with the formation of a shear-banded region.
Again, this inhomogeneous system with a shear band does not
correspond to a stationary state. This is due to the fact that the
timescales required to reach a steady state with γ ∝ t are not
accessible by the simulation.

An important issue is the role of long-range strain corre-
lations [56] for the formation of horizontal shear bands. Such
correlations are a characteristic feature of elastic media and
are also present in supercooled liquids [57,58]. The mecha-
nisms of how strain correlations are connected to the forma-
tion of inhomogeneous flow patterns is not well understood. It
is a subject of forthcoming studies to elucidate this issue.
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