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Abstract
The phase behaviour of inverse patchy colloid systems composed of spherical particles with
two oppositely charged patches at the poles is investigated by simulation-based
thermodynamic integration schemes. The interaction between the particles is derived via a
coarse-grained model characterized by three system parameters: the charge imbalance between
the bare colloid and the patches, the patch surface extension and the particle interaction range.
Starting from a set of parameters for which a stacking of parallel layers is thermodynamically
stable, the effect of each of these three parameters on the phase diagram is studied. Our results
show that the region of stability of the layered solid phase can be expanded by increasing the
charge imbalance and/or by reducing the interaction range. A larger patch size, on the other
hand, stabilizes the layered structure with respect to the competing face centered cubic solid at
high pressures but destabilizes it with respect to the fluid phase at low pressures. The location
of the liquid-vapour critical point in the temperature versus density plane is also investigated:
while the charge imbalance and the patch size affect mainly the critical density, a change of the
interaction range has a substantial impact also on the critical temperature.

Keywords: simulation, patchy colloids, phase behaviour

(Some figures may appear in colour only in the online journal)

1. Introduction

During the last years the study of the collective behavior of
colloidal particles with anisotropic shapes or interactions has
attracted a considerable amount of attention. Advances in
colloidal science have made the synthesis of such colloids
possible and they nowadays guarantee an exquisite control
over the shape of the particles and their interactions [1].
It is thus important to investigate how these particles self-
assemble into high ordered structures so that they can be used as
building blocks for new materials with desired properties [2–4].
Already numerous simulation and theoretical studies have been
carried out in that direction, revealing that anisotropic particles
can indeed exhibit a complex and unusual phase behaviour.

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

In this contribution we will focus on the phase behaviour of
the so-called inverse patchy colloids (IPCs), i.e. particles with
differently charged surface regions: areas with like charges
repel each other whereas regions of opposite charge are
mutually attractive [5]. IPCs can be considered as simplified
models representing complex systems with heterogeneously
charged surfaces, such as proteins, virus capsids [6], spotted
vesicles [7], etc. As a consequence of their competing
attractive and repulsive interactions, these particles exhibit
quite a rich behaviour [8–10]. Under planar confinement
IPCs assemble into quasi two-dimensional structures where
the particle axes are parallel to the plane and the bare equatorial
regions are exposed on both sides of the monolayer, preventing
thereby the growth of the assembled clusters in the direction
perpendicular to the planes [8, 9]. This tendency to form
planar (laminar) structures has also been observed in three
dimensional systems for a particular set of parameters (i.e.
moderately overcharged colloids with moderate patch sizes
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under low screening conditions) [10]. For this particular
case, the equilibrium phase diagram was calculated, revealing
that the laminar structure is stable over a quite broad range
of temperatures and pressures, competing at high pressures
with a close-packed face centered cubic (FCC) solid that is
orientationally ordered at low temperatures but becomes a
plastic crystal (PC) above a given temperature. Furthermore,
this model exhibits a stable liquid-vapour phase separation.
Laminar phases, similar to the ones found in IPC systems, have
also been observed for other simple models, such as Janus
particles [11], trivalent patchy particles [12], particles with
multiple patches [13] and charged colloids with an inverted
dipolar field in the presence of an external field [14]. The
identification of the features that stabilize the laminar structure
could potentially be useful to gain insight into the behaviour
of real systems that grow into similar structures, e.g. certain
proteins (e.g. apoferritin) [13] and alloy nanoparticles (e.g.
CdTe [15], PbS [16] and PbSe [17]).

In this work we investigate how the different IPC model
parameters, namely the charge imbalance between the patches
and the bare colloid, the patch size and the particle interaction
range, affect the phase behaviour and the stability of the
laminar phase. Only moderate changes of the parameters used
in [10] will be considered here, so that it can essentially be
taken for granted that no other ordered phases besides the
laminar structure and the FCC (ordered and plastic) crystals
are stabilized. We consider as moderate changes those large
enough to lead to an appreciable modification of the phase
diagram but small enough to avoid the appearance of new
ordered structures. The modifications of the parameters
(namely, colloid charge, patch size and interaction range)
are typically between 10% and 20% of the reference value.
Under these conditions, the phase diagram for the new systems
(defined by the modified sets of parameters) can be efficiently
computed by the so-called Hamiltonian Gibbs–Duhem (HGD)
integration technique [18, 19], using as starting points the
coexistence lines calculated in [10]. The usefulness of the
HGD method has already been proven for a large variety of
systems [20–22].

Obviously, large changes on the model parameters of
the reference IPC system [10] can lead to a complete
destabilization of the laminar phase and to the appearance of
new ordered structures different from those found in [10] (see,
for instance, [23]). The study of those new assembly scenarios
is certainly of high interest and will be the subject of future
research. However in the present work the investigations focus
on moderate changes in the parameters that allow us to study
their impact on the stability of the laminar phase. Furthermore,
also the effect of the model parameters on the critical point is
of interest, as the interplay between the attractive and repulsive
terms in the potential might lead to changes in the localization
of the liquid-vapour phase separation with respect to the fluid-
solid ones.

The paper is organized as follows. In section 2 we
introduce the IPC model and specify the changes we perform
on the parameters. In section 3 we present the HGD method
and provide details about our simulations. Section 4 is
dedicated to a thorough discussion of our results. Our final
considerations are presented in section 5.

2. Model potential

Interactions between IPCs are modeled using the coarse-
grained description introduced in [5]. An IPC is represented by
a spherical, impenetrable hard core of diameter 2σ that carries a
negative charge Zc. Concentric to the hard core, a larger sphere
of diameter (2σ + δ) defines the interaction range δ. These
particles carry two smaller spheres of radius ρ with a positive
charge Zp, whose centers are located diametrically opposite to
each other at a distance e (eccentricity) from the particle center.
This geometry defines two regions on the particle surface: the
negatively charged equatorial region (E) and two polar regions
(P), each of them carrying a positive charge. A schematic
representation of the model is depicted in figure 1.

In this coarse-grained description the interaction between
the particles is infinite for distances less that 2σ and zero for
distances larger than (2σ + δ). Between these two distances
the energy can be calculated using the following expression

UIPC = ωEEεEE + ωEPεEP + ωPPεPP (1)

where for simplicity we have omitted the translational and
orientational dependence of UIPC, ωEE, ωEP and ωPP [5]. In this
equation ε̄ = (εEE, εEP, εPP) are the constant energy strengths
of the EE, EP and PP interactions and ωEE, ωEP and ωPP

are the overlap volumes between the corresponding regions
of two neighbour particles normalized to the volume of the
colloidal sphere. The energy strengths (that are assumed to
be constant) are set by mapping the coarse-grained model to
the analytical Debye–Hückel potential [5]. Throughout this
article, the hard core diameter of the particle (2σ ) is used as unit
of length and the minimum energy (εmin) of each model sets
the energy unit. This minimum energy is attained when two
neighbouring particles are at contact in the EP configuration.
Pressure and temperature will be given in the usual reduced
energies (p∗ = p(2σ)3/|εmin| and T ∗ = kBT/|εmin|).

The IPC model depends on three adjustable parameters:
the interaction range δ, that can be experimentally controlled
by modifying the salt concentration of the surrounding solvent,
the size of the patches as defined by the half opening angle γ ,
that can be adjusted by modifying the location of the positive
charges (i.e. the eccentricity e) and the charge imbalance
between the colloid and the polar caps, �Z. Note that two
of these parameters are not completely independent and a
modification of one of them can induce changes in the other.
In particular, γ and ρ depend on e, δ and σ in the following
way [5]

ρ = δ/2 + σ + e (2)

cos γ = σ 2 + e2 − ρ2

2σe
. (3)

Moreover changes in either e or δ can lead to considerable
modifications of the constant energy strengths εEE, εEP and εPP.

As mentioned in the Introduction the equilibrium phase
diagram for a set of parameters corresponding to moderately
overcharged colloids (�Z = 30) with medium size patches
(γ = 38.6◦) and low screening conditions (δ = 0.25) has
already been investigated [10]. This model, whose parameters
are listed in table 1, will be referred in this work as the reference
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Figure 1. Schematic representation of selected IPC models. The hard repulsive core is shown in grey, while the equatorial and polar regions
are shown in white and yellow, respectively. The Z60 model (first from the left) has exactly the same geometry as the reference (Ref) model,
the only difference being that the colloid charge is increased. In contrast modifications of the patch size and of the interaction range induce
also changes on other geometric parameters. For each model, the geometric parameters that are different from those in the reference model
are specified by a prime, while dotted lines represent the reference model. The BP model (second from the left) is obtained by decreasing
the value of the eccentricity e, which induces a variation of the patch radius ρ and of the half opening angle of the patches γ . The LRI model
(third from the left) is obtained by increasing δ while maintaining e fixed, thus leading to a variation of both ρ and γ . Finally, the LRII
model (fourth from the left) is built by changing δ and e so that γ is preserved. In the last three models the colloid and patch charges are the
same as in the reference model. Opposite trends can be visualized for the SP, SRI and SRII models.

Table 1. Parameters for the IPC models considered in this work.

Ref Z60 SP BP

�Z 30 60 30 30
κσ 2.0 2.0 2.0 2.0
κδ 1.0 1.0 1.0 1.0
δ 0.25 0.25 0.25 0.25
e 0.3 0.3 0.335 0.275
ρ 0.325 0.325 0.290 0.350
γ 38.62 38.62 33.88 42.38
εEE 3.553 4.815 2.995 4.041
εEP −20.068 −22.062 −21.359 −19.534
εPP 81.546 69.966 99.734 71.330
εmin −15.71 −18.31 −24.41 −11.17

SRI LRI LRIb SRII LRII LRIIb

�Z 30 30 30 30 30 30
κσ 2.0 2.0 2.0 2.5 2.0 2.0
κδ 0.8 1.2 1.5 1.0 1.2 1.5
δ 0.20 0.30 0.375 0.20 0.30 0.375
e 0.300 0.300 0.300 0.263 0.3325 0.375
ρ 0.300 0.350 0.3875 0.337 0.3175 0.3125
γ 33.55 43.53 50.74 38.58 38.62 38.62
εEE 5.715 2.399 1.650 5.318 2.046 1.026
εEP −32.840 −13.334 8.224 −29.238 −14.053 9.267
εPP 135.38 53.483 31.789 112.42 63.983 47.841
εmin −15.71 −15.71 −15.71 −6.85 −23.68 −38.737

Note: Acronyms specifying the different modifications of the original model are defined in the
text.

(index ‘Ref’) model. In the low temperature–low pressure
region of the phase diagram this model stabilizes a laminar
structure, in which IPCs are oriented with their axes parallel
to the planes and exposing the equatorial regions between the
layers. Within each layer particles are tightly packed forming
a grain-like pattern that maximizes the number of attractive EP
interactions. On the other hand, the lateral distance between
planes can be quite large depending on the thermodynamic
conditions. The equilibrium inter-plane distance results from
a competition between minimizing the interaction energy and

maximizing both the vibrational entropy (thus favouring large
distances between planes) as well as the packing fraction (that
is obviously attained for short distances between planes). At
high pressures, packing effects dominate over the energetics
and the layered structure transforms into an FCC structure that
is orientationally ordered at low temperatures and becomes
a PC for sufficiently high temperatures. The energy of the
ordered FCC structure is considerably higher than that of the
laminar phase due to the repulsive EE interactions that can be
avoided in the laminar phase, but not in the FCC. Further, as
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for the disordered phases, this model exhibits a stable liquid-
vapour phase separation with a very low critical pressure (lower
than p∗ = 0.2 [10]).

In order to study the effect of the IPC parameters on the
phase behaviour, new models are designed in the following
by modifying one by one each parameter while keeping
the remaining ones constant; the parameters are specified in
table 1.

• First, we investigate the effect of charge imbalance (i.e.
the difference between colloid and patch charges). In this
case the new model is obtained by simply increasing the
magnitude of the colloid charge while maintaining the
same charges on the patches. The new model, referred
to as Z60, is designed by changing Zc of less than 10%,
thus obtaining �Z = Zc − 2Zp = 60 (for details see
table 1).

• Secondly, two new models with patch sizes that
are different from those of the reference system are
constructed by increasing and reducing e (i.e. the
value that determines the location of the patches and
consequently their size as defined by γ ). These two new
models are denoted as big patch (BP) and small patch (SP)
models (see table 1 for the numeric values of the model
parameters and figure 1 for a schematic representation of
the BP model). The half opening angle of the patches
in the BP and SP models is about 10% larger and 10%
smaller, respectively, than the one of the reference model.
To be more specific, the respective patch sizes are defined
by γ = 42.38◦ for the BP and γ = 33.88◦ for the SP
model (to be compared to γ = 38.62◦ in the reference
model).

• Third, the effect of the interaction range is also
investigated. In the reference model, the Debye screening
length is set to κσ = 2 and the interaction range is
calculated assuming that δ = κ−1, leading to δ = 0.25.
Two new models with shorter and larger interaction ranges
are designed by imposing that κδ = 0.8 and κδ = 1.2,
respectively, while keeping the Debye screening length
(given by κσ = 2) as well as the rest of the model
parameters constant. The new models, denoted by SRI
and LRI, have an interaction range of δ = 0.2 and δ = 0.3,
respectively (i.e. about 20% lower and 20% higher than
the reference model). A schematic representation of the
LRI model is shown in figure 1. We also consider an even
longer ranged model, referred to as LRIb, obtained with
the choice κδ = 1.5. It is worth noting that modifying the
interaction range while keeping the eccentricity constant
leads to a considerable change of the patch radius and of
the patch size (see table 1), as ρ and γ are related through
equations (2) and (3).

• Finally, we design two models with different interaction
range but same patch size with respect to the reference
model. This is achieved by solving the system of
equations (2) and (3) for the desired values of δ and γ .
The SRII and LRII models are designed using this strategy
(see figure 1 where the LRI model is shown). With the
same procedure we also consider a model characterized
by an even longer interaction range, referred to as LRIIb
(see table 1).

3. Method

3.1. Hamiltonian Gibbs–Duhem integration

The phase diagrams for the new models were evaluated using
the so-called Hamiltonian Gibbs–Duhem (HGD) integration
method [20, 21]. In the conventional Gibbs–Duhem (GD)
method [18, 19], the whole coexistence line between two
phases can be traced by numerically integrating the Clapeyron
equation; only a single coexistence point is required to launch
the algorithm. The HGD method, on the other hand, takes
advantage of the fact that in theoretical approaches and in
simulations it is straightforward to modify, in addition to
the thermodynamic variables, also the interaction. It is
thus possible to change the interaction continuously from a
reference system (with an interaction Uref ), for which the
phase diagram is known, to a new system (with potential
Unew), for which the phase diagram is to be evaluated. This
is achieved, for example, by linearly coupling both model
potentials through a parameter λ in the following way

U(λ) = (1 − λ)Uref + λUnew. (4)

By gradually modifying λ one can pass from the reference
(λ = 0) to the new system (λ = 1).

Using this coupling parameter λ as an additional intensive
thermodynamic variable, a differential change in the Gibbs free
energy is given by

dG = −SdT + V dp + XGdλ (5)

where XG is an extensive thermodynamic variable conjugate
to λ

XG =
(

∂G

∂λ

)
pT

(6)

Using the definition of the Gibbs free energy

NG(p, T , λ) = −kBT

× ln

[
qN

N !

∫
exp (−βpV ) exp (−βU(λ))dr1...drNdV

]
(7)

it is obtained

NXG =∫
exp (−βpV )(∂U(λ)/∂λ) exp (−βU(λ))dr1...drNdV∫

exp (−βpV ) exp (−βU(λ))dr1...drNdV
(8)

or, what is the same

XG(λ′) =
〈
∂u(λ)

∂λ

〉
NpT λ′

, (9)

where u is the energy per particle. This means that for each
value of λ′ along the integration path between the reference and
the target system XG can be evaluated by means of an NpT

simulation in which particles interact via the potential U(λ′).
Using equation (4), XG can be rewritten as

XG(λ′) = 〈unew − uref〉 (10)

where 〈unew〉 and 〈uref〉 are the average energy per particle
of the new and of the reference models, and the angular
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brackets denote ensemble averages over the configurations
visited during an NpT simulation for a given value of λ′.

Two phases I and II are in coexistence when

−SIdT + VIdp + XG,Idλ = −SIIdT + VIIdp + XG,IIdλ. (11)

This generalized Clapeyron equation can be used to calculate
changes in the coexistence line due to an infinitesimal variation
in temperature, pressure or interparticle potential.

Differential changes of either the temperature or the
pressure while keeping the model potential fixed lead to the
conventional Clapeyron equation

dp

dT
= HII − HI

T (VII − VI)
(12)

where HI, HII are the enthalpies of the two coexisting phases.
Additionally, equation (11) allows us to calculate the

change of the coexistence pressure induced by a change in
the parameter λ while keeping the temperature constant

dp

dλ
= − (XG,II − XG,I)

VII − VI
. (13)

Alternatively, it is possible to calculate the change in the
coexistence temperature with λ when the pressure remains
constant

dT

dλ
= T (XG,II − XG,I)

HII − HI
. (14)

Provided that the coexistence line between two phases is known
for the reference potential Uref , the shift in the coexistence line
induced by a change of the parameter λ (or, equivalently, of the
potential) can be simply calculated by numerically integrating
either equation (13) or equation (14). Depending on the slope
of the coexistence curve, it can be more convenient to prefer
one relation over the other. Note that, like the conventional GD
integration, this method is only applicable if the integration
path does not cross a phase coexistence region. If new phases
emerge for the new model potential that do not occur in
the reference system this method is unable to predict their
stabilization.

The phase diagram for all the considered models was
evaluated using the following procedure. First, we calculated
one coexistence point for each of the three phase coexistences
(i.e. the fluid-layer, the fluid-PC and layer-FCC ones) using
the HGD procedure: to be more specific, equations (13) and
(14) were integrated starting from known coexistence points
of the reference model (i.e. taken from [10] and summarized
in table 2). Usually about six λ-values were used (and turned
out to be sufficient) to perform the integration from λ = 0 to
λ = 1 (i.e. to pass from the reference to the new system). The
integration was carried out using a fourth order Runge–Kutta
method: to this end the derivative of either the pressure or the
temperature curve with respect to λ (i.e. the right hand side of
either equation (13) or equation (14)) was evaluated at each
step of the integration scheme in NpT simulations. These
simulations extended over 20 000 MC cycles for equilibration
plus another 50 000–100 000 cycles for taking averages. Here
one MC cycle is defined as N particle displacement attempts
plus one volume change attempt. The number of particles in

Table 2. Coexistence points for the reference model.

Coexisting phases T ∗ p∗

Fluid-Layers 0.159 1.60
Layers-FCC 0.127 2.52
Layers-FCC 1 0.089 2.20
Fluid-PC 0.318 3.94

Note: For the SP and SRI models a
coexistence value (1) at a lower
temperature was used to avoid crossing the
FCC-PC transition along the integration
path. These data were taken from [10].

the simulation box was N = 500 for the fluid phase, N = 480
for the laminar phase and N = 500 for the FCC and PC lattices.
Secondly, once an initial coexistence point between two phases
is known the entire coexistence lines were calculated using the
GD integration method, i.e. using equation (12). The FCC-
PC transition was evaluated by simply heating and cooling
simulation runs, as this phase transition exhibited very little
hysteresis. The number of MC cycles and the system sizes
used in these simulations are the same as the ones used for the
HGD simulations.

3.2. Estimation of the critical point

The liquid-vapour critical point was evaluated by grand-
canonical Monte Carlo (GCMC) simulations for systems in
a box of size L = 11 (in units of the particle diameter). To this
end we selected a subcritical thermodynamic state (specified by
the chemical potential µ and the temperature T ) for which the
system exhibited large fluctuations in density; then we ran ten
parallel simulations (each extending over 5 000 000 MC steps)
to evaluate the probability distribution of the number density ρ.
The precise location of the critical point was then obtained by
searching—using the histogram reweighting technique [24]—
for µ and T values at which the bimodal probability
distribution of ρ matched that of the 3D Ising model.

4. Results

In sections 4.1–4.3 we report about the effect of the charge
imbalance, the patch size and the interaction range on the sta-
bility of the layered structure with respect to the fluid, the FCC
and the PC phases. In section 4.4 we discuss the effects of the
changes in the model parameters on the location of the liquid-
vapour critical point in the temperature versus density plane.

4.1. Effect of the charge imbalance

The effect of increasing the charge imbalance on the
translational and orientational dependence of the IPC potential
is shown in the top panels of figure 2 for three representative
configurations, referred to as EE, EP and PP. For a bigger
colloid charge (inducing a higher charge imbalance) the PP
interaction is reduced at all distances and for all orientations
with respect to the reference model, whereas the EE repulsion
moderately increases. The EP interaction does not change by
construction.

5
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Figure 2. Effect of the charge imbalance on the phase diagram. Top
panels: translational and orientational dependence of the selected
model potentials. The data for the reference and for the Z60 models
are depicted by solid and dashed lines, respectively. Three
representative configurations, referred to as PP, EE and EP and
reported on the left side of the top panel (from top to bottom,
respectively), are used to display the potentials; the color code refers
to the representative configurations as labeled. The radial
dependence of the potentials is reported for two particles in a fixed
mutual orientation as a function of their interparticle distance r (the
particle displacement being represented by a black arrow in the
corresponding particle–particle configuration); the orientational
dependence of the potentials is reported for two particles at contact
as a function of the rotation angle θrot around a given axis (the
rotation axis being represented by a dot in the center of the rotating
particle and the rotation direction represented by the dotted circle
and the arrow in the corresponding particle-particle configuration).
Bottom panel: phase diagram of the reference (black lines) and of
the Z60 (blue lines) model with phases as labeled. The open circles
represent the coexistence pressures at zero temperature between the
FCC and the layers for the reference model (black) and the Z60
model (blue); for the two models these points have been evaluated
elsewhere with an evolutionary algorithm approach [10, 23]. The
solid dots signal the liquid-vapour critical point for the reference
(black) and Z60 (blue) models.

Before calculating the full phase diagram for this model,
we have checked that our implementation of the HGD method
is correct and reliable by comparing the results with those
obtained combining direct coexistence (DC) method and free
energy calculations (see [10] for a detailed discussion) at
selected state points. These results, summarized in table 3,
show the good agreement between both routes.

The full phase diagram of the Z60 model is shown along
with the corresponding data of the reference model in the
bottom panel of figure 2. We note that for the Z60 model

Table 3. Comparison of selected coexistence points for the Z60
model as calculated with the Hamiltonian Gibbs–Duhem (HGD)
method and with the direct coexistence (DC) method complemented
with free energy calculations.

Coexisting phases Method T ∗ p∗

Fluid-Layers DC 0.137 0.95(1)
Fluid-Layers HGD 0.137 0.94(1)
Layers-FCC DC 0.137 4.20(5)
Layers-FCC HGD 0.137 4.15(10)

Note: Uncertainty in the estimated coexistence pressures are
shown between the parentheses.

the zero temperature phase diagram was previously evaluated
through an optimization technique relying on a minimization of
the enthalpy with a strategy based on the ideas of evolutionary
algorithms [23]. The extrapolation to zero temperature of the
layer-FCC coexistence line calculated with the HGD method
converges to the transition point obtained via the minimization
of the enthalpy at zero temperature (see the open blue symbol
in figure 2), proving the consistency of our calculations. As
discussed in [10] this consistency also holds for the reference
system (see the open black symbol in figure 2).

The main feature of the phase diagram for the Z60 model is
that the range of stability of the layered structure is significantly
expanded with respect to the reference model. Interestingly
this is mainly achieved by moving the layer-FCC coexistence
line to higher pressures, as the fluid-layered coexistence line
remains practically unchanged. The stabilization of the layered
structure with respect to the FCC solid can be understood on the
basis of energetic considerations: as discussed before, the Z60
model is characterized by stronger EE repulsions as compared
to the reference system. While in the layered structure these
EE repulsive interactions can be avoided by simply increasing
the distance between the planes, these interactions are always
present in the FCC solid. Thus a stronger charge imbalance
leads to a considerable increase of the energy of the FCC lattice,
whereas it only increases moderately the energy of the layered
structure. The higher energy of the FCC structure explains
also why the transition to the PC phase occurs at slightly lower
temperatures and why this latter phase is destabilized with
respect to the fluid phase.

4.2. Effect of the patch size

When the patch size increases with respect to the reference
model (BP model), the PP and EP interactions extend over
larger angles, the effect being more pronounced in the PP case;
on the other hand, the EE repulsion is less extended in its
angular dependence. Concomitantly, the relative strength of
the PP repulsion is reduced with respect to the EP attraction,
whereas the EE interaction is slightly enhanced (see the radial
and orientational dependence of the potential in the top panels
of figure 3). The reason of this trend is the fact that larger
patches are obtained by locating the patch center of charge
closer to the particle center; due to the larger distance between
the patch charges of two interacting IPCs the strength of the PP
repulsion is therefore reduced. These changes in the potential
are reversed when the patch size is reduced (SP model).
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Figure 3. Effect of the patch size on the phase diagram. Top panels:
translational and orientational dependence of the selected model
potentials. Data for the reference, the BP and the SP models are
depicted by solid, dashed and dotted lines, respectively. Three
representative configurations, referred to as PP, EE and EP and
reported on the left side of the top panel (from top to bottom,
respectively), are used to display the potentials; the color code refers
to the representative configurations as labeled. The radial
dependence of the potentials is reported for two particles in a fixed
mutual orientation as a function of their interparticle distance r (the
particle displacement being represented by a black arrow in the
corresponding particle-particle configuration); the orientational
dependence of the potentials is reported for two particles at contact
as a function of the rotation angle θrot around a given axis (the
rotation axis being represented by a dot in the center of the rotating
particle and the rotation direction represented by the dotted circle
and the arrow in the corresponding particle-particle configuration).
Bottom panel: phase diagram of the reference (black lines), BP (red
lines) and SP (blue lines) model with phases as labeled. The black
open circle shows the coexistence pressure at zero temperature
between the FCC and the layers for the reference model; the solid
circles the liquid-vapour critical point for the reference (black), BP
(red) and SP (blue) models.

The effect of the patch size on the phase diagram is
shown in the bottom panel of figure 3. Increasing the size
of the patches destabilizes the layered structure with respect
to the FCC solid, while it enhances its stability with respect
to the fluid. Inspection of the coexistence densities reveals
that a larger patch size does not lead to significant changes
in the densities of none of the three phases. On the other
hand, at constant pressure the energies decrease for all three
phases as the patch size increases, although the magnitude
of the change is quite different for each case: while for the
fluid phase the energy remains essentially the same as in the
reference model (it is only about 2% lower in the BP model),

the energy of the layered structure is reduced by about 6%
and that of the FCC solid by about 12% with respect to the
corresponding structure in the reference model. The different
energy changes for the different phases can be understood
by separately considering the contributions to the interaction
energy: the increased angular patch extension leads to a larger
negative EP contribution and to a subsequent reduction of the
positive EE contribution; on the other hand, the PP energy is
reduced due to the larger distance between the patch charges
of two neighbouring colloids. The reason why the lowering of
the energy is most pronounced for the FCC lattice is probably
related to the fact that the reduced EE repulsions are important
contributions to the energy of this phase, whereas they are
less relevant in the layered structure. On the other hand, the
larger average distance between the particles in the fluid phase
explains why the energy is less affected in this case. Based on
these arguments, also the shift of the layer-FCC and layer-fluid
coexistence lines to lower pressures and higher temperatures
in the BP model can be understood. The orientational order-
disorder transition of the FCC solid to the PC phase occurs
at higher temperatures in the BP model as compared to the
reference system: a higher temperature is needed to break the
bonds in the FCC and to allow the colloids to rotate freely about
their lattice positions. The coexistence line between the fluid
and the FCC PC phase, on the other hand, is fairly independent
of the patch size, which is most likely related to the fact that
particles can rotate in both phases leading thus to comparable
energy changes in both phases.

The results for the SP model, characterized by a decreased
patch width, show opposite trends with respect to the BP
model, thus confirming the scenario already depicted (results
are summarized in the bottom panel of figure 3). Specifically, a
smaller patch size stabilizes the layered structure with respect
to the FCC phase and destabilizes it with respect to the fluid;
the order-disorder transition is shifted to lower temperatures.
The coexistence lines between the FCC PC and the fluid are
not at all affected by the patch size: this line is essentially
the same for the reference system and for the BP and the SP
models. Note that for the BP model the two triple points nearly
coincide.

4.3. Effect of interaction range

As mentioned in section 2, an increase in the range of the
interaction by simply reducing κδ induces in the model also
a larger surface extension of the patches (see table 1). On
increasing the interaction range, both the EP attraction and the
PP repulsion extend over larger angles and consequently the EE
repulsive term vanishes already at shorter angles. The opposite
trend is observed for a system with a shorter interaction range.
In the top panels of figure 4 the effect of the interaction range
on the interparticle potentials is visualized for systems LRI
and SRI.

The effect of the interaction range on the phase diagram
is shown in the bottom panel of figure 4. For the LRI model,
the region of stability of the layered structure in the phase
diagram is substantially reduced in favour of a larger range
of stability of the FCC structure. On further increasing the
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Figure 4. Effect of the interaction range on the phase diagram for
fixed positions of the patch centers. Top panels: translational and
orientational dependence of the selected model potential. The data
for the reference, the LRI and the SRI models are depicted by solid,
dashed and dotted lines, respectively. Three representative
configurations, referred to as PP, EE and EP and reported on the left
side of the top panels (from top to bottom, respectively), are used to
display the potentials; the color code refers to the representative
configurations as labeled. The radial dependence of the potentials is
reported for two particles in a fixed mutual orientation as a function
of their interparticle distance r (the particle displacement being
represented by a black arrow in the corresponding particle-particle
configuration); the orientational dependence of the potentials is
reported for two particles at contact as a function of the rotation
angle θrot around a given axis (the rotation axis being represented by
a dot in the center of the rotating particle and the rotation direction
represented by the dotted circle and the arrow in the corresponding
particle-particle configuration). Bottom panel: phase diagram of the
reference (black lines), LRI (red lines) and SRI (blue lines) model
with phases as labeled. The black open dot marks the layer-FCC
transition at zero temperature for the reference model. Finally the
solid dots signal the location of the liquid-vapour critical point for
the reference (black), LRI (red) and SRI (blue) models.

interaction range, i.e. when considering the system LRIb,
the layered structure completely disappears from the phase
diagram (results not shown). Concomitantly, for the LRI
model the fluid looses stability with respect to all the ordered
phases, namely the layered structure, the FCC and the PC.
For the SRI model opposite trends are observed: the region
of stability of the layered structure is considerably extended
at the cost of the stability range of the FCC solid while it is
destabilized at lower pressures by an extending stability region
of the fluid phase. Curiously the layer-FCC coexistence line
exhibits a reentrant behaviour (i.e. there is a point at which
dp/dT = �H/(T �V ) = ∞); hence by increasing the

pressure at some suitably chosen temperature, the FCC PC
phase transforms into a layered structure and then back again
to the PC phase.

As in the previous two cases energetic arguments help to
understand the reasons why the layered structure is strongly
destabilized for longer ranged models. On one side, the fact
that the EP attraction extends to larger angles should favour
the layered solid (as seen in 4.2), on the other hand, the EE
repulsion extends over shorter angles, favouring thus the FCC
crystal. Since in the latter phase particles have many nearest
neighbours with EE interactions, a reduction in these energies
leads to a considerably lower energy. Therefore when the
range of interaction increases, the energy of the FCC decreases
more rapidly than that of the layered structure. The observed
increasing stability of all the ordered phases with respect to the
fluid is also due to the stronger EP attractions and the weaker
EE repulsions that lower the energy of the ordered phases with
respect to that of the fluid. As a result of the lower energy of
the FCC solid, its transition line to the PC is shifted to higher
temperatures.

Since our procedure to increase the range of the potential
implies a change of the patch size, it seems reasonable to infer
that the trends observed in the phase diagram emerge as a
result of both parameter changes. To decouple these trends,
we decided to investigate another possible modification of the
reference model that changes the range of the potential while
keeping the angular extension of the patches invariant (see
section 2); these models will be denoted as SRII and LRII.
The radial and angular variations of the potentials of the three
reference configurations (EE, EP and PP) for the SRII and LRII
models are shown in the top panels of figure 5. By construction,
the EE, EP and PP interactions of these two models are very
similar to those of the reference model. Of course, the strength
of the PP repulsion is considerably enhanced when the range of
the interaction increases. This is the result of simultaneously
increasing both the interaction range and the eccentricity. In
particular, by moving the location of the patch charges closer
to the particle surface, the distance between patches belonging
to two interacting IPCs is decreased at a given interparticle
distance; thus the PP repulsion becomes stronger as compared
to its reference counterpart. In the new procedure to change δ,
the effect of the interaction range will be thus mixed with the
effect of changing the strength of the interactions.

Surprisingly the same qualitative trends in the phase
diagram are observed, irrespective of whether the range
is increased by keeping the same location of the patches
(thus increasing their angular extension) or by simultaneously
changing also the location of the patches to guarantee a similar
patch size (see the bottom panels of figures 4 and 5). The phase
diagrams for the LRI and LRII models are remarkably similar.
In both cases the stability of the layered solid is reduced to
very low pressures, this effect being more pronounced for
the LRI model. This observation is simply reflecting the
fact that a larger patch size also leads to a destabilization
of the layered structure (as seen in section 4.2). Again, on
further increasing the interaction range, i.e. when considering
the system LRIIb, the layered structure completely disappears
from the phase diagram (not shown here). Larger differences

8



J. Phys.: Condens. Matter 27 (2015) 234103 E G Noya and E Bianchi

Figure 5. Effect of the interaction range on the phase diagram for
fixed patch spatial extension. Top panels: translational and
orientational dependence of the selected model potentials. Data for
the reference, the LRII and the SRII models are depicted by solid,
dashed and dotted lines, respectively. Three representative
configurations, referred to as PP, EE and EP and reported on the left
side of the top panel (from top to bottom, respectively), are used to
display the potentials; the color code refers to the representative
configurations as labeled. The radial dependence of the potentials is
reported for two particles in a fixed mutual orientation as a function
of the interparticle distance r (the particle displacement being
represented by a black arrow in the corresponding particle-particle
configuration); the orientational dependence of the potentials is
reported for two particles at contact as a function of the rotation
angle θrot around a given axis (the rotation axis being represented by
a dot in the center of the rotating particle and the rotation direction
represented by the dotted circle and the arrow in the corresponding
particle-particle configuration). Bottom panel: phase diagram of the
reference (black lines), of the LRII (red lines) and of the SRII (blue
lines) model with phases as labeled. The black open dot marks the
layer-FCC transition at zero temperature for the reference model.
The solid dots signal the location of the liquid-vapour critical point
for the reference (black), LRII (red) and SRII (blue) models.

in the stability ranges are observed between the SRI and SRII
models. In particular, we observe that for the SRI model the
layered structure is more destabilized with respect to the fluid
phase but more stabilized with respect to the FCC (again as
a consequence of the smaller patch sizes, see section 4.2);
in addition, the layered structure remains stable up to higher
temperatures in the SRII model.

4.4. The liquid-vapour critical point

We investigate the effect of the changes in the model
parameters specified in section 2 on the location of the liquid–
vapour critical point in the temperature versus density plane.

Figure 6. Critical temperature, Tc, versus critical density, ρc, for all
models considered in this contribution. Different points and colors
refer to different systems (as labeled). Lines are guides to the eye:
dashed lines refer to systems where the particle interaction range is
changed together with the patch size, while dotted lines refer to
systems where the range is changed together with the position of the
patch centers of charge, thus keeping the patch size constant.

Results for the values of the critical temperature, Tc and the
critical density, ρc, for all models are summarized in figure 6,
where the respective data for the reference system are also
reported. As in this contribution we are more interested
in the ordered phases, we have not evaluated the pressure
at the critical point, pc. A rough estimate for pc obtained
for the reference system suggested that its value is below
p∗ = 0.2 [10]; the small perturbations of the model parameters
implemented in this investigation should leave this scenario
unchanged. Thus we expect for all systems investigated the
liquid-vapour critical point to be located in the low pressure
region of the pressure versus temperature plane.

The condensation of the liquid phase in patchy systems is
mainly related to the available bonding volume that a particle
has. For IPC systems, the number of configurations in which
two particles can form a bond is imposed by the complex
interplay of geometric terms (related to the patch size and to
the particle interaction range) and energetic factors (related, in
turn, to the competition between the attractive and repulsive
parts of the pair potential). As a consequence of this complex
scenario, we are not able to infer general considerations from
the specific systems studied here, nonetheless a few trends can
be extracted from our investigations.

First we observe that by increasing the charge imbalance
with respect to the reference model (i.e. for model Z60), the
liquid-vapour phase separation is disfavoured: both the critical
temperature, Tc and the critical density, ρc, become smaller
than the corresponding values in the reference system. We
observe that while the effect on the temperature is rather
moderate (Tc decreases by ≈2.5%), the change in density is
quite significant (ρc decreases by ≈9%).

Similarly, when the patch size is decreased (SP model) the
critical point moves towards lower temperature and density
values; in this case variations are smaller: Tc decreases by
≈1.6%, while ρc is reduced by ≈3.4%. The opposite trend
is observed for bigger patch size (BP model), with smaller
variations in the temperature—Tc increases by ≈0.8%—and

9



J. Phys.: Condens. Matter 27 (2015) 234103 E G Noya and E Bianchi

larger changes in the density—ρc increases of ≈4%. Note that
in both models, the change in the critical temperature is smaller
than the one in the critical density. Interestingly, figure 3 shows
that the shift of the critical temperature to higher values with
the patch size goes in the same direction as the shift of the
fluid-layer coexistence on passing from system SP to system
BP, although the magnitude of the change in the coexistence
temperature seems to be larger in the case of the fluid-layer
transition. As a consequence, the critical point, in spite of
being located at higher temperatures, might be metastable with
respect to solidification if the size of the patches is further
increased from the BP model.

Finally, when changing the interaction range the effect
on Tc becomes more important: although the critical density
shows substantial changes with δ, the critical temperature
shows even stronger variations. We can summarize that short
ranged potentials lower the critical temperature, while long
ranged potentials increase it. In particular, when the range
is changed together with the patch size, model SRI has a
critical density that is practically unchanged as compared to
the reference system, while its critical temperature is reduced
by ≈8%; on the other hand, model LRI shows a strong variation
both in Tc and ρc of ≈9%. When the range is changed together
with the position of the patch center of charge, model SRII
shows a variation of ≈5% for Tc and ≈6% for ρc; in contrast, in
model LRII the critical density is essentially unaffected while
its critical temperature is ≈7% higher than the corresponding
value in the reference system.

We note that data referring to systems I exhibit a
minimum in density—located roughly at the position of
the reference model—and that systems II show the same
qualitative behavior; nonetheless the line connecting the
critical points of systems I and that connecting the critical
points of systems II are displaced and cross each other at the
reference model; this demonstrates how the changes in the
range and in the patch size add up in a consistent way for
the set of data specified by index I. Indeed, models I (LRI
and LRIb) are characterized by the same interaction range
but bigger patches with respect to models II (LRII LRIIb);
therefore, their critical densities move to higher values (in
agreement with model BP); on the other hand, model SRI has a
smaller patch size than model SRII and thus its critical density
is lower (in agreement with the SP behavior).

Finally our results indicate that the liquid-vapour phase
separation could go from being stable to metastable with
respect to the solid-fluid phase separation when the range of the
interaction increases. Similarly to the trends observed for the
BP model, both coexistence lines shift to higher temperatures
for larger interaction ranges, but the effect is bigger for the
fluid-layer coexistence line. As a consequence the liquid-
vapour critical point might become metastable, specially for
the LRI model (for which the larger range and bigger patches
effects add up).

5. Conclusions

In the present contribution we numerically evaluated the phase
diagram for a selection of inverse patchy colloids with two
positively charged polar patches and an oppositely charged

equatorial belt. We started from a system of slightly overall
charged particles that are decorated by relatively extended and
long-ranged patches. Previous studies have shown that the
phase diagram of this system is characterized by a broad region
where a crystal formed by parallel monolayers is stable [10];
in addition, at high pressure values and low temperatures the
system forms an FCC solid which transforms with increasing
temperature into a plastic FCC lattice. In the low pressure-
high temperature region the system forms a fluid phase with
a liquid-vapour transition, characterized by a very small value
for the critical pressure.

In the present work, we investigated the effect of changes
in the model parameters on the stability of the layered phase
with respect to the fluid, the orientationally ordered FCC and
the plastic crystal. Additionally, we show how the liquid-
vapour phase separation (quantified by the location of its crit-
ical point) can be favoured or disfavoured on changing the
model parameters. In particular, we focused on the impact (i)
of the charge imbalance between the differently charged sur-
faces of the colloids (i.e., the poles and the equator), (ii) of
the patch size and (iii) of the particle interaction range. The
strategy of how to change the model parameters is rather del-
icate since the aforementioned parameters are related to each
other within the coarse-grained description of the model. For
instance, a change in the interaction range can be accompa-
nied by a change in the patch extension or in the effective
patch interaction strength. This complexity is also reflected
in experimental systems of heterogeneously charged units: if
considering complex units emerging from the adsorption of
charged polyelectrolyte stars onto the surface of oppositely
charged colloids [25], a change in the salt concentration of the
solution surrounding the particles leads to a partial detachment
of the polyelectrolyte stars, thus inducing a change in both the
interaction range and the patch size; on the other hand when
salt is added to a suspension of heterogeneously charged model
colloids synthesized in the lab [26], the patch size is not af-
fected, while the surface charge—and hence the patch effective
interaction strength—can be.

We can summarize our observations as follows:

• Overcharging the particles in favour of the bare colloid
charge stabilizes the layered structures at the cost of the
ordered FCC crystal. Although one might naively think
that stronger interactions lead to a higher Tc, overcharging
the particles leads to a slight decrease in Tc, which is
due to the complicate interplay between the attractive
and repulsion terms. A stronger effect is observed for
ρc, which moves to lower densities as the colloid charge
increases.

• Smaller patch widths stabilize the layered structure with
respect to the FCC lattice, but destabilize the laminar phase
with respect to the fluid; obviously, wider patches induce
opposite trends. Larger patch sizes lead to higher Tc and
ρc, the effect being more pronounced on ρc rather than
on Tc, for which only slight changes are observed. As
a consequence our results indicate that the liquid-vapour
phase separation might become metastable with respect
to the formation of the laminar phase as the patch size
increases, although further calculations would be needed
to confirm this scenario.
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• The same qualitative trends in the phase diagram are
observed irrespective of whether the range is increased by
keeping the same location of the patches (thus increasing
their angular extension) or by simultaneously changing
the location of the patches (thus changing the patch
effective strength) to achieve a similar patch size. For
shorter interaction ranges the region of the phase diagram
corresponding to the layered phase increases considerably
due to its stabilization with respect to the FCC (it
looses some stability with respect to the fluid phase).
The stabilization of lower density ordered structures
with respect to dense solids for lower interaction ranges
has also been observed for other usual patchy models
[27, 28], which leads us to speculate that this might

be a general trend irrespective of the form of the inter-
particle potential. As with regards to the liquid-vapour
separation, Tc increases with the interaction range, as
expected. However ρc shows a non-monotonic behaviour,
whose origin is again probably due to the mixed effects
of changing two features of the model. Indeed this non-
monotonic effect is more pronounced in models for which
the effect of changing both the interaction range and the
patch size add up. Even though the range of stability of the
liquid-vapour separation decreases for larger interaction
ranges, it might remain always stable as increasing further
the interaction range leads to the complete destabilization
of the layered solid.
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