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The solution of the mean spherical approximation for a polydisperse fluid mixture of particles
interacting via a set offactorizable hard-sphere Yukawa potentials allows one to represent those
thermodynamic quantities that are relevant to determine phase coexigtenceressure and
chemical potential by a limited number of(generalizell moments. Being thus a member of
“truncatable free energy models,” the equilibrium conditions reduce to a set of coupled and highly
nonlinear equations; we have solved these relations, we have determined phase diagrams for
polydisperse fluid mixture§.e., cloud and shadow curves as well as bingdalsd have extracted

the daughter distribution functions of the coexisting phases2003 American Institute of Physics.

[DOI: 10.1063/1.1607952

I. INTRODUCTION such a system, up to now no satisfactory strategies have been
developed to determine from these quantities the phase dia-

Using microscopic liquid state theor_|éﬁ, has become @  o.ams The main obstacle lies in the coexistence conditions,
standard task to determine phase coexistence in two- or even particular in the numerical complexity of the equilibrium

three-component fluid mixtures. However, when proceeding,qition for the chemical potentials which reads for two
to polydispersdiquid mixtures (which can be viewed as a coexisting phases “1” and “2,”

mixture with an infinite number of componeptshe situa-
tion is considerably more compléxmethods developed up pa(0)=pa(0). (1)

to now to calculate phase diagrams for such systems have, 5 given mother distributiofiy(), this equation has to
not yet reached the high level of sophistication as in concept§g golved for each of thénfinitely many) o’s, or for a finite

for systems with dinite number of components. This is the gt of representative values{o;}. Its solution then leads to
more deplorat_)le since tr(fprnjally) infinite numb_er of com- the unknown daughter distributiorig(o) and f,(o) of the
ponents promises a very intriguing phase coexistence behaXbexisting phases. Recent atterfiptsuse the ORPA thermo-

ior with possibly new phases and phase transitions. In addigynamic properties and to solve the coexistence conditions
tion, phenomena associated with the phase behavior gfioq due to the complexity of EqQ).

polydisperse systems, such as fractionation, are also of tech- 5, present one of the few ways out of this dilemma

nological relevance. . seems to resort to so-called truncatable free energy models;
Most of the concepts currently used to study polydis-ihese are approximate schemes, where the thermodynamic
perse systems view such a system as a mixture with an infl5.o5erties of the system can be expressed by a limited num-
nite number of components, each of them characterized by go of (generalizesl moments of the distribution functions
variable, for which one usually choses the particle size f.(¢), i=0,1,2. Then, the solution of E¢L) can be mapped
The set of concentratior{s;} in a mixture with a finite num- 16 3 coupled set of nonlinear equations for these moments,
ber of components is replaced by a distribution function 5, access which is numerically more favorable. First steps in
f(o), which is positive and normalized, i.efodof(o)  these directions were made with van der Waals mdiels:
=1. f(og)do is then the fraction of particles in the mixture ;,qeed results for complete phase diagraires., including
whose sizer lies in an infinite interval of widttdo around . 15.,d and shadow curves as well as binodatsuld be pre-
%o . ) ) sented. The question now arises if it is possible to go beyond
Standard liquid state theories have meanwhile been exs \an der Waals model by including correlations while stil

tended successfully to the polydisperse cdsey., the aintaining the benefits of a truncatable free energy model.
Rogers—Youngor the optimized random phase approxima- |, this contribution we show that this is indeed possible:

. 4 .
tion (ORPA]. Although these methods are able to deliveryye consider a polydisperse liquid mixture of hard-sphere
reliable information about the thermodynamic properties Oqukawa(HSY) fluids in the mean spherical approximation

(MSA). This microscopic liquid state theory combines two
dElectronic mail: gkahl@tph.tuwien.ac.at attractive features which were very helpful to realize our
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goal: First, the MSA is known to give reasonably accurateand we were able to determine for a given mother distribu-
results for the structure and thermodynamic properties ofion the complete phase diagram.

one- and two-component systems; second, the MSA can be The paper is organized as follows: In Sec. Il we present
solved for a HSY mixture with an arbitrary number of the theory(introducing our system, deriving expressions for
component$® leading to closedi.e., analyti¢ expressions the thermodynamic properties, justifying the distribution we
for the thermodynamic properties. In particular, if one as-have used, and discussing the numerical solution of the co-
sumesfactorizedHSY interactions the numerical effort re- existence conditions We then present results for a typical
quired for the MSA solution reduces drastically to the solu-example and close the paper with concluding remarks.

tion of one single nonlinear equation for the coupling

constantl’; this feature is preserved as we proceed to the

polydisperse cas¥:!! Using this formalism we were indeed ||. THE THEORY

able to express pressure and chemical potential by a consig—
erable(i.e., ning but still finite set of(generalizedmoments '
and coupling constart. The coexistence conditions, by now We consider a polydisperse fluid mixture at a tempera-
a set of coupled nonlinear equations in the unknown motureT[ 8= (kgT) 1] and a number density, where particles
ments of the two daughter distributions, have been solvedf species; andx, interact via HSY potential

The system

oo, rgU(Xl,Xz)

BPrixex;) = — —K(Xi'XZ) exp—z[r—o(Xy,X2) 1}, o(Xq, %) <r<oo, @

the hard-core potentials are characterized by a set of additijes introduced via Eq4)] this effort reduces substantially;
diametersg(Xx4,X5), i.e., even for an arbitrarybut finite) number of components, only
1 one single nonlinear equation for the so-called coupling pa-
7(x1,X0) = oL 0 (xg,x1) + 01Xz, %) ] ©® rameterT’, the central quantity of this approathhas to be
with o(x,x)=o. In Eq.(2), zis the inverse screening length solved.
(which we assume to be constant, i.e., independent of par- As we proceed to thpolydispersecase, we need a gen-
ticle size and potential amplitufl@nd theK(x;,x,) are the  eralization of thel’ formalism; partly this has already been
contact values; here we use—for reasons outlined in théone in Ref. 11. In the following we briefly summarize the
following—the following parametrizationwhich remains method, presenting those additional expressions which we
the only restrictive assumption of our mogel require for the determination of the phase equilibrium and
which have not been derived in literature so far.
K(X1:%2) = €000BZ(X1) Z(%2). @ TheT formalism provides a closed expression for Helm-
€o is an energy parameter, is the average sphere diameter holtz free energyr,*?
(see the following and theZ(x;) is the amplitude of the

interatomic potential of a particle of species in an appro- r?
priate model it might also be interpreted as a charge. Thus B(F—Fus)=BEy+ 5| T+ 52]. (6)
for the model at hand the siZe) and the amplitudé€z) of
the particle completely define its species. Fus is the free energy of the HS system for which we have
Size and amplitude of the particles are distributed actaken the expression due to Mansoeirial,'® generalized to
cording to a normalized distribution functidf(c,Z)=0, the polydisperse cas&y, andI" are determined as follows:
J dch dZ F(o,2)=1. (5) o o
0 - BEy=K pl—‘f d(TJ dZF(o,2)ZN(0,2)
Averages of quantitieé taken over the distribution function ° -
F(o,Z2) are denoted byA); in particular, op={0), Z, 7 [AND]2 0
= +——+ + :
(Z). 28 14 g0 An(h AMYEN) ()
B. Thermodynamic properties K= —Begoy, A=1—nandn being the system packing frac-
For a general multicomponent HSY mixture the MSA tion (see pglov)/. . . .
. o . . o . Quantities used in this expression are
can be solved in principle semianalyticaflyhis is done via
a formalism which rapidly becomes involved as the number 1)
of components increases: systems of coupled nonlinear equa- EN=E +T— T (8)
tions have to be solved. FdactorizableHSY interactions 2 20 140
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N 27ANN] ©
N2+ V) +2mA 5]
§<n>:pf:daf:dz F(o,2)0"é(o), (10
n(”)zpf:dof:odz F(o,Z)o"n(0), (1)
)\(”):pf:d(rJ:CdZ F(o,Z2)0c"\(0,2), (12
g<n>=pJ;dafwdz F(o,Z)o", g§<3)= 7, (13
with
o a-ZCI)O(z(r)
0= 38 Tr dy(zo)oT (19
B 220°V | (z0)
M= T P y(zo)0T 19
No,Z2)= W’ (16
z w{?
ANX]= x| 0= 5T = = | =X+ D),
17

where they(™ stand either for tha. (" or for the 5.

I' satisfies the following nonlinear algebraic equation:

I'?+2z'=—7KD, (18
with
szfwdofm dZ F(o,2)[X(0)]? (19
0 —o0
and
AVeg(o) nMé(o)
X(O’)Z)\O'—1+—§(l)—AN( 7](0’)—1+—§(1)). (20)

Due to highly nonlinear character of E@O) it has mul-
tiple solutions and the physical one, which reduceB+® in

Phase coexistence in polydisperse mixtures 7337

In addition, thisT" formalism provides closed expres-
sions for the quantities that are required for the determination
of the phase equilibrium: the pressuf® and the chemical
potentiall «(o,Z) ] of a particle with sizer and amplitudeZ.
The expression for the pressure can be obtained by a straight-

forward generalization of the results for the discrete mix-
11,12

ture, l.e.,
- r? 3 K 2zA
BP_BPHS_E F+§Z +EPN PN+TAN
(23
with
ANU—pDA, zA
Py=———— N T2 AL (24)

1+ g(l) ™

Pys is the pressure of the HS reference system, again we use

the semiempirical expression due to Mansaeiral,'® gen-

eralized to the polydisperse case
71_2

1%2[5(2)]3

1 T
ﬁPHs=K|p+ 5 (VP

71 3)[ #(2)73
(6) IRLRNE (25
Expressions for the chemical potentials derived within
theT formalism have not been presented so far in literature;
they had to be developed for the present work. Using the
standard relation between the free energy and chemical po-
tential (generalized to the polydisperse cakk

. 1 &[FIV} -
u(o, )—;m, (26)
where 8/ 8{F(0,Z)} denote functional differentiation with
respect to the distributioR (o,Z), we find

(ex)

1(0,2) = pig+ &) + u$(0,2). (27)

()(,Z) is the Yukawa contribution to the chemical

Here uy
potential

the high temperature limit, has to be chosen. In the preselﬂﬁﬂg(em(a Z)
study we are using an iterative method of the solution similarK

to the one suggested earl#rusing the high temperature
approximation’=0 as the initial input guarantees the proper

(physica) solution of this equation.
In the above-noted expressions, the functions

1
Do(x)= 5 (1-e ™) (21)
and

X
1+5

Do(x) (22

1

were introduced.

=pA(0,2){ZT + Ap(1+0Ey)}

AN}
8{F(0,2)}

mp oY

04\ 4
(WTHATEN T 2R 1+¢0

AL = A 5D

><{(Ml)_AN,?(l))(%az_g(o)) L+ g™

+2)\(0‘,Z)—AN7](0')], (28

where
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S{AN} 20 This choice is physically sound, since it states that the
5(F(0.2) = D amplitude is proportional to the surface of the particles; from
(F(0.2)} 2 A(1+&EY) +2mAN 7] a more practical point of view it reduces double integrals
SIANIAT} SIAN 7]} over o and Z.(Ilsted earliey to. integrals overr only. Thus
m— N m the complexity of .the. coe_X|stence cqnd|t|0n§ is brqught
' ' down to a level which is still tractable in practical applica-
a? A ) tions.
|\ gt | Zep ], (29) For f (o) we have chosen the beta distribution, given by
and - o a—1 o B—1
f(o)=B 1(a,,8)(0_—) (1— O_—) O(oyn—0)0(0),
1 S{ANXT} " " 34
p 8{F(0,2)}
2 where
z
—lof g0 2 r- |01 xe2) 1, x=0
2 2A Ox)=1 _
0, x<0.
Heor+ o2 350)_14@_1 &
&o) oA %1% 3 6A X f(o) is thus different from zero only foroe[0,0,].
B(a, ) is the beta functiotf and « and B are related to the
—[E(UH %0’2§<1)]0')((0); (30) first (co=(0)) and the second(¢2)) moments off () by
Om— O-O(l—’_ DU')
again they’s stand either fo{ (V) \(o,2)} from Egs. a=——5— (39
(12) and (16) or {7, V), (o)} from Egs.(11) and (15). m-e
Expression(28) for u{¥(o,Z) was derived using the sta- Tn— g
tionarity property of the MSA Helmholtz free enerdy ,32( oe @ (36)
izo_ (3)  with D,=(o%/ag3—1; D, has the same meaning as in Ref.
ar 11 and corresponds 1d/a) in Ref. 7.
Consistent with our choice of the expressions Fals This particular choice for the distribution function was

and Pys, the excess chemical potential of the referencemotivated by the fact that—in contrast to other distribution

hard-sphere system(ﬁé) in Eq. (27) is represented by the functions frequently used in this field, such as the Schulz
p0|ydi5perse version of the Mansoeti al }® expression’ i.e., distributiori”—the beta distribution has a limited carrier, i.e.,
this function is exactly zero beyondl,,. Use of the Schulz

2
B )= Uﬁ 3_20£ 1A distributiqn(with oe[0,°]) on the other hz_ind, allows—even
HS ® 3 though with an extremely small probability—the occurrence
of huge particles, with—as a consequence of 8§)—an
™ |1, [(P]F1+A extremely strong Yukawa interaction; from unpublished re-
TS5z P (912 A sults we find evidence, that in particular these strong attrac-
tions make us pass the limits of applicability of the MSA,
1 1[¢@72 leading to unphysical results for the phase diagram. Prob-
™ (2) (1) . s . . e .
+ Zéf 5 EREN lems with distributions with an infinite carrier were also re-
4 ported in Refs. 18 and 19.
2)
+{P| 1+ §(3)A +o§“>l. (32
D. Phase equilibrium
C. The distributions The way in which the equilibrium condition€l) are

mapped in a truncatable free energy model onto a system of

A distribution F(o0,Z) as introduced earlier for the size led i for th K lized i
and the amplitude of the particles allows an independen‘fOupe equations for the unknown genera7|ze moments
losely follows the work of Bellier-Castellet al," we there-

variation of these two system parameters. Since the maiﬁ briefl ize thi te h
goal of this work is the presentation of the formalism, we ore brietly summarize this route here.

have used a simplified expressiémhich can also be moti- We shall restrict ourselves in this contribution to two-
vated from the physical point of viewnamely phase coexistence. We denote the distribution function of the

mother phase af, (o) and its number density,; we want
o? to determine the distribution functions of the two daughter
Z—Zo—z) , (33)  phase§f;(o)], and their number densitigs, i=1, 2. As a

{0 consequence of the conservation of the total number of par-
where(o?)= [§o?f(o)do and &...) is the Dirac delta func- ticles of each specie&haracterized by a diamete, the
tion. following relation holds:

F(o,2)=f(0)6
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pL1— P> Po— P2 densitiesp; and p,, and the twol’ parameters of the two
o p pofolo)+ po—p pifi(o). (37)  coexisting phasesI{; andT',). Using relations(10)—(13),
roro o M along with (40) and (42) we have

pofa(o)=

At a given temperaturd, we are thus left with two
u.nkr?ow_n densmgsm anq P2, and one unknown daughter §i(n)=Pif do 0" () fo(0)
distribution function, eliminating the other one via E§7). 0
Hence we have to derive three relations. As shown in Ref. 7,

the first relation is given by XQi(UvT;vaplvp2;[Fl;{gﬂ)\g}l]a[FZ;{577)\5}2]),
0y i=1,2, n=0,1, (46)
fi(o)="1,(0) o exyf BA u'®] (39 .
_ nE“)=pif do o"ni(0)fo(o)
with 0
Ap'®=u (0,2, Tipsi[f2]) — n' (e, 2, T;p1:[F1]) XQi(a,T;po,p1,p2;[T1i{EMNEHLIT 2 { €N} 2D),

(39

and u®= (o) + (0, 2) with hard-sphere and

Yukawa contributi_on; given by .Eq(532) and (28). I_—|ere the M(n):pi fxdcr "\ i(0)fol o)
square brackets indicate functional dependendigiar) or 0

f1(o) can be eliminated from Eq38) via Eq. (37) to give

i=1,2, n=0,1, (47)

ether XQi(a,T;pg,p1,p2: [T 1A EMNLIT 2:{EMN LS 2]),
F1(0) = Fo()Qu(. T:po.p1.p2il F1]), (40) 1=1,2, n=0.1, 49
where av=p f “do o™fo(0)
0

p1Q1(a,T;po,p1,p2:[f1])
Po(Pz_Pl)eXF(ﬁA,U« X) ><Qi(UiT;pOvpl1p2;[rl;{gn)\g}l]l[FZ;{57])\5}2]):

" (o P~ (po— P2 XA BA 110D 4D =12, n=123, (49)

or which represent eighteen relations. Note in the above-given
notation that the dependence on the set of parameters
fa(0)=1o(0)Q2(0,T;po,p1,p2; [ F2]), (42) [T;{énN{}i] is equivalent to the functional dependence of
where the above functions on tHd;], i=1,2. Here and in the fol-
lowing the {én\ ¢} denote the set of the momen{;&“’,
p2Q2(0,T;po,p1,p2:[f2]) 7MW, AM ™ =12 andn values as indicated in the
1 above equations.

= . (43 The remaining four equations are found from the nor-
(Po=p1) = (Po= p2)EXPBA Lex) malization condition(44),

The second relation is the normalization condition, i.e.,

" 1=fmd0f0(a)
1=J dofi(o), i=1,2, (44) 0
° XQi(0,Tipo,p1.p2; [T {EM LT 25 (€MD),

and the third one is the equality of the pressure in both

phases =12, (50)
P(T:py:[F1])=P(T:pp:[ f2]). (45) by the equality of the pressure in both phaé&és),
Formally the set of relation€38), (44), and(45) form a P(Tipsi[T1i{énn D) =P(Tipai[Toi{€mN Y1),

closed set of equations for the unknowns p,, andf(o): (52)
they have to be solved for every value or for a set of and by Eq(18), written down for the scaling parametdrsn
representativer values. This task seems at present out oféach of the two phases

reach from the numerical point of view and we choose a 2 _ P

different route which is much more attractive and more eas- L1 121~ 7KDi, 1=1.2. (52
ily accessible: a closer analysis of Ed6), (23), and (27) In Egs.(46)—(52) the quantities with the lower index equal 1
reveals that the thermodynamic properties of the model afor 2) represent the corresponding values for the ficst
hand are defined by the temperatiethe densityp of the  second phase.

system, the set of nine generalized mome&t8, 7™, Solution of this set of equations leads to the binodal
A" (n=0,1), {M (n=1,2,3), and the coupling parameter curves and via Eq940)—(43) to the distribution functions
I'. This feature allows us to map the set of relatid@s), [fi(o)] of the coexisting two daughter phases for the given
(44), and (45) onto a closed set of twenty-two algebraic value of the mother phase density and mother distribution
equations for the eighteen generalized moments, the twhunction fo(o). In general in polydisperse systems binodal
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curves do not meet at the critical point; they are terminated at 14
temperatures for which the density of either phase becomes
equal to the density of the mother phase. The set of these
terminal points for differenfp, defines the so-called cloud
and shadow curves. The cloud curve represents the terminal
points of the phase with the density equal dg and the 1.2
shadow curve consists of the points in equilibrium with the
corresponding cloud-curve points. Thus the cloud and ;
shadow curves are of particular interest, since they represent

an envelope for the binodals.

By definition the cloud phase coexists with an infinitesi- 1y
mal amount of the shadow phase. Thus the cloud and shadow 1
curves can be obtained as a special solution of the general 0914/
phase coexistence problem where the properties of one phase
are equal to those of the mother phase. Assuming, e.g., th_ 1. phase diagranTt vs p*) of the polydisperse HSY mixture speci-
second phase to be the cloud phase, p.£5 pg, and follow-  fied in the text. Five pairs of pointéabeledA,; to E; , i=1,2) are marked on
ing the above-presented scheme, the twenty-two equations tf curves; they are specified in Table I. Cloud and shadow curves are
represented by the solid lingas labeley] binodal curves for the polydis-

the full coexistence problem reduce to a set of twelve eql'Iaperse HSY mixture by the broken lines connecting the points, which mark

tions: it is represented by Eq3§46) (52 for the special the density of the corresponding mother phase, pg=0.03 (A---A,),
choice ofi=1, p,=pg, I',=Ty, and{én\i},={EnNL}o;  pt=p*=0.3527(G---C,), po=0.5(By---B,); the dot—dashed line de-
the unknowns arg(ln) , 77(1”) , )\(l”) , g(l”) [with n-values as notes the binodal curve for the monodisperse HSY system.
indicated in Egs(46)—(49)], I';, p1, andpg.

To obtain a solution for thgeneralcoexistence problem
from the above-noted set of equations a numerical schem&e system will be represented by the dimensionless quanti-
has been utilized, which combines an iterative loop for thelies T* =kT/(€,Z5) andp* = pap, respectively.
solution of the equation foF (52) and a Newton—Raphson In Fig. 1 we show the phase diagram of the system in the
method for the remaining equations. Following a suggestiof T*,p*) plane: it contains the cloud and the shadow curve,
made earlie* we rewrite Eq.(52) in a form more appropri- the critical binodal(see the following and binodals for two

13+

1 1
0ACB 02 0.4 0.6 Az C"Bzos

ate for numerical iterations, selectedpy values pgy =0.03 andp§ =0.5). For the critical
point we find T5=1.343 andp},=0.3527.p. was deter-
7KD; ; : . :
M=——2' =12 (53 Mined in an iterative scheme from a sequence{af)}
z+T; which—by definition—must tend towargd,,: we choose a

Starting from some suitable set of starting valisse ~ densitypjo; and a temperaturg and calculate—by increas-
the following), results of the previous iteration cycle bt ing the temperature—the coexistence curves. We reach the
and the moment&btained from the Newton—Raphson algo- ¢loud curve where—by definitionpro) = pfo; and determine
rithm) are used in the right-hand side of E§3) as an input the density of the coexisting phase on the shadow curve,
for the next iteration cycle. New values Bf, which follow p[SO]' We then choose
from Eq. (53), are then utilizeq to solve the set of equations pr1= %(P[Soﬁpfoﬂ (54)
(46)—(51) for the moments via the Newton—Raphson algo-
rithm. We start at a relatively high temperature and a lowand repeat this |terat|on unt|l we reaghy,=lim; . ppi
degree of the polydispersity: as the initial input we have usedvhere obviouslyp=p..;=p[.-
the high temperature approximation for tRe, i.e., I';=0, For reference we have added the phase coexistence
the coexistence densities of the one comporteat, mono-  curve for a one-component systéhoc” ), treated as well in
dispersg case,p;.qc and py.oc, for the densitiep;, and the the MSA, characterized by a diameteg.= oo and an am-
mother phase distribution as a first guess for the daughtd¥litude Z,.=Z,; for this system we extradvia extrapola-
phase distributions, i.ef,(o)="f,(o)="fy(c). Solution of t|on) the critical point to be located &k, ,.=1.2373 and
the set of equation&t6)—(52) is then obtained by gradually pg.oc=0-32.
lowering the temperature and increasing polydispersity.

TABLE |. Specification of selected pairs of poiritedex “1"—low density,
IIl. RESULTS index “2"—high density) chosen in the phase diagram of our polydisperse
fluid mixture shown in Fig. 1.
We now present results for the phase diagram of a spe

cific polydisperse system. It is characterized by a mother Point Localized on ™
distribution functionF,(o,Z) for which we have chosenthe A, A,  Binodal curve py=0.03) 0.9
form (33), i.e., the amplitude is proportional to the surface; B;.B,  Binodal curve po=0.5) 0.9
thus Fo(0,Z) =fo(0) 8(Z— Zo(0?/{0?))). fo(o) is a beta C,.C,  Critical binodal (o, =0.3523) 0.9
distribution (34) with D, =0.02 ando,,=20,. The screen- ~ D1:Pz  Binodal curve po=0.5) and 1222

. . intersection with cloud and shadow curve
ing length of the Yukawa potentidl) was chosen to be g g cloud and shadow curve 0.9

zoy=1.8. In what follows the temperatufieand densityp of
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FIG. 2. Mother] fy(o)] and daughteff,(o) andf,(o)] distribution func- FIG. 4. As in Fig. 2 for pointE&,; andE,.

tions (full curves for the polydisperse HSY mixture investigated for points
A; andA,. Broken curves f*{ ) and 5 o) as defined in the text.
tive binodals on the cloud curve are by definition thg
On the cloud and on the shadow curve and on the binyalues of the b|_nodals. fmally we also shpv_v_the critical bin-
A : : . dal, characterized byg,, where—by definition—the two

odals in Fig. 1 we have chosen five pairs of points, labele . .

S : end points on the cloud and on the shadow curve merge in
by A; to E;, i=1,2;i=1 marks the low-density, gas state one noint. the critical point
point, whilei =2 indicates the coexisting high-density, liquid pornt, point.
state point. Their location in thel{,p*) plane is specified
in Table I. B. Distribution functions

More specific information about the composition of the
coexisting phases can be extracted from the distribution

We find cloud curves and binodals which are in shapdunctions of the two daughter phases, which give evidence of
similar to the ones found in the recent van der Waals sfudy.possible fractionation effects. For the five selected pairs of
The high density branch of the shadow curve showspoints marked in phase diagram, the daughter distribution
however—as the temperature decreases—a behavior diffeiinctions,f;(o) andf,(o), along with the mother distribu-
ent with respect to the van der Waals picture; this will betion function,fy(c), are shown in Figs. 2—6. Pointg and
discussed in the following. Here one should bear in mind thaB; with i=1,2 are general points on the two binodals, char-
points on the shadow curve represent state points which—aicterized byp*=0.03 andp*=0.5, at a temperaturd*
an infinite amount of the incipient phase—coexist with the=0.9: we observe a moderate fractionation effect and—as
mother phase. Thus this curve represents a projection of expected—a preference for the larger particles for the fluid
curve with variable composition in higher dimensional spacephase. Point&; andE, are localized on the cloud and and
on the dilution line for which the composition is fixédee on the shadow curve aT*=0.9: by definition f,(o)
Figs. 2 and 3 in Ref. 2 for a very nice and instructive pre-=fq(o) and we find a remarkable shift of the maximum of
sentation. The two branches of the binodals for the two f,(o) toward larger particles. Poin@, andC, are localized
selectedp, values terminate on the cloud and the shadowon the critical binodal §* = p%) at T* =0.9: while the par-
curve. Note that the values for the end points of the respec- ticles of the fluid phase have—on average—nearly the same

A. Phase diagram

1 !
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 3. As in Fig. 2 for point8, andB,. FIG. 5. As in Fig. 2 for pointC,; andC,.
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FIG. 8.D,.;, i=1,2, as defined in Eq56) along the shadow curve for the

polydisperse HSY mixture investigated in this study. Broken line—gas

FIG. 6. As in Fig. 2 for pointd, andD,.
phase (=1), full line—liquid phase (=2).

size as in the homogeneous mother phase, the particles in the

gas phase are on average slightly smaller. Finally we have From these we have determined via E(®5) and (36)

considered the intersection points of th& =0.5 binodal

beta-distribution functionsf?®q o), for the two daughter

phases which are in this sense “closest” to théos); they

with the cloud and the shadow curypoints D; and D,):

only a small shift in the mean values of the particle size inare shown in Figs. 2—6 in a direct comparison with the

the gas phase is observed. fi(o). We observe that for nearly all selected points consid-
To conclude we have analyzed thieapeof the daughter ered, the daughter distributions are reasonably well approxi-

distributions functiond;(o), i=1,2, on a more quantitative mated by beta distributions again. Only for poiAtsandE; ,

level: we can thus answer the question if the daughter distrir=1, 2, larger differenceéincluding a slight shift in the po-
bution functions have the same functional shape as thsition of the maximpaare observed.
mother distribution function and give a more detailed ac-  The parameterés); andD,.;, i=1,2, which we have

count on fractionation effects. To be more specific we havextracted from the numerically determined daughter distribu-
investigated how closely the daughter distribution functionsion functions, help us to get a more quantitative insight into

fi(o), i=1,2, resemble beta distributions. To this end wepossible fractionation effects. We have plotted these quanti-
ties along the shadow curve in Figs. 7 ando® the cloud

curve these quantities are by definition equal to the corre-
sponding values of the mother distributjoand along the
three binodals investigated in this study in Figs. 9 and 10. As
the temperature decreases we observe on the shadow curve a

have proceeded as follows: frof(o) and f,(o) (deter-
mined as described in the previous secktjome have calcu-

lated the first two moments,

(0”>i=j dofi(o)o", n=12, i=1,2, (55
0 strong increase in the mean size of the particles in the fluid
(o?), phase and a small decrease in the mean size for the particles
mi=—— 1, 1=12 (56)  of the gas phase. From tH,.; curves we learn that the
o
T T T T T T T
14 ' 1 2 -
T*
13+ B e A 4
12k fi P
[N 4
" ' //
I 7/
121 / - [ /
/ 11} 1) 2/ -
/I - \-': ‘ \7’
/‘ I, ‘ ll
11F Ill - / ! K
1 ) !
,’I 1 _.l / 2\4 /ll .
l’ / ! /
1 L l’ - | ! : II
// / ! i /I <U>/00
! <O’>/0’ 0.9 Ul | Li l L ] | |
- ! . ! ; h 0 08 09 09 1 105 11 115 1.2 125
14 15 16 _ L .
FIG. 9. (o);, i=1,2, as defined in Eq55) along three binodals for the

09—+
0.8 0.9 1 1.1 1.2 1.3
FIG. 7.{a);, i=1,2, as defined in E¢55) along the shadow curve for the poly-disperse HSY mixture with the mother phase densiii§s=pz,

polydisperse HSY mixture investigated in this study. Broken line—gas=0.3527(full line), p§ =0.03(broken ling, andp§ = 0.5 (dot—dashed line
Here 1 denotes the gas phase and 2 denotes the liquid phase.

phase (=1), full line—liquid phase (=2).
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IV. CONCLUSIONS

Solving the MSA for a polydisperse mixture of HSY
fluids with factorizable interactions we could show that the
system belongs to the class of “truncatable free energy”
models; this means that thermodynamic functions required to
calculate phase equilibria can be expressed by a finite num-
ber of generalized moments. As a consequence we could
map the coexistence relations that are particularly complex
for polydisperse systems onto a coupled set of highly non-
linear equations for the unknown moments of the daughter
distribution functions. We have presented the formalism that
leads to these relations along with the relevant expressions
for the thermodynamic quantities. Solution of the set of
coupled equations for two coexisting phases and for a spe-

FIG. 10. As in Fig. 9 foD,,; (i=1,2) defined by Eq(56). cific polydisperse mixture leads us to the phase diagram in
terms of the cloud and the shadow curve, the critical binodal
and binodals for two selected density values. Further we
have determined explicitly the daughter distribution func-
tions of the two coexisting phases for five selected pairs of

width of both daughter distribution functions is smaller thanpoints in the phase diagram and have analyzed them in terms
the mother distribution functions: we observe a strong sharpef their functional dependence on the mother distribution.
ening of the liquid distribution function with decreasing tem- Looking at the first two moments of the daughter distribution
perature, while the width of the gas phase distribution funcfunctions along the shadow curve and along three binodals
tion remains close to the width of the mother distributionwe could make quantitative conclusions on fractionation ef-
function. We interpret this as follows: the rapid increase infects induced by the phase transition.
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