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Abstract
The investigation of phase coexistence in systems with multi-component order parameters in
finite systems is discussed and, as a generic example, Monte Carlo simulations of the
two-dimensional q-state Potts model (q = 30) on L× L square lattices (40 ≤ L ≤ 100) are
presented. It is shown that the microcanonical ensemble is well suited both to find the precise
location of the first-order phase transition and to obtain an accurate estimate for the interfacial
free energy between coexisting ordered and disordered phases. For this purpose, a
microcanonical version of the heat bath algorithm is implemented. The finite size behaviour of
the loop in the curve describing the inverse temperature versus energy density is discussed,
emphasizing that the extrema do not have the meaning of van der Waals-like ‘spinodal points’
separating metastable from unstable states, but rather describe the onset of heterophase states:
droplet/bubble evaporation/condensation transitions. Thus all parts of these loops, including
the parts that correspond to a negative specific heat, describe phase coexistence in full thermal
equilibrium. However, the estimates for the curvature-dependent interface tension of the
droplets and bubbles suffer from unexpected and unexplained large finite size effects which
need further study.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the theory of first-order phase transitions, a quantity
of major interest is the interface tension between phases
in metastable coexistence. In particular, in the study of
nucleation phenomena one faces the problem to determine
the curvature dependence of interface free energy/entropy
between a nucleating droplet or bubble of the emerging
stable phase and its surrounding metastable phase [1–7].
While an exact understanding of metastability in infinite
systems is currently still lacking from the point of view of
rigorous statistical mechanics [8, 9], one can nevertheless
try to obtain valuable information from the study of
phase separation in finite systems [10–12]. As analytical
calculations are quite difficult for any nontrivial Hamiltonian,

one resorts to simulations. For systems like Ising-type spin
models (lattice gases) [13], binary mixtures [14] and simple
fluids [15, 14], which have been studied by simulation, a
convenient scalar order parameter like the total magnetization
or particle number, which is extensive and even additive under
partitions of the total system volume into subvolumes, is
available, and whose density serves to distinguish between the
different phases. Phase coexistence in an equilibrated finite
system is characterized by the identity of the corresponding
conjugate intensive quantity, whose physical meaning is
that of an applied magnetic field or chemical potential.
Thus one can extract the order parameter bulk densities
of the coexisting phases from analysing free energies
obtained from Monte Carlo [10, 11, 15, 14] or molecular
dynamics [16–18] simulations. In particular, armed with an
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additive order parameter, one can determine the equimolar
volumes of the coexisting phases by evaluating the condition
of vanishing adsorption of this order parameter for the
corresponding choice of dividing surface. From such data it
is straightforward to compute the interface tension [15, 14].

However, problems arise in cases for which a scalar
additive order parameter is not available. On the one hand,
the different phases may be characterized by different values
of a multi-component rather than a simple scalar quantity
(e.g. the formal vector of particle numbers of different species
in multi-component fluids). On the other hand, there are
cases where an explicit microscopic expression for an order
parameter is frankly not known like, for example, in the study
of protein folding.

An extensive parameter that is always on hand and whose
density—except for somewhat degenerate cases like hard
spheres—may be utilized to distinguish different coexisting
metastable and stable phases is the energy E. But unlike
in the case of magnetization or particle number, the notion
of an ‘equi-energetic’ surface seems to be completely
counter-intuitive, as attributing zero energy to the interface
is in conflict with the fundamental physical principle that
interfaces are regions with energy densities that are usually
considerably larger than bulk ones. Thus, it is not clear how
a reasonable measure of the corresponding subvolumes of
the phases can be obtained from a microcanonical analysis
based solely on monitoring the energy density. The purpose
of the present paper is to show how this can be done and that
energy may still be a ‘good’ parameter to determine interface
tensions.

2. Review of the grand canonical route to the
interface tension

We start by reviewing the traditional Gibbs dividing surface
approach to the description of phase coexistence of two
phases labelled α and β in a fluid [19, 20, 3, 21, 22].
Suppose first that the fluid has only a single chemical
component. In spite of the fact that the problem of how to
rigorously define the coexistence of a droplet of phase α
in (unstable) equilibrium with the surrounding β phase has
not been solved to date for the case of an infinite system,
it makes sense to consider such a situation in a large but
finite system, in which such an equilibrium may actually be
stabilized by imposing appropriate thermodynamic boundary
conditions. Phase separation into two connected regions is
then usually detected by observing regions of different density
by monitoring the average inhomogeneous density profile
ρ(x). Following Gibbs one may then choose an arbitrary
dividing surface, defined as a levelling surface of zero
thickness normal to the density gradient field, thus splitting
the total volume V into subvolumes:

V = Vα + Vβ . (1)

Once this separation is agreed upon, any other extensive
observable M can be split into homogeneous and so-called
excess contributions as follows. If M assumes homogeneous
equilibrium densities mα,mβ in the phases α, β, we set

M = Mα +Mβ +Mx, (2)

where

Mα ≡ Vαmα, Mβ ≡ Vβmβ . (3)

In a similar way, we construct the excess energy Ex, entropy
Sx, Helmholtz free energy Fx, grand potential �x, particle
number Nx and so on from their homogeneous densities and
the division (1). In a box of volume V = Ld, planar interfaces
will usually form parallel to one pair of limiting walls. The
excess quantities defined above will then generally depend
on the chosen position of the dividing surface with area A =
Ld−1. A notable exception is �x, as can be understood from
the fact that the corresponding homogeneous densities are
the negative pressures of both phases, which in the case of
a planar interface must agree by simple stability arguments.
Thus, for a planar phase separation geometry, the interface
tension

σ = �x/A (4)

is well defined, regardless of any parallel shift of the dividing
surface. In contrast, the adsorption

0 = Nx/A (5)

changes with such a parallel shift of A. In turn, the condition
of vanishing adsorption 0 ≡ 0 then uniquely fixes the position
of A and leads to an intuitively appealing definition of the
‘actual’ position of the interface, known as the equimolar
surface.

While it is straightforward to generalize the definition
of the position of such an equimolar dividing surface from
the planar to that of a spherical or otherwise curved case,
the definition of the corresponding interface tension now
requires considerably more care. For a spherical interface in
d = 3 let us agree to use α to label the phase inside the
spherical volume and β to label the surrounding one outside
the sphere. To stabilize a curved interface, the pressures on
both sides of the interface must necessarily be different. In
classical macroscopic physics this fact is encoded in the
Laplace–Young (LY) equation:

1p = pα − pβ =
2σ
R
, (6)

which was derived from a mechanical analysis of the surface
tension at the beginning of the 19th century. When promoting
the statistical mechanics definition (4) from the planar case
to that of curved interfaces, since 1p 6= 0 for pi = �i/V =:
−ωi, i = α, β, the grand potential densities ωα, ωβ of both
phases will also disagree and so

�x
= �x(R) = Vω − Vα(R)ωα − Vβ(R)ωβ (7)

is bound to pick up a dependence on the radius. Thus, for
a curved interface the interface tension σ = σ(R) appearing
in (6) will itself be R-dependent. At this point, however, it
is crucial to realize that, within the Gibbs dividing surface
approach, the choice of the radius R, being a purely theoretical
construct, is in principle arbitrary, such that the classical
relation (6) can only hold for a distinguished value of R.
Nevertheless, physically observable quantities should not
depend on the position of the artificially introduced dividing

2



J. Phys.: Condens. Matter 24 (2012) 284107 A Tröster and K Binder

surface. Indeed, differentiating the definition of the excess
grand potential in d dimensions with respect to R while
keeping all other variables fixed, which is called a notional
derivative and indicated by a bracket notation [d/dR], one
arrives at the generalized LY equation [19, 20]

1p = (d − 1)
σ (R)

R
+

[
dσ(R)

dR

]
. (8)

The classical LY equation (6) may only be recovered from this
equation for the special choice of radius R = Rs, for which[

dσ(R)
dR

]
R=Rs

≡ 0. (9)

To account for this fact, the corresponding dividing surface is
known as the surface of tension. Thus, Rs is a stationary point
of σ(R) under a notional variation of R. In fact, it is not hard
to see [19, 20] that Rs is indeed a minimum of σ(R), which
can explicitly be deduced from the general form of σ(R) in
two or three dimensions:

σ(R)

σ (Rs)
= 1+


1
2

(
R− Rs

R

)2 R

Rs
, d = 2

1
3

(
R− Rs

R

)2
(Rs + 2R)

Rs
, d = 3,

(10)

according to which σ(R) is universally determined from a
knowledge of Rs and σs ≡ σ(Rs). The difference δ(Rs) :=

Re − Rs between the radius of the equimolar surface Re
and Rs, which has become famous under the name Tolman
length, is known to be of molecular sizes. Of course, in
principle one could also compute physical observables from,
for example, the equimolar interface tension σe ≡ σ(Re) or
any other choice of radius R, since all physical information
is encoded in any such choice. However, the choice Rs is
particularly convenient, as the condition (9) allows us to
condense many formulae to a considerable more compact
and manageable form. To some extent this is also true
for the choice R = Re, but the definition 0e = 0(Re) ≡ 0
explicitly makes use of the particle number N as an extensive
parameter. For a multi-component fluid of τ > 1 different
chemical components, which we may label by an index t =
1, . . . , τ , this complicates manners in a considerable way.
In fact, the particle number N, adsorption 0 and associated
chemical potential µ are then both promoted from scalar
quantities to formal vectors N, Γ, µ, where N = (N1, . . . ,Nτ )
and so on. One now must deal with τ -component averaged
density profiles ρ(x) = (ρ1(x), . . . , ρτ (x)). In general, such
systems have complex phase diagrams, and if we concentrate
on a particular transition, the levelling surfaces of different
density components ρi(x) may yield different equimolar
surfaces for each chosen component, relative to which
the remaining components form inhomogeneous adsorption
layers. In principle, it may still be possible to eliminate
clumsy adsorption terms from formulae to some extent
by an ingenious choice of dividing surface, the so-called
Koenig dividing surface [23]. However, to fulfil its defining
condition, all τ components of the adsorption have to be

balanced simultaneously with the multiple components of
the associated chemical potential, which leads to profound
numerical difficulties in the evaluation of simulation results.

To illustrate these calamities, let us review the practical
steps to calculate the interface tension from Monte Carlo
free energy simulation data for a one-component fluid and
compare them to the expected effort for a multi-component
one. We choose a cubic simulation box of size N = Ld with
periodic boundary conditions. Carrying out grand canonical
Monte Carlo simulations at some fixed temperature T0
chosen somewhat lower than the critical temperature Tc,
one first has to determine the coexistence chemical potential
µ = µ0(T0). Practically, this is done by implementing the
equal-weight rule [24] numerically by performing a histogram
re-weighting [25] to the simulated grand canonical probability
distribution PT0Vµ(N) of particle numbers and extrapolating
the result to the thermodynamic limit L→∞. For a multiple
component fluid, these steps are already quite involved, as
the approximately Gaussian-shaped peaks of PT0Vµ(N) are
defined on a multidimensional space of variables and in the
presence of q possible low temperature phases one has to deal
with q + 1 of them in order to pin down the τ individual
components of the vectorial chemical potential µ to their
coexistence values µ0.

Nevertheless, suppose that this task has been carried out
successfully. In the single-component case, one next needs to
resolve the detailed structure of PT0Vµ0(N) by, for example,
Wang–Landau sampling, eliminating residual inaccuracies by
a weighted Monte Carlo production run. In this way, one
obtains a dimensionless excess free energy density:

− β f̂ (L)(T0, ρ) ≡ (1/V) ln PT0Vµ0(N), (11)

which depends on the scalar density ρ = N/V (we have
dropped a purely T0-dependent normalization part which is
irrelevant for what follows; the usual thermodynamic notation
β0 = 1/kBT0 should not lead to any confusion with the label
β for one of the two phases). At a first-order phase transition,
the finite size potential β0 f̂ (L)(T0, ρ) has a double-well shape
with a flat central plateau, and an analysis of its fine details
reveals several distinct ranges of the total density ρ between
its two minima, for which one may observe phase separation
in planar, cylindrical (in d = 3) and spherical shapes induced
by the imposed periodic boundary conditions. These regions
are also detectable in the derived finite size canonical ‘excess’
chemical potential

µ̂(L)(T0, ρ) =

(
∂ f̂ (L)(T0, ρ)

∂ρ

)
T0

. (12)

From the distorted ‘van der Waals loop’ shape of
µ̂(L)(T0, ρ), one can infer that for small enough ρ̂ the equation
µ(L)(T0, ρ) ≡ µ generally allows for at least three roots
ρ
(L)
α (T0, µ) < ρ(L)(T0, µ) < ρ

(L)
β (T0, µ) corresponding to

two bulk densities ρ(L)α , ρ
(L)
β of coexisting phases α, β at total

density ρ. This allows us to introduce the total dimensionless
grand potential density:

ω(L)(T0, µ) = f̂ (L)(T0, ρ(T0, µ))− µρ
(L)(T0, µ) (13)
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and the grand potential densities:

ω(L)α (T0, µ) = f̂ (L)(T0, ρα(T0, µ))− µρ
(L)
α (T0, µ), (14)

ω
(L)
β (T0, µ) = f̂ (L)(T0, ρβ(T0, µ))− µρ

(L)
β (T0, µ), (15)

from which it is straightforward to compute �x for a given
volume partition V = Vα(R)+ Vβ(R), and thus, using (4), the
notionally R-dependent interface tension σ (L)(R). In detail, Rs

and σ (L)s are found by numerical minimization of σ(R) with
respect to R, while σ (L)e can be calculated from the spherical
equimolar volume determined by the lever rule:

Vα(Re)

V
=

ρ − ρα

ρβ − ρα
,

Vβ(Re)

V
=
ρβ − ρ

ρβ − ρα
, (16)

for Vα(R) = 4πR3/3 in d = 3 and Vα(R) = πR2 in d = 2,
respectively. In passing we note that, since �x(Re) = Fx(Re),
σ
(L)
e is exclusively determined by f̂ (L)(T0, ρ(T0, µ)) (cf [15,

14]).
All this is very fine—however, in a multi-component

setting the numerical effort to carry out these steps
successfully is again forbidding. What is needed is an
intrinsically scalar approach.

3. Microcanonical approach

As mentioned above, a basic extensive scalar quantity that
is always available is the total energy E of the system. It
is by now well known that, while phase transitions are only
well defined in an infinite system in the strict sense, they
can nevertheless be studied conveniently by analysing the
so-called ‘convex intruder’ in the microcanonical entropy
S(E) of a finite version of the system [26, 27]. By its
very definition, such a convex intruder in S(E) gives
rise to a corresponding anomaly of the microcanonical
inverse temperature β(E) and a possibly negative branch
of the accompanying microcanonical specific heat with
quasi-singularities at the intruder boundaries (for a schematic
picture, see figure 1 below). In a finite (or at least in some
sense ‘small’ [26]) system such an observation does not
contradict thermodynamic stability requirements [28]. One
now observes that, up to a sign, the overall appearance of
β(E) is quite similar to that of the excess chemical potential
µ̂(L)(β, ρ) discussed above. Indeed, parallels between the
former constructions and the ones carried below are not
accidental.

Recording the energy probability distribution PT0Vµ(E)
at fixed T0 for different values of µ, we can locate the
coexistence chemical potential µ0 = µ0(T0) by applying
the equal-weight rule [29, 24, 30] to the two separate
approximately Gaussian-shaped peaks, as will be discussed
below for the case of the Potts model. In any case, this
may be feasible even in the case of a multi-component order
parameter, since the domain of PT0Vµ(E) is the scalar quantity
E. For the rest of the simulation, the parameters T0 and µ0
remain fixed. It is then convenient to formally replace the
energy E by a grand canonical version:

E − µ0N→ E (17)

Figure 1. Schematic illustration of a composite entropy with a
convex intruder.

in the same way as one may formally replace the original
Hamiltonian by a grand canonical one in computing the
grand canonical partition function. For our purposes, the
‘background’ homogeneous chemical potential µ0 can thus be
eliminated from the list of thermodynamic variables. With µ0
fixed, we now record the number of states:

g(E,V) ≡ eS(E,V) (18)

with grand canonical energy E in a flat histogram simulation
followed by a weighted Monte Carlo production run. Once
g(E,V) is known, we arrive at the grand canonical partition
function in the form

Z(β,V) =
∑

E

e−βE+S(E,V)
=

∑
e

e−V(βe+s(L)(e)), (19)

where we introduced the energy and entropy densities e =
E/V and s(L)(e) = S(E,V)/V , valid for arbitrary β. Suppose
that, at a particular inverse temperatures β, the sum is
dominated by its largest summand in the limit of large system
size. The corresponding energy density e(β) is determined by
the equation

β ≡

(
∂s(L)(e)

∂e

)
V

∣∣∣∣∣
e=e(L)(β)

= β(L)(e)|e=e(L)(β), (20)

which expresses the equality of inverse canonical temperature
β and microcanonical temperature β(L)(e) for this special
value of e. One may then approximate β�(β,V,µ0) =

− log Z(β,V,µ0) by

βω(L)(β,µ0) ≈ βe(L)(β)− s(L)(e(L)(β)), (21)

i.e. as a Legendre transform. This equation is quite similar to
(13), −s(L)(e) playing the role of f̂ (L), e that of ρ and −β that
of µ. Similar to the strategy employed above for the chemical
potential, for a certain range of inverse temperatures β the
equation β ≡ β(L)(e) has (at least) three different solutions
eα < e < eβ corresponding to the total energy density e and
those of the two coexisting phases α, β. If we now let β
approach this interval around β0, the presence of the convex
intruder in s(L)(e) makes the above discrete saddle point
approximation break down since not one but at least three
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‘saddle points’ are found, which in the non-degenerate case
of three roots correspond to the dimensionless grand potential
densities:

βω(L)(β) = βe− s(L)(e), (22)

βω(L)α (β) = βeα − s(L)(eα), (23)

βω
(L)
β (β) = βeβ − s(L)(eβ). (24)

At this stage, we have reached our goal announced above,
as these quantities, once they are determined, allow us to
compute the excess grand potential and thus the interface
tension σ (L)(R) from formula (7). By minimization of σ (L)(R)
w.r.t. R we obtain the radius of the surface of tension R(L)s and
the corresponding surface tension σ (L)s . A calculation of Re is,
of course, not feasible in this approach.

4. The 2d Potts model

We illustrate our strategy taking the example of the q = 30
nearest-neighbour Potts model in d = 2. The q-state Potts
model [31], whose Hamiltonian on a simple cubic 2d lattice
of N = L2 sites in zero external field is given by

H[{s(x)}] =
∑
〈xy〉

[1− δs(x),s(y)], (25)

where s(x) ∈ {1, . . . , q} is ideally suited for this purpose
for a number of reasons. (i) First of all, for q > 4
the model undergoes a temperature-driven first-order phase
transition. (ii) Regarding this transition, a wealth of rigorous
results [31–35] is available in the literature which can serve
to benchmark our simulation results. For the first-order phase
transition temperature of a bulk system, one has the exact
analytic expression:

1/T0 = β0 = ln(1+
√

q). (26)

In [36, 34] it was reported that, as was expected from general
arguments, the inverse temperature 1/T0(L) = β0(L) at which
the ratio of the two weights of the thermal energy probability
distribution is just q, agrees with the exact bulk value β0 ≡

β0(L =∞) up to exponentially small corrections. Thus, β0(L)
serves as a convenient definition of a finite size transition
temperature. Other rigorous results include the latent heat
per volume [33], the limiting internal energy densities at T0
and the difference in specific heats [32]. Furthermore, the
reduced interface tension (i.e. the interface free energy density
at β−1

0 multiplied by β0) between the disordered and one of
the ordered phases along the square lattice (10) direction was
rigorously determined [35] to be

2σo/d = 4
∞∑

n=0

ln
1+ wn

1− wn
, (27)

where

wn :=

(
√

2 cosh
(n+ 1/2)π2

2v

)−1

(28)

with

v := ln[ 12 (
√
√

q+ 2+
√
√

q− 2)]. (29)

Equally important for us is the fact that there is even a
rigorous calculation of the full anisotropic interface tension
available [37]. However, since these calculations are too
involved to be reproduced here, we content ourselves with
noting that at β0 the resulting anisotropy for q = 30
calculated from the formulae in [37] is vanishingly small. This
happenstance is a very important prerequisite for any attempt
to apply our evaluation strategy for the interface tension,
which rests on a presupposed spherical symmetry of bubbles
and droplets.

(iii) The q-state Potts model’s order parameter is not
scalar, but has dimension q− 1. Since this is a central issue in
the present context, let us briefly review its nuts and bolts.
Guided by physical intuition, a scalar ‘order parameter’ m
could be defined by the following reasoning [31, 29]. Let N(a)

denote the number of spins of a given microstate with value
s(x) = a, where 1 ≤ a ≤ q. Let Nmax := max(N(1), . . . ,N(q)).
Then

M :=
q〈Nmax〉 − N

q− 1
. (30)

Obviously m := M/N is confined to values 0 ≤ m ≤ 1 and
m = 0 for complete disorder, while m = 1 for any perfectly
ordered domain. In the Ising case q= 2, m indeed corresponds
to the modulus of the magnetization density of the system.
Thus, if we break up the system volume into subvolumes Vi
and add up their different Mis, generally M 6=

∑
iMi, i.e. M is

not additive between subsystems.
On the other hand, in [38] Zia and Wallace construct a

full (q − 1)-component order parameter. They introduce q
unit vectors in e(a) ∈ Rq−1, a = 1, . . . , q, q > 1, such that
the following relations are satisfied:

e(a)e(b) =
qδab
− 1

q− 1
. (31)

Any set of such vectors defines a generalized tetrahedron in
Rq−1, the q vectors pointing from the centre to each corner.
Trivially, the vectors e(a) cannot be linearly independent.
Instead, they satisfy the geometrically evident sum rule:∑

a
e(a) = 0. (32)

With the one-to-one correspondence s(x) ⇔ e(s(x)) =: e(x)
understood, one associates a (q − 1)-component order
parameter

M :=
∑
x∈0

e(x) ∈ Rq−1 (33)

with each given microstate, which we will call the
magnetization. In terms of the occupation numbers N(a) of the
Potts spin states

M =
q∑

a=1

N(a)e(a). (34)

If one multiplies (34) with any of the unit vectors e(b), it is
easy to see that

M(b)
:= e(b)M =

qN(b) − N

q− 1
. (35)

5
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Clearly, m(b) := M(b)/N ∈ [−1/(q − 1), 1] agrees with m
as defined in (30) provided N(b) = Nmax. This clarifies the
role of m as well as the low temperature domain structure of
the model. Namely, suppose that N(b) = Nmax. Then, we can
rewrite (34) as

M =
∑
a6=b

(N(b) − N(a))︸ ︷︷ ︸
≥0

(−e(a)). (36)

The q domains D(b) are thus geometrically represented by
convex cones enclosed by the set of vectors {(−e(a)) : a =
1, . . . , q, a 6= b}, and (35) gives the projection of M onto

the average direction
∑

a6=b(−e(a))
(32)
= e(b); the symmetric

group of permutations of q numbers acts as the underlying
symmetry.

At small values of m, several very small fluctuation
‘clusters’ of the same or competing spin values may coexist,
causing the system to jump randomly from one domain
cone to another. On the other hand, the parameter m(b) is
always additive by construction, but does depend on the
chosen direction b in M-space. Only for values of m(b) larger
than a certain threshold do we find agreement of the order
parameters computed from (30) and (35), since then the
direction along which the projection from M to M occurs is
uniquely determined by the value b of the majority occupation
number. A cluster decomposition performed during the course
of a simulation can provide information in analysing these
fluctuations in order parameter topology.

Thus, the parameter (30) is only additive for magnetiza-
tions M1 and M2 both belong to a single common domain
D(b), and thus cannot be used meaningfully as a parameter
in a Gibbs dividing surface construction. On the other hand,
sampling the free energy as a function of the full order
parameter M is out of the question. In other words, we are
exactly in the situation outlined earlier and thus embark on
a microcanonical strategy instead. Well, not quite. Actually,
the situation for the Potts model is not as complicated as
the one outlined in section 1. This is largely due to the fact
that there is no need to determine a coexistence ‘chemical
potential’, which would correspond to an external vectorial
magnetic field. As the different q-spins of the Potts model are
all coupled in the same way, this external field is fixed to be
exactly zero.

5. The microcanonical heat bath algorithm

Any successful design for a Monte Carlo algorithm
devoted to the study of phase separation at phase
transitions of pronounced first-order character must address
the phenomenon of exponentially diverging autocorrelation
times:

τ(L, β) ∼ exp(2βσ∞Ld−1) (37)

accompanying first-order phase transitions which is known
as hyper-critical slowing down [39] (in (37) a d-dimensional
cubic box of volume Ld with periodic boundary conditions is
assumed). A Wang–Landau type of algorithm is capable of
overcoming large entropy or free energy barriers separating

different stable or metastable phases [40] and is, in principle,
straightforward to implement. In its original microcanonical
version, the algorithm directly yields the density of states (or,
for a discrete system, rather the number of states)

g(E) =
∑
ν

δ(Eν − E) (38)

of a system having microstates ν with energies Eν (we are
somewhat casual about the use of the Dirac delta function for
simplicity and we have put kB = 1 for the same reason) with
high precision, which is related to the microcanonical entropy
by S(E) = ln g(E). To control possible residual errors, one
may thus determine an approximate microcanonical density of
states by Wang–Landau simulations and perform subsequent
biased Monte Carlo production runs with statistical weights
based on this approximate density of states. In fact, knowledge
of S(E) conveniently allows us to determine a multitude
of other T-dependent observables at various temperatures
simultaneously with high precision, as is explained in more
detail below.

It remains to construct a suitable move set for a
microcanonical Wang–Landau simulation scheme. Single
q-spin updates are simple to implement and may be a
reasonable choice for Ising systems far from criticality, but are
quite inefficient in exploring the regions of phase space of the
large-q Potts model which are of interest for studying phase
separation, namely those configurations, in which a single
ordered domain of Potts spins s(x) of, say, the value s(x) = q
coexists with a disordered background. Indeed, suppose that,
during the course of the simulation, our random walk arrives
at a particular configuration, in which almost all Potts spins
agree with this condition, while just a few, say s(xi), i =
1, . . . , k, are yet disordered. In such a microstate, chances
are only N−1

× (q − 2)−1 that of the ‘missing’ sites s(xi) is
indeed drawn and its spin s(xi) be assigned the ‘right’ value
q in creating the next trial configuration, thus matching the
surrounding domain.

Within the canonical ensemble, it is well known that
the heat bath algorithm [41, 42] is superior to the standard
Metropolis scheme for high-q Potts models. In detail, let E(µ)

denote the total energy of the system in the microstate µ.
Choose a random site x and let qµ := s(x) denote the value
of the Potts spin variable at this particular site. Furthermore,
let yi, i = 1, . . . , z denote the nearest-neighbour sites of x.
Defining the local energy at site x by

Eq ≡ E(local)(q, x) := −
z∑

i=1

δq,s(yi), (39)

one can split

E(µ) = E(local)(qµ, x)+ E(µ)rest (40)

and define a set of heat bath probabilities:

pq :=
e−βEq∑q−1

n=0 e−βEn
, (41)

which are manifestly independent of the value of the initial
central Potts spin s(x). The canonical heat bath algorithm

6



J. Phys.: Condens. Matter 24 (2012) 284107 A Tröster and K Binder

amounts to choosing a new value qν ∈ {0, . . . , q − 1} for
this spin with probability pqν in every step. It is easy to
see that the resulting algorithm satisfies detailed balance as
well as ergodicity. In terms of generation and acceptance
probabilities, we have g(µ→ ν) =

pqν
N and a(µ→ ν) ≡ 1,

i.e. the stochastic character only enters into the generation of
configurations, which are, once generated, always accepted.

It is straightforward to translate these ideas from the
canonical to the microcanonical setting. To illustrate the
correspondence, let us denote the canonical Boltzmann
weights by

πν :=
e−βE(ν)

Z(β)
. (42)

Then the canonical heat bath probabilities pq can quite
trivially be rewritten as

pqν :=
e−β(Eq+Erest)∑q−1

n=0 e−β(Eq+Erest)
=

πqν∑q−1
n=0 πn

. (43)

Now, to translate the algorithm to the microcanonical
ensemble, we simply replace πν → 1/g(Eν). In terms of the
microcanonical entropy S(E) := ln g(E), we can rewrite the
above probabilities as

pqν =
1/g(Eν)∑q−1

n=0 1/g(En)
=

e−S(Eν )∑q−1
n=0 e−S(En)

. (44)

Once we have determined the microcanonical entropy S(E), it
is in principle straightforward to obtain the free energy as a
function of T and some other (preferable scalar) observable
o = O[{s(x)}], where O[{s(x)}] denotes, for example, the
magnetization m, the projection of the order parameter
m(a) along an arbitrary fixed internal direction a, the size
of the largest geometric or Swendsen–Wang cluster, all
simultaneously computed for different temperatures from the
underlying microstates {s(x)} visited during the course of a
single microcanonical-biased Monte Carlo simulation.

To sketch this procedure, we consider the constrained
microcanonical density of states g(E, o), which is formally
written as

g(E, o) =
∑
{s(x)}

δ(o−O[{s(x)}])δ(E −H[{s(x)}]). (45)

The corresponding (conditional) probability to find the value
o of O[{s(x)}] at total energy E is

P(o|E) =
g(E, o)∑
o′ g(E, o′)

=
g(E, o)

g(E)
∝ h(o,E), (46)

where h(o,E) denotes a two-dimensional histogram recorded
during the course of the simulation. But, according to the
rules of conditional probabilities, this precisely implies that
the canonical probability to find the value o of O[{s(x)}] at
inverse temperature β is

P(o|β) =
∑

E

P(o|E)P(E|β) ∝
∑

E

h(o,E)P(E|β). (47)

To obtain this probability at any given temperature from
a microcanonical Monte Carlo simulation biased by the

predetermined density of states g(E), we thus only need
to re-weight the recorded histograms h(o,E) by the known
function P(E|β). The desired constrained free energy density:

f (β, o) = −
1

Nβ
ln
∑
{s(x)}

δ(o−O[{s(x)}])e−βH[{s(x)}] (48)

can be recast in a similar way, since∑
{s(x)}

δ(o−O[{s(x)}])e−βH[{s(x)}]

=

∑
E

e−βE
∑
{s(x)}

δ(o−O[{s(x)}])δ(E −H[{s(x)}])

= Z(β)
∑

E

P(E|β)g(E, o) = Z(β)P(o|β), (49)

and is thus (up to an unimportant constant) given by

f (β, o) = −
1

Nβ
ln P(o|β). (50)

6. Microcanonical results

We have conducted a series of Landau–Wang simulations
followed by weighted Monte Carlo production runs of
a 2d square lattice Potts model of size N = L2 to
determine the density of states g(L)(E) and thus the entropy
density s(L)(e) = N−1 ln g(L)(E/N) and the microcanonical
temperature β(L)(e) = ds(L)(e)/de. Since we are interested
in the development of phase separation in small to finite
system sizes, we carried out simulations for linear sizes L =
40, 50, . . . , 100. For the q = 10 Potts model, the resulting
signs of phase separation were not observed to be very
pronounced. However, increasing q to q = 30 clearly revealed
the expected convex intruder. But even then, from merely
looking at the entropy density s(L)(e) it is virtually impossible
to detect the delicate features appearing at finite system sizes
that we are interested in (cf figure 4).

However, numerically taking the derivative of s(L)(e)
with respect to e, we obtain the microcanonical inverse
temperature β(L)(e) which provides a detailed view of
the delicate substructures hidden in s(L)(e) (cf figure 5).
Inspection of the resulting curves gives a first hint on the
quality of our simulation data, as one should take into account
that numerically differentiating potentially noisy data should
greatly magnify any statistical irregularities and errors in such
data.

To resolve the convex intruder in the original entropy data
s(L)(e), it turns out to be convenient to consider the auxiliary
dimensionless function [43]

3(L)(E, β)/N = λ(L)(e, β) := βe− s(L)(e). (51)

Of course, 3(L)(e, β) coincides up to a constant with
the logarithm of the canonical energy probability function
P(L)(E|β) at inverse temperature β. However, for our present
purposes we may regard 3(L) as a finite size ‘Landau
potential’, i.e. an incomplete Legendre transform of the
microcanonical entropy, and compare its features to those of
canonical Landau potentials (cf [44, 45]). Thus, let us tune

7



J. Phys.: Condens. Matter 24 (2012) 284107 A Tröster and K Binder

the parameter β to values near the bulk inverse transition
temperature β0 and analyse the resulting shape of λ(L)(e, β)
as a function of e. As expected, for such temperatures
λ(L)(e, β) resembles a somewhat distorted double-well shape
(cf figure 6) with two pronounced minima at energy densities
ec = Ec/N and ev = Ev/N (the subscripts ‘c’ and ‘v’
correspond to ‘condensed’ and ‘vapour’) separated by a large
‘Landau free energy barrier’ with a ‘flat’ central plateau of
practically constant and vanishing, or at least quite small,
slope. We identify ec and ev with the equilibrium energy
densities of the bulk ‘condensed’ (ordered) and ‘vapour’
(disordered) phases, while the thermodynamics of their
possible coexistence configurations is encoded in the features
of the potential well between them. The flat central region
of the potential, which signals phase-separated configurations
with a slab-like interface geometry [44], is, of course, also
reflected in the central linear section of β(L)(e) at the level of
β(L)(e) ≈ β0 (cf figure 5).

Apparently, figure 6 also illustrates the dilemma of
defining a ‘proper’ finite size transition temperature for a
system with a highly degenerate low energy domain structure.
On the one hand, one could naively try to adjust β to
such a value that both minima of λ(L)(e, β) are of equal
height. This choice precisely corresponds to the ‘equal height
rule’ for P(L)(E|T). However, at such a temperature, one
observes a noticeable slope in the central ‘flat region’ of
λ(L)(e, β), which signals that phase coexistence is not well
established. In a plot of the quasi-Gaussian function P(L)(E|T)
this and other delicate features outside the peak regions
do not give themselves away to the naked eye, since they
are exponentially suppressed. On the other hand, choosing
the inverse temperature β to agree with the ratio-of-weights
temperature with L → ∞, which, as discussed above,
converges exponentially fast to the exactly known inverse bulk
transition temperature [33]

β0 = ln(1+
√

q)
(q=30)
= 1.868 29, (52)

the flat central region of λ(L)(e, β0) is found within numerical
precision to be horizontal, i.e. with vanishing slope, but now
one notices a pronounced difference in height between the
two minima at energy densities ec, ev, which diminishes with
growing system size. Numerically, this height difference is
seen to approach

λ(L)(ev, β0)− λ
(L)(ec, β0) ≈ N−1 ln q. (53)

Physically we can interpret these findings as follows.
Suppose that precisely at the inverse transition temperature
β0 the system initially starts out in an ordered equilibrium
state. Then, the probability to generate a fluctuation yielding a
mixed state, where half of the available volume is turned into
a disordered state separated from the ordered part by a straight
interfacial line, should differ from the ‘inverse’ probability
to produce the same state starting from the disordered state
by a factor of q, since in the latter case q possible ordered
states are available, while only one disordered configuration
can be formed in the former one. Taking the logarithm of
the fraction of these probabilities then produces (53). This

completes the picture, since, as could have been anticipated
from the practically perfect Gaussian nature of the two
peaks in P(E|1/β0), the ratio-of-weights and ratio-of-heights
temperatures are found to numerically agree for practical
purposes. Without going into the details we also note that the
equal height temperature can also be shown to coincide with
the inverse temperature found by imposing a microcanonical
Maxwell construction, i.e. choosing the value of β for which
suitable defined areas obtained from integrating β(E) between
Ec and Ev coincide [46].

At this point, a few additional comments concerning
the true nature of the above ‘Landau potential’, the non-
monotonic behaviour of β(L)(e) and the resulting appearance
of branches of ‘negative specific heat’ are in order. In fact,
in the thermodynamic limit, β(e) = limL→∞ β

(L)(e) indeed
decreases with e up to e = ec, stays constant at β(e) =
β0 up to e = ev and then decreases further, as it should
be: no trace of any metastable states (or even ‘unstable
states’) is left in the β(e) curve. Of course, this must be
so: apart from statistical errors, Monte Carlo simulations
yield the equilibrium statistical mechanics of any such
model Hamiltonian exactly, and metastable or unstable curves
cannot be the output of exact calculations in the framework
of equilibrium statistical mechanics. So for L → ∞ the
minimum position e(L)min of β(L)(e) moves towards ec (and

its depth vanishes); similarly, the maximum position e(L)max
moves towards ev (and its height, relative to β0, vanishes
as well). It is interesting to recall the physical significance
of these extrema: for ec ≤ e ≤ e(L)min the finite system is
still homogeneous and the minimum is the signature of the
first appearance of a ‘bubble’ of the disordered phase within
the otherwise homogeneously ordered phase (cf figure 3),
while the maximum is the signature of the first appearance
of a ‘droplet’ of the ordered phase within the otherwise
homogeneous disordered phase (figure 2). As long as such
‘heterophase fluctuations’ are absent, finite size effects are
small in the curve β(L)(e) shown in figure 5; the strong finite
size effects in between e(L)min and e(L)max are due to interfacial
contributions to the ‘Landau potential’ (figure 6), which are
of relative order 1/L in figure 6. Thus, the branch of negative
‘specific heat’ resulting from figure 5 in the region where
β(L)(e) is an increasing function of e is not at all an unphysical
result, but simply reflects the importance of interfacial free
energies in finite microcanonical systems. In addition, our
use of the nomenclature ‘Landau potential’ merely refers
to the incomplete character of the Legendre transform (51),
but should not mislead the reader to confuse this potential
with ‘Landau potentials’ of similar appearance as they
are constructed in mean-field theory. In fact, our potential
λ(L)(e, β), whose information content is, after all, identical
to that of the full microcanonical entropy density s(L)(e),
describes the thermodynamics of two-phase coexistence in
an inhomogeneous finite system without any approximation,
and thus is conceptually quite different from a mean-field
potential, which is constructed under the implicit constraint
that the system is in a homogeneous phase throughout,
whereas such states are thermodynamically unstable in
reality.
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Figure 2. q = 30 Potts model in two dimensions with periodic
boundary conditions at L = 100: snapshot of typical ‘droplet’
configuration at scalar order parameter value m ≈ 0.06.

Figure 3. q = 30 Potts model in two dimensions with periodic
boundary conditions at L = 80: snapshot of typical ‘bubble’
configuration at scalar order parameter value m ≈ 0.87.

We can gain confidence in the overall correctness and
general quality of our data by comparing the exact value
β0σ = 0.292 77 of the reduced q= 30 planar interface tension
as calculated from (27) to the one obtained by a finite size
extrapolation of our data. In fact, as there are two minima of
λ(L)(e, β0) at energy densities e(L)c , e(L)v whose values differ
by ∼ln 30/N as discussed above, there are two corresponding
sets of data {λ(L)(e(L)max, β0)−λ

(L)(e(L)c , β0)}, {λ
(L)(e(L)max, β0)−

λ(L)(e(L)v , β0)}, corresponding to the difference between the

Figure 4. Microcanonical entropy densities s(L)(e) for the q = 30
Potts model in d = 2 dimensions with periodic boundary conditions
for various (but indistinguishable) system sizes.

Figure 5. β(L)(e) with energy density ranges of droplets and
bubbles marked; the horizontal line displays β0 ≈ 0.868 29.

central barrier {λ(L)(e(L)max, β0)} taken at some energy density
e(L)max ≈ (e(L)c + e(L)v )/2 and the left and right minima
{λ(L)(e(L)c , β0)}, {λ(L)(e

(L)
v , β0)}, respectively (see figure 6).

A standard finite size scaling extrapolation of these data to
L→∞ in the form

β0σc,v(L) = β0σc,v(∞)+ const/L, (54)

which is displayed in figure 7, gives the two values
β0σc(∞) = 0.292 168 and β0σv(∞) = 0.291 441 for the left
and right difference, respectively, whose average β0(σc(∞)+

σv(∞))/2 = 0.291 805 differs by less than 0.4% from the
exact value β0σ∞ = 0.292 76 computed from formula (27).

From (4), (9) and (22)–(24) it is now straightforward
to compute σ (L)(Rs) and Rs for any prescribed total energy
density e. Note, however, that these formulae are only valid
for a spherical phase separation geometry. The corresponding
approximate density regions within which one may expect
states which, on average, resemble spherical droplets and
bubbles to dominate in the sampled microscopic system
configurations may be found by visually inspecting the slopes
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Figure 6. λ(L)(e, β0) with energy density ranges of droplets and
bubbles marked.

Figure 7. Finite size extrapolation (54) of reduced interface tension
for planar interface.

of λ(L)(e, β0) and β(L)(e) in figures 5 and 6, respectively,
and cross-checking these ranges by examining corresponding
snapshots taken during the course of the simulation. The
total energy density regions for which we may expect the
appearance of spherical droplets and bubbles are indicated in
colour in figures 5 and 6.

Our results for the interface tension σ (L)(Rs) at the
surface of tension are gathered in figures 8 and 9. In
correctly interpreting these results, it is quite important to
understand that they have been obtained from (4), (9) and
(22)–(24) under the assumption of spherical geometry. The
corresponding ranges of inverse radii for which one can expect
this assumption to be valid have been marked in colour
in these figures. Outside of these ranges, the data do not
accurately describe a physical interface tension, but merely
serve as a guide to the eye.

Looking at these results, one instantly notices the large
finite size effects, manifesting themselves in the considerable
offsets between the consecutive considered L values, which
strikingly fail to collapse onto a common ‘master curve’.
Currently, we find it difficult to understand the origin of
this behaviour. For the planar interface tension, which is

Figure 8. Normalized interface tension σ(Rs)/σ∞ of droplets. The
ranges of radii for which the curves actually describe spherical
droplets are marked in colour.

Figure 9. Normalized interface tension σ(Rs)/σ∞ of bubbles. The
ranges of radii for which the curves actually describe spherical
bubbles are marked in colour.

described by our data quite accurately as discussed above,
strong but regular finite size effects are indeed expected. They
may be heuristically understood in terms of the L-dependent
truncation of the wavevector spectrum of capillary waves
running parallel to the interface. However, for a spherical
bubble or droplet, identical radii R should yield identical
values of the interface tension, once the surrounding box
has been chosen large enough to kill finite correlation length
effects, which are, however, expected to be vanishingly small
for a strong first-order phase transition.

At the moment we do not have a clear explanation of
these strong finite size effects which prevents us from a further
meaningful analysis of the curvature dependence of σ(R). In
similar approaches to study the interface tension of curved
interfaces in a truncated 3d Lennard-Jones fluid [47] and a
3d fcc lattice gas model [48], we also find certain finite size
effects, but they are much less pronounced than those of
the present case. However, we have also observed finite size
effects of comparable size in computing the interface tension
from canonical simulations of a 2d Ising model. Thus, we
believe that the large magnitude of the finite size effects has
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nothing to do with our microcanonical approach, but is rather
related to the fact that both systems are two-dimensional. With
growing linear system size L, the gaps between consecutive
σ (L)(Rs) curves recorded in figures 8 and 9 obviously
diminish, so these curves are expected to eventually collapse
onto a single ‘master curve’ for large L and Rs. On the other
hand, for L ≥ 110 we report that our Monte Carlo production
runs failed to be sufficiently ergodic, indicating large residual
entropic barriers with respect to ‘hidden’ observables beyond
our one-dimensional energy-based sampling, while at the
same time the barriers observed in 0(L)(E) had already
risen to a value of 60. To study much larger systems
would thus require us to overcome these additional hidden
barriers, presumably by employing much more elaborate
sampling techniques than the ones we are using here (see,
e.g., [49] or [50] for promising approaches). However, in
our current work we are not interested in exceedingly large
droplet sizes and their accompanying huge entropy and
free energy barriers. Rather, our intention is to focus on
the behaviour of droplets and bubbles of moderate size, as
this is the only regime that is of practical relevance for
nucleation-related questions. In any case, the origin and nature
of the encountered finite size effects must currently be left to
further study.

7. Conclusions

In this paper, we have addressed the investigation of
phase coexistence of systems with a more-component
parameter in the context of computer simulations, which
necessarily involve systems of finite size. Such simulations
of phase coexistence often are done with the motivation
to extract information on the interfacial tension of flat
and curved interfaces. While for systems with a scalar
(i.e. one-component) order parameter this problem is
normally considered in the grand canonical and canonical
ensemble of statistical mechanics, we have given a concise
discussion of this approach to show that its extension to
the multi-component case is formally possible but practically
unfeasible. We then have presented, as an alternative, a
microcanonical approach based on the number of states
g(E,V) of energy E for a system having a finite volume V .
In the entropy versus energy curve S(E) for the finite system
there is a convex intruder (figure 1), and the idea we follow
in the present paper is to carefully analyse this intruder as
a function of system size, in order to extract information
on interfacial tensions. We exemplify our approach for the
two-dimensional q-state Potts model with a large number
of states (q = 30), proposing also an extension of the heat
bath algorithm from the canonical to the microcanonical
ensemble. From these simulations we obtain very precise
information on S(E) and also an effective potential λ(L)(e, β0)
per lattice site, e being the energy density and β0 the
inverse temperature where in the thermodynamic limit (V =
L2
→ ∞) the first-order transition from the ordered phase

to the disordered phase occurs (figure 6). Also the derivative
β(L)(e) = dλ(L)(e)/de is obtained with meaningful accuracy
(figure 5). We have shown that the loop in such β(L)(e) versus

e curves has nothing to do with the ‘van der Waals-like’
loop of mean-field theories: in the latter, such loops describe
a path of homogeneous states connecting the two phases
between which the transition occurs; in reality, our loops
(figure 5) reflect two-phase coexistence in finite systems, all
parts of the loop describing full stable thermal equilibrium;
any interpretation in terms of metastable or unstable states
would be completely misleading. There is nothing mysterious
about the ‘negative specific heat’ that often is attributed to
such loops—the whole loop just reflects interfacial effects,
just as the ‘hump’ in between the two minima of the ‘Landau
potential’ in figure 6; all these features disappear proportional
to 1/L in the limit L → ∞, and the correct horizontal
parts in between ec and ev remain, as it should be. Thus,
one should not be misled by mean-field concepts when
discussing first-order phase transitions in finite system in the
microcanonical ensemble.

We have found that in the flat region in the centre of
figure 6 the data allow an accurate estimation of the interfacial
tension of flat interfaces between ordered and disordered
phase (figure 7), although also in this case finite size effects
are clearly rather pronounced, and an extrapolation to L→∞
is mandatory. However, the analysis of the ascending parts
of λ(L)(e, β0) in figure 6 in terms of the radius-dependent
interface tension of droplets (figure 8) and bubbles (figure 9)
is more subtle: again huge finite size effects occur and it
is not possible at fixed radius Rs to extrapolate to L→ ∞,
because due to the droplet (bubble) evaporation/condensation
transitions droplets at fixed radius Rs are only stable in a rather
restricted range of L. While naively one could expect that
different choices of L yield mutually compatible results for
σ(Rs), as approximately happens for one-component systems
in d = 3 dimensions, this is not the case here. Of course,
our analysis does not explicitly consider the fact that at a
given value of e and the corresponding average value of β
(figure 5) in the two-phase coexistence region at a given value
of L the droplet (or bubble) is strongly fluctuating both with
respect to its size and its shape (figures 2 and 3). We assume
the shape of the droplet or bubble to be spherical, otherwise
the information recorded does not suffice to extract σ(Rs).
Future work along such lines must analyse this problem
of droplet (bubble) fluctuations more closely, possibly by
recording additional observables related to the droplet or
bubble, to allow estimation of σ(Rs) within reasonable error
limits. In fact, in d = 3 the fluctuations are found to be indeed
much less pronounced and—at last in the one-component
case—meaningful results for σ(R)s are accessible [47, 48].
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[45] Tröster A 2007 Phys. Rev. B 76 012402
[46] Janke W 1998 Nucl. Phys. B 63A-C 631
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