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We present a theoretical analysis of the structural properties and phase behavior of spherical, loosely
cross-linked ionic microgels that possess a low monomer concentration. The analysis is based on the
recently derived effective interaction potential between such parfidleR. Denton, Phys. Rev. E

67, 011804 (2003]. By employing standard tools from the theory of the liquid state, we
quantitatively analyze the pair correlations in the fluid and find anomalous behavior above the
overlap concentration, similar to the cases of star-branched neutral and charged polymers. We also
employ an evolutionary algorithm in order predictthe crystalline phases of the systevithout

any a priori assumptions regarding their symmetry class. A very rich phase diagram is obtained,
featuring two reentrant melting transitions and a number of unusual crystal structures. At high
densities, both the Hansen—\Verlet freezing critefibFP. Hansen and L. Verlet, Phys. R&&4, 151

(1969] and the Lindemann melting criterigf. A. Lindemann, Phys. Z11, 609(1910] lose their

validity. The topology of the phase diagram is altered when the steric interactions between the
polymer segments become strong enough, in which case the lower-density reentrant melting
disappears and the region of stability of the fluid is split into two disconnected domains, separated
by intervening fcc and bcc regions. )05 American Institute of Physics

[DOI: 10.1063/1.1850451

I. INTRODUCTION which microgels are made is pdlN-isopropylacrylamide

(PNIPAM), whereas other polymers such as polyacrylic

(Cross-linked polymer networks have been one of the, ;42 o ovstyrend® can also be uself,and the prepara-
main themes of research in polymer science for man

Xion of novel, starch-based microgels has been recently re-
decades. The literature on the topic of uncharged networks ‘14 S 9 . . Y
orted as welt* Much in similarity with their macroscopic

Is very rich, a review has been presented in Ref. 2. C:Iose'\zounter arts, microgels can swell in a good solvent and this
related to these are networks formed by polyelectrolPte) parts, 9 . 9 o
roperty makes them promising as drug delivering

chains. Initial work on such systems, which are also referred J2.15 hev h b desianed I in th
to aspolyelectrolyte gelsfocused on the swelling behavior 298NS~ once they have been designed to swell in the
in the presence of salf Active interest in the swelling of vicinity of target sited” Most of the current industrial inter-
these gels remains to date, due to their ability to absorb larggSt in microgels focuses primarily on their usage in surface-
amounts of water and act as superabsorbers or drug delivefPating applications, due.to thewl ability to act as rheo.loglcal
systems. Theoretical work on the swelling has been summdeégulators. At the same time, microgels are of great interest
rized in the review article of Khokhlowet al® Computer ~@s model colloidal particles, since they can bridge between
simulations have also played a very important role in underhard-sphere particlé$ and soft colloid$’ through suitable
standing the conformations of charged d&fswhere the role  modifications of their monomer- and cross-linking densities.
of short-range attractions has also been examined. Depending on whether they carry a net charge or not, micro-
Scaling down the size of the above-mentiormadcro-  gels can be distinguished intonic or neutral Depending on
scopic cross-linked gels, one obtains mesoscopically sizedhe monomer concentration in their volume, they are classi-
particles, synthesized by cross linking of polymers that ardied asuniform or core-shellmicrogels.
known as microgels'®'* The most common polymer of In the recent years, considerable work has been done

0021-9606/2005/122(7)/074903/11/$22.50 122, 074903-1 © 2005 American Institute of Physics

Downloaded 05 Aug 2005 to 128.131.48.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1063/1.1850451

074903-2 Gottwald et al. J. Chem. Phys. 122, 074903 (2005)

regarding the internal conformations and swelling propertieglementary charge, where the possible Manning-condensed
of microgels and, in particular, the dependence of the lattecounterions have been subtracted. Due to electroneutrality,
on parameters such as temperatyntd, solvent quality, net the solution also containsl;=ZN monovalent counterions.
charge, and salt concentratithi??Less is known, however, We limit ourselves to the salt-free case only. The system is
about the structural properties and phase behavior of macrassumed to be dissolved in water at room temperature. An
scopic solutions of microgel particles. Hellweg al®have effective interaction between the microgel particles can be
found that microgel particles form colloidal crystals akin to formally derived by taking a partial trace of the canonical
those occurring in hard-sphere systems, whereas Grohn ampartition functionZ of the system. This task has been carried
Antonietti have performed static light-scattering experi-out recently by Dentofit who showed that the original par-
ments, finding scattering intensities typical of dense, liquid-ition function can also be expressed as a canonical trace
like colloidal system§f1 Formation of structured clusters over the microgel degrees of freedom only, employing a suit-
from soft microgels has been reported by Fernandez-Nieveably defined effective Hamiltoniak{o, namely,

et al,®® whereas Fernandez-Barbero and Vincent have fo-

cused on the complexation between charged microgels and Z = {(exp(— BHei))m- (1)
oppositely charged colloid.

A concept that greatly facilitates the theoretical investi-In Eq. (1) above, the brackets--) denote a canonical trace
gations of the structural and thermodynamic properties o&nd the subscript indicates that it has to be taken with respect
complex fluids(such as microgel solutionss that of the to the coordinates and momenta of the microgel particles
effective interaction potentidietween suitably chosen coor- only. Moreover,3=(kgT) ™%, with the Boltzmann constarki
dinates that characterize the macromolecular aggregates asiad the absolute temperatufe
whole?’ Proposals for the effective potential between dense, The effective Hamiltonian has been shown to have the
hard spherelike microgels have been put forward recently bjorm*!

Wu et al?®?° as well as by Berli and QuemadaFor the

opposite case of loosely cross linked, ionic microgels, an N p2

effective potential has been derived by Derifonithin the Heit= 2 ?n + 2 ver(|Ri ~Ry) + Eq, (2)

formalism of linear-response theory, which allows for(ap- =1 <]

proximate tracing-out of the counterion degrees of freedom.

In a recent publicatio” we have applied standard tools

from the theory of liquids, combined with a novel, evolution- N i ) .

ary algorithm topredict stable solid phases, drawing thereby ume term® to b.e defined in Ec(8).below. EQCh microgel
particle has a diameter. The effective potentiab«(r) pos-

the phase diagram of ionic microgel solutions for some set esses two branches. one valid for separaticas. and one
lected parameter values. In this paper, we present an e>?— ' P

tended account on the thermodynaraid structural proper- or r>o. For overlapping particles, it has the form
ties of ionic microgel solutions and the correlations between
9 222e2{6 <r>2 3(r>3 1<r)5}

whereP; denotes the momentum amj the position vector
of the center of théth microgel, andg, is a so-called “vol-

the two for a wide range of parameters. We also offer a more  y (r) = - =) ===

extensive account of the evolutionary algorithm employed 5 \o/ 2\o/ Sl\o
previously” and we examine the effect of the stefielf- 707262

avoidanceg interactions on the topology of the phase dia- _mvind(r) (r<o), 3)

gram. The latter have been ignored in the preceding work.
In this way, we establish quantitative limits for the range Ofwheree is the dielectric constant of the solvent ang(r) is
physical parameters that can cause a change in the topolo%yven by the expression
of the phase diagram.

The rest of the paper is organized as follows: In Sec. Il 1 1 4
we present and discuss the effective interaction potential, on  vj,y(r) = (1 —e M+ =K%+ —K4r4) (1 - 2—02)
which all further investigations are based. The properties of 2 24 K

the fluid phase are presented in Sec. lll, whereas the evolu- o o 5
tionary algorithm employed for finding the optimal crystal Tt sinh(«r) + | &7 sinh(xT) + k"ot
phases as well as the properties of the solid phases are shown
iq Sec. IV._ The resulting pha;e diagram is prest'ent'ed and +EK4(03r+r03)]<1+ j )
discussed in Sec. V, and the influence of the steric interac- 6 K20?
tions on it is the subject of Sec. VI. Finally, in Sec. VII we
. ; . 4r 1 1
summarize and draw our conclusions. Some technical re- - —|1+=K262%+ =K4*
marks regarding the volume terms of microgel solutions in g 2
comparison with those pertaining to hard, charged colloids 8r3(;<202 K404) 1 & .
i -t | - —=—r". 4
are relegated to the Appendix. 353\ 4 12 18002 (4)

Il. EFFECTIVE INTERPARTICLE POTENTIALS On the other hand, for nonoverlapping distances the effective

We consideN charged microgels in the volumé with interaction crosses over to a screened electrogtétikawa
densityp=N/V. Every microgel carries chargée, with the  potential of the form
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47%e? 2 sinh(kal2) |2e™ 300 ' ' ' '
Ueﬁ(l’) = W COS|‘(K0'/2) - T T, 3 _ p0'3=0.1
400 p0‘3=l.0 -
(r>o). (5 L -- po’=20
- 3_

In Egs.(4) and (5) above,« is the inverse Debye screening ~_ 300~ po=100
length, which, for monovalent counterions and salt-free so- ;&
@«

lutions is given by the expression 200

-
Kk =\NAmZp\g, (6)
100
with the Bjerrum length\g expressing the distance at which

the electrostatic interaction between two elementary charges
roughly equals the thermal energy, namely,

eZ

@

ric

Ao = , 7 150~ . T . T
B EkBT ( ) \'\.\ — 7Z=100
and having the valugg=7.14A for water at room tempera- *\ et
ture. The Bjerrum length is kept fixed to this value through- 100F~~. \'\.\ T ZeA00
out this work. _ \\ A
As a result of the partial trace of the partition function of :% L \\ .
the original system, two effects show up. On the one hand = |- . RN
the pair potential acquires an explicit density dependence 50l AN '\. 1
through the parametet. On the other hand, an extensive ;
volume termE, appears in the effective Hamiltonian, which
contains contributions from the degrees of freedom of the ®)
counterions and reads as o ' 15
62°%¢’)1 2
Eo=ZNksT[In(ZpA®) - 1]-N {— - FIG. 1. The effective interaction potential between charged microgels, ac-
€0 5 Kk0° cording to Eqs(3)—5). (a) Fixed chargez=200 and for different microgel
6 4 4 4 densitiesp; (b) fixed densitypo®=1.0 and varyingZ. The particle diameter
+_{1__+(1+_+_>e—m} has the valuer=100 nm.
K30'3 K20'2 KO K20'2
keT which they have been derived. In the case at hand, the pro-
—ZN7, (8 cedure involved in the derivation of the effective interaction

is an approximate tracing out of the counterion degrees of

where A is the thermal de Broglie wavelength. Though  freedom, which has been carried out with the goal of leaving
has no influence on the correlation functions of the macrothe total free energy of the system unchanged. In other
ions, it forms an integral part of the thermodynamics of thewords, the sum of the interaction free energy and the volume
system, as is clear from Eqggl) and (2). In Fig. 1@ we  terms should be the same as the original free energy of the
show some selected plots of the effective potendiglr),  system. An important consequence of the partial trace over
where it can be seen that this quantity is ultrasoft andhe counterion degrees of freedom, however, is that the com-
bounded. Moreover, both the range and the strengthe6f)  pressibility and virial routes to the free enetggo not yield
shrink with increasing concentratignof the microgels. On identical result$® In this sense, neither the “fluctuation com-
the other hand, as can be seen in Figp),1an increase of the pressibility” x;; given by thek— 0 limit of the static structure
charge numbeZ on the microgels renders the potential morefactor S(k) nor the “virial compressibility”y,;;, obtained by
steeply repulsive. The volume terBy/V is a convex func-  differentiation of the virial pressure with respect to the den-
tion of the densityp, whereas the one pertaining to hard sity, represent the true compressibility of the system. We can,
colloids can be concavi.A comparison between the two nevertheless, imagine a putative system with a density-
cases is presented in the Appendix. independent interaction potential, which is identical to the
present interaction potential«(r; pg) at a given densityy.
Since at this density the two systems appear identical, they
also have the same structure, as given by the functins

The two quantities of central interest that describe theand S(k)—but notthe same thermodynamics. Enforcing con-
pair correlations in the fluid phase in real and reciprocalistency between the compressibility and virial routes has the
space are the radial distribution functigtr) and the struc- additional benefit of improving the agreement between the
ture factorS(k), respectively. As is clear from Eq63)—(5), obtainedS(k) and corresponding simulation resultHence,
the effective interaction at hand is density dependent. As itve employ the Rogers—Your(@&Y) closuré® in order to ob-
has been repeatedly pointed out in the literafifé’ special  tain the correlation functions of the microgel solution at any
care should be taken when dealing with such effective potengiven density, treating the latter simply as a fixed parameter
tials, since it is crucial to take into account the context inin the interaction. We reiterate that, although the RY-closure

Ill. PROPERTIES OF THE FLUID PHASE
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FIG. 2. The structure facto®(k) for Z=250 and for increasing densify FIG. 3. Radial distribution functiong(r) for various combinations of and

Note the anomalous behavior of the peak height. p, as indicated in the legend. The points in {Bep) plane have been chosen
to lie close to the phase boundaries between the fluid and incipient crystal
structures—see Fig. 7.

enforces the consistency of the two routes to the compress-

ibility, the resulting quantity does not represent the real compeen termed asltrasoft Dendritic macromolecules that fea-
pressibility of the system at hand. We have also employegure a Gaussian effective potential between their centers of
the simpler(and thermodynamically inconsist¢ritypernet-  mass are yet another member of this farfiit{’

ted chain(HNC) closure to the Ornstein—Zernike relation in The pair correlation functions also offer a way to the
order to provide a comparison between the two in obtaininghermodynamics of the system via the so-caleidtegration

the phase diagrams of Sec. V. route®’” Consider the Hamiltoniaf( ="+ - E, with 7 andE,

In Fig. 2 we show representative results for the structurq)eing| defined in Eq(2). It can be show® that the excess
factor S(k) as obtained by the RY closure. We see the char-

acteristic signature of the ultrasoft nature of the interactionrgﬁg det?]i;%y : ?ngfg(tfiznassomated with# can be calcu-
namely, the growth of the height of the main peakst{) up 9

to, roughly, the overlap densify of the microgels, which is 1

then followed by an anomalous behavior: on the one hand  gf_(,) = EPZI dSereﬁ(r;p)f dAg™M(r;p), (9)
the height of the main peak stadecreasingas the density 2 0

grows and on the other hand its position changes very

weakly with density above.. Identical behavior has been where g™ (r;p) is the radial distribution function corre-
seen for solutions of star polyméFfsand polyelectrolyte sponding to a fluid interacting by means of the “scaled” po-
stars!**The insensitivity of the location of the peak above tential v(r; p) =\veq(r; p). The total free energy density
the overlap density can be traced back to the crossover of thg ) is then obtained by adding td.(p) the ideal and
potential from a Yukawa to a soft interaction and the latter,ojyme-term contributions, namef§,

part is only felt above the overlap concentration. The decay

of the peak height and the associated loss of correlations at N BE

high densities is a result of the ultrasoft character of the  Bf(p) = p[In(pA3) — 1] + Bfe\(p) + TO- (10)
interaction and points to a reentrant melting behavior of the

system, as it will be shown shortly.

Representative results for the radial distribution function
g(r) are shown in Fig. 3. Here we encounter the unusual
behavior that upon increasing the concentration the height of
the peak corresponding to the first coordination slaiel
creases The physical origin of this phenomenon lies in the
fact that the interaction potential«(r) becomes itself softer
upon increasing; the same behavior has been seen in the
case of polyelectrolyte star solutioffswhere again the in-
teraction is density dependent and softening dscreases,
but not in the case of neutral star polymé&tsyhere the
potential is density independent. Above the overlap density,
g(r) develops an unusual substructure inside the corona di-
ametero and the physical reasons behind this behavior have
been discussed in detail in Refs. 39 and 41. In view of the
striking similarities in the phenomenology of star polymers,

polyelectrolyte stars, and ionic microgels, it is fair to say thatgg. 4. Free energy density, including the volume term. The density gap
they all belong to the class of soft matter systems that havespresents the region where the solid phases are stable.

The free energy is shown in Fig. 4 for some characteristic
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values of the charge parametérNote that the free energy 60— \ I T I
density is free of concave parts, i.e., there is no spontaneous HA HH
liquid-gas phase separation in the system, in agreement with  soo|- H Hi
the fact that the structure factogk) of the microgel par- v A
ticles show no divergence at the linkit-0. The liquid free 400+ oy oy |
energy calculated in the fashion described above has been | fee Jf, el | trigonal JA
employed to draw the phase diagrams in Sec. V, in conjunc-
tion with the free energies of the solid phases. The way in i ik /A T
which these have been calculated is described in the follow- H 1 y
ing section. 200 HH H Ht
HH HH A
t005—— R R
IV. CANDIDATE SOLID PHASES: EVOLUTIONARY pc’

ALGORITHM AND HARMONIC THEORY FIG. 5. The(T=0)-phase diagram of the system, as obtained from the

. . . minimization of the lattice sums employing the genetic algorithm.
We now turn to the solid phases: first we have to find out ploying e g 9

the possible candidate structures into which the ionic micro-
gels can freeze. To this end, we have applied a genetic algo- f(Z) = exp{~ [F(Z) — F(Zico) IF(Ztco)}s (11
rithm (GA) which was recently proposed and implemented
by some of us’ While up to now equilibrium structures in F(Z) is the free energy for a crystal structure represented by
freezing processes were determined from a preselected settbie individualZ andZ;.. is the individual representing the fcc
candidates(an approach which always carried the risk of lattice. The free energy of any given crystal structure was
“forgetting” a possible candidateour GA is able to predict calculated within a harmonic theory in the approximation of
crystal structures into which the fluid can freeze via an unthe Einstein model, as we discuss below.
restricted, unbiased, and parameter-free search algorithm. A large number of individuals—in our case 1000—form
In a more general context, GAs can be considered aa generation; the individuals of the first generation are cre-
optimization strategies that use features of evolutionary proated at random. Triggered by the fitness values of the indi-
cesses as key elements; their purpose is to find optimal seiduals, pairs of parents are chosen from this generation:
lutions for a given problerﬁ’? Originally developed by Hol- they create the individuals of the subsequent, second genera-
land and co-worker® it has meanwhile been applied in tion. This is done via a so-called one-point crossover pro-
many fields*® such as economics, immunology, biology, or cess: cutting both parents at a randomly chosen position, we
computer sciences. Astonishingly enough, the attractive feacross combine the respective parts and create thus two indi-
tures of GAs have not yet been discovered in physics. Irviduals of the second generation. In addition, we perform
recent work we could demonstrate that GAs can representith a probability p,—in our case we chose
also in physics a very powerful tool: they have been used irp,,=0.001—mutations: in a given generation we flip the
freezing studies of several syste%and have thereby value of each gene from 0 to 1 or vice versa with the prob-
proven to be a reliable, efficient, and accurate tool; we areability p,,. In this manner we arrive at a different generation
therefore convinced that in the near future GAs will meritof individuals. We repeat the above steps to create individu-
more appreciation in physical problems where their ideasls of the subsequent generation and continue this iteration
might be applied in a vast variety of problems. over several steps: our experience has shown that 100 gen-
The basic unit in a GA is an individudl which, in turn,  erations are by far sufficient to guarantee convergence.
is built up by a fixed number of genes. In our application an  In each generation we retain the individual with the
individual contains in a coded form information about a crys-highest fitness value. Among the “fittest” individuals of each
tal structure; it has been coded by the binary alphabet, i.egeneration, we consider the one with the absolutely highest
each gene can assume the values 0 or 1 and each individd@hess value to be the best individual, representing thus the
can be viewed as a binary code of the set of primitive vectorsolution of the optimizatior(search algorithm. Due to the
of a Bravais lattice; for nonsimple lattices the positions oflimited accuracy induced by the finite number of genes in an
the additional particles in the basis unit of the structiwe  individual (and, consequently, of the binary representation of
have restricted the number of basis atoms to gighte to be the lattice parametershis solution is refined in a subsequent
included as well. Note that the limited number of genes in arsteepest descent minimization, and represents then the stable
individual leads to a limited accuracy in this representationcrystal structure of the search.
Special care has been taken to guarantee that different but The possible candidate structures into which our ionic
equivalent parametrizations of a crystal structure are repremicrogels can freeze have been selected=ad, i.e.,F=U,
sented by one individual only; for details we refer again towhere for a given crystal structure the internal endigkas
Ref. 47. Further we assign via a fitness functf¢f) a posi-  been calculated via a lattice sum. Tfle=0)-phase diagram
tive fithess value to each individudl, this is done in the is depicted in Fig. 5, indicating which crystal structure rep-
sense that a higher value of this function characterizes a betesents for a given state of the system the stable one. At low
ter solution. For the present contribution we have chosen fodensities(i.e., up topa®~ 2.5 we encounter for alZ values
f(Z) the following form: the usual suspects, i.e., the fcc and bcc lattices. As we in-
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FIG. 7. The phase diagram of ionic microgels, as obtained by the procedure
described in the text. The free energy of the fluid has been calculated by
employing the RY closure. The dashed line denotes the locus of points on
which the main peak of§k) attains the Hansen—\Verlet value. Here the
diameter of the microgels is kept fixed @100 nm.

the counterions absorbed within the microgel is a density-
denpendent quantity that can be calculated using(&g}.of
Ref. 31, namely,

6 2 sin /2
Znet= Z—(l + —)e"‘"’{cosi{xa/Z) _ Sinhlxof2)

Ko Ko Kol2
FIG. 6. Representative sections of the hexagdigb) and the trigonal (12
(bottom) lattices, with the respective elementary unit vectors indicated.
The length scaler stems from the diameter of the microgel

crease the density, interestingly enough—and characteristiarticles at infinite dilution. The microgel size can change at
for systems with soft potentials—more open structures apfinite concentrations as a result of two competing mecha-
pear: hexagonal, trigonal with a bco section for highernisms: the increase of the fraction of absorbed counterions,
charges, and hexagonal again. Note that in the phase diagrattich tend to swell the network, and the osmotic pressure
for star polymer¥ the bco and the diamond structures arefrom neighboring microgel particles that lead to shrinkage of
encountered, while in polyelectrolyte star solutions the bcothe same. Within our theory we are not able to make quan-
the hexagonal, and the sc structures are the stable cri/stalstitative predicitions as to the density dependence of the par-
Within the error bars indicated in Fig. 5, the GA is converg-ticle size. Therefore we scale the density with the unper-
ing to two solutions with equal fitness values, indicating theturbed microgel diametew. Steric contributions to the
phase transition from one structure to the other. In Fig. 6 wénteraction are neglected for the moment; their influence on
show representative sections of the hexagonal and the trigéhe phase behavior will be discussed in more detail in Sec.
nal lattice, along with the respective conventional unit cells.Vl. The results are based on the RY closure for the fluid
These five crystal structures define the set of possibl@hase. Itis easy to check that our potential belongs t@the
candidate structures for the phase diagram: we do not assurlss,” so we can anticipate that re-entrant melting will oc-
that for T>0 new candidates might emerge in the freezingcur for this model system and that we can definitely exclude
transition. These phase diagrams are now calculated as glustering effects. For densities updo®~ 3 we observe the
ready described in Ref. 41: for the five candidate structurefirst reentrant melting process: foz=200 the liquid
we calculate the free energy within the approximate Einsteifreezes—first into an fcc structure which then transforms into
modef*>? (for details we refer the reader to Sec. IV of Ref. & bcc structure—and then remelts again. The RY and the
41) and compare them with the free energies of the compettINC approximations give qualitatively similar results; on a

ing fluid phasesee preceding sectipriThey are discussed in quantitative level we note that HNC has the tendency to
the subsequent section. broaden the fcc/bee region in the phase diagram, predicting

freezing already forZ=140. Upon further compression
rather exotic and open structurdmwxagonal, bco, and trigo-

V. PHASE BEHAVIOR nal) emerge, a feature which is characteristic and meanwhile
well known for systems with soft interactiofisee also Refs.

In Fig. 7 we show the phase diagram in th& po®) 50 and 4J; these structures are stable & 350. In this
plane of our model ionic microgel for=100 nm. The pa- region of the phase diagram the RY and the HNC results
rameterZ represents the bare charge number of the microgedgree now also on quantitativelevel: obviously the mixing
that can be measured at vanishingly small particle concentrgarameter in the RY closure leads to a complete suppression
tions. The net charge numb&y,, after taking into account of the PY component and we can conclude that HNC gives
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1200 . : . . . . FIG. 9. Free energy difference per particle between the various solid phases

and the fluid forZ=600. The fluid free energy has been calculated by means
of the HNC closure. The inset shows a detail of the main plot at the region
of high densities.

®)

The salient features of the phase diagram are typical for
the class of systems that have been termdttasoft
colloids™ and shows striking similarities with the previously

liquid i obtained phase diagrams of charged, polyelectrolyte*Stars
~~~~~~~ and neutral star polymer8.Below the overlap density, we
IRt SE T encounter the crystallization into the fcc lattice, which is due
f{l;);-\goniﬂ b°°! trigonal 1 Fo the Yukawa tail of the interaction pot_ential. L_Jpon further
S : 5 increase of the density, the Yukawa interaction becomes
oc® softer, due to the absorption of counterions inside the micro-

gel, causing thereby a transition into the bcc lattice. The
FIG. 8. Phase diagrams on tlig,o) plane for fixed values of. (a) Z same effect has been seen in the phase diagram of polyelec-
=200 and(b) Z=400. Here the fluid free energy has been obtained throughtrolyte staré! For neutral star polymers, where the pair po-
the HNC closure. The Hansen-Verlet locus is also shown as a dashed line.” 7" o "
tential is density-independent, the fcc-bcc transition takes

thermodynamically self-consistent and therefore accurate rgslace when the functionality of the stars is changed, since
sults. Compared to the low density part this region of thel/f formally plays there the role of the Debye screening
phase diagram is considerably more complex and diversifiettngth in the Yukawa interaction. The remelting of the bcc
(see insets of Fig.)7 this points out that the energies of the crystal upon increasing the density beyond its overlap value,
competing crystal structures are very close to each other. as well as the unusual crystal structures thereafter are caused

We finally focus on the small liquid gap at>~3 be- by the ultrasoft effective potential for strong overlaps. The
tween the bcc and the hexagonal structures. Despite consithct that the crystal types themselves and their sequence of
erable efforts we are not able to predict the topology of theappearance in the phase diagram differs from the other, pre-
phase diagram in this density range for higher charges: owmiously examined ultrasoft systerﬁjsf30 shows that the de-
the one side we encounter convergence problems to solve thails of the ultrasoft interactions are relevant for the stabili-
integral equationgvalues of the main peak if(q) of ~10  zation of particular lattice structures.
have been obtaingdon the other side the validity of the In Fig. 8 we show phase diagrams for ionic microgels
model breaks down for such high values; thus a closer for two different values o in the (o, pa®) plane; the prop-
analysis of this region of the phase diagram is out of reacherties of the liquid phase have now been calculated within

The broken lines in Figs. 7 and 8 locate those states afhe HNC approximation. FoZ=200 only freezing into an
the system, where the value of the main peak of the statifcc and a bcc structure is observed, followed by a reentrant
structure factor of the fluid phasg&(q,) assumes a value of melting process close tp.. The situation is considerably
2.85. Passing this value represents a classical and well-testetbre complex foZ=400, as could already be expected from
indication for an incipient freezing transition in repulsive Fig. 7: in particular, for smalb- values(i.e., c=<50 nm and
systems, the Hansen—Verlet rife’ From our results it be- intermediate to high densities, freezing into a hexagonal, a
comes evident that this criterion can only be used for smallebco, and a trigonal structure with a subsequent re-entrant
densities, i.e., up to approximately the overlap dengity melting is observed.
where the broken lines lie close to the freezing lines. Beyond In Fig. 9 we show the free energy differences between
p«, the Hansen—Verlet criterion clearly fails: the broken linesthe fluid phase and the crystal structures encountered in the
lie deeply in the liquid phase region of the phase diagramphase diagram foZ=600 ando=100 nm; the properties of
i.e., far away from the freezing transition. We can concludethe fluid phase have been calculated within the HNC ap-
that the Hansen—\Verlet freezing rule is applicable for ourmproximation. From this figure one can easily see the stable
system only for densities belopx. phases as the density is increased: first fcc, then bcc, fol-
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25 = T T square displacement of a particle from a lattice cite, due to
s—x cfatrigonal 1 the harmonic oscillations, over the nearest-neighbor distance
@=© c/a hexagonal . .
20 Sabhbo . a. The parameter combination chosen 45600 and o
a

=100 nm for the five different candidate structures as func-
tions of the density. For classical crystals of particles that
interact by means of steeply repulsive interactions, a Linde-
mann ratio of 10 to 13% indicates an incipient melting
transition>® We see that this criterion is still valid fqso?
=3, i.e., where the classical freezing structures fcc and bcc
are encountered. However, as we increase the density and as
we proceed to the more open structures, the Lindemann ra-
0 M L I R tios of these structures clearly pass this threshold. It is ex-
pected, of course, that for the highly anisotropic exotic struc-
tures at high densities, the Lindemann ratios along the
FIG. 10. Representative results for the aspect ratios of the conventional unizarious lattice directions will show a corresponding aniso-
cells of the of the various crystal structures. Shown here are results fofropy. Nevertheless, even for the more isotropic fcc and bcc
Z=600. crystals, the Lindemann ratios show a clear increase atgigh
values, an indication of the softening of the crystals that

lowed by the small corridor of a stable fluid phase fe®  become more delocalized. Further, although fcc and/or bec
~3. Then follows the part of the phase diagram where thd1ave over the entire density range investigated the smallest
more exotic crystal structurégbexagonal, bco, trigonal, and Values, they do not represent the stable structures: instead, in
hexagona| agahnemerge; note that—as one can also Seéhe hlgh-denSIty region Strongly anisotl’opic structures have
from the inset—the energy differences between the compekeen found to be the stable ones.
ing phases are now considerably smaller than between fcc From these considerations, the following conclusions
and bce. Fopo®=6 the system remelts again. can be drawn(i) we confirm earlier results that for ultrasoft

In Fig. 10 we display—as a quantitative analysis of theinteractions highly asymmetric structures are found to be
crystal structures encountered in the phase diagrams—aspé&gecific in the intermediate- and high-density region of the
ratios of the trigonalc/a), the hexagonalc/a), and of the ~Pphase diagram. The arguments that have justified closed
bco (b/a and c/a) lattices forz=600 ando=100 nm. We Ppacked structures in systems with harshly repulsive interac-
point out that the trigonal lattice for densities up tal.8  tions have to be reconsidered thoroughly: due to the rela-
with an aspect ratio af/a= J6is equivalent to the fcc struc- tively small energy penalty for short interparticle distances in

ture and that the trigonal lattice for densities %802  Systems with bounded potentials it is from the energetic
<2.6 withc/a=\3/8 is equivalent to the bcc lattice. In Fig. point of view more attractive to first build a shell of a few
10 one easily recognizes the transition densities of fcdreighbors at rather short distances and then a second shell of
—bce and bce-hexagonalvia the fluid phasgeby the dis- particles at rather remote distances. This explains why the
continuities in the aspect ratio curves. Note the agreemer@Nisotropic, exotic crystals with a small number of nearest
between thec/a ratio for the bco and the trigonal structure Neighbors are preferred in freezing processes at high densi-

for pad=2.7: this reflects the fact that both structures haveies. (i) It therefore does not surprise that the well tested and
large similarities in their first coordination shellsee also €stablished freezing rulédue to Hansen and Verlet or based

the results for the star polyméPs on the Lindemann ratjcare valid only in a restricted part of
Finally, in Fig. 11 we display the Lindemann ratibs  the phase diagram and can no longer be used to predict freez-

The latter is defined as the ratio between the root-mearild transitions in the entire phase space: above the overlap
density p- these traditional melting/freezing criteria are vio-

lated. We take these two findings as indications that a rich

3
po

s variety of unexpected new phenomena is still waiting to be
02 ... .f,ffo /2;,’/" . discovered in the physics of systems with soft interactions.
----- :g;agonal ”{f'?*
.=+ trigonal o'y
015 ! i VI. INFLUENCE OF THE STERIC INTERACTIONS
~ Up to now, the steric repulsion that is due to the overlap
between the monomer units of two interacting microgels has
0.1 7 been ignored and the analysis has been carried out exclu-
sively on the basis of the electrostatic and counterion-
induced interactions between the macromolecular aggre-
0.05

LT gates. We will now add to the effective potential, Egs.
5 6 (3)—(5), the steric repulsions. In agreement with the deriva-
tion of the electrostatic interactions in Ref. 31, we model the

FIG. 11. The Lindemann ratios of the various crystal structures as a functiormicro‘.:lels_ as homogeneous spheres of dia_lm_ﬂt_eaf:h bging
of the density forz=600. characterized by a monomer volume fractipin its interior.

Downloaded 05 Aug 2005 to 128.131.48.66. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074903-9 lonic microgels as model systems for colloids J. Chem. Phys. 122, 074903 (2005)
Within the framework of standard Flory—Huggins thebry, T T T T
the steric free energyﬁ) associated with a single microgel I — with steric interaction ;';'
particle is given by the relation 5001 -~ no steric interaction i il
]
VO l 'l
7= _kBT<_ ‘X)d’z, (13 !
Ug 2 H
1]
whereV,=7c>/6 is the volume of the microgel particle, ,,"

is the typical volume occupied by a monomer, gnds the
Flory—Huggins parameter characterizing the solvent quality,
with =0 representing an athermal solvent gywll/2 a®
solvent.

Generalizing now the Flory—Huggins arguments to two
overlapping microgels separated by a distabeeo, we can
derive the associated steric free eneﬁéﬁ(D) as

FIG. 12. The phase diagram of ionic microgels with diameterl00 nm,
1 5 3/ D 1/D)\3 1) including now the steric interaction of E€L5). Here, the prefactow in Eq.
X | 1-= + 2‘7:(st . (16) has the valuexr=100. Notice the extension of the intervening fcc and
2 2 bce phases t&=0 and the resulting separation of the domain of stability of
(14) the fluid into two disconnected regions.

2V,
F(D)=="keT

U o

Accordingly, the steric interactiong(D)=F2'(D)~F2(*)  alone cannot support any crystalline phases. As a matter of

=73 (D)-2Fy takes the form fact, the topology of the phase diagram is altogether modi-
[ 3/D\ 1/D)\3 fied, in the sense that the stable fluid region is now broken up
all- —(—) + —(—) } , D=o; into two fluid stability domains separated by a fcc region that
Pos(D) = 2\e/ 2\c (15 is followed by a bce one, as the density grows at fizedhe
0, D>o, influence of the steric repulsion, therefore, is to extend the

. . L : region of stability of the solid phases. This is also demon-
where the dimensionless prefacwiis given by the relation strated in Fig. 13, pertaining ta=50, where it can be seen
2V 1 5 that the steric repulsion is not strong enough to alter the
@= U_CkBT E_X " (16) topology of the phase diagram; however, a growth of the
stability regions of the crystals takes place nevertheless. An-
The typical size of swollen, ionic PNIPAM microgels lies in other consequence of the introduction of the steric part in the
the range 100 nn¥ =600 nm. We fixc=100 nm in order  effective potential is a broadening of the stability region of
to compare the phase diagrams tht include the steric interagnhe fcc lattice against the bce. This is clearly due to the
tion with the one shown in Fig. 7, which is based on thejncreased repulsion of the interaction potential, an effect that
electrostatic potential alone, and for which the same value ofayors the formation of close-packed structures. The critical
o was chosen. For ionic PNIPAM microgels, the typical yajue o, for which the fluid region is split up into two dis-
monomer volume fraction lies in the range & ¢<6  connected domains has been found toobe: 70.
X 1072, see Table 2 in Ref. 10. In order to estimate the
“monomer volume”v., we have to take into account the vi|I. SUMMARY AND CONCLUDING REMARKS

Manning-condensed counterions that form “bound pairs” . . .

with the backbones of the chains. It has been sRowmat a We have examined in detail the structural and phase be-
good estimate is.=30¢2, with the typical monomer length havior of spherical, ionic microgels, which form a member
¢~3 A. Using Eq.(16), we estimate the range of values for

the parametew to be 20 '\\ ' i
\ [}

(3-x)=a=200%-y), (17) w0 ,"' ]
where O< y<1/2. I /

We now consider the total interaction potentigl(r) 150 7
=ve(r) +vsr), Whereuveg(r) is given by Egs.(3)—(5) and N
vs(r) by Eq. (15 above. As representative values for the 100 =
prefactora we choosex=100 anda=50 and we redraw the
phase diagrams following the same procedure described be- | o . i
fore. The resulting phase diagram far=100 is shown in ::;‘l‘;::‘;:::ﬁ;"“
Fig. 12. It can be seen that for sufficiently large values of the | . :

chargeZ (i.e., Z=150), the steric interaction has practically o5 1T s 3 25 3
no influence on the phase boundaries, since the electrostatic

. i .
one, which scales_W|_tZ ' dommates' For low qharge values, FIG. 13. Same as Fig. 12 but for a valae 50 of the prefactor in Eq15).
howeve_r- th_e steric InteractIOU causes freezmg_ 'r_‘to fcc f’inﬂlotice that the fluid region remains connected but the regions of stability of
bcc lattices in the region in which the electrostatic interactiorthe fcc and bec lattices are extended.
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of the class of ultrasoft colloids. This character is manifestedween the two systems: the microgels are penetrable to the
in their effective interaction potential, whose soft andcounterions but the colloids are not. Nevertheless, in the
bounded character lies in the heart of a host of characteristimathematical limit of vanishing spatial extent of the
properties of such systems: anomalous correlation functionsolloids® and the microgelso— 0 for both, the two expres-
reentrant melting regions and unusual crystal phases. Sinsons, Eqs(8) and (A1) should coincide. For EqAl) we

the crystalline symmetry of the solids stabilized by such in-easily obtain
teractions is not cubic and the usual arguments that are based

2
on hard-sphere mappings and the concomitant close-packed |im ¢, = ZNk;T[In(ZpA3) - 1] - NK(Ze) - ZN@.
structures do not apply for such interactions, an extended o—0 2e 2
search over a large variety of crystalline arrangements is nec- (A3)

essary. To this effect, the evolutionary algorithm employed o

and presented in this work, provides a reliable and efficient  If We now naively take ther— O limit in Eq. (8), how-

tool to predict the equilibrium structures of the system, onceVer, we do not obtain an expression identical to &)

an accurate scheme for the estimate of their free energies @0Ve. In order to resolve this apparent inconsistency, we

available. first note that the volume terifg, is defined agsee Eq(14)
Our findings should be verifiable in experiments usingin Ref. 31]

loosely cross linked and highly charged microgel particles, N

whose synthesis is practicable with modern chemical tech- Eo=ZNksT[IN(ZpA®) — 1] + = lim vjn4(r)

niques. We also anticipate that, in analogy with star-polymer 2 r-0

solutions that show a similar topology of their equilibrium . 1. . 2.

phase diagrar®’ ionic microgels may display unusual non- +Np L'TO = SUind(K) + Zomdk) + Zvedk) |, (A4)

equilibrium glass behaviof including reentrant liquification

or melting by addition of free homopolymer chaitis. with the Fourier transforms;,q(k), vmdk), ando (k) of the
induced, microgel-counterion, and counterion-counterion in-
ACKNOWLEDGMENTS teractions, respectively. In going from the general &)

. to Eqg. (8) of the main text, the limits —0 andk— 0 have
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Nos. P14371-TPH, P15758-TPH, and P17823-N08. and taking into account that (k) = 4me?/ (k?), we first find
that the third term in Eq(A4) yields the corresponding third
APPENDIX: ON THE RELATION BETWEEN term in the right hand side of E¢A3), whereas the second
THE VOLUME TERMS FOR PENETRABLE term takes the form:
MICROGELS AND FOR IMPENETRABLE
COLLOIDAL SPHERES L _ 4m(ze? 1 f 5 K2
lim lim vjg(r) == 3 2 2
In Ref. 33, linear response theory, which is formally r—00-0 (2m) k(k™ + &%)
identical to the approach of Ref. 31, has been applied to (Ze)?
derive effective interaction potentials and the volume term of - K : (A5)

€
charge-stabilized colloidal suspensions consisting of hard,

charged colloidal particlegchargeZe), their corresponding Introducing the last result into E¢A4) above, we obtain the
counterions and possibly salt. The volume tedly there second term of EQ.(A3) and the equality lim oE

reads for the salt-free case®as =lim,_o®, is established.
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