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We generalize the self-consistent Ornstein–Zernike approximation ~SCOZA! to a fluid of particles
with a pair potential consisting of a hard-core repulsion and a linear combination of Sogami–Ise
tails, w(r)52es(n(Kn /r 1Lnzn)e2zn(r2s). The formulation and implementation of the SCOZA
takes advantage of the availability of semianalytic results for such systems within the
mean-spherical approximation. The predictions for the thermodynamics, the phase behavior and the
critical point are compared with optimized random phase approximation results; further, the effect
of thermodynamic consistency is investigated. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1755192#

I. INTRODUCTION

One of the most frequently used liquid-state theories is
the mean-spherical approximation ~MSA!1 whose wide-
spread use is due to the availability of semianalytic results
for the structural and thermodynamic properties of various
model systems: They are available in ~nearly! closed form
for charged hard-spheres ~HS!,2 dipolar HSs,3 sticky HSs,4

HS Yukawa fluids,5 systems with a generalized HS Yukawa
potential,6 and HS Yukawa mixtures.7 In a recent series of
papers8–12 the semi-analytic formalism of the MSA has been
generalized to a multicomponent fluid of particles interacting
via a Sogami–Ise ~SI!13 pair potential and a generalized form
of this potential.

Comparison with simulations14–16 showed that the
MSA—despite its inherent thermodynamic inconsistency—
yields accurate thermodynamic properties for hard-core ~HC!
systems with purely attractive adjacent interaction tails in
large parts of the phase diagram. However, being mean-field
like in nature its accuracy decreases as one approaches the
critical region. A theoretical approach that goes beyond the
MSA is the so called self-consistent Ornstein–Zernike ap-
proximation ~SCOZA!. It is based on a generalized mean-
spherical ansatz, introducing in the MSA relation one or
more density- and temperature-dependent functions which
are determined by enforcing consistency between two or
three different thermodynamic routes. Although the SCOZA
was proposed already more than 20 years ago by Stell and
Høye17,18 ~in the latter work for a HS Yukawa system! and
reformulated in different versions in subsequent work, prac-
tical applications remained for a long time rather scarce; its
real breakthrough came in 199619 when a reformulation of
the SCOZA partial differential equation ~PDE! made access
to subcritical temperatures possible. Since then, the SCOZA
has been applied to various discrete systems19–25 and con-
tinuum systems26–29 and the results showed in an impressive
way—when compared with computer simulations—that, in
contrast to conventional integral equation and perturbation

theories, the theory remains successful as one leaves the
fluid-state regions and approaches the liquid–gas coexistence
curve and the critical region. In these parts of the phase
diagram conventional theories encounter typically the fol-
lowing problems:30 The shape of the coexistence curve is not
reproduced correctly, sometimes its two branches are left un-
connected so that critical points have to be estimated via
extrapolation, the critical point is not located correctly, and
critical exponents do not agree with the exact ones. In con-
trast, SCOZA applications have shown that this theory is
able to localize the liquid–vapor coexistence curve and the
critical point very accurately ~within 1% to 2% of the best
numerical estimates!. Further, no extrapolation of the coex-
istence branches towards the critical point is necessary, since
the theory allows one to locate the critical point with any
desired accuracy. In addition, various effective critical expo-
nents, that are defined as the slopes of curves of logarithmic
plots, were investigated: Above the critical temperature the
theory yields the same critical exponents as the spherical
model but this regime is very narrow, so that thermodynam-
ics and effective exponents are in good agreement with the
true critical behavior until the temperature differs from its
critical value by less than 1%.20,21,27 On the other hand, an
analytic study of SCOZA’s subcritical exponents by Høye
et al.31 showed that on the coexistence curve, the exponents
turn out to be very accurate: e.g., the curvature of the coex-
istence curve is described by b50.35 which is close to the
exact value of b;0.326.32

For a long time, in the case of continuum fluids, appli-
cations of the SCOZA were restricted to the one-component
case and to hard-core ~HC! interactions with one or two ad-
jacent Yukawa tails ~with the possibility of approximating a
Lennard-Jones potential rather accurately28!. Only recently,
when the SCOZA was reformulated on the basis of the more
elegant and more flexible Wertheim–Baxter factorization
technique33,34 to solve the MSA for a HS Yukawa system a
broader applicability of the theory came within reach: It be-
came possible to extend the SCOZA to HC systems with a
formally arbitrary number of Yukawa tails. As a test system a
linear combination of Yukawas was chosen to approximatea!Electronic mail: paschinger@tph.tuwien.ac.at
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the sphericalized Girifalco potential that describes the inter-
action between the model fullerenes (C60 to C96).35 Further-
more, the SCOZA was extended to binary mixtures of HC
Yukawa systems.36,37

In this contribution we present the generalization of the
SCOZA to HC systems with a tail that is built up by a linear
combination of a Coulomb potential plus a constant that are
both exponentially damped ~including the HC Yukawa fluid
as a special case! and give a detailed presentation of the
formalism. We show that, taking benefit of the availability of
the MSA solution for this system, a PDE for the internal
energy can be derived; its solution fixes the yet undetermined
function in the MSA type closure relation, guaranteeing thus
thermodynamic consistency between the energy and com-
pressibility route. Compared to the HS Yukawa fluid the for-
malism is now more complex and cumbersome. As a testing
case, the theory has been applied to a few model systems and
results for the thermodynamic properties and the phase be-
havior have been compared with results from the lowest-
order gamma ordered approximation ~LOGA!,38 also known
as the optimized random phase approximation ~ORPA!39 to
study the effect of thermodynamic consistency. For the one-
Yukawa system it has been shown40 that SCOZA results are
in excellent agreement with computer simulations, at least
for not too narrow interaction ranges. In this respect, at the
moment, SCOZA can be viewed as the best semianalytic
method to study the HC Yukawa system and we assume that
this is also the case for the Sogami–Ise system considered
here.

This paper is organized as follows: In Sec. II we describe
the theory and present in detail the formulation of the
SCOZA for the system under investigation, in Sec. III the
theory is applied to study the thermodynamic properties and
the phase behavior of various model systems and a compari-
son with LOGA/ORPA results is made. In Sec. IV our con-
clusions are drawn. Details of the semianalytic MSA results
on which the SCOZA formulation is based are summarized
in Appendices A–D.

II. FORMULATION OF THE THEORY

We consider a fluid of particles interacting via a spheri-
cally symmetric Sogami–Ise type pair potential f(r) given
by

f~r !5H 1` r<s

w~r ! r.s
, ~1!

where the repulsion is characterized by the hard-sphere di-
ameter s and the attractive tail w(r) is given by a linear
combination of a Coulomb potential plus a constant that are
both screened with an exponential

w~r !52es (
n52

n S Kn

r
1LnznD e2zn(r2s). ~2!

The zn are the screening lengths, the Kn and Ln are the
coefficients of the linear combination and chosen so that the
minimum of the function 2s(n52

n (Kn /r 1Lnzn)e2zn(r2s)

on the interval @s,`! is 21, and e is the depth of the poten-
tial. Greek indices are used to designate the different

Sogami–Ise tails and summations—unless otherwise
stated—will be extended over n tails. Here the summation
starts at n52 since the first Sogami–Ise tail is reserved for
the description of the HC reference system ~see below!.

The version of the SCOZA considered here27 is based on
the OZ equation

h~r !5c~r !1rE d3r8c~r8!h~ ur2r8u!, ~3!

supplemented with the following closure relation

g~r !50 for r<s ,

c~r !5cHS~r !1K~r ,b !w~r ! for r.s . ~4!

h(r) and c(r) are the total and direct correlation functions,
g(r)5h(r)21 is the pair distribution function, cHS(r) is the
direct correlation function of the hard-sphere ~HS! reference
system and K(r ,b) is a yet undetermined function depend-
ing on the thermodynamic state that is given by the density r
and the inverse temperature b51/kBT , kB being the Boltz-
mann constant. The closure resembles to the one used in the
LOGA/ORPA38,39 where K(r ,b)52b is fixed. Here,
K(r ,b) is not given a priori but is determined so that ther-
modynamic self-consistency is guaranteed between the com-
pressibility and the energy route to the thermodynamic
properties.1

We recall that, according to the compressibility route the
reduced isothermal compressibility via the compressibility
route is given by

1

x red 5
]bP

]r
512r c̃~k50 !, ~5!

where c̃(k) denotes the Fourier transform of c(r)

c̃~k !5E c~r !e2ikrd3r . ~6!

On the other hand the excess ~over ideal! internal energy per
unit volume calculated via the internal energy route is

Uex

V
5u52pr2E

s

`

drr2w~r !g~r !. ~7!

If x red and u are consistent with each other, they must stem
from a unique Helmholtz free energy density F/V 5 f 5 f id

1 f ex, where f id and f ex are the ideal and excess parts of the
free energy density. Thus

r
]2u

]r2 5r
]2

]r2

]b f ex

]b
5

]

]b S r
]bmex

]r
D5

]

]b S 1

x redD , ~8!

where mex
5] f ex/]r is the excess chemical potential. For

approximate g(r) as obtained, for instance, by conventional
integral equation and perturbation theories1 Eq. ~8!, where
x red is given by Eq. ~5! and u by Eq. ~7!, is not fulfilled. In
the SCOZA, however, this consistency is enforced through
an appropriate choice of the yet undetermined function
K(r ,b) that is obtained by solving the partial differential
equation ~PDE! Eq. ~8! supplemented by Eqs. ~3!–~7!. The
solution of the SCOZA PDE is simplified by making use of
the semianalytic solution of the MSA for Sogami–Ise type
potentials8,9 that allows one to express x red as a function of u
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thus transforming the PDE ~8! into a PDE for u . This will be
outlined in the following. So we start by briefly summarizing
the semianalytic solution of the MSA.

Following Baxter’s factorization method it can be shown
that under certain conditions41 the OZ relation is equivalent
to the equations

2prc~r !52Q8~r !1rE
0

`

Q~ t !Q8~r1t !dt ,

2prh~r !52Q8~r !12prE
0

`

~r2t !h~ ur2tu!Q~ t !dt ,

~9!

where the factor function Q(r) has been introduced. From
Eqs. ~9! and from the closure relation

h~r !521 r<s ,

c~r !5( S K̃n

r
1L̃nznD e2zn(r2s) r.s , ~10!

it follows8 that Q(r) must have the form

Q~r !5Q0~r !1(
1

zn
~Dn1Enznr !e2zn(r2s), ~11!

where

Q0~r !5H a

2
~r2s !2

1b~r2s !1(
1

zn
~Cn1Fn!~e2zn(r2s)

21 !1( Fn~re2zn(r2s)
2s ! 0,r,s

0 otherwise

, ~12!

with yet undetermined coefficients a , b , Cn , Dn , En , and
Fn .

One further introduces the quantities

Gn5znĝ~zn!ezns
5znE

s

`

re2zn(r2s)g~r !dr ~13!

and

Gn
(1)

5znĝ (1)~zn!ezns
5znE

s

`

r2e2zn(r2s)g~r !dr , ~14!

where ĝ(z) and ĝ (1)(z) denote the Laplace transforms of
rg(r) and r2g(r). The use of Gn and Gn

(1) instead of ĝ(zn)
and ĝ (1)(zn) follows the procedure adopted for the HS
Yukawa system42,43 and is due to numerical reasons since it
allows one to reduce the number of evaluations of exponen-
tials when calculating the coefficients of Eqs. ~A1!–~A4!.
Especially, expressions with positive exponentials are
avoided. Inserting the form of Q(r) in Eqs. ~9! and using the
closure relation ~10! allows one to express the unknown vari-
ables a , b , Cn , and Fn as functions of Dn , En , Gn , and
Gn

(1) and to derive a system of 4n nonlinear equations for the
4n unknowns Dn , En , Gn , and Gn

(1) . This procedure is a
direct extension of Blum and Høye’s work for HS Yukawa
systems7 and is explained in detail by Yasutomi and Ginoza.8

This system of 4n nonlinear equations can be divided into 4
subsets of n equations and is compiled in Appendix A.

e and b enter the Eqs. ~A1!–~A4! only via

An
(7)

52pL̃n , ;n ~15!

and

Cn
(13)

52pK̃n , ;n , ~16!

while the remaining coefficients are temperature indepen-
dent. Their explicit expressions are given in Appendix B.
They are calculated from the system parameters r, zn , and s.

Equations ~A3! and ~A4! are linear in Dn and En for
given Gn and Gn

(1) and can be rewritten as

(
t51

n

OntDt1 (
t51

n

PntEt5Qn ,

(
t51

n

RntDt1 (
t51

n

SntEt5Tn . ~17!

The definitions of the coefficients of Eqs. ~17! are compiled
in Appendix A. Solution of this system of 2n linear equa-
tions yields Dn and En as functions of r, Gn , and Gn

(1) . This
result can then be inserted into Eqs. ~A1! and ~A2! which
become a set of 2n coupled nonlinear equations in the Gn

and Gn
(1) .

Once the Dn , En , Gn , and Gn
(1) are known, thermody-

namic properties can be determined as follows. The inverse
reduced isothermal compressibility calculated via the fluc-
tuation theorem is found to be

1

x red 512r c̃~k50 !5S a

2p
D 2

. ~18!

The expression for a in terms of the quantities Gn , Gn
(1) ,

Dn , and En is obtained from

a5A0~11M !2
4

s2 B0N , ~19!

with

M52r(
t51

n F S M t
(a)

zt
2 22pr

Gt

zt
4 ~M t

(a)e2zts
21 ! D Dt

1S Pt
(a)

zt
2 22pr

Gt

zt
4 ~2Lt

(a)e2zts
22 !

22pr
Gt

(1)

zt
3 ~M t

(a)e2zts
21 ! D EtG , ~20!
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N5r(
t51

n F S Lt
(a)

zt
3 22pr

Gt

zt
5 ~Lt

(a)e2zts
21 ! D Dt

1S 2Qt
(a)

zt
3 22pr

Gt

zt
5 ~3Ot

(a)e2zts
23 !

22pr
Gt

(1)

zt
4 ~Lt

(a)e2zts
21 ! D EtG , ~21!

the quantities M t
(a) , Pt

(a) , Lt
(a) , Qt

(a) , Ot
(a) , A0, and B0 are

again calculated from r, zn , and s; the respective expres-
sions are compiled in Appendix B.

The excess internal energy per unit volume calculated
via the internal energy route is found to be

u522pr2es (
n52

n S Kn

zn
Gn1LnGn

(1)D . ~22!

Now we have summarized the semianalytic MSA results
relevant for SCOZA and we proceed with the formulation of
the SCOZA. In order to stay within the framework of the
Sogami–Ise type closure we choose the Waisman parametri-
zation for cHS(r)44,45 which ensures a highly self-consistent
description of the thermodynamic properties of the HS part.
It assumes a Yukawa form for cHS(r) outside the hard-core

cHS~r !5K1~r !
e2z1(r)(r2s)

r
for r.s , ~23!

where K1(r) and z1(r) are known functions of the density
~see Appendix A of Ref. 27!. These expressions guarantee
that both compressibility and virial route yield the Carnahan
Starling ~CS! equation of state46 for the HS reference system.
Using Eqs. ~2! and ~23!, relation ~4! becomes

g~r !50 for r<s ,

c~r !5K1~r !
e2z1(r)(r2s)

r
2K~r ,b !es

3 (
n52

n S Kn

r
1LnznD e2zn(r2s) for r.s . ~24!

We use now the analytic results presented above to derive a
relation between x red and u , leading to a PDE for u . Using
Eq. ~18!, the consistency relation ~8! reads

2
a

~2p !2

]a

]u

]u

]b
5r

]2u

]r2 . ~25!

a is given by Eqs. ~19! and ~20! as a function of Dn , En ,
Gn , and Gn

(1) ; inserting the solutions Dn(r ,Gn ,Gn
(1)) and

En(r ,Gn ,Gn
(1)) of the linear system Eq. ~17! into Eqs. ~19!

and ~20! yields a(r ,Gn ,Gn
(1)) and thus

2
a

~2p !2 (
n51

n S ]a

]Gn

]Gn

]u
1

]a

]Gn
(1)

]Gn
(1)

]u D ]u

]b
5r

]2u

]r2 ,

~26!

or

B~r ,u !
]u

]b
5r

]2u

]r2 , ~27!

once that a , ]a/]Gn , ]a/]Gn
(1) , ]Gn /]u , and ]Gn

(1)/]u
have been determined as functions of r and u ~see below!.
B(r ,u) is given by

B~r ,u !52
a

~2p !2 (
n51

n S ]a

]Gn

]Gn

]u
1

]a

]Gn
(1)

]Gn
(1)

]u D . ~28!

Thus we now have derived a PDE for u(r ,b).
What remains is to determine a , ]a/]Gn , ]a/]Gn

(1) ,
]Gn /]u , and ]Gn

(1)/]u as functions of r and u . First of all
we introduce 2n nonlinear equations F i(r ,u ,Gn ,Gn

(1))50,
i51, . . . ,2n; their solution gives Gn(r ,u) and Gn

(1)(r ,u).
The first equation is linear and is the energy equation ~22!

u12pr2es (
n52

n S Kn

zn
Gn1LnGn

(1)D50, ~29!

or formally written as F1(r ,u ,G2 , . . . ,Gn ,G2
(1) , . . . ,Gn

(1))
50.

To establish the remaining 2n21 nonlinear equations
we make use of Eqs. ~A1!–~A4! and Eqs. ~15! and ~16!.
Expressions for the K̃n and L̃n in Eqs. ~15! and ~16! are
obtained by comparison of Eq. ~10! with the closure relation
~24!

K̃15K1~r !, ~30!

L̃150, ~31!

K̃n52K~r ,b !esKn for n52, . . . ,n , ~32!

L̃n52K~r ,b !esLn for n52, . . . ,n , ~33!

and thus

A1
(7)

50, ~34!

C1
(13)

52pK1~r !, ~35!

An
(7)Lm5Am

(7)Ln for n ,m52, . . . ,n , ~36!

Cn
(13)Km5Cm

(13)Kn for n ,m52, . . . ,n , ~37!

Am
(7)Km5Cm

(13)Lm for m52, . . . ,n . ~38!

The second nonlinear equation is Eq. ~A1! for n51 where
the solution Dn(r ,Gn ,Gn

(1)) and En(r ,Gn ,Gn
(1)) of Eq. ~17!

and the relation ~34! are inserted, formally written as
F2(r ,Gn ,Gn

(1))50. The third equation is Eq. ~A2! for n
51 where the solution Dn(r ,Gn ,Gn

(1)) and En(r ,Gn ,Gn
(1))

of Eq. ~17! and the relation ~35! are inserted. The fourth
equation corresponds to Eq. ~38! for m52 using Eqs. ~A1!
and ~A2! to eliminate the unknown function K(r ,b).

The remaining 2n24 equations are obtained from Eqs.
~A1! and ~A2! for n.1, inserting the solution of Eq. ~17!

Dn(r ,Gn ,Gn
(1)) and En(r ,Gn ,Gn

(1)) and eliminating the un-
known function K(r ,b) in the coefficients An

(7) ,Cn
(13) via the

relations ~36!, and ~37! ~for n52, m53, . . . ,n).
For given r and u the Gn and Gn

(1) are determined in the
following way: The coupled set of nonlinear equations F1

50, . . . ,F2n50 is solved numerically via a Newton–
Raphson technique using explicit expressions for the Jaco-
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bian matrix J5(]Fm /]Gn). In each step of the iteration the
Dn and En are obtained by numerical solution of the linear
system ~17!.

The partial derivatives ]Dt /]Gm , ]Et /]Gm ,
]Dt /]Gm

(1) , and ]Et /]Gm
(1) required in the Jacobian are ob-

tained by implicit differentiation of Eqs. ~17!. Solution of the
nonlinear equations via the procedure described above yields
the Gn and Gn

(1) as functions of r and u . We now calculate
the derivatives ]Gn /]u (r ,u) and ]Gn

(1)/]u (r ,u) required
in the coefficient B(r ,u) in Eq. ~28!. They are determined by
implicitly differentiating equations F150, . . . ,F2n50 with
respect to u

¨
]G1

]u

]G2

]u

]
]Gn

]u

]G1
(1)

]u

]G2
(1)

]u

]
]Gn

(1)

]u

© 5J~r ,Gn~r ,u !,Gn
(1)~r ,u !!21•S 21

0
]
0
D .

~39!

Finally, the ]a/]Gn (r ,u) and ]a/]Gn
(1) (r ,u) are obtained

from ~19! and ~20!,

]a

]Gn
5A0

]M

]Gn
2

4

s2 B0
]N

]Gn
,

]a

]Gn
(1) 5A0

]M

]Gn
(1) 2

4

s2 B0
]N

]Gn
(1) , ~40!

where

]M

]Gn
52r(

t51

n F S M t
(a)

zt
2 22pr

Gt

zt
4 ~M t

(a)e2zts
21 ! D ]Dt

]Gn

1S Pt
(a)

zt
2 22pr

Gt

zt
4 ~2Lt

(a)e2zts
22 !

22pr
Gt

(1)

zt
3 ~M t

(a)e2zts
21 ! D ]Et

]Gn
G

12pr2
1

zn
4 ~M n

(a)e2zns
21 !

12pr2
1

zn
4 ~2Ln

(a)e2zns
22 !, ~41!

and similarly for ]M /]Gn
(1) , ]N/]Gn and ]N/]Gn

(1) with
$Dm ,Em , ]Dm /]Gn , ]Em /]Gn , ]Dm /]Gn

(1) ,]Em /]Gn
(1) %

as functions of @r ,Gn(r ,u),Gn
(1)(r ,u)# .

The PDE ~27! is a quasilinear diffusion equation that has
been solved numerically by an implicit finite-difference
algorithm47 described in detail in Ref. 20 in the region
(b ,r)P@0,b f #3@0,r0# . The integration with respect to b
starts at b50 and goes down to lower temperatures. At each
temperature the set of nonlinear equations F150, . . . ,F2n

50 is solved giving Gn and Gn
(1) as functions of r and u: To

ensure rapid convergence the values of the Gn and Gn
(1) ob-

tained at the previous temperature step in the solution algo-
rithm of the PDE are taken as initial guess for the solution of
the system of nonlinear equations. In the next step
$Dm ,Em%(r ,u), a(r ,u), $]Dm /]Gn , ]Em /]Gn ,
]Dm /]Gn

(1) , ]Em /]Gn
(1) %(r ,u), $ ]a/]Gn , ]a/]Gn

(1) %(r ,u),
and $ ]Gn /]u , ]Gn

(1)/]u %(r ,u) are determined to calculate
the coefficient B(r ,u).

The boundary conditions are the same as in Ref. 27: For
r50 one obtains from Eq. ~22!

u~r50,b !50 ;b . ~42!

For the boundary condition at high density r0 ~we have set
r0

!
5r0s3

51 in the calculations! we make use of the so-
called high temperature approximation

]2u

]r2 ~r0 ,b !5
]2u

]r2 ~r0 ,b50 ! ;b . ~43!

The initial condition u(r ,b50) can be determined by taking
into account that for b50 the direct correlation function
c(r) coincides with that of the HS gas. For details see Ap-
pendix C. The unphysical region inside the spinodal curve is
determined as follows: In the forbidden region either a Eq.
~19! becomes negative or no longer a solution of the system
of the nonlinear Eqs. ~A1! and ~A2! can be found. The
boundary conditions on the spinodal used here are the same
as those in Ref. 27

u~rS i
,b !5uS~rS i

! i51,2, ~44!

where rS i
(i51,2) are approximates for the spinodal densi-

ties on the discrete density grid at a given temperature. Their
values are determined by locating the change of sign of a .
uS(r) is the value of the excess internal energy per unit
volume where 1/x red

50. This value is determined by solving
the set of equations

a~r ,Gn ,Gn
(1)!50,

F2~r ,Gn ,Gn
(1)!50, ~45!

]
F2n~r ,Gn ,Gn

(1)!50,

with respect to the Gn and Gn
(1) , providing again the analytic

Jacobian matrix of this nonlinear system. Inserting the solu-
tions Gn(r) and G (1)(r) in the energy equation ~22! yields
uS(r).

Once u(r ,b) has been determined by solving the PDE
~27!, the pressure P and the chemical potential m are ob-
tained by integrating ]bP/]b and ]bm/]b with respect to b
from
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]bP

]b
52u1r

]u

]r
, ~46!

]bm

]b
5

]u

]r
, ~47!

where we have taken as integration constants at b50 the CS
values for bP and bm

bP~r ,b50 !5r
11h1h2

2h3

~12h !3 ,

bm~r ,b50 !5ln r1
8h29h2

23h3

~12h !3 . ~48!

Alternatively, bP and bm can be obtained by integrating,
respectively, 1/x red and 1/rx red with respect to the density
from

S ]bP

]r
D

T

5
1

x red ,

S ]bm

]r
D

T

5
1

rx red . ~49!

Both paths lead to the same thermodynamics due to the ther-
modynamic consistency enforced by Eq. ~8!. In the latter
route, the high density branch of the subcritical isotherms,
that is separated from the low-density branch by the spin-
odal, can be obtained by integrating along an isotherm start-
ing at the high density side were the high-temperature ap-
proximation is accurate.

III. RESULTS

Using the formalism presented in the previous section
we have investigated four systems—in the following labeled
F0, F1, F2, and F3 whose parameters are summarized in
Table I. For the interaction potential of F0 we have chosen
K250, i.e., we consider a simple exponential potential
w(r)52ee2z2(r2s) as shown in Fig. 1. The interaction po-
tentials of F1–F3 correspond to one Sogami–Ise tail consist-
ing of two competing terms: An attractive exponential and a
repulsive Yukawa tail. Varying the value of the ratio
2L2z2 /K2 from 1.1 ~F1! to 0.9 ~F3! offers a systematic
variation of the characteristic properties of the interaction
potentials: The location of the minimum of f(r) is shifted to
larger r values and the contact-value of f(r) at the HS di-
ameter varies from negative to positive values as shown in
Fig. 1. Hence for F3 a soft repulsive interaction merges into
the infinitely steep repulsive HS wall.

For the four systems characterized above, we have cal-
culated thermodynamic properties and the phase diagrams
using the SCOZA as presented above; these results have
been compared with results from the LOGA/ORPA
approach,38,39 according to which in Eq. ~24! K(r ,b)52b
is fixed. This enables us to investigate the effect of the self-
consistency requirement on the thermodynamic properties
and on the phase behavior.

The LOGA/ORPA results have been obtained by solving
the 4n equations ~A1!–~A4! in the 4n unknowns
$Dn ,En ,Gn ,Gn

(1)% with a Newton–Raphson technique pro-
viding a 4n34n analytic Jacobian matrix. In the cases stud-
ied here, where the number of Sogami–Ise tails n is equal to
2, the LOGA/ORPA values of An

(7) and Cn
(13) needed in Eqs.

~A1! and ~A2! are given by A1
(7)

50, C1
(13)

52pK1(r), A2
(7)

52pbesL2 , and C2
(13)

52pbesK2 . Once the
$Dn ,En ,Gn ,Gn

(1)% are known the excess internal energy via
the internal energy route is calculated from Eq. ~22!, the
compressibility from Eqs. ~18!–~20!, the pressure and the
chemical potential via the energy route, PE and mE, from
Eqs. ~46! and ~47!, and the corresponding quantities via the
compressibility route, PC and mC, from Eqs. ~49!.

Due to the inbuilt consistency SCOZA provides only two
pressures in the following denoted as PE ,C ~via energy/
compressibility route! and PV ~via the virial route!. In
SCOZA and LOGA/ORPA the virial pressure, PV, has been
obtained as described in detail in Appendix D.

In the following, fluid densities and temperatures are
given in reduced units, i.e., r!

5rs3, T!
5kT/e . In Fig. 2

the pressure obtained from SCOZA via the energy/
compressibility route PE ,C for system F2 is compared with
the pressure calculated within LOGA/ORPA via the three
different routes to thermodynamics. The LOGA/ORPA val-
ues for PV and PC bracket PE ~via LOGA/ORPA! which
coincides—within the line thickness—with the SCOZA
PE ,C. In Table II the SCOZA predictions for the pressure and
the chemical potential are compared with the LOGA/ORPA
results for various thermodynamic states. For the slightly su-
percritical thermodynamic state of F0 at r!

50.3 and T!

52 ~see Fig. 3! the agreement is less satisfactory than for the
other noncritical states where the SCOZA and the energy
route of the LOGA/ORPA provide results that are very close

TABLE I. Parameters of the 4 SI systems investigated in this work. The
normalization factors n were chosen so that the minimum of the function
w(r) of Eq. ~2! on the interval @s,`! is 21.

System K2 /n L2z2 /n z2 n

F0 0 1 1.8 1
F1 21 1.1 1.8 5.187 87
F2 21 1 1.8 7.190 39
F3 21 0.9 1.8 10.531 48

FIG. 1. Sogami–Ise interaction potential of systems F0–F3. Parameters of
the systems are given in Table I.
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together. Within SCOZA discrepancies between pressure val-
ues PE ,C and PV are observed which are due to the fact that
SCOZA in its present form enforces consistency only be-
tween the compressibility and the energy routes, and not with
the virial route to thermodynamics. As becomes visible from
Table II, SCOZA yields liquid-state pressures from the virial
route that are very close to the results for the virial pressure
within the LOGA/ORPA approach.

The internal energy per particle u via the energy route
and the reduced isothermal compressibility x red via the com-
pressibility route obtained within the two theoretical ap-
proaches are compared in Table III. The agreement in the
internal energy is rather good. Again for the supercritical
state at r!

50.3 and T!
52 of system F0 the results—

especially of 1/x red—differ.
The phase diagram of the system F0 is given in Fig. 3.

The SCOZA critical point has been located by the vanishing
of 1/x red. Below Tc

! the spinodal line was determined as
described in Sec. II. The coexistence curve was obtained by
numerically solving the equilibrium conditions

m~rg ,T !5m~r l ,T !, ~50!

P~rg ,T !5P~r l ,T !, ~51!

for the two coexisting densities rg and r l of the gas and
liquid for a given temperature T . While the coexistence

curve of the SCOZA can be determined up to the critical
point, this is not possible for the LOGA/ORPA: Near the
critical point no solution of Eqs. ~50! and ~51! can be found
so the two branches remain unconnected. Therefore, the criti-
cal point parameters rc

! and Tc
! within the LOGA/ORPA,

collected in Table IV, were estimated by extrapolation under
the assumption that the coexistence curve can be described
by a scaling type law and the law of rectilinear diameters,
i.e.,

r l2rg5B~T2Tc!b, ~r l1rg!/25rc1A~T2Tc!.
~52!

Parameters A , B , and b in Eqs. ~52! were fitted to the coex-
istence curves.

In Fig. 3 also the inconsistency of the LOGA/ORPA be-
comes visible: The curve of diverging compressibility lies
well inside the liquid–vapor coexistence curve obtained from
the energy route yielding two different critical points from
the different routes. The SCOZA value is closer to the one
derived from the energy route which is known to yield the
most accurate thermodynamic information from the radial
distribution function within the LOGA/ORPA approach.

The coexistence curves obtained within SCOZA for the
systems F1–F3 are shown in Fig. 4, the corresponding criti-

FIG. 2. Pressure of system F2 at temperature b!
51/T!

50.15 obtained from
SCOZA via energy/compressibility route and from LOGA/ORPA via energy,
compressibility and virial route.

TABLE II. Pressure and chemical potential for systems F0 and F2 for selected thermodynamic states obtained
from SCOZA and from LOGA/ORPA via the different routes.

System r! b!

SCOZA LOGA/ORPA

bPE ,C/r bPV/r bPE/r bPC/r bPV/r

F0 0.3 0.5 0.357 44 0.257 20 0.354 92 0.465 59 0.250 94
F0 0.8 0.5 2.8874 2.7729 2.8872 3.2168 2.7703
F2 0.3 0.15 0.615 02 0.636 93 0.615 00 0.633 83 0.637 50
F2 0.8 0.15 4.4201 0.461 25 4.4214 4.2573 4.6053

System r! b! bmE ,C bmE bmC

F0 0.3 0.5 22.6379 22.6365 22.41 14
F0 0.8 0.5 0.6155 0.615 82 1.2652
F2 0.3 0.15 22.169 45 22.1690 22.1124
F2 0.8 0.15 3.0519 3.0543 2.8984

FIG. 3. Phase diagram of system F0 in the r!
2T! plane. Full lines: Coex-

istence and spinodal curve obtained from the SCOZA. Dashed lines: Coex-
istence curve obtained from LOGA/ORPA via the energy route and spinodal
curve from LOGA/ORPA using the compressibility route.
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cal point parameters are listed in Table IV. With increasing
integrated strength of the interaction potential ~F1–F3! the
critical point is shifted to higher temperatures and—less
pronounced—to lower densities. As can be seen from Table
IV the LOGA/ORPA values of Tc

! are less than 0.5% above
those of the SCOZA, also the agreement in the densities rc

!

is rather good.
Of special interest is the interaction potential of system

F3 that includes, apart from the HC repulsion, a soft repul-
sive interaction—a case that has not been treated by SCOZA
so far and was considered to be out of reach for the study
with SCOZA due to substantial numerical problems when
solving the SCOZA PDE: In Ref. 48 where HC systems with
two competing Yukawa interactions were studied within
SCOZA only a rather weak repulsive part in the interaction
potential could be considered.

IV. CONCLUSIONS

We have generalized the SCOZA to HC systems with an
adjacent tail that is built up by an exponentially damped part
and a Yukawa interaction. The theory is based on a LOGA/
ORPA like closure relation which involves a state dependent
function K(r ,b). In contrast to LOGA/ORPA, K(r ,b) is
not fixed a priori but is determined by enforcing consistency
between the compressibility and the energy route to thermo-
dynamics thus leading to a PDE for the unknown function
K(r ,b). Our generalization is based on the availability of
the semianalytic MSA solution for Sogami–Ise systems
within the Wertheim–Baxter factorization technique. In the
first part of this paper we have presented the formalism in
detail, we have transformed the consistency PDE for K(r ,b)
into a PDE for the internal energy per particle u . In the
second part the theory was applied to study the thermody-
namics and the phase behavior of various model systems. In
order to investigate the effect of the self-consistency require-

ment we have compared SCOZA and LOGA/ORPA calcula-
tions and found that the SCOZA data are close to LOGA/
ORPA results obtained within the energy route.
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APPENDIX A: NONLINEAR EQUATIONS

Here we present the couped set of 4n equations that
determine the 4n unknowns Dn , En , Gn , and Gn

(1) . All
other quantities that enter the equations are found in Appen-
dix B.
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FIG. 4. Phase diagrams of systems F1–F3 obtained within the SCOZA in
the r!

2T! plane.

TABLE IV. Critical parameters of the fluid systems F0 to F3 investigated in
this work obtained from SCOZA and from the LOGA/ORPA via the energy
route.

System

SCOZA LOGA/ORPA

Tc
! rc

! Tc
! rc

!

F0 1.960 0.289 1.981 0.290
F1 4.857 0.258 4.882 0.256
F2 5.325 0.250 5.346 0.248
F3 5.744 0.238 5.755 0.230

TABLE III. Reduced internal energy per particle and isothermal compress-
ibility for systems F0 and F2 for selected thermodynamic states obtained
from SCOZA and from LOGA/ORPA.

System r! b!

Uex/eN 1/x red

SCOZA LOGA/ORPA SCOZA LOGA/ORPA

F0 0.3 0.5 23.2785 23.2297 0.053 807 0.271 47
F0 0.8 0.5 28.9067 28.9062 17.028 17.611
F2 0.3 0.15 29.1495 29.1486 0.702 48 0.710 92
F2 0.8 0.15 223.658 223.659 21.332 20.617
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Equations ~A3! and ~A4! are linear in Dn and En for given
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APPENDIX B: COEFFICIENTS

In the following we present expressions for the coeffi-
cients of Eqs. ~A1!–~A4!. The following parameters corre-
spond to the hard-sphere case
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APPENDIX C: INITIAL CONDITIONS FOR THE PDE

In the following we explain the determination of the ini-
tial condition of the SCOZA PDE u(r ,b50). Since for b
50 the direct correlation function c(r) coincides with that
of the HS gas K̃n50 for n52, . . . ,n , L̃n50 for n
51, . . . ,n , yielding Dn(r ,b50)50 for n52, . . . ,n , and
En(r ,b50)50 for n51, . . . ,n . Hence, the first system of
linear equations ~17! reduces to

On1D15Qn for n51, . . . ,n . ~C1!

For n51 this leads to

D1~r ,b50 !5
Q1~G1~r ,b50 !!

O11~G1~r ,b50 !!
, ~C2!
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where G1(r ,b50) is obtained from the known quantity
g1(r ,b50) that was introduced in the Laplace transform
technique ~see Appendix A of Ref. 27! via

G1~r ,b50 !5
z1

4pr

A21

As12t1
, ~C3!

where

A5~22Aq2g1~r ,b50 !!
2~21z1!

412z12z1
2 ,

s15
1

2z1
S z122

z112
1e2z1D ,

~C4!

t15
1

2z1
S z1

2
12z124

412z12z1
2 1e2z1D ,

q5
~112h !2

~12h !2 ,

with h5 (p/6) r being the packing fraction. From Eq. ~C1!,
for n.1, one obtains

Gn~r ,b50 !

52
D1~r ,b50 !~B1n

(6)G1~r ,b50 !1B1n
(10)!1Bn

(12)

D1~r ,b50 !~B1n
(3)G1~r ,b50 !1B1n

(8)!1Bn
(11) .

~C5!

The second linear system ~17! reduces to

Rn1D15Tn for n51, . . . ,n , ~C6!

from which one can eliminate the Gn
(1)(r ,b50) once the

Gn(r ,b50) are known

Gn
(1)~r ,b50 !52

D1~D1n
(6)G1Gn1D1n

(10)Gn1D1n
(13)G11D1n

(15)!1Dn
(17)Gn1Dn

(18)

D1~D1n
(3)G11D1n

(8)!1Dn
(16) . ~C7!

Collecting these results one obtains

u~r ,b50 !522pr2es (
n52

n S Kn

zn
Gn~r ,b50 !

1LnGn
(1)~r ,b50 ! D . ~C8!

APPENDIX D: VIRIAL ROUTE

This Appendix explains the determination of the virial
pressure within SCOZA and LOGA/ORPA. PV is given by

bPV

r
512

2

3
pbrE

0

` df~r !

dr
g~r !r3dr

511
2

3
prs3g~s !1J , ~D1!

where

J52
2

3
pbrE

s

` dw~r !

dr
g~r !r3dr

52
2

3
pbres (

n52

n S KnGn

zn
1KnGn

(1)
1LnznGn

(2)D ,

~D2!

with Gn
(2) being defined as

Gn
(2)

5znE
s

`

r3e2zn(r2s)g~r !dr52znezns
dg (1)~zn!

dzn
.

~D3!

The Gn
(2) , defined by Eqs. ~D3!, are determined as fol-

lows: By taking the derivative of Eq. ~15b! of Ref. 8 with
respect to zn one obtains

2pGn
(2)~12rQ̂~zn!!54prGn

(1)Q̂ (1)~zn!

12prGnQ̂ (2)~zn!

1
614zns1~zns !2

zn
3 a

1
212zns1~zns !2

zn
2 b

1(
m

22zn

~zm1zn!3 Lnm
(b)Cm

1(
m

26znzm

~zm1zn!4 Onm
(b)Fm .

a , b , Cn , and Fn are given by

a5A0~11M !2
4

s2 B0N , ~D4!

b5b0~11M !1A0N , ~D5!

Cn52Dn1En12prS DnGn

zn
2 e2zns

1
EnGn

(1)

zn
e2znsD ,

~D6!

Fn52En12pr
EnGn

zn
2 e2zns, ~D7!

with M and N defined in Eq. ~20!. Q̂(z), Q̂ (1)(z), and
Q̂ (2)(z) are defined as Laplace transforms

Q̂~z !5E
0

`

Q~ t !e2ztdt , ~D8!
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Q̂ (1)~z !5E
0

`

Q~ t !te2ztdt52
dQ̂~z !

dz
, ~D9!

Q̂ (2)~z !5E
0

`

Q~ t !t2e2ztdt5
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dz2 , ~D10!

and are given by
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The coefficients required in the evaluation of the expressions
above are defined in Appendix B.

The contact value g(s) that is required in Eq. ~D2! and
related to the discontinuity of Q8(r) at r5s is given by

g~s !5
1

2ps Fb2 (
n51

n

~Cn1Fnzns !G . ~D11!

Expressions for b , Cn , and Fn are given in Eqs. ~D5!–~D7!.
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