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We identify the sequences of emerging ordered equilibrium struc-

tures as a three-dimensional crystal grows in thickness, starting

from a two-dimensional lattice. To this end, we consider a system of

particles that interact via a Gaussian potential and are confined

between two parallel plates separated by a distance D. Using opti-

mization tools that are based on genetic algorithms, we identify the

T ¼ 0, ground state configurations of the system. Based on these

results, we investigate and interpret in detail two archetypes of

structural transitions occurring in the diagram of states: one of them

is a sequence of square / centered rectangular / hexagonal

transitions at fixed confinement D as the density grows and the other

is the often-discussed buckling transition, which emerges at fixed

density as the system forms a new layer with increasing thickness D.

These theoretical investigations are complemented and confirmed by

Monte Carlo simulations.
Table 1 Reduced lattice sum U/(N3) as a function of D for different
competing ordered structures (as labelled by the symbols) for the buck-
ling transition nl ¼ 2 / nl ¼ 3 investigated at rs3 ¼ 0.1. Close to the
buckling transition, the respective lowest energy value is underlined

U/(N3)

D R ,
The process of the gradual emergence of a three-dimensional crystal

out of a two-dimensional lattice is highly intricate. The complexity of

the sequences of structures as the crystal grows in thickness is an

impressive demonstration of how nature optimizes, at every instant of

the process, the positions of the particles under the condition that the

energy of the arrangement is minimized. The first experimental

investigations to elucidate this phenomenon were performed by

Pieranski and co-workers, who studied the structure of polystyrene

particles, confined in a wedge formed by two flat glass plates, giving

thus rise to a progressively increasing layer thickness D.1 Observed via

an inverted metallurgical microscope, the authors of this remarkable

study identified alternating sequences of square and triangular

layered structures (to be denoted by , and D, respectively). Exper-

iments performed a few years later by Neser et al.,2 revealed, in an

essentially similar setup, a complex buckling mechanism, which

emerges as a new layer is formed with increasing thickness D. The

advent of new, experimentally refined techniques has led to

the identification of even more complex transitions and structures as

the system passes from nl to nl + 1 layers: occurrence of buckling,

rhombic, prism or so-called hcp-perpendicular phases has been

reported, as well as the identification of the complex S1 and S2 phases

(see ref. 3 and references therein).
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A first theoretical interpretation of the experimental results found

by Pieranski et al.1 was presented shortly thereafter by the same

group,4 in which the particles were assumed to interact via a pure hard

sphere potential. A few years later, a purely theoretical investigation

was published,5 in which Chou and Nelson studied the structural

phase transitions induced by the formation of a double layer out of

a single layer within Landau theory, identifying, for the first time,

a buckling transition. These theoretical predictions were compared in

later studies with results obtained via density functional theory.6

However, most of the theoretical investigations on this phenomenon

are based on simulations;7–10 a few of them being complemented by

simple theoretical models. Very recently, a beautiful analogy between

buckled colloidal monolayers and the triangular-lattice Ising anti-

ferromagnet has been established in the work of Shokef and

Lubensky.11

While all these investigations unanimously confirm the transition

nl , / nlD, the findings about the emerging structural sequences in

the transition nlD / (nl + 1), are not consistent (cf. Table I of ref.

10). The reasons for these discrepancies are obvious: first – and this

applies both to the experimental and theoretical investigations – these

transitions occur in very narrow D-ranges (see discussion below),

rendering an unambiguous identification of the emerging structures

extremely difficult. Second, in experiments, which most commonly

use a wedge geometry, a particular ordered phase at some given

thickness D ‘grows out’ of a neighbouring ordered phase at a slightly

smaller wall-distance and might therefore be strongly influenced by

the latter. Thus, an entirely independent formation of an equilibrium

structure at some given thickness D might be difficult to observe.

Third, in computer simulations, an accurate identification of the

complex transitional structures might be affected by the minute
D/s (nl ¼ 2) (nl ¼ 6) (nl ¼ 3)
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energy differences of the competing structures; in addition, a fixed

shape of the simulation box entails the risk of suppressing or influ-

encing the formation of particular structures. Finally, purely theo-

retical considerations are biased by the underlying, approximate

concepts.

In this contribution, we report about an entirely different access to

provide a deeper understanding of this complex process. Since the

laws of statistical mechanics impose that the particles will arrange at

given system parameters in such a way that the related thermody-

namic potential is minimized, the search for the ordered equilibrium

structure reduces to the minimization of this potential with respect to

the lattice parameters. In an effort to solve this optimization task, we

have applied search strategies that are based on genetic algorithms

(GAs). In many applications in atomic or soft matter systems GAs

were found to be highly reliable and efficient tools in identifying

ordered equilibrium structures: they search basically the entire

parameter space and cope extremely well with rugged energy land-

scapes in high-dimensional search spaces.12–14 In our access we restrict

ourselves to T¼ 0 and investigate the formation of ordered structures

for each D-value independently, avoiding thus several of the prob-

lems mentioned above. As a consequence of the vanishing tempera-

ture, the thermodynamic potential, which is in our case the free

energy, reduces to the lattice sum U; for our particular choice of

particle interaction (to be specified below), U can be evaluated to

within machine precision. With these considerations in mind and

taking into account the extremely high success rate of GAs, we are

able to present the ground state configurations for this system.

Complementary computer simulations fully confirm a few assump-

tions that we had to make for computational reasons on the structure

of the system.

In our system the particles are assumed to interact via a Gaussian

potential, i.e.,

F(r) ¼ 3 exp[�(r/s)2] (1)

where 3 and s represent energy- and length-scales; furthermore we

introduce the (volume) number-density r. From the physical point of

view the decision for the Gaussian core model (GCM) is motivated

by the fact that this potential can be considered as a realistic coarse-

grained, effective model for several colloidal dispersions, such as

polymers,15 dendrimers,16,17 or microgels.18 In addition, there are also

numerical reasons for our choice which we put forward in the

following: (i) the full phase diagram of the GCM in three dimensions

is known with high accuracy.19,20 Relevant for the present work is the

fact that at very low temperatures the system solidifies for

rs3 (0.1794 in an fcc lattice, while for 0.1798( rs3 a bcc solid phase

is predicted; (ii) since F(r) > 0 for all r-values, there is no risk of

compensation errors in evaluating the lattice sum, i.e., the quantity

that plays the key role in our search for ordered equilibrium struc-

tures. By extending the cut-off radius in the summation, rcut, to

a suitably large value, these sums can be evaluated for our model with

arbitrary numerical precision.

We consider our system to be built up by nl layers. The first

assumption, (A1), is that the particles are not allowed to populate the

space between the layers, they arrange within these layers in ordered,

two-dimensional structures. Furthermore, we assume that these

layers are arranged perpendicular to the z-axis, with the top and the

bottom layers being fixed in their positions at z ¼ 0 and z ¼ D,

respectively. Thus, we do not consider any particular wall–particle
This journal is ª The Royal Society of Chemistry 2009
interaction but restrict ourselves to pure confinement. The remaining

(nl � 2) layers are allowed to arrange in vertical positions zi with

0 # zi # D. Introducing hi ¼ zi+1 � zi (with i ¼ 1, ., nl � 1) as the

vertical distance between layers i and i + 1, the restriction
P

ihi ¼ D

has to be met. We point out that collapsing layers (i.e., vanishing

values for the hi) are allowed within the formalism. The transition

from the quasi-two- to the three-dimensional structure is realized by

considering the limiting case D / N.

For the population of the layers and for the ordered particle

arrangements within the layers we make the two additional

assumptions: (A2) the area number-density is the same in all layers

and (A3) ordered structures in different layers are identical. While for

the theoretical part of the study the above three assumptions repre-

sent a computational necessity, they will be fully confirmed by

complementary computer simulations.

Within this model, the ordered structures of the system are char-

acterized by stackings of two-dimensional lattices, specified by lattice

vectors a and b, which form a simple unit cell. Furthermore, we

introduce interlayer vectors ci, connecting the origins of layers i and

i + 1; obviously, the z-component of ci is given by hi. Non-simple,

two-dimensional lattices are explicitly not considered in our param-

etrization, since any non-simple lattice (with nb basis particles) can be

realized by superposing nb layers of vanishing vertical separation with

identical, simple, two-dimensional structures. In total we are left with

(3nl � 2) yet unknown quantities that have to be optimized.

These structural parameters are determined in a GA-based

optimization search. To this end, a suitable code has been developed

that is partly based on previous, successful GA-implementations for

soft matter problems in two-21–23 and three-12,24–27 dimensional

systems. Particular care has been dedicated to identify the two-

dimensional lattice as uniquely as possible.28 The quantity to be

optimized is the free energy which reduces at vanishing temperature

to the lattice sum, U. In evaluating this quantity, the potential was

truncated at rcut, which was typically chosen to be � 4.3s: for this

choice,

ðN

rcut

FðrÞdr ( d

ðN

0

FðrÞdr with d ¼ 10�8. For the fitness

function f(S), which evaluates the quality of a candidate structure

S, we have chosen the canonical form12, i.e.,

f(S) ¼ exp[1�U(S)/U(S0)] (2)

where U(S0) is the lattice sum of a reference square structure of the

same density.

The computer simulations are standard NVT Monte Carlo (MC)

simulations performed at T* ¼ T/(kB3) ¼ 0.002, kB being the Boltz-

mann constant. This temperature is sufficiently low to allow for

a comparison with the theoretical results and guarantees that the

system solidifies, apart from the very low density region (i.e.,

rs3 (0.05), in the entire density range.19,20 Similar to the theoretical

considerations, the bottom and the top layers are fixed at z ¼ 0 and

z ¼ D. In order to avoid any a priori restrictions on the emerging

structures, the simulation cell was adaptive in the x- and y-direc-

tions.29 Geometries with up to five layers were simulated, considering

at least �500 particles per layer. Simulations were extended over

2–6 � 106 trial moves per particle. In an effort to avoid any bias,

different initial conditions for the MC runs were assumed. For most

state points considered in the simulations we used the following

strategy: for those states where, according to theoretical prediction,

a rectangular structure is expected we started from a hexagonal
Soft Matter, 2009, 5, 2852–2857 | 2853



particle arrangement on pre-defined layers that are equally spaced

between the confining walls, and vice versa. In addition, for selected

state points MC runs were performed starting from more general

initial configurations: either a random positioning of the particles on

layers that are, again, equally spaced between z ¼ 0 and z ¼ D, or

a completely random particle arrangement between the confining

walls. The reason for these more general initial conditions was to check

the validity of the assumptions (A1)–(A3) made for the parametriza-

tion of our model for the theoretical investigations (see above).

The GA-based, theoretical diagram of states is depicted in Fig. 1:

on the one hand, it displays, by means of color-coding, the ordered

equilibrium structures identified for each state point in a represen-

tative part of the (D, r)-plane. On the other, it provides information

about the number of emerging layers, nl: state points where the

system consists of nl layers form stripe-shaped regions that are

separated by broken lines. These lines, which should for

the moment only be considered as guides for the eye, represent the

buckling transition which will be discussed below in detail. Apart

from a region at low densities and small D-values where a rectan-

gular double-layer structure is observed,30 the diagram of states

gives evidence that only three different ordered lattices occur: the

hexagonal, the centered rectangular (to be denoted by R), and the

square structures. These particle arrangements populate the above

mentioned stripe-shaped regions in a similar manner: in the lower

part of each of these stripes we encounter square lattices which

transform with increasing D and/or r via a centered rectangular

lattice into a hexagonal lattice. Thus within a stripe-shaped region,

these structures populate sub-stripes,31 which, with increasing nl

change in both shape and extent: while the hexagonal lattice

populates, in all cases, a substantial portion of a stripe-shaped

region, the area where the square-lattice is stable progressively

reduces with increasing nl at the cost of a growing stability range of

the centered rectangular structure. The minute differences in energy

of the competing structures make it impossible to decide whether for

nl T7 the emergence of the square lattice is completely suppressed

or whether this structure exists only in an extremely narrow range in

parameter space.
Fig. 1 Diagram of states for the layered system considered in this study,

indicating the ordered structures assumed by the system at given values of

thickness D and reduced density rs3: ¼ rectangular lattice, ¼ square

lattice, ¼ hexagonal lattice, and ¼ centered rectangular. Regions

where the system is composed of nl layers are labeled by the respective nl-

value; these regions are separated by full lines.
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The diagram of states was extracted from detailed GA-runs as

follows: at fixed density r and layer number, nl, optimizations have

been performed over a representative D-range. The results of one of

these GA-runs are depicted in Fig. 2 for rs3 ¼ 0.1, where the

(reduced) lattice sum, U/(N3), N being the number of particles, is

displayed as a function of D for different values of nl: at some given

D-value, the equilibrium structure is the one with the lowest value of

the lattice sum U. The fact that, for instance, the U-curves coincide

for D ( 3s for nl ¼ 2, 4, and 6 indicates the internal consistency of

our investigations: it reflects that a simple lattice (nl ¼ 2) can also be

viewed as a non-simple lattice (nl ¼ 4, 6), formed by collapsing,

horizontally shifted layers.

A closer inspection of the diagram of states reveals that all

encountered structural transitions can essentially be reduced to two

archetypes, which will be discussed in detail in the following. The first

transition is the one occurring at fixed layer number, nl, keeping the

thickness D constant and varying r, or vice versa: it is the structural

sequence nl, / nlR / nlD. Obvious geometric considerations give

evidence that this transition is continuous: considering all three

structures (i.e., ,,R, and D) as realizations of a centered rectangular

lattice with a suitably chosen side-ratio, s, this transformation

corresponds to a smooth variation of s from s¼ 1 (,) to s ¼
ffiffiffi
3
p

(D),

as confirmed by the GA-based calculations. This change is nicely

reflected in our simulation results when considering the orientational

order parameters J4 and J6 (see, e.g., ref. 32): this structural tran-

sition is reflected in a change in J6 from�0 (,) to�1 (D), and vice

versa for J4.

The second archetype of transition is the buckling transition,

where the system creates, at fixed density and with increasing D (or

vice versa), a new layer. With respect to the diagram of states

(cf. Fig. 1) this means this transition pattern occurs whenever a line

is crossed. From the numerical point of view these transitions are

more difficult to observe, in particular for larger nl-values and/or

higher densities, where the identified intermediate structures occur

in much smaller intervals of the parameters D and/or r. For

the following discussion we have chosen the transition (nl ¼ 2) /

(nl ¼ 3) at fixed rs3 ¼ 0.1, which we have identified to be the most
Fig. 2 Reduced dimensionless lattice sum U/(N3) as a function of D at

fixed density rs3 ¼ 0.1 as obtained by GA-based optimization runs,

considering different numbers of layers nl as labeled. The inset displays

the range 2.7 ( D/s ( 3.5 where the buckling transition from nl ¼ 2 to

nl ¼ 3 occurs; for clarity only the results for nl ¼ 2, 3 and 6 are displayed.
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pronounced manifestation of the buckling phenomenon. From the

magnified view in Fig. 2, we see that for D-values up to �2.9s

a two-layer arrangement is the energetically most favourable one.

On the structural level the situation is depicted in Fig. 3: particles

form a hexagonal lattice in each of the two layers , i.e., a structure

that we can alternatively view as a centered rectangular lattice. We

note that each of the two layers can be considered to be three

collapsing, horizontally shifted sub-layers. By increasing D beyond

2.9s, the two-layer structure transforms smoothly into a structure

formed of six layers. This transition can be explained as follows: in

the top and the bottom layers we now observe rectangular lattices

formed by two of the aforementioned sub-layers; concomitantly, the

particles of the third sub-layer that were formerly located in the

centers of the rectangles rearrange in two additional layers that

progressively detach from the bottom and the top layers; one might

view these particles as tips of pyramids that have a rectangular basis

in the top or in the bottom layers. By further increasing D,

the rectangles reduce in size and the pyramids grow in height. At

D � 3.28s this process comes to a sudden end. An increase in D

now leads to a discontinuous transition: all of a sudden, the two

inner layers merge, forming the newly created third layer;

concomitantly, particles in the top and bottom layer spontaneously

rearrange, forming square lattices. We mention that, despite

considerable effort, we could not confirm the emergence of complex

structures, such as those reported in experiment (see ref. 3 and

references therein). Probably, these discrepancies are due to the fact
Fig. 3 Representation of the particle arrangement of an ordered equilibrium

a three-layer structure (buckling transition). The D-values considered are D/

bottom. Displayed are the top and the side views of the ordered structures,

structure is displayed; in the upper-half an identical, but shifted particle arra

structure are marked as guides for the eye (see also text).
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that the buckling transition occurs in very narrow D- and r-ranges

and that competing structures are characterized by minute energy

differences (cf. Table I). Thus, even tiny external perturbations in

the experiment (see discussion above) can lead to metastable

structures that do not correspond to the energetic minimum.

Our complementary MC simulations fully confirm the three

assumptions on the parametrization of our theoretical model of the

system. Starting from configurations where particles are randomly

distributed in the simulation box, we observe that they tend to

arrange in layers, leaving the inter-layer region essentially void;

a more detailed discussion of these results will be discussed

elsewhere. In the following we present results for the structures

as obtained in MC simulations for the state point at D ¼ 4s and

rs3 ¼ 3.5; as an initial condition we placed the particles on square

lattices on predefined, equally-spaced layers. The snapshot in Fig. 4

gives qualitative evidence that the theoretical predictions of

a centered rectangular structure are nicely confirmed in simulations.

A more quantitative conclusion can be drawn from the pair

distribution functions displayed in Fig. 5: nearest-neighbour

distances as predicted by the theory are in excellent agreement with

the peak positions in the pair distribution function extracted from

the simulation. In addition, these results confirm the theoretical

assumption that structures in the different layers are identical.

Additional simulation data on the formation of ordered layer

structures in general and on the buckling transition in particular will

be published in due course.
structure at density rs3 ¼ 0.1 as the system transforms from a two- to

s ¼ 2.9, 3.0, 3.1, 3.2, 3.25, 3.28, and 3.29, from left to right and top to

where in the former case in general only the lower-half of the ordered

ngement is found. In addition, unit cells that characterize the underlying

Soft Matter, 2009, 5, 2852–2857 | 2855



Fig. 4 Simulation snapshot of a layered system at D ¼ 4s and rs3 ¼
0.35; only the particle positions in the two lower layers (specified by the

different shading) are displayed. 529 particles per layer have been

considered. The initial simulation box was quadratic with a side length of

40s; its shape at the instant of the snapshot is delimited by the thin grey

lines. Extensions of the simulation box in x- and y-directions are given in

units of s.

Fig. 5 Pair distribution functions g(r) for the layered system for D ¼ 4s

and rs3 ¼ 0.35 as functions of r, evaluated separately for the four

different layers in computer simulations. Vertical bars indicate distances

between particles in the corresponding ordered structure as predicted by

theory; the height of these bars is proportional to the number of neigh-

bours at this distance.
Using GA-based optimization techniques and complementary MC

simulations we have investigated the ordered equilibrium structures

that emerge as a three-dimensional lattice grows in thickness D. Using

a Gaussian-shaped interparticle potential we are able to discern

between energetically competing ordered equilibrium particle

arrangements at given D and number-density r with high accuracy.

Two archetypes of transition scenarios have been identified from the

diagram of states. We give evidence that in particular the buckling
2856 | Soft Matter, 2009, 5, 2852–2857
transition occurs in a very narrow energy interval, thus providing an

impressive demonstration of the system’s efforts to arrange particles

at every instant in such a way that the energy of the system is opti-

mized. We point out that a finite temperature (and thus the entropic

contributions to the thermodynamic potential) will certainly have an

impact on the layered structures. Using the bulk behavior of the

Gauss model as a guidance,19 we can expect that the T ¼ 0 phase

transition boundaries between the ordered phases will not be drasti-

cally altered by the entropic contributions at finite temperature.

However, at temperatures around kBT/3 y 10�2, order is expected to

be lost and the system should undergo a transition to a (confined)

fluid phase, whose density profile will be inhomogeneous in the

direction perpendicular to the walls and uniform parallel to the same.

The solution of this computationally more demanding task will be the

topic of future investigations.
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