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Abstract
Using a highly efficient and reliable optimization tool that is based on ideas of genetic
algorithms, we have systematically studied the pattern formation of the two-dimensional
square-shoulder system. An overwhelming wealth of complex ordered equilibrium structures
emerge from this investigation as we vary the shoulder width. With increasing pressure three
structural archetypes could be identified: cluster lattices, where clusters of particles occupy the
sites of distorted hexagonal lattices, lane formation, and compact particle arrangements with
high coordination numbers. The internal complexity of these structures increases with
increasing shoulder width.

1. Introduction

The so-called core-softened systems, introduced by Hemmer
and Stell [1], are characterized by a potential with an
impenetrable core region and an adjacent, repulsive potential
tail of variable shape. Over many years it was commonly
believed that these systems are not able to self-organize in
ordered structures other than trivial, close-packed lattices, due
to the radial symmetry of the potential and due to the complete
absence of attraction. Thus, it was even more surprising that
investigations, carried out essentially during the past decade,
revealed a completely different scenario: particles interacting
via core-softened potentials are able to self-organize in a
surprisingly rich wealth of ordered equilibrium structures.
The first systematic studies on two-dimensional core-softened
potentials were pioneered by Jagla [2, 3]: using Monte Carlo
simulations the author was able to provide evidence that—
depending on the shape of the corona and on the system
parameters—core-softened systems are able to display a rich
wealth of ordered structures beyond the simple hexagonal
lattice. Moreover, Jagla was able to show that these structures
emerge not only at zero temperature, but also ‘survive’ at
finite temperature. In the phase diagrams presented in [3]
patterns emerge, that distinctively differ from the hexagonal
lattice with its six nearest neighbours (nb): lanes or lamellae
(nb = 2), ring-like structures (nb = 3), or compact
structures (nb = 4) other than the hexagonal lattice. In

later work [4, 5], an additional cluster phase was identified
for the square-shoulder system. These simulation-based
investigations were complemented with a mean-field theory
proposed by Glaser et al [6], based on which ‘a remarkable
array of aggregate phases arising from the competition between
the hard core and soft shoulder length scales, including fluid
and crystalline phases with micellar, lamellar, and inverse
micellar morphology’ were identified. A closely related
contribution was published recently [7].

The aim of the present article is to contribute to a
deeper and comprehensive understanding of how particles,
interacting via core-softened potentials, self-assemble in
ordered equilibrium structures. We have restricted our
contribution to the square-shoulder system for the following
reason: due to its simple functional form, the internal
energy of the system, U , can be calculated directly by
counting the number of overlapping coronas in a given ordered
particle arrangement, guaranteeing thus the highest numerical
accuracy possible for the evaluation of the lattice sum. This
particular feature has turned out to be very helpful in reliably
identifying all possible self-assembly scenarios of the system.
A preliminary account of these investigations has already been
given in [8].

The identification of ordered equilibrium structures can
be cast into an optimization problem: following basic laws
of thermodynamics, particles will arrange in such a way that
the related thermodynamic potential is minimized. In an
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effort to solve this highly non-trivial optimization problem
we have used a numerical tool based on ideas of genetic
algorithms (GAs) [9]. In this approach possible ordered
particle arrangements are considered as individuals that are
exposed to an artificial evolution on the computer. The
individuals have to survive under the condition that the
thermodynamic potential of the structure associated with the
individuals is minimized. Working in the N PT ensemble,
the relevant thermodynamic potential is the Gibbs free energy,
G. Numerous applications of this optimization tool to identify
ordered equilibrium structures in soft matter systems have
provided evidence that the approach is efficient, reliable, and
copes extremely well with high dimensional search spaces
and rugged energy landscapes [8, 10–25]. Our investigations
are restricted to T = 0; thus any approximate feature
introduced via the entropic contribution is excluded a priori.
This assumption in combination with the extremely high
success rate of GA-based optimization tools make us confident
that we were able to identify all possible minimum energy
configurations (MECs) of the system.

In our investigations we have found a surprisingly rich
wealth of structures. These results can be summarized as
follows: (i) an increasing pressure induces a transition from
cluster lattices to lanes and then to highly coordinated compact
structures; (ii) the complexity of the cluster structures and lanes
increases with growing shoulder width, λ. The reasons why
this simple, spherically symmetric potential is able to induce a
rich variety of ordered structures, which are often characterized
by strongly asymmetric particle arrangements, is not obvious at
first sight. However, as we will give evidence for in the present
contribution, the formation of these structures can be traced
back to the competition of two length scales, the diameter of
the hard core, σ , and the range of the shoulder, λσ , and to
simple energetic arguments [6].

The paper is organized as follows. In the next section we
briefly present the model and give a short account of our GA-
based optimization technique. Section 3 is dedicated to the
results and the paper is closed with concluding remarks.

2. Model and theoretical tools

2.1. Model

In a square-shoulder system, hard particles of diameter σ

interact via a soft, repulsive, step-shaped corona of width λσ

and height ε(>0). The spherically symmetric pair potential
�(r) for this system reads as

�(r) =

⎧
⎪⎨

⎪⎩

∞ r < σ

ε σ � r < λσ

0 λσ � r .

(1)

We choose σ and ε as the length and energy scales. The system
is further characterized by an (area) number density η = N/A,
N being the number of particles per unit cell and A being the
area of the unit cell.

The square-shoulder system with its repulsive corona is
typical for steric interactions and is therefore often used to

Figure 1. Schematic representation of a polymer-grafted colloid.
Dark—core region, grey-shaded region—polymer corona.

model the behaviour of particles that exhibit a distinct core–
corona architecture, such as polymer-grafted colloids [26]: the
colloids themselves are impenetrable, thus forming the hard
core; the soft coronas, on the other hand, that consist of the
polymer chains, can interpenetrate at some energy cost, leading
to the soft, repulsive, step-shaped shoulder in the pair potential
adjacent to the hard core region. The potential parameters, ε

and σ , can be controlled by changes in the grafting density and
in the length of the polymer chains, respectively (see figure 1).
Other examples of particles whose pair interaction has been
modelled using the square-shoulder potentials are micelles of
dendritic polymers [27] and diblock copolymers [28, 29]. The
micelles formed by these two kinds of polymers display two
distinct regions: the inner core, composed of the solvophobic
parts of the constituent polymers, is characterized by a high
polymer density, whereas the solvophilic polymer groups form
a diffuse corona that is considerably less dense and thus
interpenetrable, leading to the characteristic inner architecture.

Working in the N PT ensemble, the relevant thermody-
namic potential is the Gibbs free energy, G = U − ST + P A.
Assuming, in addition, a vanishing temperature, G becomes

G = U + P A. (2)

Thus, the evaluation of the thermodynamic potential reduces
essentially to the evaluation of the lattice sum, U . In view of
the simple functional form of the square-shoulder potential (1),
U can be simply determined by counting the overlapping
coronas for a given ordered particle configuration.

We have introduced the following reduced thermodynamic
quantities: P∗ = Pσ 2/ε, U∗ = U/(Nε), and G∗ =
G/(Nε) = U∗ + P∗/(ησ 2). U∗

max will denote the
maximal internal energy obtained for a given shoulder width.
As outlined below, this simple dependence on η of G∗
considerably facilitates the search for ordered equilibrium
structures.
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Figure 2. Schematic representation of dimers and trimers populating
the lattice sites of a cluster lattice (see the text). The two additional
parameters for describing the clusters, d and θ , are indicated for a
dimer (left) and a trimer (right).

2.2. Theoretical tools

To identify the MECs of our system we have used the genotype
implementation of the GA-based search strategy presented
in more detail in [30] and suitably adapted to the two-
dimensional case. As an additional feature we have introduced
a ‘cluster-biased’ search strategy. We assume that the sites of
the lattice are populated by regular dimers or trimers, each
of them parametrized by internal parameters (cf figure 2)
which characterize the orientation of the clusters and the
relative distances of the particles within the cluster. In this
way, we were able to considerably increase the number of
particles within the unit cell to 15 particles and concomitantly
enhance the performance of the search strategy when dealing
with complex lattices. The fact that the search algorithm
proposes unphysical lattices with overlapping core regions
does not affect the numerical performance to a comparable
extent to in the three-dimensional case [15, 16, 31]. It was
therefore sufficient to implement the hard core exclusion in
the parametrization of the primitive lattice only and rule out
lattices with overlapping basis particles in the evolutionary
process later on. For the fitness function which characterizes
the quality of an individual I, which represents a possible
candidate structure, we have used the canonical form, i.e.,

f (I) = exp{−[G(I) − G(I0)]/G(I0)}. (3)

I0 represents some reference structure. Working in the N PT
ensemble, the number density η has to be encoded in the
individual I: applying the external pressure P for a given state
point, the search algorithm then provides the optimized lattice
and η as output.

3. Results

The special form of the interaction potential (1) leads to
a characteristic functional dependence of U ∗ and G∗ on
P∗: each structure is characterized by its number of corona
overlaps, so the internal energy U ∗ of this structure has a
fixed rational value, given by the number of corona overlaps
per particle. As long as the structure does not change, the
internal energy is the same, irrespective of the applied pressure.
The corresponding Gibbs free energy G∗ = G∗(P∗) of a
single structure is therefore given by a straight line of slope
1/η in a (G∗, P∗)-diagram. In this context we can identify

two limiting structures, which occur for all values of λ: at
very low pressure, the system will arrange so that discs of
diameter λ form a hexagonally close-packed structure. As no
overlaps of coronas occur in this configuration, the internal
energy vanishes, U ∗

low = 0, and we obtain

ηlow = 2√
3(λσ)2

. (4)

The configuration of maximal internal energy and density is
encountered at high pressure values and is given by another
hexagonally close-packed structure, where the hard core of
each particle is in direct contact with its six nearest neighbours.
The internal energy thus reaches its maximal value, U ∗

high =
U∗

max(λ), and the number density of this incompressible
structure can be written as

ηhigh = 2√
3σ 2

. (5)

As ηlow and ηhigh are the minimal and maximal values of the
number density, all other MECs for a given shoulder width λ

have to be located on straight lines of slope 1/η in a (G∗, P∗)-
diagram, with

1

ηhigh
� 1

η
� 1

ηlow
. (6)

On the basis of this particular feature we have used an efficient
algorithm [15, 32] for a systematic scan along the pressure
axis: we first determine the pressure value which corresponds
to the intersection point of the two lines representing the
above discussed limiting cases in the (G∗, P∗)-diagram. For
this pressure value, a GA is then employed, leading to a
configuration of lower Gibbs free energy. This Gibbs free
energy of the newly found structure is again represented by
a straight line as a function of pressure which we intersected
with the previous lines, yielding two new pressure values. At
these values, GA runs are again performed. By iterating this
procedure, we are able to investigate the whole pressure regime
in a highly efficient way, without risking missing a MEC due
to an inappropriately spaced pressure grid. In the end, the
Gibbs free energy G∗ = G∗(P∗) appears as a sequence of
intersecting straight lines over the entire pressure range.

In the following, we will discuss the general trends in
structure formation, showing representative examples of the
structures proposed by the GA. The complete sequences of
MECs for all values of shoulder width λσ investigated can be
found in [33].

3.1. Shoulder width λ = 1.5σ

We start our survey at a shoulder width of λ = 1.5σ and
show the MECs proposed by the GA in figure 3: at very low
pressure, the particles are found to form an ideal hexagonal
lattice, avoiding overlapping coronas. Upon compression, the
system must ‘pay a tribute’ to the reduced space in terms of an
energy penalty, i. e. via a first overlap of shoulders, and lane
formation emerges as an energetically convenient solution.
Along the lanes, particles are in direct contact, forming a one-
dimensional close-packed arrangement. Parallel lanes try to
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Figure 3. Complete sequence of MECs for the square-shoulder
system of shoulder range λ = 1.5σ . Dark spheres mark the particles’
hard cores, whereas the repulsive shoulders are depicted as grey
coronas. Configurations correspond (from left to right and from top
to bottom) to pressure values indicated in figure 4 by vertical arrows.

avoid corona overlap and the shoulder width λ serves as a
spacer (see the magnified view in figure 3). As the pressure
is further increased, new strategies are required to arrange
particles in an energetically favourable way. While particles
still prefer alignment along lanes, the internal arrangement
is modified: rather than forming straight lines, the lanes are
now zigzag shaped, which is a trade-off between the reduced
available space and the energetic penalty due to additional
corona overlaps. Neighbouring lanes are arranged such that
each particle is now in direct contact with three others (see
the magnified view in figure 3). These staggered lanes can
also be viewed as ring-like structures where six particles form
elongated rings with λ fixing the width of the cage. Further
compression causes the system to collapse into the hexagonally
close-packed structure, where each particle is in direct contact
with its six nearest neighbours.

Figure 4 displays the corresponding thermodynamic
properties G∗ = G∗(P∗) and U∗ = U∗(P∗), where the
characteristic features of the two thermodynamic quantities
mentioned above are clearly visible: the internal energy
appears as a distinct sequence of flat plateaus, each
representing one of the identified MECs, whereas the
individual line segments, which contribute to the Gibbs
free energy over the entire pressure range, are also easily
recognized in the (G∗, P∗)-diagram.

3.2. Shoulder width λ = 3σ

As we proceed to a shoulder width of λ = 3σ , the system
develops completely different strategies to form MECs as
the pressure is increased, leading to a considerably broader
variety of different structures compared to the case λ = 1.5σ .
The selection of configurations shown in figure 5 captures
the general trends in the MECs identified; the corresponding
thermodynamic properties are displayed in figure 6.

The hexagonal pattern imposed by the non-overlapping
coronas, which is observed for very low pressure values only

Figure 4. Gibbs free energy (black line), G∗, and internal energy
(grey line), U ∗, as functions of P∗ for a system of shoulder range
λ = 1.5σ , all scaled with U ∗

m = 3, the internal energy of the
hexagonally close-packed structure. Vertical arrows indicate MECs
depicted in figure 3. Broken lines indicate limiting cases of MECs
(see the text).

and not displayed in figure 5, is soon superseded by a novel
strategy, namely the formation of clusters. At low pressure,
dimer and trimer clusters are found to form distorted hexagonal
lattices, where the degree of deviation from the ideal structure
is imposed by the shape of the clusters. In this way, the
dimers form a strongly distorted hexagonal lattice, whereas the
trimers sit on an almost ideal hexagonal structure: in the trimer
lattice, the angle φ between the two lattice vectors amounts
to φtrimer = 60.8◦, whereas in the dimer lattice the angle
φdimer deviates strongly from the ideal value of the hexagonal
structure, with φdimer = 65◦, and also the lattice vectors differ
distinctly in size in the dimer case.

As the system is further compressed the formation
of clusters becomes energetically less attractive and lane
formation sets in. In the beginning, each lane is built up
by a single, linear chain of particles, resembling the first
lane scenario encountered for λ = 1.5σ , but for increasing
pressure, the internal architecture of the lanes gets more
complex: besides the lanes formed by single chains of particles
mentioned above, we observe a dense dimer phase, that can
easily be interpreted as a lane-like scenario, a striped phase of
double chains and pearl-necklace structures. As the pressure
is increased further, the system collapses to close-packed
structures characterized by a compact distribution of particles,
until the high pressure limit of an hexagonally close-packed
lattice is finally reached, where the hard core of each particle
is in direct contact with its six nearest neighbours.

This considerably richer wealth of MECs encountered for
λ = 3σ is reflected by the increased number of energy levels
in the plot U∗ versus P∗ and the larger number of intersecting
straight line segments in the (G∗, P∗)-diagram in figure 6.

3.3. Shoulder width λ = 5σ

For λ = 5σ , the general trends already observed in the
previous cases of λ = 1.5σ and 3σ get more pronounced
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Figure 5. Selection of MECs for the square-shoulder system of shoulder range λ = 3σ . Dark spheres mark the particles’ hard cores, whereas
the repulsive shoulders are depicted as grey coronas. Configurations correspond (from left to right and from top to bottom) to pressure values
indicated in figure 6 by vertical arrows.
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Figure 6. Gibbs free energy (black line), G∗, and internal energy
(grey line), U ∗, as functions of P∗ for a system of shoulder range
λ = 3σ , all scaled with U ∗

m = 15, the internal energy of the
hexagonally close-packed structure. Vertical arrows indicate MECs
depicted in figure 5. Broken lines indicate limiting cases of MECs
(see the text).

(see figure 7). Again, the structures presented in figure 7 are a
representative selection from the complete sequence of MECs
found for λ = 5σ . Figure 8 displays G∗ = G∗(P∗) and
U∗ = U∗(P∗).

The low pressure regime is populated by clusters, arranged
on an underlying distorted hexagonal lattice. As the pressure
increases, those aggregates become larger until they reach a
size of four particles. Upon further compression, the system
again prefers to form lane-like structures of various shapes: we
observe striped phases with up to four particles per lane as well
as parallel zigzag-shaped lanes. The increasing complexity
of the inner structure of the lanes makes simple energetic
explanations in terms of overlapping coronas hard to perceive,
but the magnified views in figure 7 give evidence that the

formation of the different lane structures is an efficient strategy
for avoiding an overlap between the coronas of particles
belonging to neighbouring lanes. In addition, we encounter
a phenomenon that can be interpreted as a first observation
of a narrow crossover region from cluster-populated lattices to
striped phases: first single particles, then dimers, arrange in a
lane-like configuration, but without the particles being in hard
core contact along the lane. Above a certain pressure threshold,
the formation of lanes is no longer energetically favourable
and the system collapses to close-packed configurations with a
compact distribution of particles, like the square lattice shown
in figure 7.

3.4. Shoulder width λ = 7σ

The complexity of internal arrangements increases further in
all three kinds of structures encountered—clusters, lanes and
close-packed arrangements—as the shoulder width changes to
λ = 7σ . Figure 9 shows a representative collection of the
already considerably large number of MECs proposed by the
GA; U∗ = U∗(P∗) and G∗ = G∗(P∗) are displayed in
figure 10.

Starting from the low density hexagonally close-packed
structure, which is not depicted in figure 9, we observe clusters
of growing size for increasing pressure: the dimers shown in
figure 9 are soon superseded by trimers, and later by clusters
consisting of four, six, or even eight particles. The eight-
particle clusters are of an almost circular shape as can be
seen in the magnified view in figure 9 and thus allow for an
arrangement very close to the energetically favoured hexagonal
configuration. Although the eight-particle cluster structure
was found to be stable over a comparatively large range of
pressure values (see figure 10), we have to note, however,
that the occurrence of this particular cluster size is possibly
due to the chosen parametrization of lattices: the cluster-
biased parametrization as presented in section 2.2 favours
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Figure 7. Selected MECs for the square-shoulder system of shoulder range λ = 5σ . Dark spheres mark the particles’ hard cores, whereas the
repulsive shoulders are depicted as grey coronas. Configurations correspond (from left to right and from top to bottom) to pressure values
indicated in figure 8 by vertical arrows.

Figure 8. Gibbs free energy (black line), G∗, and internal energy
(grey line), U ∗, as functions of P∗ for a system of shoulder range
λ = 5σ , all scaled with U ∗

m = 42, the internal energy of the
hexagonally close-packed structure. Vertical arrows indicate MECs
depicted in figure 7. Broken lines indicate limiting cases of MECs
(see the text).

the formation of clusters consisting of six or eight particles,
whereas clusters of seven particles, which allow for aggregates
even closer to the preferred circular shape, are not available

to the cluster-biased parametrization and can enter the survey
only via calculations employing the standard description of
two-dimensional lattices.

Like the cluster phases, the lane-like structures also
increase in complexity as the shoulder width reaches the value
λ = 7σ : arrangements of lanes that are two, three, four
and six particles wide are found in the intermediate pressure
regime, displaying a broad variety in their internal architecture.
Surprisingly, structures consisting of single-particle chains fail
to show up completely among the discovered MECs [33].

Furthermore, we can now distinguish two different
crossover regions for systems of shoulder width λ = 7σ : first,
a regime of crossover from the clustered phases to the lane-
like scenarios similar to the one observed for systems with
λ = 5σ , where dimers arrange in lanes with the inter-dimer
distance within one lane gradually decreasing as more pressure
is applied to the system. Second, we observe a crossover
from lane-like structures to the close-packed configurations
encountered at high pressure values, as compact particle
distributions are found to alternate with phases exhibiting
distinct stripes.

3.5. Shoulder width λ = 10σ

Finally, for λ = 10σ , the largest shoulder width investigated,
the strategies of the system for arranging particles in
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Figure 9. Selected MECs for the square-shoulder system of shoulder range λ = 7σ . Dark spheres mark the particles’ hard cores, whereas the
repulsive shoulders are depicted as grey coronas. Configurations correspond (from left to right and from top to bottom) to pressure values
indicated in figure 10 by vertical arrows.

Figure 10. Gibbs free energy (black line), G∗, and internal energy
(grey line), U ∗, as functions of P∗ for a system of shoulder range
λ = 7σ , all scaled with U ∗

m = 84, the internal energy of the
hexagonally close-packed structure. Vertical arrows indicate MECs
depicted in figure 9. Broken lines indicate limiting cases of MECs
(see the text).

energetically favourable configurations seem to be similar to
the previous cases at first sight: the hexagonal pattern of
minimum density, which is not included in the selection of
MECs shown in figure 11, is soon replaced as the system
prefers the formation of clustered lattices. The formation
of lanes of increasingly complex inner structure is preferred
at intermediate and high pressure values, and the crossover
regions, first from cluster-shaped particle arrangements to lane-
like structures and second from lanes to the close-packed
regime, are both visible and more pronounced, than in the
previous cases.

The differences between the MECs of the comparatively
large shoulder length of λ = 10σ and those obtained for the
intermediate values discussed above are of subtle nature and
concern the internal arrangement of particles in the structures:
although the growing cluster arrangements are located on
slightly distorted hexagonal lattices like in the previous cases,
the system’s strategy for forming MECs has changed, as
we observe that inside a cluster the cores of the particles
sometimes arrange in a disordered fashion (see the magnified
views in figure 11), while for intermediate values of λ only
clusters with an ordered internal particle arrangement occur.
The reason for this change is obviously the following: as
soon as λ is sufficiently large to support cluster formation, the
system tries to arrange particles in clusters shaped as circularly
as possible, leading to an underlying structure as close as
possible to the energetically favourable hexagonal lattice. For
intermediate shoulder widths, the core region still represents
a considerable fraction of the particle diameter, so ordered
arrangements of particles are necessary for building clusters as
circular in shape as possible. For λ = 10σ , however, the core
region is nearly negligible with respect to the corona width,
so both regular and irregular particle arrangements inside the
cluster can lead to circular-shaped aggregates of the same size,
thus having practically the same value of G (see figure 12).

4. Conclusion

In this contribution we have reported about the rich wealth
of ordered equilibrium structures in the two-dimensional
square-shoulder system which we were able to identify by
systematically varying the shoulder width and pressure. In
view of the high success rate of the optimization tool that we
have used to find these structures and due to the simple analytic
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Figure 11. Selected MECs for the square-shoulder system of shoulder range λ = 10σ . Dark spheres mark the particles’ hard cores, whereas
the repulsive shoulders are depicted as grey coronas. Configurations correspond (from left to right and from top to bottom) to pressure values
indicated in figure 12 by vertical arrows.

Figure 12. Gibbs free energy (black line), G∗, and internal energy
(grey line), U ∗, as functions of P∗ for a system of shoulder range
λ = 10σ , all scaled with U ∗

m = 180, the internal energy of the
hexagonally close-packed structure. Vertical arrows indicate MECs
depicted in figure 11. Broken lines indicate limiting cases of MECs
(see the text).

form of the pair interaction, we are confident that the sequences
of MECs that we were able to identify are complete.

The observed trends in structure formation can be nicely
summarized in a schematic diagram, depicted in figure 13. It
displays the MECs identified as functions of the two relevant
parameters, i.e., pressure and shoulder width. At low pressure
the system forms cluster lattices. Here clusters of particles
with overlapping corona occupy the sites of a regular or
distorted hexagonal lattice. In an effort to minimize the
Gibbs free energy the system tries to form circular-shaped
clusters. Thus, the envelope of all coronas of a given cluster
defines essentially the spacer between lattice sites in the
underlying lattice. As we increase the pressure, these clusters

rearrange and henceforward form lanes. The internal shape
of these lanes is dictated by a trade-off between the corona
overlaps within the lanes and the corona overlap between
neighbouring lanes. Again, the shoulder width represents
essentially the spacer between isolated neighbouring lanes or
sets of lanes. Finally, at the highest available pressure, particles
form compact structures with high coordination numbers, i.e.,
with four or six neighbouring particles. Among these ordered
structures are the four-coordinated oblique and square lattices,
and, of course, the six-coordinated hexagonal lattice. As we
move along the orthogonal direction in the schematic diagram
(cf figure 13), we observe an increasing complexity in the
internal structure of the building blocks of the aforementioned
structural archetypes, i.e. the clusters and lanes, as the range
of the shoulder becomes wider. This increasing degree of
disorder is a precursor of the behaviour known from a number
of closely related systems, that have been studied in the three-
dimensional case: the penetrable sphere model [34, 35], which
represents the limiting case λ → ∞ of our square-shoulder
system, and the generalized exponential model [13, 14, 36].
In both cases, disordered clusters of overlapping particles were
found to arrange on the sites of regular lattices.

We point out that a similar trend of structural archetypes
has been observed for the three-dimensional square-shoulder
system [15, 16]. Here, four structural archetypes are
encountered as the pressure increases: first, the cluster phases,
followed by the columnar and lamellar structures (which in
the two-dimensional case reduce to the archetype of lane
formation), and, finally, the compact structures. Again, as
we increase the range of the shoulder, the internal complexity
grows. This relates also to the underlying structure: the
clusters now occupy a considerably richer wealth of three-
dimensional lattices (such as fcc, bco, and triclinic) and for
the compact structures cover a broad range of structures (such
as fcc, hcp, body centred orthogonal, and centred tetragonal),
with a considerably larger range of nearest neighbours.
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Figure 13. Schematic diagram of MECs encountered in the square-shoulder system as pressure P and shoulder width λ are varied.
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