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We systematically studied the validity and transferability of the force-matching algorithm for com-
puting effective pair potentials in a system of dendritic polymers, i.e., a particular class of ultrasoft
colloids. We focused on amphiphilic dendrimers, macromolecules which can aggregate into clusters
of overlapping particles to minimize the contact area with the surrounding implicit solvent. Simu-
lations were performed for both the monomeric and coarse-grained models in the liquid phase at
densities ranging from infinite dilution up to values close to the freezing point. The effective pair
potentials for the coarse-grained simulations were computed from the monomeric simulations both
in the zero-density limit (Φ0

eff) and at each investigated finite density (Φeff). Conducting the coarse-
grained simulations with Φ0

eff at higher densities is not appropriate as they failed at reproducing the
structural properties of the monomeric simulations. In contrast, we found excellent agreement between
the spatial dendrimer distributions obtained from the coarse-grained simulations with Φeff and the
microscopically detailed simulations at low densities, where the macromolecules were distributed
homogeneously in the system. However, the reliability of the coarse-grained simulations deteriorated
significantly as the density was increased further and the cluster occupation became more polydis-
perse. Under these conditions, the effective pair potential of the coarse-grained model can no longer
be computed by averaging over the whole system, but the local density needs to be taken into account
instead. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4975164]

I. INTRODUCTION

Amphiphiles are chemical compounds consisting of both
solvophilic and solvophobic blocks. When the solute concen-
tration surpasses a certain threshold, these particles sponta-
neously self-assemble into micellar aggregates to minimize
the interface between the solvophobic block and the surround-
ing solvent. The size and shape of the self-assembled super-
structures depend mainly on the microscopic properties of
the amphiphiles, allowing for, e.g., spherical, cylindrical, and
lamellar aggregates.1 This peculiar ability makes amphiphilic
molecules indispensable for a wide variety of applications,2–4

for example, as cleaning agents or emulsifiers in the cosmetic
and food industry.

In this work, we focus on the self-assembly behavior of
amphiphilic dendrimers, which consist of a solvophobic core
and a solvophilic shell. Recently, these macromolecules have
gathered an increasing amount of attention due to their propen-
sity to form long-lived colloidal crystals, where each lattice
site is populated by an aggregate.5–15 Simulation studies of
these so-called cluster crystals have revealed a wide range of
peculiar static and dynamic properties, which sets them apart
from conventional single occupancy crystals. For example, the
lattice constant of the cluster crystals is density-independent,
and therefore external pressure does not lead to a compres-
sion of the lattice but rather to an increase of the occupation

a)Electronic mail: anikouba@uni-mainz.de

number.15 The dynamics of this process are characterized by
activated hopping of the constituent particles and merging of
neighboring lattice sites.7,9,13–15 Furthermore, reentrant melt-
ing and isostructural phase transitions have been reported for
this class of amphiphiles.8,10

Due to computational limitations, the majority of previ-
ous simulation studies relied on coarse-grained (CG) models,
where the macromolecular amphiphiles were modeled as sin-
gle interaction sites. The corresponding effective pair inter-
actions were usually obtained in the limit of infinite dilution
and have then been employed to calculate system properties at
considerably higher densities.6,8 However, this strategy might
lead to an inaccurate representation of the original microscopic
model, since the transferability of the effective pair potentials
from infinite dilution to finite densities is a priori not obvi-
ous.16 For instance, it has been demonstrated for homopolymer
systems that additional corrections are necessary to provide
a faithful CG representation of the microscopically resolved
(MR) systems at finite densities.17

To shed more light on this question, we performed a sys-
tematic analysis of amphiphilic dendrimers in the liquid phase
at densities ranging from infinite dilution up to close to the
freezing point. We computed the effective potentials at each
state point using a force-matching CG algorithm.18–22 We then
compared the emerging structures in the MR and CG simula-
tions using the effective (pair) potentials obtained at infinite
dilution, Φ0

eff, and at the corresponding density, Φeff. We dis-
covered that the CG simulations withΦ0

eff failed at reproducing
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the MR structures even at the lowest investigated densities,
and significantly underestimated the freezing density. The
CG simulations with Φeff exhibited good agreement with the
microscopic reference simulations at low densities, where the
system predominantly consisted of isolated amphiphiles and
small clusters. However, the agreement deteriorated rapidly as
the density was increased further.

We did not expect such a significant deviation between the
two representations because the effective potentials employed
in the CG simulations were calculated from MR simulations
conducted at exactly the same density and temperature. This
discrepancy can be rationalized by considering the spatial den-
sity variations in the system, which became more pronounced
as the amphiphiles started to aggregate into clusters of het-
erogeneous size. These inhomogeneities make it impossible
to represent all relevant interactions by a single effective pair
potential. To validate our hypothesis, we systematically cal-
culated the effective potential between aggregates of different
sizes and found a highly non-linear relationship between the
effective interaction and the aggregation number.

The rest of this manuscript is organized as follows. In
Section II A, we introduce the investigated model systems and
simulation method. The employed CG algorithm is presented
in Section II B. We discuss our findings in Section III, where we
systematically compare our results from the microscopically
resolved simulations with the coarse-grained ones. Finally,
we summarize the findings and draw our conclusions in
Section IV.

II. MODELS AND METHODS
A. Systems and simulation method

Dendrimers are characterized by a highly branched archi-
tecture, which is specified by the functionality, f, the spacer
length, p, and the total number of generations, G. Dendrimers
are grown by attaching (f � 1) chains with p monomers to two
bonded central monomers (generation index g = 0). This pro-
cess was repeated G times, resulting in a self-similar structure.
Figure 1 shows a schematic representation of the resulting
dendritic macromolecule.

FIG. 1. Schematic representation of a dendrimer with parameters f = 3, p = 1,
and G = 2 (see text). Each shell of the monomers is specified by its respective
generation index g. Inner core monomers are colored in red and blue, while
the outer shell monomers are shown in green.

All MR simulations were conducted using a bead-spring
model, where the constituent monomers were represented
by spherical beads with diameter σ that were tethered
through massless springs. Three different cases were consid-
ered in this work: one non-clustering dendrimer model under
good solvent conditions23 and two different amphiphilic den-
drimer models,6,12 denoted henceforward by I and II. An
implicit solvent model was used in all simulations, where
we characterized the solvophilicity and solvophobicity of
the monomers through their mutual pair interactions (see
Table I).

In all three cases, the dendrimers are specified by f = 3,
p = 1, and G = 2, consisting thus of nm = 14 monomers.
Furthermore, the mass of the beads was set to unity, m = 1.
Covalent bonds were mimicked via the finite extensible
non-linear elastic (FENE) potential,24,25

βΦFENE(rij) = −κijR
2
ij ln


1 −

(
rij − lij

Rij

)2
, (1)

with the reciprocal thermodynamic temperature of the sys-
tem β = 1/(kBT ) and interparticle distance rij =

���rj − ri
���. The

spring constant was controlled through the parameter κij,
whose magnitude depended on the identity of particles i and j.
The minimum extension and maximum extension of the bond,
lmin
ij and lmax

ij , respectively, were set through the parameters,

Rij = (lmax
ij − lij) and lij = (lmax

ij + lmin
ij )/2.

For the non-clustering dendrimers at good solvent con-
ditions, all the beads had the same identity. Excluded vol-
ume interactions were modeled using the purely repulsive
Weeks-Chandler-Andersen (WCA) potential,26

βΦWCA(rij) =




4ε

[(
σ
rij

)12
−

(
σ
rij

)6
]
+ ε rij ≤ 21/6 σ

0 otherwise,
(2)

where the interaction strength is quantified through ε.
In the case of the amphiphilic dendrimers, we distin-

guished between solvophobic core (C) and solovophilic shell
(S) particles. Here, the bead-bead interactions were modeled
via the Morse potential,

βΦMorse(rij) = εij

{ [
e−αij(rij−σij) − 1

]2
− 1

}
, (3)

with σij = (σi + σj)/2. The parameters εij and αij controlled
the strength and range of the interaction, respectively.

We used the interaction parameters from Ref. 23 for the
non-clustering dendrimers at good solvent conditions and the
interaction parameters from Ref. 6 (model I) and Ref. 12
(model II) for the amphiphilic dendrimers. The specific values
are summarized in Table I. If not stated otherwise explicitly, we
used in all our MR simulations σ = σCC as our unit of length,
and m as our unit of mass. From these units, the intrinsic time
unit of the MD simulations can be derived as τ =σ

√
βm. Den-

sities are defined as ρ = N/Rg, where N is the total number of
dendrimers in the system and Rg is the radius of gyration of the
dendrimers [see Eq. (5)]. The overlap density of the polymer

solution, ρoverlap, is defined as 4
3π( 3

2 Rg)
3
ρoverlap = 1.
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TABLE I. Numerical parameters for the non-bonded (left) and bonded (right) interactions used in the MR sim-
ulations of non-clustering (NC) and amphiphilic dendrimers (model I and II). The abbreviations C and S refer to
the different types of monomers involved in the respective interactions.

Model Type Interaction εij σij αij Type Interaction κij lij Rij

NC WCA 1 1 FENE 0.5 0 10

CC Morse 0.714 1 6.4 CC FENE 40 1.875 0.375
I CS Morse 0.014 1.25 19.2 CS FENE 20 3.75 0.75

SS Morse 0.014 1.5 19.2

CC Morse 0.714 1 1.8 CC (g = 0) FENE 60 3.1875 0.6375
II CS Morse 0.017 85 1.75 6.0 CC (g , 0) FENE 60 1.875 0.375

SS Morse 0.017 85 2.5 6.0 CS FENE 30 3.5625 0.7125

Molecular dynamics simulations were conducted in the
NVT ensemble using the LAMMPS simulation package.27 The
velocity Verlet algorithm28–30 was employed for integrating
the equations of motion, with a time step of ∆t = 5 × 10−4 for
the MR simulations and ∆t = 5×10−3 for the CG simulations.
In the CG simulations, we set the mass of the effective particles
to unity, which introduced a factor of

√
nm =

√
14 between the

time units in the MR and the CG picture.
The temperature was fixed to T = 1 through a Nosé-Hoover

thermostat.31–34 The central idea of this scheme is to couple
the system to an (implicit) external heat reservoir through a
fictitious spring, allowing for heating as well as for dissipa-
tion of excess heat. Here, the coupling strength can be tuned
via the damping time of the spring, td. On the one hand, too
large values of td (loose coupling) may cause poor tempera-
ture control, whereas on the other hand, too small values (tight
coupling) may cause high-frequency temperature oscillations.
We found that td = 0.09 led to quick equilibration as well as
good temperature stability and therefore used this value in all
our simulations.

The initial configurations for the MR simulations were
generated by growing each of the N dendrimers along a self-
avoiding random walk in a cubic simulation box. The systems
were initialized in a highly diluted state, where the individual
dendrimers were essentially isolated from each other. From
these states, the final starting configurations were created by
slowly compressing the simulation box until the desired den-
sity was reached. Once the starting configurations were pro-
duced, the systems were equilibrated until the potential energy
did not change anymore.

B. Coarse-graining method

In many situations, microscopically resolved simulations
are computationally unfeasible due to the vast number of inter-
action sites. Such microscopic simulations are further impeded
by the relatively small time steps, which are required for
capturing the dynamics of the particles. Fortunately, the micro-
scopic details of the individual macromolecules are often only
of minor interest and can therefore be suitably traced out for the
sake of computational efficiency. The acceleration achieved
through such a coarse-graining is twofold: first, the num-
ber of interaction sites is reduced dramatically through this
procedure, which facilitates the force calculation and the inte-
gration of the equations of motion. Second, CG models exhibit
inherently faster dynamics compared to their MR counterparts

since the fast internal degrees of freedom have been integrated
out.35

Various techniques have been developed to map the com-
plex interactions of the MR system onto effective pair poten-
tials. The mapping from the MR to the CG picture is in general
not unique but depends on which of the physical quantities
from the original MR system should be conserved.16 One com-
mon strategy for systematic coarse-graining are the so-called
“inversion schemes,” which calculate, on the basis of liquid
state closure relations, the effective pair potential that repro-
duces a given pair correlation function g(r). Among these are,
for example, the simple inversion of the low-density relation
F(r)= −kBT ln g(r) [F(r) being the free energy], an improved
iterative scheme based on this relation (notably realized in
the iterative Boltzmann inversion scheme, see, for example,
Refs. 36 and 37), or an iterative predictor-corrector scheme,
based on the more accurate modified hypernetted chain closure
relation.38,39 The idea common to all these approaches is to take
an averaged mesoscopic quantity, e.g., g(r), that specifies the
structure of the system and to calculate a pair potential that—
when implemented in a computer simulation—reproduces the
given structural correlation function. Even though the unique-
ness of these schemes can be proven rigorously,40 this feature is
not strictly guaranteed in a numerical implementation of these
algorithms due to statistical variations in the data.

Alternatively, effective pair interactions can also be com-
puted by mapping on a microscopic level the forces act-
ing on the monomer-resolved entities onto fictitious coarse-
grained interaction sites. In our investigations, we employed
one of these methods, the so-called multi-scale coarse graining
(MSCG) method developed by Voth and co-workers.18–22 This
approach does not only preserve statics and dynamics during
the mapping procedure, it also allows to include additional
physical constraints during the fitting procedure, and allows to
proceed beyond the pair potential level.21

In what follows, we provide a short description of the
employed MSCG approach. We distinguish between quanti-
ties in the MR and CG pictures by denoting the correspond-
ing properties with lower- and upper-case symbols, respec-
tively. Each dendrimer was mapped to a single interaction site,
which was located at the center-of-mass (CM) of the original
macromolecule,

rCM,I = RI =
1

nm

nm∑
i=1

ri, (4)
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where ri denotes the position of monomer i of the Ith den-
drimer (omitting in the following the index I for clarity). The
size of the coarse-grained particle was defined through the
dendrimer’s radius of gyration,

R2
g =

1
nm − 1

nm∑
i=1

(
ri − rCM,I

)2. (5)

We assumed that the effective interaction between the CG
particles depended only on the interparticle distance and that
all interactions were pairwise additive. Furthermore, we intro-
duced a cutoff radius, Rmax, beyond which CG particles did not
interact with each other. In the MSCG framework, the force
acting on the effective particle I, FI (RN ), is given by

FI (RN ) =
N∑

J=1,J,I

f (RIJ )R̂IJ . (6)

Here, RN represents the entire set of the RI (with I
= 1, . . . , N), RIJ = |RIJ | = |RJ − RI | is the distance between
particles I and J, and R̂IJ denotes the unit vector pointing along
RIJ .

The function f (R) in Eq. (6) is non-zero in the range
0 ≤ R ≤ Rmax and needs to be determined from the MR sim-
ulations. For the explicit evaluation of f (R), we divided the
interval [0, Rmax] into ND equally spaced sub-intervals and
performed a piecewise decomposition of f (R) into a sum over
basis-functions, fd(R),

f (R) =
ND∑
d=0

φd fd(R), (7)

where fd(R) are linear splines with yet unknown coefficients
φd . The functional form of a spline in the interval [Rd�1, Rd +1]
is given by

fd (R) ≡




R − Rd−1

Rd − Rd−1
if Rd−1 < R 6 Rd

Rd+1 − R
Rd+1 − Rd

if Rd < R 6 Rd+1

0 otherwise.

(8)

The actual values of ND and Rmax are system-specific and
will be reported in the corresponding Subsections III A–III C,
where the respective results are presented and discussed.

The effective potentials for the CG simulations were then
calculated by determining the coefficients φd in Eq. (7) from
MR simulations conducted at the exact same density. Substi-
tuting RN and FN by rN

CM and fN
CM led to a set of N linear

equations of the ND parameters, which were solved using
the least-squares algorithm.41,42 To improve sampling, the
parameters were computed and averaged from nt statistically
independent configurations. In practice, snapshots were taken
for every 500–5 000 time steps, and we carefully checked that
the solutions converged by continuously increasing nt until the
results did not change anymore. We found that 10 000–25 000
configurations were in general sufficient to meet these require-
ments. We verified the correct implementation of the MSCG
algorithm by comparing the effective pair potentials computed

at infinite dilution with previously published data; for exam-
ple, compare Φ0

eff in Fig. 3 with the data shown in Fig. 4(c) in
Ref. 6, which has been computed using Boltzmann inversion.

III. RESULTS
A. Dendrimers in a good solvent

In order to test the MSCG algorithm, we first studied a
system of dendrimers in a good solvent. Under these con-
ditions, the macromolecules should not exhibit any cluster-
ing but should be distributed homogeneously in the system.
In Ref. 23, Götze et al. calculated the effective potential
of dendrimers (G = 4, p = 1, and f = 3) in a good solvent at
T = 1. In the limiting case of infinite dilution, i.e., for ρ→ 0, an
effective potentialΦ0

eff(r) with a Gaussian shape was obtained.
The transferability of this model was tested by conducting
additional MR simulations for densities up to the overlap den-
sity and comparing the resulting pair correlation functions g(r)
with the ones obtained from CG simulations using Φ0

eff(r).43

Excellent agreement was observed for the entire density range
with only slightly higher ordering observed in the MR simu-
lations. This discrepancy was attributed to the deformation of
the individual dendrimers in the MR simulations, which was
not included in the employed CG model.

In this contribution, we extended the density range upto
ρ = 2ρoverlap using N = 500 dendrimers. We measured a radius
of gyration of Rg = 3.41 for these macromolecules and com-
puted the effective pair interaction using a set of ND = 8 basis
functions and a cutoff radius Rmax = 20. The main panel of
Fig. 2 shows a comparison of the CM g(r), computed both in
the MR and CG simulations. Remarkable agreement between
the two datasets is evident, with a slightly more pronounced
local structuring in the CG simulations. We do not expect a
perfect match between the g(r) data from the MR and CG
simulations, as agreement of these structural properties is not
explicitly imposed in the mapping procedure. The quality of
the agreement is comparable to previously published results
based on the MSCG algorithm for different systems, see, for
example, Fig. 1 in Ref. 20 and Fig. 4 in Ref. 21.

FIG. 2. Comparison of the radial distribution function g(r) computed both
in MR and in CG simulations (as labeled), carried out at ρ = 2 ρoverlap. The
CG simulation has been conducted with an effective pair potential, Φeff(r),
computed at the same density as the MR simulation; Φeff(r) is shown in the
inset together with its fit to Φn

GEM(r) with n = 0.97.
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The inset of Fig. 2 shows the corresponding effective
potential Φeff(r) and it is well visible that it changed signif-
icantly compared to its form at infinite dilution, Φ0

eff(r); as
ρ was increased beyond ρoverlap, the effective pair potential
became significantly steeper at the origin. This effect can be
attributed to the steric interactions between the monomers,
which impeded the overlap of nearby dendrimers at high
densities.

To obtain a functional form forΦeff(r), we fitted the com-
puted potential via the generalized exponential model of index
n (GEM-n),5

Φ
n
GEM(r) = εGEM exp

[
−(r/σGEM)n], (9)

where εGEM parameterizes the strength of the potential, σGEM

is the diameter of the effective particle, and n controls the steep-
ness of the shoulder. For n = 1,Φ1

GEM(r) decays exponentially,
while this function becomes a Gaussian for n = 2. In the limit
of n → ∞, Φ∞GEM(r) becomes a square shoulder potential. It
has been demonstrated in Ref. 44 that particles interacting via
a Φn

GEM(r) potential exhibit clustering if n > 2.

We obtained an exponent of n = 0.97 for the simulations
conducted at ρ = 2 ρoverlap, whereas n = 2 was found for the
situation at infinite dilution. Both values are below the theoret-
ically estimated threshold for clustering, which is in agreement
with the expected behavior for these macromolecules dis-
persed in a good solvent. Hence, these findings confirm that
the force-matching algorithm can be used for non-aggregating
dendrimers even at densities significantly larger than ρoverlap.

B. Amphiphilic dendrimers—Model I

In order to study the density dependence of the effec-
tive potentials in clustering systems, we first simulated the
amphiphilic dendrimer systems investigated in Ref. 6. These
dendrimers had a functionality of f = 3, a spacer length of
p = 1, and were terminated in their growth after G = 2 gener-
ations (see Fig. 1). Mladek et al. calculated the zero-density
effective potential for these amphiphiles6 and demonstrated
that it fulfills the clustering criterion derived in Ref. 44. Lenz
et al. attempted to verify the validity of the CG picture at finite
densities by performing MR simulations in the fluid state.11

They found qualitative agreement between the pair correlation
functions in the MR and CG simulations (using the zero-
density effective potential) at low and intermediate densities.

In order to provide a more quantitative analysis, we sys-
tematically computed the effective potentials at five finite den-
sities, i.e., ρ = 0.38, 0.52, 0.65, 0.82, and 1.05. This density
range covers the state points investigated in Ref. 11. We sim-
ulated an ensemble of N = 2000 dendrimers for all densities
(N = 500 for ρ = 0.38) to ensure proper sampling of the
measured system properties.

The main panel of Fig. 3 shows all Φeff(r), which were
computed using the MSCG algorithm with a basis of dimen-
sion ND = 13 and a cutoff radius Rmax = 20.0. The effective
potential Φeff(r) between two isolated amphiphiles (ρ → 0)
has a local minimum at r = 0, which corresponds to a con-
figuration where the solvophobic cores of the two dendrimers
overlap. The effective potential had its maximum at r ≈ Rg,
i.e., when the solvophilic shell of a dendrimer penetrates the
solvophobic core of another one, and vice versa.

FIG. 3. Effective potential Φeff(r) of a system of amphiphilic dendrimers
(model I) computed at different densities (as labeled). The x-axis has been
scaled by the radius of gyration Rg at the respective density ρ. Inset: freezing
density calculated from Eq. (10) using the effective pair potential computed
at the ρ-value specified in the x-axis.

Our analysis revealed a strong density dependence of
Φeff(r): the long-ranged repulsion of the potential increased
monotonically with ρ, while the short-ranged attraction,
characterized by ∆Φeff =Φeff(Rg) − Φeff(0), gradually disap-
peared. However, we found an intermediate density range
0 < ρ < 0.52, where ∆Φeff increased, indicating an enhanced
affinity to form clusters.

The state point at which the system freezes into a clus-
ter crystal can be estimated accurately by minimizing the
free energy of the crystal with respect to the cluster occupa-
tion number and lattice spacing.5,45 Following the arguments
brought forward in Ref. 45, the freezing density, ρfreeze, can be
calculated directly from the effective potentialΦeff(r) through

Tfreeze

ρfreeze
≈ 1.393 ���Φ̃eff(kmin)��� , (10)

where Tfreeze is the freezing temperature, Φ̃eff(k) is the Fourier
transformation of Φeff(r), and kmin is the position of the min-
imum of Φ̃eff(k). One peculiar property of Eq. (10) is the
constant ratio between Tfreeze and ρfreeze, which leads to a
straight freezing line in the (T, ρ)-phase diagram.45

We computed ρfreeze for each Φeff(r) at a fixed freez-
ing temperature Tfreeze = T = 1 and plotted the data in the
inset of Fig. 3. Here, we can see that ρfreeze changed signif-
icantly as ρ was increased: for ρ ≤ 0.65, ρfreeze decreased
with respect to the freezing density in the zero-density limit,
ρ0

freeze. In fact, ρfreeze attained its minimum at ρ = 0.38, the
same density where ∆Φeff is maximized. These data suggest
that, initially, clustering was enhanced by the presence of addi-
tional amphiphiles. At low densities, it was beneficial to place
dendrimers on top of each other, since this strategy decreased
the contact area of the solvophobic cores with the surround-
ing solvent. However, as the density was increased further,
excluded volume effects made it increasingly difficult to place
additional dendrimers into a cluster. This interpretation is sup-
ported by the slight swelling of the dendrimers, quantified via
the increase of Rg from Rg = 3.30 to Rg = 3.36 (measurement
uncertainty ±0.01) as the density was increased.

Figure 4 shows the cluster size distribution in the MR sim-
ulations, obtained by applying a simple distance-based cluster
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FIG. 4. Probability P(nocc) to find an amphiphilic dendrimer in a cluster with
nocc members in the MR simulations of model I at different densities ρ (as
labeled).

analysis algorithm, where dendrimers with a CM separation
of less than rc = 0.9 Rg were assigned to the same cluster. For
ρ = 0.38, approximately half of all dendrimers were isolated
and P(nocc) decreased monotonically with nocc. For ρ = 0.52,
the number of isolated dendrimers decreased to P(1) = 30%,
and we found a local maximum of P(nocc) at nocc = 6, indicat-
ing the onset of clustering. As ρ was increased further, P(1)
kept decreasing while the local maximum of P(nocc) shifted
towards higher values of nocc.

We then compared the resulting radial distribution func-
tions g(r) of the MR simulations with the ones from the CG
simulations using Φeff(r) and Φ0

eff(r). It is evident from Fig. 5
that the CG simulations using Φ0

eff failed completely in repro-
ducing the structures observed in the MR simulations even
at the lowest investigated density (ρ= 0.38). In contrast, the
agreement between the MR simulations and the CG calcula-
tions with Φeff(r) was significantly better up to ρ . 0.52, but
then worsened rapidly as the density was further increased.

In order to better understand the origin of this startling
discrepancy, we computed the effective interaction between a
single amphiphile and a single cluster of these macromolecules
in an otherwise empty simulation box for various occupation
numbers nocc. Figure 6 shows ΦDC(r)/nocc, i.e., the effec-
tive dendrimer-cluster potential normalized by the occupation
number. These data show that ΦDC(r) became increasingly
repulsive with increasing nocc, a trend which stemmed from
crowding effects in the cluster center. However, for sufficiently
small nocc, ΦDC(r) was almost linearly additive with respect
to nocc.

We quantified the additivity of the potentials via

δ =

∫ Rmax

0

���Φ
0
eff(r) − ΦDC(r)/nocc

��� dr. (11)

Figure 7 shows δ as a function of nocc, and it is clearly vis-
ible that δ increased with nocc. Hence, the description using
Φ0

eff(r) worsened with increasing nocc, resulting in erroneous
structures in the CG description.

In order to understand the failure of Φeff, it is insightful
to consider the cluster distribution P(nocc) shown in Fig. 4. It
becomes immediately clear that the interactions in the system
cannot be described through a single effective pair potential
Φeff: at high densities, P(nocc) was rather broad, resulting in a
large number of different dendrimer-cluster and cluster-cluster

FIG. 5. Comparison of the radial distribution function g(r) computed in a MR
simulation (dotted line), a CG simulation using the potential computed at the
corresponding density (dashed line), and a CG simulation using the effective
potential computed at infinite dilution (solid line) in a system of amphiphilic
dendrimers (model I).

interactions. By mapping all these effective potentials onto a
single Φeff(r), we only preserve 〈nocc〉 but lose all information
concerning the shape of P(nocc). This argument is corroborated
by the fact that the g(r) obtained from the MR and CG simula-
tions agreed remarkably well for low density states ρ . 0.52,
where the cluster distributions were rather narrow (cf. Fig. 4).

FIG. 6. Normalized effective potential ΦDC(r) between a single dendrimer
and a cluster of nocc = 2−10 dendrimers (model I), computed in a MR simu-
lation. The x-axis has been scaled by the radius of gyration of the amphiphile
in the zero density limit, Rg, and the y-axis has been normalized by the
aggregation number nocc.



054904-7 Montes-Saralegui, Kahl, and Nikoubashman J. Chem. Phys. 146, 054904 (2017)

FIG. 7. Deviation δ between the reduced dendrimer-cluster potential,
ΦDC/nocc, and the effective dendrimer-dendrimer potential in the zero-
density limit, Φ0

eff, as defined through Eq. (11). Data shown for amphiphilic
dendrimers of models I and II.

C. Amphiphilic dendrimers—Model II

To induce clustering of the amphiphiles at lower densities,
considerable effort was put into tuning the interaction parame-
ters of model I.12 In the revised model II, the amphiphiles had
a significantly more open core region, which was achieved by
increasing the rest length of the central g = 0 bonds. In addi-
tion, the range of the attraction between the core monomers
was increased and thus acted well beyond the polymer’s radius
of gyration (Rg ≈ 3.47 ± 0.02 for all investigated densities).
These features successfully lowered the freezing density from
ρ0

freeze = 0.78 (model I) to ρ0
freeze = 0.141. At this point we

would like to mention that an erroneous value of ρ0
freeze = 0.281

was reported originally in Ref. 12 for the model II due
to a miscalculation of the corresponding effective potential
Φ0

eff(r).
We computed Φeff(r) in the zero-density limit and at the

reduced densities ρ = 0.033, 0.065, 0.084, 0.099, and 0.115,
where each system consisted of at least N = 1280 dendrimers.
We employed a basis of dimension ND = 20 and a cutoff radius
Rmax = 20.0. The effective potentials Φeff(r) are plotted in
Fig. 8 for all investigated ρ values. Only a very weak density-
dependence of the effective potentials is discernible in this
density regime. The inset of Fig. 8 shows the corresponding
freezing densities ρfreeze, which were consistently lower than
the ρ0

freeze value.
Figure 9 shows the cluster size distributions P(nocc) in

the MR simulations, where we assigned dendrimers within a
distance of 0.85 Rg to the same cluster. As ρ was increased,

FIG. 8. Same as Fig. 3, but for model II.

FIG. 9. Same as Fig. 4, but for model II.

the number of isolated amphiphiles decreased continuously
and the dendrimers aggregated into clusters. At the same time,
the local maximum at nocc > 1 became more pronounced and
shifted towards larger nocc. The density at which clustering
occurred was considerably lower compared to the model I case,
resulting in lower occupation numbers nocc (cf. Fig. 4).

At a first glance, the data presented in Figs. 8 and 9 seem
to suggest that a CG description using Φeff(r) should produce
good agreement with the MR simulations, since there was only
a weak density-dependence on Φeff(r) and the system had a
rather narrow cluster distribution. However, both Φ0

eff(r) and
Φeff(r) failed to replicate the structures of the MR simulations,

FIG. 10. Same as Fig. 5, but for model II. The inset shows g(r) with a zoomed
in scale on the y-axis.
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FIG. 11. Same as Fig. 6, but for model II.

as evidenced by the radial distribution functions g(r) plotted
in Fig. 10. In fact, the difference between the MR and CG
simulations was significantly more pronounced compared to
the model I case investigated in Section III B.

To elucidate this surprising behavior, we computed
ΦDC(r) for various occupation numbers nocc, analogous to our
previous study of amphiphiles of model I (see Fig. 6). Figure 11
shows the resulting effective potentials, and we can see that
the local minimum at r = 0 first decreased but then increased
rapidly as nocc was increased. At the same time, the local max-
imum monotonically decreased and moved to slightly higher
r values.

Figure 7 shows the deviation of ΦDC/nocc [as defined by
Eq. (11)] with respect to the effective dendrimer-dendrimer
potential in the zero-density limit, Φ0

eff(r). It is clearly visible
that the deviations were significantly larger for the model II
amphiphiles compared to the ones computed for model I,
which explains the inferior agreement of g(r) shown in
Fig. 10.

FIG. 12. Probability to find a monomer of generation g at a given distance r
in a cluster with nocc amphiphilic dendrimers. The solid lines correspond to
the solvophobic g = 0 monomers, the dashed lines to the solvophobic g = 1
monomers, and the dotted lines to the solvophilic g = 2 monomers.

In order to investigate a possible correlation between
the conformation of the aggregated dendrimers and ΦDC(r),
we measured the radial density distribution of the solvopho-
bic core and solvophilic shell monomers, which is shown in
Fig. 12 for selected occupation numbers nocc. For the model I
amphiphiles, we observed a layered structure with the solvo-
phobic g = 0 monomers in the core, the solvophobic g = 1
monomers in the intermediate region, and the solvophilic
g = 2 monomers in the shell. In contrast, for the model II
amphipiles, we observed a peculiar backfolding of the g = 1
monomers into the core region, while the g = 2 monomers
formed the corona. In general, we observed that the core-shell
structure became more pronounced as the cluster occupation
number was increased. Furthermore, the conformation of the
individual amphiphiles changed only slightly for the investi-
gated values of nocc, suggesting that the pronounced variation
of ΦDC(r) predominantly originated from excluded volume
effects, which impeded the stacking of dendrimers.

IV. CONCLUSIONS

We have calculated effective pair potentials for dendritic
polymers at finite densities via a force-matching algorithm and
have systematically compared the emerging structural proper-
ties in the microscopically resolved and coarse-grained sim-
ulations based on effective pair potentials. For non-clustering
systems, we observed almost perfect agreement between the
two representations, even at densities well above the over-
lap density. However, a significant mismatch was observed
for cluster-forming amphiphilic systems. This was surprising,
since we employed effective pair potentials which were com-
puted from the microscopically resolved simulations at exactly
the same temperatures and densities.

The reason for this discrepancy is rooted in the hetero-
geneous density distributions of the clustering systems, which
the employed force-matching algorithm is not able to grasp
properly. By taking the average over the whole system during
the coarse-graining procedure, all information on these cluster
distributions is lost. Such an approach becomes problematic
when the cluster sizes are not uniformly distributed, and the
dendrimer-cluster and cluster-cluster interactions depend on
the aggregation number of the partaking clusters.

Hence, improved (or alternative) strategies are necessary
for coarse-graining these clustering systems. For instance, it
is conceivable to use a set of effective pair potentials, which
take into account the local particle density around each inter-
action site. Such approaches have been suggested for colloidal
systems by Rutledge et al.46,47 and Sanyal and Shell48 for
developing implicit solvent models of mixtures and chains,
where the effective pair potentials have been determined from
fully resolved simulations over a range of global densities and
through entropy minimization,49 respectively. However, the
first route is impossible for our clustering systems due to the
inherent spatial heterogeneity observed here (see, for exam-
ple, Fig. 4). The route proposed by Shell et al. seems more
promising, although transferability to our system might still
be an issue as all information is sampled from a single state
point. Furthermore, the inclusion of local density fluctuations
makes CG simulations considerably more expensive from a
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computational view, since they require a complete cluster anal-
ysis at each time step. Therefore, further research and/or devel-
opment of appropriate schemes is required to improve both the
accuracy and efficiency of such coarse-grained descriptions.
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