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Abstract
We have investigated diffusion and hopping processes in a cluster crystal formed from
mesoscopic, ultrasoft particles. In contrast to previous contributions we have explicitly
included in our investigations the microscopic solvent by using a simulation scheme that takes
the induced hydrodynamic interactions into account as faithfully as possible. In our
investigations we first focused on the processes of migration of the ultrasoft particles. By
evaluating dynamical correlation functions we were able to demonstrate that the presence of
the solvent does indeed have an important impact on the diffusion and hopping processes of
the particles: this applies in particular to the diffusive behaviour, to the angular orientation of
the jump events and to the spatial extents of these events. In a second set-up we have added
non-cluster-forming ultrasoft particles to the system, investigating thus the impact of the
solvent and that of the mutual interaction of the two species of ultrasoft particles on their
respective dynamic behaviours. Our investigations clearly demonstrate, beside the expected
significant role that the solvent plays in this set-up, that diffusion and the jump processes show
distinct differences for the two particle species.

(Some figures may appear in colour only in the online journal)

1. Introduction

During recent years, systems of ultrasoft particles that are able
to form stable clusters have provoked a considerable amount
of interest in the field of soft matter physics [1–7]. Opposed to
traditional cluster formers, where the aggregation of particles
is the consequence of competing interparticle interactions
operating on different length scales (see for example [8–11])
we consider in this contribution (colloidal) particles where
the (effective) potentials is ultrasoft (i.e. bounded) and purely
repulsive. The only necessary prerequisite for the stability of
the emerging clusters is the existence of negative components
in the Fourier spectrum of the interaction potential [3].

At low and intermediate densities and elevated temper-
atures these clusters are predominantly polydisperse in their
size and form—along with isolated particles—a disordered

fluid phase. However, at sufficiently high densities and
sufficiently low temperatures the clusters populate the lattice
sites of an face-centred (fcc) or a body-centred (bcc) cubic
lattice [1]. And finally, at very low temperatures the phase
diagram provides evidence of very complicated transitions
between ordered phases [7]. These cluster crystals show
some unexpected features, such as density-independent lattice
constants or a complex reaction scenario as pressure is exerted
on the crystal [2]. The formation of stable ordered cluster
phases by particles that interact exclusively via repulsive
potentials is admittedly counterintuitive at first sight. In
contrast to crystals formed by conventional systems (such as
Lennard-Jones particles), the clusters of overlapping ultrasoft
particles are stabilized entirely by the repulsion experienced
from the neighbouring cluster sites: although the interactions
are repulsive throughout, a tagged cluster only reluctantly
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moves out of its equilibrium position, because the repulsion
it feels from one of its neighbours is even stronger than in its
original position. We refer the reader to figure 1 in [12] for
a nice, simplistic and intuitive cartoon of a one-dimensional
cluster crystal and the related discussion. Meanwhile their
surprising properties are well understood [3–5].

At this point it should also be mentioned, that recently
the quantum counterpart of such ultrasoft particles has
received attention [13, 14]: among others, ‘an intriguing phase
consisting of a crystal of mesoscopic superfluid droplets’ was
identified for Bose soft discs in two dimensions.

In this contribution, we focus on a specific dynamic
phenomenon occurring in cluster crystals, the so-called
particle hopping: through thermal agitation, particles can—in
principle—overcome the energy barrier separating neigh-
bouring lattice sites [12] and ‘hop’ to an adjacent cluster.
These jumps are not restricted to the nearest neighbours,
and trajectories spanning over several lattice sites have been
observed in simulations [15].

Several features of this hopping processes were
investigated in detail by the means of molecular dynamics
(MD), Monte Carlo (MC) and Brownian dynamics (BD)
simulations [15–17]: it was found that particles propagate in
a cluster crystal between lattice sites through an activated
hopping mechanism [16, 17] and the question was raised
whether the diffusive motion of the particles corresponds to
anomalous diffusion [15], a feature that is typical for Lévy
flights [18–21].

However, all the preceding studies did not accurately
incorporate the effects of the solvent and the ensuing
hydrodynamic interactions. Of course its influence can be
considered to be of less relevance in investigations dedicated
to the static properties, such as the phase diagram. However,
as we proceed to dynamic properties, such as diffusion,
the solvent often plays a significant role, and therefore
should not (or even must not) be neglected in a faithful
description of the system. The relevance of the solvent for the
dynamics has been shown, for instance, for charged colloidal
suspensions [22] and for short polymer chains [23]. We will
demonstrate in this contribution that this is also the case for
our system at hand.

In the present contribution we explicitly take into
account the solvent and investigate its influence on hopping
processes in cluster crystals. This is achieved by combining
conventional molecular dynamics (MD) simulations for
the solute particles with multi-particle collision dynamics
(MPCD) simulations [24, 25]: in the latter concept alternating
streaming and collision steps are performed, where the former
ones describe the ballistic motion of the solvent particles,
while the latter ones mimic the collision of the solvent with
the solute particles.

In our investigations we have considered two set-ups:
(I) In a first experiment we have investigated—similar as
in [15]—the hopping process of the cluster-forming particles
under the explicit presence of the solvent. We have inspected
in detail the characteristic features of hopping processes (such
as jump lengths and directional distributions of jump events),
and of the dynamic properties (such as the mean-squared

displacement and the self-part of the van Hove correlation
function). These results provide qualitative and quantitative
evidence that the dynamics of hopping processes is drastically
reduced with increasing influence of the solvent. In addition,
analysing characteristic features of the migrating particles
gives an unambiguous answer, that for a finite coupling
between the solute particles and the solvent, this hopping
process does not show any sub-diffusive behaviour; in view
of the fact that MPCD simulations feature a more realistic
dynamics (than the Newtonian MD simulations), we can
conclude that in experimental system a Lévy flight type
behaviour can definitely be excluded. (II) In a second
experiment we have added non-cluster-forming colloidal
particles to a cluster crystal and have re-investigated the
hopping process of both types of colloidal particles under
the influence of the solvent. As already known from the
MD-based investigations presented in [17] (where the solvent
was neglected) we find that the dynamic scenario encountered
in this system is the result of the complex interplay of
the dynamics of the cluster-forming fluid particles and the
non-cluster-forming particles. In addition, we are able to show
that a faithful description of the solvent drastically influences
the dynamics of both types of solute particles.

The rest of this paper is structured as follows: in section 2
we present the two set-ups investigated in this contribution
and briefly summarize our simulation technique. Results are
compiled and discussed in section 3 and the paper is closed
by a summary.

2. Model and simulation method

2.1. The model

In our investigations we have considered cluster crystals,
where the lattice positions are occupied by clusters of
overlapping, ultrasoft (mesoscopic) particles. This crystal is
assumed to be in contact with a (microscopic) solvent. The
solute particles interact via the GEM-n potential,8n(r), given
by:

8n(r) = ε exp
[
−(r/σ)n

]
, (1)

with ε and σ being the energy- and length units, respectively.
The mass of these particles is defined as m and will be
specified further below. As shown in [26], particles interacting
through the potential specified in equation (1) are able to form
stable clusters only if n > 2.

As outlined in the introduction, we first consider an
fcc cluster crystal where particles interact via a GEM-4
potential in the explicit presence of a microscopic solvent
(henceforward referred to as Case I). The particular choice for
the potential index was motivated by the fact that the phase
diagram for n = 4 is known in detail [1, 3, 4, 7]. In addition,
the only study dedicated to hopping processes in ultrasoft
cluster crystals published so far has been carried out for this
particular potential parameter [15].

In the second experimental set-up (henceforward referred
to as Case II), we have added to this system non-cluster-
forming particles (referred to as type-A particles). For these
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Table 1. System parameters of all investigated systems (Cases I and
II, as specified): concentration of the cluster-forming type-B
particles, cB (only Case II), lattice constant of the cluster crystal, a
(in units of σ ), simulation box size L (in units of σ ), and average
cluster size 〈Nc〉.

cB a L 〈Nc〉

Case I 2.018 8.073 13.15
Case II 0.65 1.930 7.718 7.57

0.80 1.896 7.584 8.73
0.95 1.864 7.456 9.76
1.00 1.857 7.428 10.25

investigations we have chosen n = 8 for the interaction
between the cluster-forming particles (type-B particles). The
choice for this potential parameter is motivated by the
investigations presented in [17] and is justified by the fact that
the change from n = 4 (Case I) to n = 8 (Case II) will affect
the properties of the cluster crystal only on a quantitative but
not on a qualitative level. The additional mesoscopic particles
interact via a GEM-2 potential, guaranteeing that these
particles definitely will not form stable clusters [26]. For the
cross interaction between the two types of ultrasoft particles
we have assumed—similar as in [17]—a GEM-4 potential,
i.e., an interaction that also supports cluster formation.
The interaction potential for the second set-up is given by
the equation (1), introducing the type-dependent parameters
σAA = 0.3σ, σAB = 0.6σ , and σBB = σ = 1, as well as nAA =

2, nAB = 4, and nBB = 8.
The parameters of the systems treated in the two set-ups

are specified in table 1.

2.2. The simulation method

For our investigations we have used the MPCD simulation
technique [24, 25], i.e. a mesoscopic, particle-based
simulation method that takes hydrodynamic interactions (HI),
which are induced by the solvent, into account as faithfully as
computationally feasible. Being a hybrid simulation approach,
the solute–solute interactions are treated in a standard MD
simulation, while the influence of the solvent is incorporated
through alternating streaming and collision steps. The solvent
particles are assumed to be non-interacting and propagate
ballistically in the simulation box during the streaming steps.
Thus the position of the ith solvent particle at the next time
step t +1t, ri(t +1t), is simply given by:

ri(t +1t) = ri(t)+1tvi(t), (2)

with vi being its velocity. For the collision step, the solvent
particles are first sorted into cubic cells of edge length c, a
value which determines the spatial resolution of the HI. For
our simulations we have chosen c= σ in order to fully capture
the HI between the lattice sites. Introducing the centre of mass
velocity of the j-th cell (to which the i-th solvent particle
belongs), uj(t), the velocities vi(t) are calculated according
to the following law:

vi(t +1t) = uj(t)+�(α)
[
vi(t)− uj(t)

]
. (3)

In the above relation, �(α) is a norm-conserving rotation
matrix around a fixed angle α around a randomly chosen unit
vector [27]. It can be shown that the dynamics defined by the
above two equations preserves total energy and momentum in
each cell and consequently in the entire system. The mean free
path of a solvent particle, λ, is then given by λ ∼ 1t

√
T and

it has been shown in [28] that Galilean invariance is violated
for λ < c/2. Therefore, all cells are shifted by a randomly
chosen vector, whose components are drawn from the interval
[−c/2,+c/2] before each collision step.

The interaction between solvent and solute particles is
modelled by including the solute particles in the collision step.
In this way, solute and solvent particles exchange momenta. In
order to maintain a constant temperature T in our simulations
we rescaled the relative velocity components by a scaling
factor, which adjusts the total kinetic energy to the desired
value [24]. In the MPCD simulations, this procedure was only
applied to the solvent particles, and in this scheme the solvent
can be considered as a heat bath for the solute particles. In
the MD simulations, we directly rescaled the velocities of
the GEM particles during the initial equilibration (5 × 106

timesteps). Once the system reached its steady state, we
deactivated the thermostat and verified that the temperature
of the system remained constant.

We have set the mass m′ of the solvent particles to unity,
and filled each collision cell with 30 solvent particles. The
mass of the GEM particles was then set to m = 6, and the
collision angle α to 130◦. Our unit of time is thus given by
τ ∗ =

√
m′σ 2/ε, and the time step for the MD algorithm was

set to 1tMD = 0.002. An MPCD step was performed after
each τ MD steps, so that 1t = τ1tMD. In order to study the
influence of the HI, different values of τ have been chosen,
which will be specified in section 3. It should be noted that
for τ → ∞, the simulation technique becomes identical to
conventional MD simulations. Each simulation was run for a
total time of ttotal = 10 000τ ∗, and during the run, positions
and velocities of the colloidal particles have been recorded.

Based on these quantities, dynamic correlation functions
have been evaluated in a post-processing routine. To be more
specific we have calculated from the particle positions:

(i) The mean-squared displacement, δr2
i (t), defined as:

δr2
i (t) = 〈|ri(t)− ri(0)|2〉. (4)

From its time dependence, one can draw conclusions
whether the particles propagate (predominantly) ballis-
tically, or if they show diffusive behaviour (be it either
sub-diffusive or normal).

(ii) The self-part of the van Hove correlation function, given
by:

Gs(r, t) =

〈
1
N

N∑
i=1

δ [r − |ri(t)− ri(0)|]

〉
. (5)

This function correlates the position of a tagged particle
(with index i) at time t = 0 with its location at some
time t > 0. It thus provides information about the
spatio-temporal correlations of a particle [29, 30].
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Figure 1. Schematic phase diagram of a system of GEM-4 particles
in the (T, ρ)-plane, indicating the range of stability of the fluid
phase and of the bcc- and fcc cluster phases. Filled circles specify
cluster systems investigated in this contribution.

3. Results

3.1. Case I—cluster crystals in the presence of an explicit
solvent

The state points that we have investigated for this particular
set-up are specified in figure 1, and it is clearly visible that all
the investigated state points correspond to cluster crystals. The
influence of the solvent properties (and the ensuing impact of
HI) was systematically investigated by varying the value of τ
(specified in section 2.2).

We start our discussions of the results with the
mean-squared displacement, as defined in equation (4).
Figure 2 shows δr2(t), i.e. the average taken over all
solute particles as a function of time t, for three different
temperatures (T = 0.8, 0.6, and 0.4). For each temperature,
different τ -values have been considered (as specified in
the figures). According to the evolution of δr2(t), four
different time regimes can be identified: the (trivial) ballistic
regime at small t-values, followed by a region where δr2(t)
shows oscillations, then a plateau-like region, and finally
the long-time regime, corresponding to normal diffusion.
Depending on the combinations of the T- and τ -values, some
of the regimes are covered by or are merged with other
regimes.

At high temperatures, we observe for vanishing and weak
HI (i.e. τ & 250) characteristic high-frequency oscillations
due to single particle vibrational modes of the particles within
their clusters. With increasing influence of the solvent, these
oscillations are gradually suppressed, leading to a plateau
that extends approximately over one decade in time. This
behaviour is due to the fact that for small τ -values the particles
collide more frequently with the surrounding solvent particles
and thus quickly lose their memory about their original flight
direction, i.e. effects of inertia become completely negligible.
For larger t-values, the thermal energy (which is now of
the order of magnitude of the energy barrier between two
clusters) allows solute particles to spontaneously jump from

Figure 2. Mean-squared displacement, δr2(t), as a function of time
t for three different temperatures as labelled for a system of
cluster-forming GEM-4 particles in the presence of a solvent. The
black (dash-dotted) curve displays MD simulation results
(corresponding to τ = ∞). The other curves correspond to data
obtained in MPCD simulations with τ = 50, 100, 250, and 500,
respectively, as labelled.

their original cluster to a neighbouring lattice site, leading
to normal diffusion at large timescales. In this regime, the
actual value of the diffusion constant depends strongly on
the solvent: over the τ -range considered in this contribution
this quantity differs by one order of magnitude and attains its
highest value in the complete absence of the solvent, i.e. for
Newtonian dynamics realized in MD simulations.
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As the temperature is decreased, the high-frequency
modes show the same τ -dependence as those observed for
T = 0.8; they are slightly more pronounced and extend over a
significantly larger time regime. The decreasing temperature
has a distinct influence on the long-time behaviour of the
mean-squared displacement: with decreasing temperature
the plateau region continuously extends with decreasing
temperature over a larger time span. At the lowest temperature
considered (T = 0.4), the curves of the mean-squared
displacement remain flat (i.e. the diffusion constant vanishes)
over the observed time range. This is a consequence of the
fact that the very small thermal agitations essentially suppress
any particle exchange between lattice sites (see quantitative
discussion below).

In an effort to obtain a better understanding of the
diffusive behaviour of the solute particles we have analysed
the individual hopping processes of particles between clusters
in more detail. To this end a few definitions are in order:

(i) Using the same algorithm to identify clusters as the one
put forward in the appendix of [15], we have recorded
the trajectories of all particles along the simulation runs
in terms of jump events.

(ii) A jump event starts as a tagged particle leaves its (donor)
cluster (located at the centre of mass of the initial cluster,
RCM

i ) and terminates when it stays in a target (acceptor)
cluster (located at the centre of mass of the target cluster,
RCM

t ) over a time span longer than a specified residual
time, t?res. For our simulations we haven chosen t?res = 2,
i.e. a time span which is of the order of a few vibrational
modes (see figure 2). We have verified that different
choices for the value of t?res (for instance, t?res = 3 or
4) have no quantitative influence on the results. Three
different types of hopping events can be identified: (a) the
jump event starts and terminates at the same cluster; (b)
the particle hops directly from its initial to the final target
cluster; and (c) the particle passes along its trajectory at
some intermediate clusters.

(iii) We define the net jump length as rnet = |RCM
t − RCM

i |.
The possible consecutive jumps within the unit cell of
the fcc cluster crystal are illustrated in figure 7 of [15].
Since the jumps occur between lattice sites, all distances
can conveniently be expressed in units of the nearest
neighbour distance in an fcc crystal, dnn = a/

√
2, with

a being the lattice constant of the cubic fcc unit cell.

In figure 3 we have depicted the net jump length
distribution, Pnet(r/dnn), as a function of r for selected
τ -values and for two temperatures, namely T = 0.8 and 0.6.
At T = 0.4, essentially no jump events could be identified;
this observation correlates nicely with the curves for the
mean-squared displacement which are completely flat at this
low temperature, i.e. no diffusion takes place at all. In
contrast, for the higher temperatures (i.e. T = 0.6 and 0.8),
the peaks in Pnet(r) (cf figure 3) and the linear increase
in the mean-squared displacement (reflecting a diffusive
behaviour of the particles; cf figure 2) provide a consistent
picture that particle hopping is the dominant mass transport

Figure 3. Net jump length distribution Pnet(r/dnn) as a function of
r/dnn for T = 0.6 and 0.8 and selected τ -values as indicated for a
system of cluster-forming GEM-4 particles in the presence of a
solvent on a semi-logarithmic scale. The black (dash-dotted) curve
displays MD simulation results (corresponding to τ = ∞). The
other curves correspond to the MPCD simulations with τ = 50,
100, 250 and 500 respectively as labelled.

mechanism in cluster crystals. From the data presented in
figure 3 we can make the following two conclusions: first, the
jump length increases as the temperature grows. Second, the
surrounding solvent plays a crucial role in the jump events of
the GEM particles: for small τ -values and consequently for
small values of the mean free path length, λ, the distribution
functions Pnet(r/dnn) show distinct peaks at the positions
of the nearest neighbour clusters but decay rapidly with
growing distance. In contrast, pure MD simulations lead to
distribution functions that display peaks of sizeable height
at even larger distances (corresponding to integer multiples
of dnn), suggesting preferred straight hopping trajectories
through the cluster crystal. These conclusions on the impact
of the solvent on the jump events become even more evident
from selected numerical data for the maximum net jump
length, rmax (compiled in table 2), which can be up to a
factor of 20 larger when the solvent is ignored. A final
remark on the pronounced peak of Pnet(r/dnn) at r = 0 is
in order: this feature corresponds to type-(a) jump events
specified above in item (ii). Integrating over the corresponding
peaks of Pnet(r/dnn) at T = 0.8 (which are hardly visible
in figure 3) leads to data that are visualized in figure 4: for
strong solute–solvent coupling (i.e., τ = 50) nearly all jump
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Figure 4. Integrated values of the net jump length distribution,
Pnet(r/dnn) (cf figure 3), integrated over distances corresponding to
the initial cluster (‘initial cl.’), the nearest neighbour clusters (‘nn
cl.’) and the remaining clusters (‘remaining cl.’) in per cent for
different τ -values as labelled.

Table 2. Largest net jump length, rmax/dnn, for two selected
temperatures (i.e. T = 0.6 and 0.8) and for selected τ -values.

τ T = 0.6 T = 0.8

50 1.0 1.4
100 1.3 2.2
250 1.9 3.6
500 2.6 5.0
∞ 6.0 28.0

events are restricted to the cluster of origin (43%) and to
the clusters in the nearest neighbour shell (56%); only very
few particle trajectories (1% or even less) end in clusters
that are further away. In contrast, in the complete absence
of solute–solvent coupling (i.e., τ = ∞) only a few jump
events terminate in the cluster of origin (some 7%) while a
sizeable number of particle trajectories extend even beyond
the nearest neighbour distance (some 36%). Thus a strong
coupling between the solute particles and the solvent seems
to introduce an additional energetic barrier which prevents
solvent particles to escape from their cluster of origin.

Finally, from the data presented in figure 3 we can
definitely exclude the occurrence of Lévy flights in cluster
crystals in the presence of an explicit solvent: as in figure
5 of [15], Pnet(r) shows in the absence of the solvent
(i.e. in MD simulations) a power law decay, i.e., ∼1/r1+α ,
with α ∼ 2.2 [15], which represents an α-value which
is slightly larger than the upper limit required for Lévy
flights [18–21]. Increasing the influence of the solvent by
decreasing τ we observe that the long-distance decay of
Pnet(r) is characterized by increasingly larger α-values.

To further characterize the nature of the long range
jumps in the cluster crystal we have extracted from our
simulation data the correlation between the net jump length,
rnet, and the angle 2, enclosed by two successive segments
of the trajectory of a jump event (for a visualization see
figure 5). To this end we have considered all the type-(c)
jump events specified above in item (ii) where the tagged

Figure 5. Schematic sketch of a jump event, visualizing the net
jump length, rnet and the related angles 21 and 22.

particle reaches its target cluster after several intermediate
clusters. The resulting correlation is depicted in figure 6 for
two different τ -values (i.e., τ = 50 and ∞) at T = 0.8. The
results for T = 0.6 are on a qualitative level comparable
to the latter case, but less pronounced. Each grey symbol
represents the aforementioned angle 2 identified along the
trajectory of a jump event that extends over a net jump
length of distance r/dnn. The filled symbols represent the
average 2-value at a given jump length r/dnn. In the explicit
presence of a solvent, the majority of jumps are rather short
ranged. The preferred 2-values are 2 = 0◦, 60◦ and 90◦,
as the particles only jump back and forth to their second
nearest neighbours, but do not move along straight trajectories
through the crystal. This picture changes completely, when
the HI are neglected: especially for longer jump lengths,
2-values of 120◦ and 180◦ dominate, corresponding to
slightly deflected or perfectly straight pathways through the
crystal. Thus, the incorporation of HI significantly modifies
the diffusion behaviour both on a qualitative as well as
on a quantitative level: while in the MD simulations, the
diffusion is dominated by long ranged and strongly correlated
ballistic flights, the explicit presence of a solvent reduces the
responsible mechanism for mass transport to random jumps
on nearby lattice sites.

Finally, we have studied the influence of the properties of
the solvent on time-dependent correlations functions through
the self-part of the van Hove correlation function, defined
in equation (5). The results for Gs(r, t = 6000), evaluated at
T = 0.8, are depicted in figure 7. For all τ -values considered
in this contribution we observe cascades of peaks (with
two pronounced peaks at r = 0 and dnn). In contrast, the
exponential decay at large distances depends in a highly
sensitive way on τ : smaller τ -values (and therefore smaller
mean free paths) lead to a faster decay, meaning that the
hopping processes are limited to shorter jump lengths. For
completeness we mention that for none of the τ -values and
time ranges investigated in this contribution, a Gaussian shape
for the self-part of the van Hove correlation function has
been observed [29, 30]; however, we expect to observe this
behaviour at considerably larger t-values.

3.2. Case II—cluster crystal and ultrasoft particles in the
explicit presence of a solvent

Now that the migration of cluster-forming particles through
cluster crystals in the explicit presence of a solvent is better
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Figure 6. Correlation between the angle 2 and the net jump length rnet of a jump event (both quantities as specified in the text) as a
function of r/dnn at T = 0.8 for τ = 50 (panel (a)) and τ = ∞ (panel (b)) for a system of cluster-forming GEM-4 particles in the presence
of a solvent. The solid line corresponds to the net jump length distribution Pnet(r/dnn)—cf figure 3. Open grey circles represent 2-values
identified in the trajectory of a jump event that extends over a net jump length of r/dnn, filled circles correspond to the average of all
2-values at a fixed jump length, denoted by 〈2〉.

Figure 7. Main panel: self-part of the van Hove correlation
function, Gs(r, t), at t = 6000 as a function of r/dnn at T = 0.8 for a
system of cluster-forming GEM-4 particles. Results were obtained
via MD (black) and MPCD simulations with τ = 50 (red), 100
(green), 250 (blue) and 500 (purple). The inset shows the same data
on a semi-logarithmic scale.

understood, we consider a more complex scenario in what
follows: we add ultrasoft, non-cluster-forming particles to
the set-up considered in section 3.1. In the following, we
will denote these particles as type-A particles, while the
cluster-forming particles will be specified by the label B
(introducing their concentration, cB). Using again the MPCD
simulation scheme we study the dynamic behaviour of both
types of ultrasoft particles.

In an effort to establish a relation with the results obtained
recently for binary cluster crystals [17], we consider in the
following a cluster crystal formed by GEM-8 particles, adding
non-cluster-forming GEM-2 particles; the cross interaction
between the two particle species is specified by an exponent
n = 4 (cf equation (1)). The state points that have been
investigated for this particular set-up are specified in table 1,
and were taken from the above mentioned, previous work
carried out for this very system (cf table 1 in [17]). As
argued in this contribution on the basis of a simple mean

field approximation [31, 32], the corresponding states are
selected to be located on the so-called λ-line, i.e., where the
system is prone to crystallize. MD and MPCD simulations
have been performed for three different temperatures, i.e.
T = 0.4, 0.6, and 0.8. For simplicity we have assumed only
one τ -value, namely τ = 50. Since the results for all three
temperatures are on a qualitative level comparable, we focus
in the following on T = 0.8, where the observed phenomena
are most pronounced: with decreasing temperature (and the
ensuing reduced thermal agitations) the hopping processes
become less frequent.

In figure 8 we present the mean-squared displacement
for the non-cluster-forming GEM-2 (type-A) particles, δr2

A(t),
and of the cluster-forming GEM-8 (type-B) particles, δr2

B(t),
as functions of time and for different values of cB as obtained
form the simulations.

A first, qualitative analysis of the mean-squared
displacement of the type-A (GEM-2) particles, δr2

A(t),
shown in figure 8(a) reveals the expected and rather rapid
cross-over from the short-time ballistic motion to the
long-time diffusive behaviour; the fact that—irrespective
of the concentration cB and the simulation scheme—all
δr2

A(t)-curves are characterized in their long-time limit by
the same slope provides evidence that the diffusion constant
has in all cases the same value. Thus the cluster crystal
has essentially no impact on the diffusion constant of the
mobile particles. Further, in none of the curves an intermediate
oscillatory region is observed, indicating that the A-particles
behave as a fluid confined in a crystalline matrix of clustered
B-particles. Throughout, a higher concentration in B-particles
delays the onset of the diffusive behaviour: obviously due to
the increase in the number of B-type particles, the interstitial,
non-cluster-forming type-A particles experience through the
GEM-4 cross interaction stronger bonds to the clusters
which delay the diffusion and thus slow down the dynamics.
Considering now the results of each type of the simulation
schemes separately, we observe distinctive differences: in
the MD simulations we see a rather direct and slightly
concentration-dependent transition from the ballistic to the
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Figure 8. Mean-squared displacements, δr2
A(t) (panel (a)) and δr2

B(t) (panel (b)), as functions of t for T = 0.8 for a system of
cluster-forming GEM-8 particles in the presence of non-cluster-forming GEM-2 particles and of a solvent. Dot-dashed lines correspond to
the MD simulation results, while solid lines display MPCD data. Different colours correspond to different values of cB (as labelled).

diffusive regime. In the MPCD simulations on the other hand,
the ballistic behaviour terminates at t ∼ 10−1, followed by
an intermediate regime that extends roughly over three time
decades and is characterized by an exponent of approximately
1.25–1.3; eventually at t ∼ 102 the diffusive behaviour sets in
(see also the discussion of GA

s (r, t) below). The fact that in
the explicit presence of the solvent the onset of the diffusive
behaviour is delayed by two orders of magnitude with respect
to the MD simulation data emphasizes the eminent role of the
solvent.

For the type-B (GEM-8) particles we observe a similar
time dependence of δr2

B(t) as the one observed for the pure
GEM-4 case (cf section 3.1 and figure 2): the MD-data
for δr2

B(t) show—after the ballistic regime—pronounced
oscillations for all concentrations investigated, reflecting
single particle vibrational modes of the particles in the
clusters; eventually—and strongly dependent on cB—the
linear diffusive behaviour sets in. The fact that the onset of
the diffusive regime shifts with increasing concentration of
type-B particles to larger times is related to the fact that
cluster crystals with higher cB-values are characterized by
larger occupancy numbers (see table 1); these larger clusters
exert stronger binding forces on the mobile cluster-forming
type-B particles and thus delay their diffusive behaviour.
In the MPCD simulations, these oscillations are essentially
suppressed due to the presence of the solvent. Instead we find
a broad time regime where δr2

B(t) is essentially constant. Only
towards the end of the investigated time range (i.e. t ∼ 104),
a cB-dependent onset of the linear behaviour can be observed:
the smaller cB, the earlier the diffusive behaviour sets in (see
also the related discussion in the previous paragraph).

Finally, we have evaluated the self-part of the van Hove
correlation functions, GA

s (r, t) and GB
s (r, t), for different

values of concentration cB and different values of time t;
throughout, T was set to 0.8. The respective results are
plotted in figure 9. By comparing the data presented in
panels (a) and (b), we can trace how GA

s (r, t) develops
at relatively short times: for very small t-values (i.e., t =
80), a strong correlation between the non-clustering type-A
particles and the solvent particles can be observed, reflected
in the MPCD data in well-defined peaks for r ∼ dnn, which

emerge for all concentrations; at t = 800, these peaks are
smeared out over larger distances, but are still sizeable.
In contrast, the MD simulation results for GA

s (r, t = 80)
show no particular structure, indicating the rapid loss of
spatio-temporal correlations of the A-type particles and at
t = 800 this function has essentially vanished. This distinct
difference emphasizes the eminent role of the solvent in
supporting spatio-temporal correlations between the mobile,
non-cluster-forming type-A particles over relatively large time
spans. This phenomenon is also reflected by the intermediate
region observed in δr2

A(t) for 10−1 . t . 102 discussed
above. Concluding we note that the loss of spatio-temporal
correlations is fully confirmed by the Gaussian shape of
GA

s (r, t) [29, 30]; the diffusion constants, that we obtain
from the respective fits are in satisfactory agreement with
the respective values extracted from the mean-squared
displacements.

Finally, GB
s (r, t), is displayed in panels (c) and (d) of

figure 9 for t = 6000. Within the MPCD simulation scheme,
this function shows for all values of cB pronounced peaks
at r ∼ 0 and r ∼ dnn and then vanishes rapidly for larger
distances, providing evidence that the solvent significantly
slows down the mobility of the cluster-forming particles. In
contrast, in the absence of the solvent well-defined peaks up
to r ∼ 3dnn are visible in the corresponding data of the MD
simulations. In both cases, a strong cB-dependence in the
heights of the peaks is visible.

4. Conclusions

We have investigated the diffusion and the hopping processes
that occur in a cluster crystal formed by mesoscopic, ultrasoft
particles. These events are the result of the complex interplay
of the thermal fluctuations and the coupling strength between
the ultrasoft solute particles and the microscopic solvent: (i) if
the thermal fluctuations are strong enough, the particles are (in
principle) able to overcome the energetic barriers that separate
the clusters from each other; (ii) however, in addition, these
migration processes can be both fostered or hindered by the
surrounding solvent.
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Figure 9. Self-part of the van Hove correlation functions GA
s (r, t) and GB

s (r, t) as functions of r/dnn for T = 0.8. for a system of
cluster-forming GEM-8 particles in the presence of non-cluster-forming GEM-2 particles and of a solvent. Panels (a) and (b): results for
GA

s (r, t) for t-values as specified, as obtained by MD and MPCD simulations. Panels (c) and (d): GB
s (r, t) results for t = 6000, obtained by

MPCD and MD simulations, respectively. Throughout, solid lines correspond to MPCD simulations and dashed–dotted lines to MD
simulations. Different colours correspond to different values of cB (as labelled).

In contrast to previous contributions, we have for the
first time explicitly included the solvent (and the ensuing
hydrodynamic interactions) in our investigations on the
diffusion and hopping events in ultrasoft cluster crystals, and
have thereby elucidated the eminent role of this medium
in these processes. With the use of multi-particle collision
dynamics we have employed a simulation scheme that takes
these hydrodynamic interactions into account as faithfully as
possible. In addition we can tune via a suitable parameter
the coupling strength between the solvent and the solute
particles. From the positions of the solvent particles, we
analysed their trajectories in terms of their spatial extent and
their directional distribution. Additional insight into these
processes comes from the dynamic correlation functions: the
mean-squared displacement gives evidence about the type of
the occurring diffusion processes while the self-part of the
van Hove correlation functions provides information about the
spatio-temporal correlations of the solute particles.

In a first set-up we have studied the diffusion and hopping
processes of a single species of ultrasoft cluster-forming
particles in the explicit presence of a solvent. From
the mean-squared displacement we learn that the solvent
considerably delays the transition from the ballistic to the
diffusive motion of the particles and essentially completely
suppresses the inner-cluster vibrations of the particles; thus
the solvent behaves as a damping buffer surrounding the
clusters. Consequently, the hopping events of particles from

one cluster to a neighbouring one differ substantially from the
case where no solvent is considered: the majority of jump
events are either forth-and-back jumps to the initial cluster
or, at most, to one of the neighbouring aggregates. Thus,
the directional analysis of the trajectories shows that the vast
majority of 2-values lies between 0◦ and 90◦; in contrast, a
related analysis for systems where the solvent is neglected
leads to a broad spectrum of angles, with a strong dominance
of straight or slightly deflected trajectories. Complementing
a yet open question, we can definitely exclude through our
analysis the occurrence of anomalous diffusion in cluster
crystals.

In a second set-up we have added to the previous
scenario non-cluster forming, mesoscopic particles as a
minority component, denoted as type-A particles (in the
presence of a cluster crystal formed by type-B particles);
this scenario allows us to investigate both the influence of
the solvent as well as of the mutual interaction between the
two particle species on the migration of the solute particles.
The mean-squared displacement of the type-A particles shows
a novel diffusion behaviour, which is located between the
ballistic and the diffusive regime and can be specified by a
∼tξ power law, with ξ = 1.25–1.30. While the cluster crystal
itself has no impact on the diffusive behaviour of the type-A
particles, a larger concentration of type-B particles delays
progressively the onset of the diffusive regime of the former
due to the increasing strength of the cross interaction. But also
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the onset of the diffusive behaviour of the cluster-forming
type-B particles is increasingly delayed when increasing
their concentration, due to the ensuing larger occupancy
numbers of the clusters, which exert a stronger attraction
to the migrating particles. From the self-part of the van
Hove correlation functions we learn that the spatio-temporal
correlations of the two particle species are influenced in a
distinctively different way by the solvent. For the type-A
particles the strong spatio-temporal correlations are mediated
via the solvent: peaks in the correlation functions are able to
persist over longer time ranges in the presence of the solvent,
while they are quickly lost in the simulations without the
explicit solvent. In contrast, the spatio-temporal correlations
for the cluster-forming type-B particles are able to survive
both in time and space even in the absence of the solvent.
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[22] Nägele G and Baur P 1997 Physica A 245 297
[23] Ripoll M, Mussawisade K, Winkler R G and Gompper G 2004

Europhys. Lett. 68 106
[24] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605–13
[25] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv.

Polym. Sci. 221 1
[26] Likos C N, Lang A, Watzlawek M and Löwen H 2001 Phys.
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