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We have investigated the effect of a disordered porous matrix on the cluster microphase formation of a two
dimensional system where fluid particles interact via competing interactions. To this end we have performed
extensive Monte Carlo simulations and have systematically varied the densities of the fluid and of the matrix
as well as the interaction between the matrix particles and between the matrix and fluid particles. Our results
provide evidence that the matrix does have a distinct effect on the microphase formation of the fluid particles:
as long as the matrix particles interact both among themselves as well as with the fluid particles via a simple
hard sphere potential, they essentially reduce the available space, in which the fluid particles form a cluster
microphase. On the other hand, if we turn on a long-range tail in the matrix-matrix and in the matrix-fluid
interactions, the matrix particles become nucleation centers for the clusters formed by the fluid particles.

Key words: soft matter, porous media, microphase formation, static structure, dynamic properties

PACS: 82.70.Dd, 46.65.+g, 47.54.Bd, 61.20.Ja

1. Introduction

In recent years, systems with so-called competing interactions have attracted considerable inter-
est in the scientific community. In such systems, the (effective) potential Φ(r) between two particles
that are separated by a distance r is given by a strongly repulsive core region and an adjacent
tail which is characterized by interparticle interactions operating on different length scales: it has
an attractive component at short distances and a repulsive component at intermediate distances,
eventually tending to zero for r → ∞. In the past, experimental investigations [1–5] on such sys-
tems have been complemented by thorough theoretical studies [6–17], most of which have focused
on a two dimensional case.

The most remarkable feature of such systems is their capability of self-organizing at sufficiently
low temperatures – despite a spherically symmetric potential – into so-called microphases, i.e.,
highly inhomogeneous, ordered patterns. In two dimensions, on which the present contribution
will focus, as the density increases, the following morphologies are reported: clusters, stripes and
bubbles (or inverse clusters). The aforementioned theoretical investigations devoted to the two
dimensional case [6–13, 17] have also unveiled other interesting and surprising features of these
systems, related to the phase behaviour and to the properties of their disordered phases. However,
since these aspects are of less relevance to the present contribution we refer the reader to these
references for more details.

In the present contribution we investigate the following scenario: we consider a disordered
matrix, generated by a frozen (quenched) equilibrium configuration of matrix particles and immerse
fluid particles (annealed component) into this configurations that interact via potentials operating
on different length scales. Using Monte Carlo (MC) simulations we study the effect of the matrix on
the microphase formation scenario of the fluid particles, varying the fluid and the matrix densities
as well as the fluid-matrix and the matrix-matrix interactions. In these investigations we focus on a
region in phase space, where the equilibrated fluid forms clusters, i.e., we concentrate on sufficiently
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low temperatures and on rather low fluid densities, ρf . In order to generate such systems we have
used the quenched-annealed concept (see, e.g., [18, 19] and references therein): in a first step, we
have generated an equilibrium configuration of the matrix particles in a MC simulations at a desired
matrix density ρm. Keeping the positions of the matrix particles fixed we have then immersed a fluid
of a density ρf into the system. Using extensive MC simulations we have evaluated, via suitable
averaging processes (see, e.g., [18, 19]), the information on the static structure of the fluid and
on the mobility of the fluid particles. This information provides us, in combination with a visual
inspection of the snapshots, with information on the microphase formation of the fluid particles
under the external field of the matrix particles.

We summarize our observations as follows: both the densities ρf and ρm as well as the type of
interaction between fluid-matrix and matrix-matrix particles have a distinct effect on the observed
microphase formation scenarios of the fluid particles: at small matrix densities, the cluster formation
is essentially unaffected by the presence of the matrix particles. However, as ρm increases, the
interparticle potentials both between the fluid and the matrix as well as between the matrix
particles becomes relevant: (i) hard sphere matrix particles can foster or suppress microphase
formation, depending on whether they leave sufficient space for the fluid particles to self-assemble
in clusters or not; (ii) on the other hand, if the fluid-matrix interaction is essentially of the same
type as the fluid-fluid interaction, then we observe that the matrix particles act as nucleation sites
for the clusters formed by the fluid particles.

The paper is organized as follows: in the subsequent section we present our model system and
summarize the details concerning the MC simulations. In section 3 we discuss our results and close
the paper with concluding remarks.

2. Model and theoretical approach

As in our previous investigation [17], the fluid particles (index ‘f’) interact via a spherically
symmetric potential Φff(r) = ΦIR(r), originally proposed in this parametrization by Imperio and
Reatto (IR) [6]; it is given by

ΦIR(r) =
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(2.1)

σ is the diameter of the impenetrable hard-core region, ǫa (ǫr) and Ra (Rr) represent the strength
and the range of the attractive (repulsive) contributions to the potential tail of ΦIR(r) for r > σ,
respectively. Throughout we have used ǫa = ǫr and Ra = σ and Rr = 2σ. Further we introduce
the temperature T and the fluid and matrix (area) densities ρf and ρm, respectively. Further we
will use reduced units, i.e., r∗ = r/σ, k∗ = kσ, and ρ∗ = ρσ2; for the temperature T we have
used the arbitrary temperature scale introduced in [6], namely that for Rr/Ra = 2 and ǫr/ǫa = 1,
Φ(σ)/kBT = −1. For simplicity we will drop henceforward the asterisk.

For the interactions between the matrix particles (index ‘m’), Φmm(r), and the cross interaction
between fluid and matrix particles, Φfm(r), we have used either a simple hard (HS) sphere potential,
ΦHS(r) (with a HS diameter σ) or the IR potential, specified in equation (2.1). In this way we are
able to study the effect of the matrix on the microphase separation scenario of the fluid particles,
including thereby both simple excluded volume effects [i.e., when Φfm(r) = ΦHS(r)] and energetic
effects [i.e., when Φfm(r) = ΦIR(r)]. To be more specific, the fluid particles always interact via
ΦIR(r); for the fluid-matrix and the matrix-matrix interactions we have considered the following
three combinations (cases 1 to 3):

• case 1: Φfm(r) = ΦHS(r) and Φmm(r) = ΦHS(r);

• case 2: Φfm(r) = ΦIR(r) and Φmm(r) = ΦHS(r);

• case 3: Φfm(r) = ΦIR(r) and Φmm(r) = ΦIR(r).
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The range of the densities ρf and ρm has been restricted to smaller values below 0.2 and,
throughout, temperature was set to T = 0.5, corresponding to the region in phase space where
cluster formation is expected to occur for the pure fluid (cf. figure 4 in [17]). In figure 1 we have
specified in the (ρf , ρm)-plane those systems that we have investigated in this contribution: for
state points located along the path A, ρf is kept fixed to a value of 0.2, while ρm varies from 0 up
to 0.1; along the path B, the total density, ρt = ρf + ρm, is kept fixed to a value of 0.2.
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Figure 1. (color online) Symbols in the (ρf , ρm)-plane represent state points that have been
investigated in this contribution. Along path A, the fluid density is fixed to ρf = 0.2, while the
matrix density ρm varies from 0 to 0.1. Along path B, the total density, ρt = ρf + ρm, is kept
fixed to ρt = 0.2: ρm increases from 0 to 0.1, i.e. ρf decreases from 0.2 to 0.1.

System properties have been investigated via standard NVT MC simulations. Nf fluid and
Nm matrix particles have been considered in a square box, using periodic boundary conditions.
Depending on the total density, from 2 000 to 6 000 particles have been considered. Computational
speed-up was achieved by refined techniques described more in detail in subsection 2.3 of [17]. The
potential (2.1) was truncated at rcut = 17.2, for the maximum displacement we used throughout
a value of 0.6. Matrix configurations were created in simulation runs of an equilibrated system
of matrix particles at a density ρm. At several instances, the simulation has been halted and the
positions of the particles were recorded; thereby different but equivalent matrix configurations
were produced. Simulations have been extended over 1 000 000 MC sweeps. For a given state
point, characterized by ρf and ρm, observables were obtained in a two-step averaging procedure:
in a first step, an average was taken over the degrees of freedom of the fluid particles for a given
matrix configuration (involving 10 000 independent particle configurations); in a second step, these
results were averaged over five independent matrix configurations.

3. Results

We discuss the results obtained for our system along the following lines: after a qualitative

visual inspection of the selected representative snapshots obtained from MC simulations, we will
analyse these findings on a more quantitative level by studying the pair structure and the mean
square displacement.

3.1. Snapshots

In figure 2 we show selected representative snapshots for systems located in the (ρf , ρm)-plane
along path A, specified in figure 1, i.e. starting with the pure fluid of density ρf = 0.2 (i.e., ρm = 0)
and – while keeping ρf fixed – increasing continuously the matrix density ρm from 0 to 0.1. We
recall that – according to the phase diagram depicted in figure 4 of [17] – for this density-range and
for the assumed temperature, the matrix particles do not form clusters. In the top panel of figure 2
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case 1

case 2

case 3

Figure 2. (color online) Top panel: snapshot of an equilibrated fluid at ρf = 0.2. Other panels:
selected, representative snapshots of systems located in the (ρf , ρm)-plane along path A, spe-
cified in figure 1. The three rows correspond to cases 1 to 3, as specified in the text, the two
columns correspond to a matrix density ρm = 0.035 (left column) and ρm = 0.1 (right column),
respectively. Light (yellow) particles – fluid particles, dark (blue) particles – matrix particles.
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case 1

case 2

case 3

Figure 3. (color online) Top panel: snapshot of an equilibrated fluid at ρf = 0.2. Other panels:
selected, representative snapshots of systems located in the (ρf , ρm)-plane along path B, specified
in figure 1. The three rows correspond to cases 1 to 3, as specified in the text, the two columns
correspond to a matrix density ρm = 0.035, i.e., ρf = 0.165 (left column) and ρm = 0.1, i.e.,
ρf = 0.1 (right column), respectively. Light (yellow) particles – fluid particles, dark (blue)
particles – matrix particles.
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a typical equilibrium configuration of the fluid (i.e., ρm = 0) is depicted. We start the discussion
of the snapshots with three panels of the left column where we consider a matrix at density
ρm = 0.035. As we now immerse the fluid into the quenched matrix configuration we observe only
a weak effect of the immobile matrix particles on the formation of clusters by the fluid particles:
from a qualitative visual inspection of the snapshots we learn that the number of clusters as well
as their size is essentially the same for three different interaction scenarios considered in cases 1 to
3. We only notice that for case 1, the essentially inert matrix particles are located predominantly
outside the clusters, while in case 3, i.e. when both types of particles interact via IR potentials,
the matrix particles have become part of the clusters. This means that in this case the matrix
particles act as nucleation centers for the clusters formed by the fluid particles. We now repeat this
experiment at a higher matrix density, i.e. at ρm = 0.1. Now the matrix particles do have a distinct
effect on the cluster formation of the fluid particles. In case 1 the rather compact (i.e., close-to-
spheric) clusters of the fluid particles are formed nearly exclusively in those regions which have
been left void by the matrix particles. As we proceed to case 2, i.e. as we switch on an IR-tail in
the matrix-fluid particle interaction, the situation changes drastically: due to a rather high matrix
density, the clusters are forced to arrange predominantly ‘around’ the matrix particles and with
respect to case 1, the clusters have grown considerably in size and tend to have elongated shapes.
Finally, in case 3 where all interactions are of the IR type, the matrix particles are fully included
in the clusters formed by the fluid particles; in addition, the clusters have increased considerably
in size compared to the pure fluid (cf. top panel of figure 2).

We now perform a similar inspection of simulation snapshots for systems located in the (ρf , ρm)-
plane along path B specified in figure 1; results are depicted in figure 3. Now the total density,
ρt = ρf + ρm, is kept fixed and we increase ρm from 0 to 0.1, i.e., we decrease ρf from 0.2 to 0.1.
Again, along this path ρm 6 0.1, i.e. the matrix particles are not capable of forming clusters at
this temperature. Similar to the case of systems located along path A, we start in the top panel of
figure 3 with a typical equilibrium configuration of the fluid (i.e., ρm = 0 and hence ρf = 0.2). For
the snapshots of the left column we have chosen ρm = 0.035 and hence ρf = 0.165. As we immerse
the fluid particles into the matrix formed by HS particles (case 1), we observe that the clusters
formed by the fluid particles populate preferentially the space left void by the matrix particles,
including in a few cases the essentially inert matrix particles, if imposed by space requirements. As
we now turn on the IR-tail first in the fluid-matrix and then in the matrix-matrix interactions, the
matrix particles become nucleation centers of the emerging clusters formed by the fluid particles. In
particular in case 3, where the matrix particles also interact via an IR interaction, the clusters are
formed both by the fluid and the matrix particles, i.e., we observe a microphase which essentially
corresponds to the pure fluid case (see top panel). As we repeat a similar gedanken-experiment at
ρm = 0.1 (and hence ρf = 0.1), we observe the following microphase formation scenario: in case 1,
where the matrix particles are simple HS, the fluid particles do form clusters; at first sight this is
quite astonishing, since – according to the phase diagram depicted in figure 4 of [17] – at a fluid
of density ρf = 0.1 and at the temperature considered in this contribution, a pronounced cluster
formation is rather unlikely. However, the rather elevated matrix density essentially reduces the
available space so that the effective fluid density is larger than the nominal fluid density ρf = 0.1,
forcing thereby the fluid particles to form clusters. As we proceed to case 2, i.e., as we switch on
the IR-tail in the fluid-matrix interaction, microphase formation is strongly suppressed: obviously,
under the effect of the external potential exerted by the matrix particles, the fluid particles are
not capable of forming clusters. Finally, in case 3 we return to a pronounced cluster-microphase
formation where the matrix particles represent nucleation centers for the fluid particles.

3.2. Static structure factors

We now examine our data on a more quantitative level and start to discuss the results obtained
for the static structure factor, Sff(k), providing information on the correlations between the fluid
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particles. Sff(k) has been calculated during the simulation run according to the following expression

Sff(k) =
1

Nf

〈ρf(k) ρf(−k)〉 with ρf(k) =

Nf
∑

j=1

exp(ik · rj). (3.1)

The rj are the positions of the fluid particles and the vectors k are compatible with the square
geometry of the simulation box (see, e.g. [20]). As a consequence, in the low-k regime the number
of k-vectors available is smaller, the structure factors are not as smooth as for larger k-values.
Here 〈· · ·〉 denotes the thermal average over the degrees of freedom of the fluid particles at a given
matrix configuration while · · · stands for the average over different but equivalent matrix
configurations.
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Figure 4. Fluid-fluid static structure factor, Sff(k) as a function of k for systems located in
the (ρf , ρm)-plane along path A (left column) and along path B (right column), as specified
in figure 1. The three rows correspond to cases 1 to 3, as specified in the text. Different line
symbols correspond to different values of ρm as labeled. The insets show enlarged views of the
low-k range.

Results for Sff(k) are depicted in figure 4: in the left (right) column we display the static
structure factor for systems located in the (ρf , ρm)-plane along path A (path B), respectively, as
defined in figure 1, considering the three different sets of interactions specified in section 2. For
reference, the static structure factor for the pure fluid (ρf = 0.2 and ρm = 0) is shown in all panels.

All structure factors display the same two characteristic features: they have a rather small
peak at k ∼ 6.2, denoting the interparticle correlations. They show a pronounced first peak at
k ∼ 0.6, corresponding to the intercluster correlations. These two k-values provide some rough
estimate that the average interparticle distances are by a factor of ten smaller than the average
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intercluster distances. As we increase the matrix density ρm, we observe throughout a distinct
decrease in the height of the first peak, while the ρm-dependence of the height of the second peak
is rather weak. With respect to the different interaction scenarios (i.e., cases 1 to 3) we observe
distinct differences in how the height of the first peak decreases as ρm is increased: in case 1, where
the matrix particles are essentially inert hard sphere particles, the decay in the peak height is
rather slow with increasing ρm and thus even at the highest ρm-value investigated, the intercluster
correlations are still quite pronounced. As we turn on the tail in the matrix-matrix interactions
(case 2) and, finally, in the fluid-matrix interactions (case 3), the height of the first peak decreases
much faster as ρm increases, reflecting a rapid decrease in the correlations between clusters due
to the presence of matrix particles. As we now proceed to systems located in the (ρf , ρm)-plane
along path B, we observe the following scenario. The tendencies in the decay of the first peak
with increasing ρm (and, consequently, with decreasing ρf), while we also proceed from case 1 to
3, are similar to the ones reported for path A. Furthermore we observe that only for case 1 the
positions of the first peak shift to lower k-values, as ρm increases, indicating an increase in the
intercluster distance. We interpret these observations as follows: in case 1 (pure HS matrix), the
fluid particles, interacting via IR potentials, can form well-defined clusters at low ρm-values since
the matrix particles do not represent an essential spatial restriction (cf. corresponding snapshots in
figure 3). However, at an increased matrix density, less space is left available for the fluid particles
to form clusters, which are now forced to emerge in the reduced space left free by the matrix
particles: clusters are now considerably more dispersed than for small ρm-values and are smaller
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Figure 5. Connected structure factor, Sc(k) as a function of k for systems located in the (ρf , ρm)-
plane along path A (left column) and along path B (right column), as specified in figure 1. The
three rows correspond to cases 1 to 3, as specified in the text. Different line symbols correspond
to different values of ρm as labeled. The insets show enlarged views of the low-k range.
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in size (again, cf. the corresponding snapshots in figure 2). The situation is different for cases 2
and 3 as an IR-tail is switched on in the fluid-matrix and/or in the matrix-matrix interactions:
the attractive components in these interaction tails foster the formation of a cluster of the fluid
particles. This is possible in case 2 despite the presence of the matrix particles even at higher
ρm-values while in case 3 the matrix particles are nucleation centers of the clusters formed by the
fluid particles. Thus, in both cases the intercluster distance remains essentially unchanged upon
increasing ρm, and consequently the position of the first peak does not change with ρm increasing.

We have also evaluated the connected structure factor, Sc(k), from the particle positions defined
via

Sc(k) =
1

Nf

〈δρf(k) δρf(−k)〉 , (3.2)

where δρf(k) = ρf(k) − 〈ρf(k)〉. This structure factor provides information about the correlations
between the fluid particles that are not mediated via the matrix particles. Results are shown in
figure 5: in the left (right) column we display the static structure factor for systems located in
the (ρf , ρm)-plane along path A (path B), respectively, as defined in figure 1, considering three
different sets of interactions specified in section 2. For reference, the static structure factor for the
pure fluid (ρf = 0.2), to which Sc(k) reduces for ρm = 0, is shown in all panels.

While the variation of the height of the second peak in Sc(k) at k ∼ 6.2 with the densities and
the types of interactions shows the same behaviour as the one reported for Sff(k), we do observe
a distinctively different behaviour on the variation of the height of the first peak at k ∼ 0.6 as the
system parameters are changed. Throughout we observe a more pronounced decrease in the height
of this peak as ρm increases, corresponding to a gradually increasing suppression of direct correla-
tions between the fluid particles: at ρm = 0.1, Sc(k ∼ 0.6) ∼ 3(±1) while Sff(k ∼ 0.6) ∼ 12(±3). In
addition, the particular shape of the fluid-matrix interaction has also an effect on the decrease of
the height of the first peak of the structure factor: the essentially inert HS matrix particles (case
1) allow for a reasonable amount of direct correlations between the particles while in case 3, where
both fluid and matrix particles interact via the same type of potential, the correlations are strongly
suppressed.

3.3. Mean square displacement

Finally, in figure 6 we display the mean square displacement

〈δr2(t)〉 = 〈|r(t)− r(0)|〉, (3.3)

obtained from the positions of the particles over a respective range in time, measured in terms
of Monte Carlo sweeps where one sweep corresponds to Nf attempted displacement moves (see,
e.g., [21]). For systems located in the (ρf , ρm)-plane along path A (cf. figure 1), we observe that an
increase in the matrix density ρm leads in all cases to a decrease in the diffusion constant D which
represents the slope of the essentially linear mean square displacement curves. The results indicate
that this decrease in D is more rapid with ρm increasing in case 1 than in the other two cases;
in particular in case 3 the decrease in D is relatively small as ρ increases. We think that these
observations are the result of two competing effects: on the one hand the fluid particles are certainly
more trapped within the clusters in cases 2 and 3, while in case 1 the HS matrix particles form
inert obstacles. On the other hand, the neatly defined clusters in case 2 and, in particular, in case
3 (cf. corresponding snapshots in figure 2) offer large void regions of space where the fluid particles
can propagate more freely than in the corresponding case of a pure HS matrix (cf. corresponding
snapshots in figure 2). For the respective cases, the complex interplay of these two effects leads
to the above mentioned decrease in D as ρm increases. For systems located in the (ρf , ρm)-plane
along path B, an increasing matrix density ρm leads to an increase in the diffusion constant. This
increase is a bit more pronounced in cases 1 and 2 than in case 3. We point out that in case 1 a
distinct non-monotonous behaviour of the diffusion constant at small ρm-values (ρm . 0.035) is
observed as the matrix density increases. A similar behaviour is encountered in cases 2 and 3 only
for matrix densities up to ρm ≃ 0.01.
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Figure 6. Mean square displacement, 〈δr2(t)〉, as a function of time (measured in terms of
Monte Carlo steps, where one step corresponds to 100 Monte Carlo sweeps) for systems located
in the (ρf , ρm)-plane along path A (left column) and along path B (right column), as specified
in figure 1. The three rows correspond to cases 1 to 3, as specified in the text. Different line
symbols correspond to different values of ρm as labeled.

4. Conclusions

In this contribution we have investigated the cluster microphase formation of a two-dimensional
fluid annealed in the presence of a quenched matrix configuration of fluid particles. In all cases
investigated the fluid particles interact via a hard sphere potential with an adjacent tail of compet-
ing interactions. In an effort to study the cluster formation of the fluid particles under the effect
of the matrix particles we have varied both the fluid and the matrix densities, ρf and ρm, as well
as the fluid-matrix and the matrix-matrix interactions, ranging from simple hard spheres to hard
spheres with competing tail interactions. Our investigations are based on extensive Monte Carlo
simulations. The observables, such as static and dynamic correlation functions, are obtained by a
double averaging procedure: one average is taken over the degrees of freedom of the mobile fluid
particles for a particular matrix realization, the other one is taken over different but equivalent
matrix configurations.

We have discussed the observed phenomena on a qualitative level by visual inspection of the
selected representative snapshots and on a quantitative level by evaluating the static structure
[i.e., the structure factors Sff(k) and Sc(k)] as well as the mean square displacement, 〈δr2(t)〉.
These results provide clear evidence that the matrix does have a distinct effect on the microphase
formation, which can be summarized as follows: small matrix densities leave the cluster formation
essentially unaffected while larger ρm-values do effect the microphase formation. Here the explicit
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shape of the fluid-matrix and of the matrix-matrix interactions become relevant: simple hard sphere
matrix particles can effect the cluster formation by the fact that they are capable of reducing the
space available to the fluid particles, increasing thereby the effective matrix density; on the other
hand, if the interactions between the fluid and the matrix particles is of the same type, we have
found that the matrix particles act as nucleation centers for the emerging cluster microphase of
the fluid particles.
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Двовимiрнi системи iз конкуруючими взаємодiями:
формування мiкрофази пiд впливом невпорядкованого

пористого середовища

Д.Ф. Шванцер, Г. Каль

Iнститут теоретичної фiзики та центр чисельного матерiалознавства, Технiчний унiверситет Вiдня,
Вiдень, Австрiя

Нами дослiджено вплив невпорядкованого пористого середовища на утворення кластерної мiкро-
фази у двовимiрнiй системi, у якiй мають мiсце конкуруючi взаємодiї мiж частинками. З цiєю ме-
тою ми здiйснили грунтовне моделювання методом Монте-Карло, систематично змiнюючи густину

плину та середовища, а також взаємодiю мiж частинками середовища i взаємодiю мiж частинками

середовища та плину. Нашi результати доводять, що середовище iстотно впливає на формування

мiкрофази частинок плину: якщо частинки взаємодiють як мiж собою так i з частинками плину через

звичайний потенцiал твердих сфер, то вони, по сутi, зменшують доступний об’єм, у якому частинки

плину формують кластерну мiкрофазу. З iншого боку, якщо розглядати далекосяжну частину взає-
модiй “середовище – середовище” i “середовище – плин”, то частинки середовища стають центрами

нуклеацiї для кластерiв, утворених частинками плину.

Ключовi слова: м’яка речовина, пористi середовища, утворення мiкрофази, статична структура,
динамiчнi властивостi
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