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Phase coexistence in polydisperse liquid mixtures:
Beyond the van der Waals approximation
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The solution of the mean spherical approximation for a polydisperse fluid mixture of particles
interacting via a set of~factorizable! hard-sphere Yukawa potentials allows one to represent those
thermodynamic quantities that are relevant to determine phase coexistence~i.e., pressure and
chemical potential! by a limited number of~generalized! moments. Being thus a member of
‘‘truncatable free energy models,’’ the equilibrium conditions reduce to a set of coupled and highly
nonlinear equations; we have solved these relations, we have determined phase diagrams for
polydisperse fluid mixtures~i.e., cloud and shadow curves as well as binodals!, and have extracted
the daughter distribution functions of the coexisting phases. ©2003 American Institute of Physics.
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I. INTRODUCTION

Using microscopic liquid state theories,1 it has become a
standard task to determine phase coexistence in two- or
three-component fluid mixtures. However, when proceed
to polydisperseliquid mixtures ~which can be viewed as
mixture with an infinite number of components!, the situa-
tion is considerably more complex;2 methods developed u
to now to calculate phase diagrams for such systems h
not yet reached the high level of sophistication as in conce
for systems with afinite number of components. This is th
more deplorable since the~formally! infinite number of com-
ponents promises a very intriguing phase coexistence be
ior with possibly new phases and phase transitions. In a
tion, phenomena associated with the phase behavio
polydisperse systems, such as fractionation, are also of t
nological relevance.

Most of the concepts currently used to study polyd
perse systems view such a system as a mixture with an
nite number of components, each of them characterized
variable, for which one usually choses the particle sizes.
The set of concentrations$xi% in a mixture with a finite num-
ber of components is replaced by a distribution functio
f (s), which is positive and normalized, i.e.,*0

`ds f (s)
51. f (s0)ds is then the fraction of particles in the mixtur
whose sizes lies in an infinite interval of widthds around
s0 .

Standard liquid state theories have meanwhile been
tended successfully to the polydisperse case@e.g., the
Rogers–Young3 or the optimized random phase approxim
tion ~ORPA!4#. Although these methods are able to deliv
reliable information about the thermodynamic properties

a!Electronic mail: gkahl@tph.tuwien.ac.at
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such a system, up to now no satisfactory strategies have
developed to determine from these quantities the phase
grams. The main obstacle lies in the coexistence conditio
in particular in the numerical complexity of the equilibrium
condition for the chemical potentials which reads for tw
coexisting phases ‘‘1’’ and ‘‘2,’’

m1~s!5m2~s!. ~1!

For a given mother distributionf 0(s), this equation has to
be solved for each of the~infinitely many! s’s, or for a finite
set of representatives values$s i%. Its solution then leads to
the unknown daughter distributionsf 1(s) and f 2(s) of the
coexisting phases. Recent attempts5 to use the ORPA thermo
dynamic properties and to solve the coexistence conditi
failed due to the complexity of Eq.~1!.

At present one of the few ways out of this dilemm
seems to resort to so-called truncatable free energy mod
these are approximate schemes, where the thermodyn
properties of the system can be expressed by a limited n
ber of ~generalized! moments of the distribution function
f i(s), i 50,1,2. Then, the solution of Eq.~1! can be mapped
onto a coupled set of nonlinear equations for these mome
an access which is numerically more favorable. First step
these directions were made with van der Waals model6,7

indeed results for complete phase diagrams~i.e., including
cloud and shadow curves as well as binodals! could be pre-
sented. The question now arises if it is possible to go bey
a van der Waals model by including correlations while s
maintaining the benefits of a truncatable free energy mo

In this contribution we show that this is indeed possib
We consider a polydisperse liquid mixture of hard-sph
Yukawa ~HSY! fluids in the mean spherical approximatio
~MSA!. This microscopic liquid state theory combines tw
attractive features which were very helpful to realize o
5 © 2003 American Institute of Physics
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goal: First, the MSA is known to give reasonably accur
results for the structure and thermodynamic properties
one- and two-component systems; second, the MSA ca
solved for a HSY mixture with an arbitrary number
components8,9 leading to closed~i.e., analytic! expressions
for the thermodynamic properties. In particular, if one a
sumesfactorizedHSY interactions the numerical effort re
quired for the MSA solution reduces drastically to the so
tion of one single nonlinear equation for the coupli
constantG; this feature is preserved as we proceed to
polydisperse case.10,11 Using this formalism we were indee
able to express pressure and chemical potential by a con
erable~i.e., nine! but still finite set of~generalized! moments
and coupling constantG. The coexistence conditions, by no
a set of coupled nonlinear equations in the unknown m
ments of the two daughter distributions, have been sol
iti
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and we were able to determine for a given mother distri
tion the complete phase diagram.

The paper is organized as follows: In Sec. II we pres
the theory~introducing our system, deriving expressions f
the thermodynamic properties, justifying the distribution w
have used, and discussing the numerical solution of the
existence conditions!. We then present results for a typic
example and close the paper with concluding remarks.

II. THE THEORY

A. The system

We consider a polydisperse fluid mixture at a tempe
tureT@b5(kBT)21# and a number densityr, where particles
of speciesx1 andx2 interact via HSY potential
bF~r ;x1 ,x2!5H `, r<s~x1 ,x2!

2
K~x1 ,x2!

r
exp$2z@r 2s~x1 ,x2!#%, s~x1 ,x2!,r<`,

~2!
;

pa-

-
n
e
we
nd

-

ve

-

the hard-core potentials are characterized by a set of add
diameters,s(x1 ,x2), i.e.,

s~x1 ,x2!5 1
2@s~x1 ,x1!1s~x2 ,x2!# ~3!

with s(x,x)5s. In Eq. ~2!, z is the inverse screening lengt
~which we assume to be constant, i.e., independent of
ticle size and potential amplitude! and theK(x1 ,x2) are the
contact values; here we use—for reasons outlined in
following—the following parametrization~which remains
the only restrictive assumption of our model!:

K~x1 ,x2!5e0s0bZ~x1!Z~x2!. ~4!

e0 is an energy parameter,s0 is the average sphere diamet
~see the following!, and theZ(xi) is the amplitude of the
interatomic potential of a particle of speciesxi ; in an appro-
priate model it might also be interpreted as a charge. T
for the model at hand the size~s! and the amplitude~Z! of
the particle completely define its species.

Size and amplitude of the particles are distributed
cording to a normalized distribution functionF(s,Z)>0,

E
0

`

dsE
2`

`

dZ F~s,Z!51. ~5!

Averages of quantitiesA taken over the distribution function
F(s,Z) are denoted bŷ A&; in particular, s05^s&, Z0

5^Z&.

B. Thermodynamic properties

For a general multicomponent HSY mixture the MS
can be solved in principle semianalytically;9 this is done via
a formalism which rapidly becomes involved as the num
of components increases: systems of coupled nonlinear e
tions have to be solved. ForfactorizableHSY interactions
ve

r-

e

s

-

r
a-

@as introduced via Eq.~4!# this effort reduces substantially
even for an arbitrary~but finite! number of components, only
one single nonlinear equation for the so-called coupling
rameterG, the central quantity of this approach,10 has to be
solved.

As we proceed to thepolydispersecase, we need a gen
eralization of theG formalism; partly this has already bee
done in Ref. 11. In the following we briefly summarize th
method, presenting those additional expressions which
require for the determination of the phase equilibrium a
which have not been derived in literature so far.

TheG formalism provides a closed expression for Helm
holtz free energyF,12

b~F2FHS!5bEY1
G2

3p S G1
3

2
zD . ~6!

FHS is the free energy of the HS system for which we ha
taken the expression due to Mansooriet al.,13 generalized to
the polydisperse case.EY andG are determined as follows:

bEY5KH rGE
0

`

dsE
2`

`

dZ F~s,Z!Zl~s,Z!

1
p

2D

@l~1!#2

11j~1!
1DN~l~0!1l~1!EN!J . ~7!

K52be0s0 , D512h andh being the system packing frac
tion ~see below!.

Quantities used in this expression are

EN5
z

2
1G2

p

2D

h~1!

11j~1!
, ~8!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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DN5
2pDN@l#

z2D~11j~1!!12pDN@h#
, ~9!

j~n!5rE
0

`

dsE
2`

`

dZ F~s,Z!snj~s!, ~10!

h~n!5rE
0

`

dsE
2`

`

dZ F~s,Z!snh~s!, ~11!

l~n!5rE
0

`

dsE
2`

`

dZ F~s,Z!snl~s,Z!, ~12!

z~n!5rE
0

`

dsE
2`

`

dZ F~s,Z!sn,
p

6
z~3!5h, ~13!

with

j~s!5
p

2D

s2F0~zs!

11F0~zs!sG
, ~14!

h~s!5
z2s3C1~zs!

11F0~zs!sG
, ~15!

l~s,Z!5
Z

11F0~zs!sG
, ~16!

DN@x#5x~1!S j~0!2
z

2
2G2

pz~2!

2D D 2x~0!~11j~1!!,

~17!

where thex (n) stand either for thel (n) or for theh (n).
G satisfies the following nonlinear algebraic equation

G21zG52pKD, ~18!

with

D5rE
0

`

dsE
2`

`

dZ F~s,Z!@X~s!#2 ~19!

and

X~s!5ls2
l~1!j~s!

11j~1!
2DNS h~s!2

h~1!j~s!

11j~1! D . ~20!

Due to highly nonlinear character of Eq.~20! it has mul-
tiple solutions and the physical one, which reduces toG50 in
the high temperature limit, has to be chosen. In the pre
study we are using an iterative method of the solution sim
to the one suggested earlier;14 using the high temperatur
approximationG50 as the initial input guarantees the prop
~physical! solution of this equation.

In the above-noted expressions, the functions

F0~x!5
1

x
~12e2x! ~21!

and

C1~x!5
1

x2 F211S 11
x

2DF0~x!G ~22!

were introduced.
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In addition, thisG formalism provides closed expres
sions for the quantities that are required for the determina
of the phase equilibrium: the pressure~P! and the chemical
potential@m(s,Z)# of a particle with sizes and amplitudeZ.
The expression for the pressure can be obtained by a stra
forward generalization of the results for the discrete m
ture,11,12 i.e.,

bP5bPHS2
G2

3p S G1
3

2
zD1

pK

2D2
PNS PN1

2zD

p
DND

~23!

with

PN5
l~1!2h~1!DN

11j~1!
2

zD

p
DN . ~24!

PHS is the pressure of the HS reference system, again we
the semiempirical expression due to Mansooriet al.,13 gen-
eralized to the polydisperse case

bPHS5
1

D H r1
p

2D
z~1!z~2!1

p2

12D2
@z~2!#3

2S p

6 D 3 1

D2
z~3!@z~2!#3J . ~25!

Expressions for the chemical potentials derived with
the G formalism have not been presented so far in literatu
they had to be developed for the present work. Using
standard relation between the free energy and chemical
tential ~generalized to the polydisperse case2,15!

m~s,Z!5
1

r

d$F/V%

d$F~s,Z!%
, ~26!

where d/d$F(s,Z)% denote functional differentiation with
respect to the distributionF(s,Z), we find

m~s,Z!5m id1mHS
~ex)~s!1mY

~ex)~s,Z!. ~27!

HeremY
(ex)(s,Z) is the Yukawa contribution to the chemica

potential

rb

K
mY

~ex!~s,Z!

5rl~s,Z!$ZG1DN~11sEN!%

1
d$DN%

d$F~s,Z!%
~l~0!1l~1!EN!1

pr

2D

sl~1!

11j~1!

3H ~l~1!2DNh~1!!S p

6D
s22j~s! D l~1!2DNh~1!

11j~1!

12l~s,Z!2DNh~s!J , ~28!

where
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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d$DN%

d$F~s,Z!%
5

2p

z2D~11j~1!!12pDN@h#

3F d$DN@l#%

d$F~s,Z!%
2DNH d$DN@h#%

d$F~s,Z!%

2S s2

12
2

D

2p
j~s! D z2srJ G , ~29!

and

1

r

d$DN@x#%

d$F~s,Z!%

5H sS j~0!2
z

2
2G2

pz~2!

2D D 2j~1!21J x~s,Z!

1Fj~s!1
p

2D
s2HsS13j~0!2

p

6D
z~2!D21J Gx~1!

2H j~s!1
p

6D
s2j~1!J sx~0!; ~30!

again thex’s stand either for$l (0),l (1),l(s,Z)% from Eqs.
~12! and ~16! or $h (0),h (1),h(s)% from Eqs.~11! and ~15!.
Expression~28! for mY

(ex)(s,Z) was derived using the sta
tionarity property of the MSA Helmholtz free energy12

]F

]G
50. ~31!

Consistent with our choice of the expressions forFHS

and PHS, the excess chemical potential of the referen
hard-sphere systemmHS

~ex) in Eq. ~27! is represented by the
polydisperse version of the Mansooriet al.13 expression, i.e.,

bmHS
~ex)~s!5H Fs

z~2!

z~3!G 2F322s
z~2!

z~3!G21J ln D

1
p

2D
sF1

3
s2H r2

@z~2!#3

@z~3!#2

11D

D

1
p

D
z~2!S 1

2
z~1!1

1

3

@z~2!#2

z~3!D
D J

1z~2!S 11
z~2!s

z~3!D
D 1sz~1!G . ~32!

C. The distributions

A distribution F(s,Z) as introduced earlier for the siz
and the amplitude of the particles allows an independ
variation of these two system parameters. Since the m
goal of this work is the presentation of the formalism, w
have used a simplified expression~which can also be moti-
vated from the physical point of view!, namely3

F~s,Z!5 f ~s!dS Z2Z0

s2

^s2&
D , ~33!

where^s2&5*0
`s2f (s)ds andd~...! is the Dirac delta func-

tion.
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This choice is physically sound, since it states that
amplitude is proportional to the surface of the particles; fro
a more practical point of view it reduces double integr
over s and Z ~listed earlier! to integrals overs only. Thus
the complexity of the coexistence conditions is broug
down to a level which is still tractable in practical applic
tions.

For f (s) we have chosen the beta distribution, given

f ~s!5B21~a,b!S s

sm
D a21S 12

s

sm
D b21

Q~sm2s!Q~s!,

~34!

where

Q~x!5H 1, x>0

0, x,0.

f (s) is thus different from zero only forsP@0,sm#.
B(a,b) is the beta function16 anda andb are related to the
first (s05^s&) and the second (^s2&) moments off (s) by

a5
sm2s0~11Ds!

smDs
, ~35!

b5S sm2s0

s0
Da ~36!

with Ds5^s2&/s0
221; Ds has the same meaning as in Re

11 and corresponds to~1/a! in Ref. 7.
This particular choice for the distribution function wa

motivated by the fact that—in contrast to other distributi
functions frequently used in this field, such as the Sch
distribution17—the beta distribution has a limited carrier, i.e
this function is exactly zero beyondsm . Use of the Schulz
distribution~with sP@0,̀ #! on the other hand, allows—eve
though with an extremely small probability—the occurren
of huge particles, with—as a consequence of Eq.~33!—an
extremely strong Yukawa interaction; from unpublished
sults we find evidence, that in particular these strong attr
tions make us pass the limits of applicability of the MS
leading to unphysical results for the phase diagram. Pr
lems with distributions with an infinite carrier were also r
ported in Refs. 18 and 19.

D. Phase equilibrium

The way in which the equilibrium conditions~1! are
mapped in a truncatable free energy model onto a system
coupled equations for the unknown generalized mome
closely follows the work of Bellier-Castellaet al.;7 we there-
fore briefly summarize this route here.

We shall restrict ourselves in this contribution to tw
phase coexistence. We denote the distribution function of
mother phase asf 0(s) and its number densityr0 ; we want
to determine the distribution functions of the two daugh
phases@ f i(s)#, and their number densitiesr i , i 51, 2. As a
consequence of the conservation of the total number of
ticles of each species~characterized by a diameters!, the
following relation holds:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r2f 2~s!5
r12r2

r12r0
r0f 0~s!1

r02r2

r02r1
r1f 1~s!. ~37!

At a given temperatureT, we are thus left with two
unknown densities,r1 and r2 , and one unknown daughte
distribution function, eliminating the other one via Eq.~37!.
Hence we have to derive three relations. As shown in Re
the first relation is given by

f 1~s!5 f 2~s!
r2

r1
exp@bDm~ex!# ~38!

with

Dm~ex!5m~ex!~s,Z,T;r2 ;@ f 2# !2m~ex!~s,Z,T;r1 ;@ f 1# !
~39!

and m (ex)5mHS
~ex)(s)1mY

~ex)(s,Z) with hard-sphere and
Yukawa contributions given by Eqs.~32! and ~28!. Here the
square brackets indicate functional dependencies.f 2(s) or
f 1(s) can be eliminated from Eq.~38! via Eq. ~37! to give
either

f 1~s!5 f 0~s!Q1~s,T;r0 ,r1 ,r2 ;@ f 1# !, ~40!

where

r1Q1~s,T;r0 ,r1 ,r2 ;@ f 1# !

5
r0~r22r1!exp~bDmex!

~r02r1!2~r02r2!exp~bDmex!
, ~41!

or

f 2~s!5 f 0~s!Q2~s,T;r0 ,r1 ,r2 ;@ f 2# !, ~42!

where

r2Q2~s,T;r0 ,r1 ,r2 ;@ f 2# !

5
1

~r02r1!2~r02r2!exp~bDmex!
. ~43!

The second relation is the normalization condition, i.e

15E
0

`

ds f i~s!, i 51,2, ~44!

and the third one is the equality of the pressure in b
phases,

P~T;r1 ;@ f 1# !5P~T;r2 ;@ f 2# !. ~45!

Formally the set of relations~38!, ~44!, and~45! form a
closed set of equations for the unknownsr1 , r2 , andf 1(s):
they have to be solved for everys value or for a set of
representatives values. This task seems at present out
reach from the numerical point of view and we choose
different route which is much more attractive and more e
ily accessible: a closer analysis of Eqs.~6!, ~23!, and ~27!
reveals that the thermodynamic properties of the mode
hand are defined by the temperatureT, the densityr of the
system, the set of nine generalized momentsj (n), h (n),
l (n) (n50,1), z (n) (n51,2,3), and the coupling paramet
G. This feature allows us to map the set of relations~38!,
~44!, and ~45! onto a closed set of twenty-two algebra
equations for the eighteen generalized moments, the
Downloaded 02 Oct 2003 to 128.131.48.66. Redistribution subject to A
7,

,
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densitiesr1 and r2 , and the twoG parameters of the two
coexisting phases (G1 and G2). Using relations~10!–~13!,
along with ~40! and ~42! we have

j i
~n!5r iE

0

`

ds snj i~s! f 0~s!

3Qi~s,T;r0 ,r1 ,r2 ;@G1 ;$jhlz%1#,@G2 ;$jhlz%2# !,

i 51,2, n50,1, ~46!

h i
~n!5r iE

0

`

ds snh i~s! f 0~s!

3Qi~s,T;r0 ,r1 ,r2 ;@G1 ;$jhlz%1#,@G2 ;$jhlz%2# !,

i 51,2, n50,1, ~47!

l i
~n!5r iE

0

`

ds snl i~s! f 0~s!

3Qi~s,T;r0 ,r1 ,r2 ;@G1 ;$jhlz%1#,@G2 ;$jhlz%2# !,

i 51,2, n50,1, ~48!

z i
~n!5r iE

0

`

ds snf 0~s!

3Qi~s,T;r0 ,r1 ,r2 ;@G1 ;$jhlz%1#,@G2 ;$jhlz%2# !,

i 51,2, n51,2,3, ~49!

which represent eighteen relations. Note in the above-gi
notation that the dependence on the set of parame
@G i ;$jhlz% i # is equivalent to the functional dependence
the above functions on the@ f i #, i 51,2. Here and in the fol-
lowing the $jhlz% i denote the set of the momentsj i

(n) ,
h i

(n) , l i
(n) , z i

(n) , i 51,2 andn values as indicated in the
above equations.

The remaining four equations are found from the n
malization condition~44!,

15E
0

`

ds f 0~s!

3Qi~s,T;r0 ,r1 ,r2 ;@G1 ;$jhlz%1#,@G2 ;$jhlz%2# !,

i 51,2, ~50!

by the equality of the pressure in both phases~45!,

P~T;r1 ;@G1 ;$jhlz%1# !5P~T;r2 ;@G2 ;$jhlz%2# !,
~51!

and by Eq.~18!, written down for the scaling parametersG in
each of the two phases

G i
21zG i52pKDi , i 51,2. ~52!

In Eqs.~46!–~52! the quantities with the lower index equal
~or 2! represent the corresponding values for the first~or
second! phase.

Solution of this set of equations leads to the binod
curves and via Eqs.~40!–~43! to the distribution functions
@ f i(s)# of the coexisting two daughter phases for the giv
value of the mother phase densityr0 and mother distribution
function f 0(s). In general in polydisperse systems binod
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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curves do not meet at the critical point; they are terminate
temperatures for which the density of either phase beco
equal to the density of the mother phase. The set of th
terminal points for differentr0 defines the so-called clou
and shadow curves. The cloud curve represents the term
points of the phase with the density equal tor0 and the
shadow curve consists of the points in equilibrium with t
corresponding cloud-curve points. Thus the cloud a
shadow curves are of particular interest, since they repre
an envelope for the binodals.

By definition the cloud phase coexists with an infinite
mal amount of the shadow phase. Thus the cloud and sha
curves can be obtained as a special solution of the gen
phase coexistence problem where the properties of one p
are equal to those of the mother phase. Assuming, e.g.
second phase to be the cloud phase, i.e.,r25r0 , and follow-
ing the above-presented scheme, the twenty-two equation
the full coexistence problem reduce to a set of twelve eq
tions: it is represented by Eqs.~46!–~52! for the special
choice of i 51, r25r0 , G25G0 , and $jhlz%25$jhlz%0 ;
the unknowns arej1

(n) , h1
(n) , l1

(n) , z1
(n) @with n-values as

indicated in Eqs.~46!–~49!#, G1 , r1 , andr0 .
To obtain a solution for thegeneralcoexistence problem

from the above-noted set of equations a numerical sch
has been utilized, which combines an iterative loop for
solution of the equation forG ~52! and a Newton–Raphso
method for the remaining equations. Following a sugges
made earlier14 we rewrite Eq.~52! in a form more appropri-
ate for numerical iterations,

G i52
pKDi

z1G i
, i 51,2. ~53!

Starting from some suitable set of starting values~see
the following!, results of the previous iteration cycle forG i

and the moments~obtained from the Newton–Raphson alg
rithm! are used in the right-hand side of Eq.~53! as an input
for the next iteration cycle. New values ofG i , which follow
from Eq. ~53!, are then utilized to solve the set of equatio
~46!–~51! for the moments via the Newton–Raphson alg
rithm. We start at a relatively high temperature and a l
degree of the polydispersity: as the initial input we have u
the high temperature approximation for theG i , i.e., G i50,
the coexistence densities of the one component~i.e., mono-
disperse! case,r1;oc andr2;oc, for the densitiesr i , and the
mother phase distribution as a first guess for the daug
phase distributions, i.e.,f 1(s)5 f 2(s)5 f 0(s). Solution of
the set of equations~46!–~52! is then obtained by graduall
lowering the temperature and increasing polydispersity.

III. RESULTS

We now present results for the phase diagram of a s
cific polydisperse system. It is characterized by a mot
distribution functionF0(s,Z) for which we have chosen th
form ~33!, i.e., the amplitude is proportional to the surfac
thus F0(s,Z)5 f 0(s)d(Z2Z0(s2/^s2&)). f 0(s) is a beta
distribution ~34! with Ds50.02 andsm52s0 . The screen-
ing length of the Yukawa potential~2! was chosen to be
zs051.8. In what follows the temperatureT and densityr of
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the system will be represented by the dimensionless qua
ties T* 5kT/(e0Z0

2) andr* 5rs0
3, respectively.

In Fig. 1 we show the phase diagram of the system in
(T* ,r* ) plane: it contains the cloud and the shadow cur
the critical binodal~see the following! and binodals for two
selectedr0* values (r0* 50.03 andr0* 50.5). For the critical
point we find Tcr* 51.343 andrcr* 50.3527. rcr was deter-
mined in an iterative scheme from a sequence of$r@ i #%
which—by definition—must tend towardrcr : we choose a
densityr@0# and a temperatureT and calculate—by increas
ing the temperature—the coexistence curves. We reach
cloud curve where—by definition—r@0#5r@0#

c and determine
the density of the coexisting phase on the shadow cu
r@0#

s . We then choose

r@1#5
1
2~r@0#

s 1r@0#
c ! ~54!

and repeat this iteration until we reachrcr5 lim i→` r@ i #

where obviouslyrcr5r@`#
c 5r@`#

s .
For reference we have added the phase coexiste

curve for a one-component system~‘‘oc’’ !, treated as well in
the MSA, characterized by a diametersoc5s0 and an am-
plitude Zoc5Z0 ; for this system we extract~via extrapola-
tion! the critical point to be located atTcr;oc* 51.2373 and
rcr;oc* 50.32.

FIG. 1. Phase diagram (T* vs r* ! of the polydisperse HSY mixture speci
fied in the text. Five pairs of points~labeledAi to Ei , i 51,2! are marked on
the curves; they are specified in Table I. Cloud and shadow curves
represented by the solid lines~as labeled!, binodal curves for the polydis-
perse HSY mixture by the broken lines connecting the points, which m
the density of the corresponding mother phase, i.e.,r0* 50.03 (A1---A2),
r0* 5rc* 50.3527 (C1---C2), r050.5 (B1---B2); the dot–dashed line de
notes the binodal curve for the monodisperse HSY system.

TABLE I. Specification of selected pairs of points~index ‘‘1’’—low density,
index ‘‘2’’—high density! chosen in the phase diagram of our polydisper
fluid mixture shown in Fig. 1.

Point Localized on T*

A1,A2 Binodal curve (r050.03) 0.9
B1 ,B2 Binodal curve (r050.5) 0.9
C1 ,C2 Critical binodal (rcr50.3523) 0.9
D1 ,D2 Binodal curve (r050.5) and

intersection with cloud and shadow curve
1.222

E1 ,E2 Cloud and shadow curve 0.9
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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On the cloud and on the shadow curve and on the b
odals in Fig. 1 we have chosen five pairs of points, labe
by Ai to Ei , i 51,2; i 51 marks the low-density, gas sta
point, whilei 52 indicates the coexisting high-density, liqu
state point. Their location in the (T* ,r* ) plane is specified
in Table I.

A. Phase diagram

We find cloud curves and binodals which are in sha
similar to the ones found in the recent van der Waals stu7

The high density branch of the shadow curve sho
however—as the temperature decreases—a behavior d
ent with respect to the van der Waals picture; this will
discussed in the following. Here one should bear in mind t
points on the shadow curve represent state points which
an infinite amount of the incipient phase—coexist with t
mother phase. Thus this curve represents a projection
curve with variable composition in higher dimensional spa
on the dilution line for which the composition is fixed~see
Figs. 2 and 3 in Ref. 2 for a very nice and instructive p
sentation!. The two branches of the binodals for the tw
selectedr0 values terminate on the cloud and the shad
curve. Note that ther values for the end points of the respe

FIG. 2. Mother@ f 0(s)# and daughter@ f 1(s) and f 2(s)] distribution func-
tions ~full curves! for the polydisperse HSY mixture investigated for poin
A1 andA2 . Broken curves2 f 1

beta(s) and f 2
beta(s) as defined in the text.

FIG. 3. As in Fig. 2 for pointsB1 andB2 .
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tive binodals on the cloud curve are by definition ther0

values of the binodals. Finally we also show the critical b
odal, characterized byrcr* , where—by definition—the two
end points on the cloud and on the shadow curve merg
one point, the critical point.

B. Distribution functions

More specific information about the composition of th
coexisting phases can be extracted from the distribu
functions of the two daughter phases, which give evidenc
possible fractionation effects. For the five selected pairs
points marked in phase diagram, the daughter distribu
functions,f 1(s) and f 2(s), along with the mother distribu-
tion function, f 0(s), are shown in Figs. 2–6. PointsAi and
Bi with i 51,2 are general points on the two binodals, ch
acterized byr*50.03 andr*50.5, at a temperatureT*
50.9: we observe a moderate fractionation effect and—
expected—a preference for the larger particles for the fl
phase. PointsE1 andE2 are localized on the cloud and an
on the shadow curve atT* 50.9: by definition f 1(s)
5 f 0(s) and we find a remarkable shift of the maximum
f 2(s) toward larger particles. PointsC1 andC2 are localized
on the critical binodal (r* 5rcr* ) at T* 50.9: while the par-
ticles of the fluid phase have—on average—nearly the sa

FIG. 4. As in Fig. 2 for pointsE1 andE2 .

FIG. 5. As in Fig. 2 for pointsC1 andC2 .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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size as in the homogeneous mother phase, the particles i
gas phase are on average slightly smaller. Finally we h
considered the intersection points of the~r*50.5! binodal
with the cloud and the shadow curve~points D1 and D2):
only a small shift in the mean values of the particle size
the gas phase is observed.

To conclude we have analyzed theshapeof the daughter
distributions functionsf i(s), i 51,2, on a more quantitative
level: we can thus answer the question if the daughter di
bution functions have the same functional shape as
mother distribution function and give a more detailed a
count on fractionation effects. To be more specific we ha
investigated how closely the daughter distribution functio
f i(s), i 51,2, resemble beta distributions. To this end
have proceeded as follows: fromf 1(s) and f 2(s) ~deter-
mined as described in the previous section!, we have calcu-
lated the first two moments,

^sn& i5E
0

`

ds f i~s!sn, n51,2, i 51,2, ~55!

Ds; i5
^s2& i

s0
2

21, i 51,2. ~56!

FIG. 6. As in Fig. 2 for pointsD1 andD2 .

FIG. 7. ^s& i , i 51,2, as defined in Eq.~55! along the shadow curve for th
polydisperse HSY mixture investigated in this study. Broken line—g
phase (i 51), full line—liquid phase (i 52).
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From these we have determined via Eqs.~35! and ~36!
beta-distribution functions,f i

beta(s), for the two daughter
phases which are in this sense ‘‘closest’’ to thef i(s); they
are shown in Figs. 2–6 in a direct comparison with t
f i(s). We observe that for nearly all selected points cons
ered, the daughter distributions are reasonably well appr
mated by beta distributions again. Only for pointsAi andEi ,
i 51, 2, larger differences~including a slight shift in the po-
sition of the maxima! are observed.

The parameterŝs& i and Ds; i , i 51,2, which we have
extracted from the numerically determined daughter distri
tion functions, help us to get a more quantitative insight in
possible fractionation effects. We have plotted these qua
ties along the shadow curve in Figs. 7 and 8~on the cloud
curve these quantities are by definition equal to the co
sponding values of the mother distribution! and along the
three binodals investigated in this study in Figs. 9 and 10.
the temperature decreases we observe on the shadow cu
strong increase in the mean size of the particles in the fl
phase and a small decrease in the mean size for the par
of the gas phase. From theDs; i curves we learn that the

s

FIG. 8. Ds; i , i 51,2, as defined in Eq.~56! along the shadow curve for the
polydisperse HSY mixture investigated in this study. Broken line—g
phase (i 51), full line—liquid phase (i 52).

FIG. 9. ^s& i , i 51,2, as defined in Eq.~55! along three binodals for the
poly-disperse HSY mixture with the mother phase densitiesr0* 5rcr*
50.3527~full line!, r0* 50.03~broken line!, andr0* 50.5 ~dot–dashed line!.
Here 1 denotes the gas phase and 2 denotes the liquid phase.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



an
r
-

nc
on
in
t
r-
n
an
n
e
e
d
th
id

tu
n
of

e
a
a

ab
r
s

n-
;
er
ie
ha
g
ic
ur

Y
he
y’’

d to
um-
ould
lex

on-
ter

hat
ions
of
pe-
in

dal
we
c-
of
rms
n.

on
als

ef-

-
85-

Z
e

r-

J.

,

7343J. Chem. Phys., Vol. 119, No. 14, 8 October 2003 Phase coexistence in polydisperse mixtures
width of both daughter distribution functions is smaller th
the mother distribution functions: we observe a strong sha
ening of the liquid distribution function with decreasing tem
perature, while the width of the gas phase distribution fu
tion remains close to the width of the mother distributi
function. We interpret this as follows: the rapid increase
the average size of the particles in the fluid phase due to
temperature decrease~Fig. 7! causes an increase in the ove
all packing fraction of the liquid shadow phase; in additio
due to the relation between the amplitude of the particles
their size, cf. Eq.~33!, lowering the temperature leads to a
increase in the strength of interparticle interaction. In an
fort to simultaneously maintain the equilibrium with th
cloud phase the system responds with a decrease in the
sity of the shadow phase. This explains the shape of
shadow curve in Fig. 1, where the density of the liqu
branch of this curve decreases with decreasing tempera

For the three binodals considered in this study we fi
the following for the^s& i curves: again, the average size
the particles in the gas phase is smaller thans0 . As we can
see from Fig. 9, the critical binodal separates two regim
for r* ,rcr* , the mean particle size in the gas phase c
reach the value ofs0 at the temperature where the binod
ends at the cloud curve, while forr* .rcr* , the maximum
mean value of the gas phase remains always remark
smaller thans0 . This holds—with interchanged roles—fo
the liquid phase: forr* .rcr* , the mean value of the particle
in the liquid phase is close tos0 , while for densities smaller
than the critical densitŷs&2 can reach values that are co
siderably higher thans0 . For Ds; i the situation is less clear
however we can observe that for a large range of temp
tures, the widths of both daughter distributions for densit
smaller than the critical density are considerably smaller t
Ds , while for r* .rcr* we observe only a small narrowin
of the f i(s), i 51,2. A more detailed and systemat
investigation of these effects will be postponed to a fut
contribution.

FIG. 10. As in Fig. 9 forDs; i ( i 51,2) defined by Eq.~56!.
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IV. CONCLUSIONS

Solving the MSA for a polydisperse mixture of HS
fluids with factorizable interactions we could show that t
system belongs to the class of ‘‘truncatable free energ
models; this means that thermodynamic functions require
calculate phase equilibria can be expressed by a finite n
ber of generalized moments. As a consequence we c
map the coexistence relations that are particularly comp
for polydisperse systems onto a coupled set of highly n
linear equations for the unknown moments of the daugh
distribution functions. We have presented the formalism t
leads to these relations along with the relevant express
for the thermodynamic quantities. Solution of the set
coupled equations for two coexisting phases and for a s
cific polydisperse mixture leads us to the phase diagram
terms of the cloud and the shadow curve, the critical bino
and binodals for two selected density values. Further
have determined explicitly the daughter distribution fun
tions of the two coexisting phases for five selected pairs
points in the phase diagram and have analyzed them in te
of their functional dependence on the mother distributio
Looking at the first two moments of the daughter distributi
functions along the shadow curve and along three binod
we could make quantitative conclusions on fractionation
fects induced by the phase transition.
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