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Self-consistent Ornstein–Zernike approximation
for a binary symmetric fluid mixture
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The self-consistent Ornstein–Zernike approximation~SCOZA! is an advanced microscopic liquid
state method that is known to give accurate results in the critical region and for the localization of
coexistence curves; this has been confirmed in several applications to continuous and discrete one
component systems. In this contribution we present the extension of the SCOZA formalism to the
case of a binary symmetric fluid mixture characterized by hard-core potentials with adjacent
attractive interactions, given by linear combinations of Yukawa tails. We discuss the stability criteria
for such a system and present results for the phase behavior: we recover the well-known three
archetypes of phase diagrams, characterized by the different manners the second order demixing line
(l-line! intersects the first order liquid–vapor coexistence curve. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1557053#
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I. INTRODUCTION

As we proceed from a one component system to a bin
mixture of simple fluids we encounter a considerably e
riched variety of phase behavior which is induced by
complex interplay of two phase separation processes:
liquid–vapor transition and the demixing transition. T
complex manner of how the now up to four phases can
exist is also reflected in a considerably richer critical beh
ior: four phase points, critical lines and critical end poin
~CEPs! now replace the triple point and the simple critic
point encountered in a one component fluid. The first atte
to bring order into the rich variety of phase diagrams
binary mixtures was done by Konynenburg and Scott;1 this
qualitative study is based on a van der Waals model and
still—to the best of our knowledge—the only systema
work in this field. Morequantitative investigations which
also aim at an accurate determination of the phase diag
~and eventually at a comparison with computer simulat
data! are, however, at present out of reach: applications
reliable liquid state methods~such as perturbation theories
integral equation approaches2! to determine the phase dia
gram of ageneral binary mixture are in particular in the
binary case considerably more involved than the simple
der Waals analysis, and, in addition, we are now faced wi
large number of system parameters. Hence, systematic
ies in this field are still out of reach.

Therefore a reasonable starting point to investigate
phase behavior of binary mixtures on aquantitativelevel is
to simply reduce the number of system parameters. This
be done by considering a so-called binarysymmetricmix-
ture; here the interactions between like particles are assu
to be equal@F11(r )5F22(r )# while the potential between
unlike particles,F12(r ), is fixed by F12(r )5aF11(r ). a
and the parameters that characterize theF i j (r ) are the only
system parameters; this reduction brings a systematic in
tigation of the phase behavior of the system within reach
7410021-9606/2003/118(16)/7414/11/$20.00
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In fact, already this simplified system shows a rich pha
behavior: a mean-field study for this mixture has revealed
following.3 While for a.1 only a simple liquid–vapor de
mixing transition is encountered, the situation is more co
plex and interesting fora,1: here the phase behavior
determined by the interplay of a gas-mixed fluid phase tr
sition and a fluid–fluid demixing transition into a 1-rich an
a 2-rich phase, the latter being symmetric with respect tx
51/2, x being the concentration of species 1. The critic
phenomena encountered are critical lines, tricritical poin
and CEPs. In the above mentioned study3 the authors iden-
tify three types of phase diagrams~denoted by I, II, and III
and discussed in detail in Sec. III B! which are characterized
by the different manners the line of the second order dem
ing transition (l line! intersects the first order liquid–vapo
coexistence line. A fourth type that was observed up to n
only in computer simulations4 has not yet been confirmed i
theoretical investigations; its existence is questionable.

In an effort to determine the phase behavior of suc
system on a quantitative level one has to use at least the
dynamic perturbation theories or integral equation metho2

however, they are known to fail and/or to give unreliab
results near phase boundaries and near criticality. To pro
in particular in these regions of the phase diagram accu
results, advanced liquid state methods are more appropr
the self-consistent Ornstein–Zernike approximati
~SCOZA!5 or the hierarchical reference theory~HRT!6 are
two of these methods that have been especially designe
cope with such problems. For a more detailed presentatio
the two approaches and an overview we refer to Refs. 7
8 ~SCOZA! and to Refs. 6 and 9~HRT!.

In this contribution we focus on the SCOZA which
based on a mean spherical~MSA! type closure relation to the
Ornstein–Zernike~OZ! equation,10 replacing the prefactor
b5(kBT)21 in the closure for the direct correlation functio
by a state dependent, yet undetermined functionK(r,T).
4 © 2003 American Institute of Physics
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This function is fixed by enforcing thermodynamic cons
tency between the compressibility and the energy route to
thermodynamic properties; in the one component case
requirement leads to a partial differential equation~PDE! of
u, the excess~over ideal gas! internal energy per volume, in
T andr. Applications of the SCOZA presented up to now
continuum and discrete one component systems have sh
that this advanced liquid state approach is indeed able
predict the localization of the critical point and of the coe
istence branches within high accuracy~for an overview over
these results we refer to Ref. 8!. So far, the generalization o
the SCOZA to the binary case has been restricted to a la
gas model.11

The success of the SCOZA for continuum one com
nent systems has motivated us to proceed to the binary c
this has been realized in the present contribution for the c
of a binary symmetric fluid mixture. Although the SCOZ
formalism presented here has been developed for this sp
binary system, it can be extended~by following similar lines!
in a straightforward, but rather tedious way to thegeneral
binary case. As in all SCOZA applications to continuous s
tems presented up to now we restrict ourselves to interato
potentials that consist of a hard-core~HC! part plus an adja-
cent interaction given by Yukawa tails~HCY interactions!.
This restriction can be traced back to the fact that the ra
heavy formalism of the SCOZA~and its complex numerica
implementation! benefits to a considerable amount from t
availability of the~semi-!analytic solution of the MSA for a
multi-Yukawa, multicomponent HC mixture;12 a fully nu-
merical solution of the SCOZA, as it would be required fo
general potential is at present out of reach.

In the binary case the consistency requirement betw
the compressibility and the energy route leads to a se
three coupled PDEs ofu in T, r, and x, from which we
determine the now three unknown state-dependent funct
Ki j (r,T,x). Although in principle a solution algorithm fo
this formidable problem might be coded, one quickly reac
computational limits. It is now where—in an effort to redu
the complexity of the problem—we have introduced a f
ther simplification in our work: based on symmetry arg
ments we reduce theKi j (r,T,x) to one single function
K(r,T,x). In addition, by chosing an appropriate line
combination of the three partial consistency relations we
left with only one consistency relation which is now a PD
of u in T andr; as a consequence of the above assump
the PDE can be solved for fixed concentrationx. This as-
sumption is the only approximation in the present work b
yond the basic SCOZA assumption that the direct correla
functions outside the cores are proportional to their pair
tentials.

Using this extended SCOZA algorithm we have calc
lated the phase diagram of binary symmetric mixtures,
suming HCY potentials with one single tail: we are thus l
with two parameters, the screening lengthz anda ~as defined
above!. Varying for a givenz the parametera we obtain, of
course, qualitatively the same sequence of phase diagram
already encountered and labeled in the mean-field stu3

mentioned before. However, both in contrast to a mean-fi
approach and to conventional liquid state theories we
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now able to approach critical points very closely while s
guaranteeing high numerical accuracy. SCOZA thus offer
study critical phenomena of a binary mixture on aqualitative
level; this will be done in the near future.

For completeness, it should be noted that the HRT~men-
tioned above! has been applied to binary systems in Refs.
and 14. In particular the latter publication is dedicated to
very thorough investigation of the phase diagram of a sy
metric binary mixture, discussing—among others—the C
topology which~in contrast to mean field theories and th
SCOZA! is not encountered in the HRT.

The paper is organized as follows: In Sec. II we pres
the theory, we introduce the system, present the basic id
of the SCOZA and its formalism for a binary symmetr
mixture; the section is closed with numerical remarks an
brief discussion of how to determine limits of stability of
binary mixture within the SCOZA framework. Section III i
dedicated to the results: we discuss the limits of stability
the system and present results for the phase diagrams
close the paper with concluding remarks.

II. THEORY

A. The system

In our symmetric binary system with HCY pair poten
tials F i j (r ) the interaction between the like particles is t
same@F11(r )5F22(r )#, while in the interatomic potentials
of unlike particles is given byF12(r )5aF i i (r ). Thus the
repulsive hard-core~HC! is characterized for all three inter
actions by a diameters

F i j ~r !5H `, r<s,

wi j ~r !, r .s.
~1!

For thewi j (r ), the attractive tails, we focus on Yukawa p
tentials, e.g.,

w11~r !52
1

r
exp@2z~r 21!#. ~2!

z is the screening length of the potential; the HC diametes
and the interaction strength of the attractive tail,e11, have
been set to unity. Further the mixture is characterized by
total number-densityr and the concentrationx5x1 of spe-
cies 1; partial number densities are defined viar15xr and
r25(12x)r. We further introduce reduced dimensionle
quantities,r!5rs3 andT!5kBTs/e11 whereT is the tem-
perature.

B. SCOZA—basic ideas

In the case of ageneralbinary mixture the SCOZA is
based on the OZ relation, which now reads10

hi j ~r !5ci j ~r !1(
k

rkE dr 8 cik~r 8!hk j~ ur2r 8u!, ~3!

supplemented by a MSA-type closure relation, i.e.,5

gi j ~r !50 for r<1,

ci j ~r !5cHC;i j ~r !1Ki j ~r,T,x!wi j ~r ! for r .1. ~4!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Thehi j (r ) and theci j (r ) are the total and the direct correla
tion functions and thegi j (r )5hi j (r )11 are the pair distri-
bution functions. ThecHC;i j (r ) are the direct correlation
functions of the HC reference system.

Different thermodynamic routes establish relations
tween the thermodynamic and the structural properties
system. In the binary case, the energy route reads

u52p(
i j

r ir jE F i j ~r !gi j ~r !r 2 dr, ~5!

where u is the excess~over ideal gas! internal energy per
volume; note thatu5u(r,T,x).

The partial compressibility routes establish a link b
tween the chemical potentialsm i and the direct correlation
functions via

r1

]bm1

]r1
512r1c̃11~q50!,

r2

]bm2

]r2
512r2c̃22~q50!,

~6!

r1

]bm1

]r2
52r1c̃12~q50!,

r2

]bm2

]r1
52r2c̃12~q50!.

If the m i and u stem from a unique Helmholtz free energ
then the partial consistency relations

]2u

]r i]r j
5

]

]b S ]bm j

]r i
D , ~7!

hold.
In conventional liquid state methods, such as the MS

different thermodynamic routes lead to different thermod
namic results. In the SCOZA, however, we have the po
bility to choose the three yet undetermined functio
Ki j (r,T,x) in such a way as to guarantee consistency
tween the energy and the partial compressibility routes. T
requirement leads to a coupled set of three PDEs ofu in T, r,
andx which fix the unknown functions.

It has turned out, that from the numerical point of vie
the solution of the PDEs~7! for a general binary mixture is
far too complex. The restriction to a binarysymmetricmix-
ture brings along the following considerable simplification
first, since all the diameters are equal we can use
cHC;i j (r )5cHC(r ) the Waisman parametrization for the d
rect correlation function of the HC reference system15 ~see
below!; second, the yet undetermined functionsKi j (r,T,x)
satisfy the following symmetry relations:

K11~r,T,x!5K22~r,T,12x!, ~8!

K12~r,T,x!5K12~r,T,12x!. ~9!

Under the additional,simplifying assumptionK11(r,T,x)
5K12(r,T,x) we end up with one single functionK(r,T,x),
that is symmetric with respect tox; it is related to theKi j via

K~r,T,x!5Ki j ~r,T,x!. ~10!
Downloaded 16 Sep 2003 to 128.131.48.66. Redistribution subject to A
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Instead of the three partial consistency relations~7! we now
require only one relation, which we obtain from a suitab
linear combination of these relations, like, e.g.,

r
]2u

]r2
5

]

]b S 12
1

r (
i j

r ir j c̃i j ~q50! D 5
]

]b S 1

x red
D ~11!

with the reduced dimensionless isothermal compressib
x red5rkBTxT given by

x red5S ]bP

]r D 21

. ~12!

xT is the isothermal compressibility.
We point out that the left-hand side of~11! is calculated

via the energy route while the right-hand side is determin
via the compressibility route, enforcing thus consistency
tween these two thermodynamic routes. As a consequenc
the above assumption the concentrationx has become a
simple parameter: consequently, the consistency PDE~11!
can be solved for differentx-values independently. With the
assumption~10! we have added an additional approximati
that goes beyond the definition of SCOZA, and we m
expect the numerical results to be less highly accurate t
those obtained in applications that use nothing but the an
that defines SCOZA. To check the accuracy of this additio
approximation a detailed comparison with Monte Ca
simulations is planned.16 Nevertheless, our binary-mixtur
results capture the full range of critical and tricritical beha
ior that one would expect in an exact analysis.

C. SCOZA—formalism

Since the extension of the SCOZA presented here b
efits from the availability of the~semi-!analytic solution of
the MSA for a HCY system~with an arbitrary number of
components and of Yukawa tails!, we briefly go back to this
solution. Two different approaches to solve the MSA for
HCY system have been proposed in literature: the~original!
Laplace transform route17,18 and the Wiener–Hopf factoriza
tion technique introduced by Wertheim19 and Baxter.20 The
first leads to a rather heavy formalism which forms the ba
of the first formulations of the SCOZA. The latter approa
is more elegant and more flexible and provides—even for
arbitrary number of components and of Yukawa tails
compact expressions; they are summarized in Ref. 12
form suitable for numerical evaluation. Although there h
been a great deal of important further development of
application of the Wertheim–Baxter approach to the case
an arbitrary number of Yukawa tails~see Refs. 21–24 and
references therein!, we know of no formulation in the con
text of SCOZA or quantitative studies that are directly r
evant to use in SCOZA.

Treating the direct correlation function of the HC refe
ence system within the Waisman parametrization with
Yukawa form ~details see below!, we add another Yukawa
tail to the MSA/SCOZA closure relation for the direct corr
lation function outside the core. Generalization of t
SCOZA to the case of anm component mixture with an
arbitrary number of Yukawa tails quickly becomes tedio
but should in principle be straightforward.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Under certain conditions,25 the solution of the OZ equa
tions ~3! is equivalent to the solution of the following tw
integral equations:

2prci j ~r !52Qi j8 ~r !1(
l

r lE
0

`

Qjl ~ t !Qil8 ~r 1t !dt,

~13!

2prhi j ~r !52Qi j8 ~r !12p(
l

r lE
0

`

~r 2t !

3hil ~ ur 2tu!Ql j ~ t !dt, ~14!

introducing the so-called factor functionsQi j (r ).
In the following italic indices are used for the two flui

components while greek indices denote then different
Yukawa tails. Henceforward, summation over an italic o
greek index corresponds to a summation over the two c
ponents of the Yukawa tails, i.e.,

(
l

5 (
l 51,2

and(
n

5 (
n51

n

. ~15!

If the above two integral equations are supplemented by
multi-HCY closure relation

hi j ~r !521, r ,1,
~16!

ci j ~r !5(
n

K̃n; i j

e2zn(r 21)

r
, r .1,

the factor functions must have the following form:

Qi j ~r !5Qi j
0 ~r !1(

n

1

zn
Dn; i j e

2zn(r 21), ~17!

Qi j
0 ~r !55

ai j

2
~r 21!21bi j ~r 21!

1(
n

1

zn
Cn; i j @e2zn(r 21)21#, 0,r ,1,

0, r .1.
~18!

These functions are characterized by 24 yet undeterm
coefficientsai j , bi j , Cn; i j , andDn; i j ; in the general case w
have (2m2n12m2) of these quantities.

IntroducingGn; i j via

Gn; i j 5znE
1

`

r exp@2zn~r 21!#gi j ~r !dr ~19!

one can show12 that the coefficientsai j , bi j , Cn; i j can be
expressed in terms of theDn; i j and theGn; i j , which, in turn,
satisfy a coupled set of 16 (52m2n) nonlinear equations,

(
t; lmk

Atn;mk jl
(1) Gt;kmDt;mlDn; i l 1 (

t; lm
Atn;m jl

(2) Dt;mlDn; i l

1(
l

An; j l
(3) Dn; i l 1An; i j

(4) 50, ~20!

(
t; lmk

Btn;mkl j
(1) Gt;kmDt;m jGn; i l 1 (

t;mk
Btn;mki j

(2) Gt;kmDt;m j
Downloaded 16 Sep 2003 to 128.131.48.66. Redistribution subject to A
-

e

ed

1 (
t; lm

Btn;ml j
(3) Dt;m jGn; i l 1(

t;m
Btn;mi j

(4) Dt;m j

1(
l

Bn; l j
(5) Gn; i l 1Bn; i j

(6) 50,

n51,2~5n!, i , j 51,2~5m!. ~21!

The explicit expressions for the coefficientsA and B in the
above equations for a generalm component mixture can be
found in the Appendix A of Ref. 12.

In particular in the context of the self-consistency pro
lem it should be pointed out that among these quantities
only energy-dependent coefficients are theAn; i j

(4) , given as

An; i j
(4) 52pK̃n; i j , ~22!

while all the other coefficients are calculated from ther i , the
zn , and froms.

The second system of equations~21!, is linear in D
5$Dn; i j % for given G5$Gn; i j % and can be written as

(
t;m

Otn;mi jDt;m j5Qn; i j ~23!

with

Otn;mi j~r,G!5(
lk

Btn;mkl j
(1) Gt;kmGn; i l

1(
k

Btn;ki j
(2) Gt;km1(

l
Btn;ml j

(3) Gn; i l

1Btn;mi j
(4) ~24!

and

Qn; i j ~r,G!52(
l

Bn; l j
(5) Gn; i l 2Bn; i j

(6) . ~25!

Equation~23! has thus the form of a matrix equation

O•D5Q. ~26!

In addition, by suitably arranging theDn; i j in a vectorD and
theQn; i j in a vectorQ, one arrives at a block diagonal form
for O, consisting of 2 (5m) blocks of dimension 4
(5mn). For the binary symmetric Yukawa fluid with two
tails on which we shall focus in this contribution, the vecto
D and Q have the following structure~written as
transposed—T—vectors!:

DT5~D1;11,D2;11,D1;21,D2;21,D1;12,D2;12,D1;22,D2;22!,
~27!

QT5~Q1;11,Q1;21,Q2;11,Q2;21,Q1;12,Q1;22,Q2;12,Q2;22!.
~28!

Solving the system of 8 (5m2n) linear equations~26! yields
D(r,G).

In the formulation of the SCOZA we will also need th
derivatives (]D/]G)(r,G) which are obtained via differen
tiating Eq.~23!,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
t;m

Otn;mi j~r,G!
]Dt;m j

]Gm;rs
52S (

l
Bmn;srl j

(1) Gn; i l 1Bmn;sri j
(2) DDm;s j~r,G!

2H(
t;m

S (
k

Btn;mks j
(1) Gt;km1Btn;ms j

(3) DDt;m j~r,G!2Bn;s j
(5) J dmnd ri . ~29!
.
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n

With all this in mind we now proceed to the SCOZA
Thermodynamic quantities required in the PDE of t
SCOZA are the inverse reduced isothermal compressib
and the internal energy, related via the consistency rela
~11!. The inverse reduced isothermal compressibility cal
lated via the compressibility route is given by~see Ref. 12!

1

x red
5(

j
xj S Aj

2p D 2

, ~30!

where

Aj5A0~11M j !24B0Nj ~31!

with

M j52(
t

1

zt
2 (

m
rm$M t

(a)Dt;m j1~12M t
(a)e2zt1! f t;m j%,

Nj5(
t

1

zt
3 (

m
rm$Lt

(a)Dt;m j1~12Lt
(a)e2zt1! f t;m j%, ~32!

f t;m j5
2p

zt
2 (

k
rkGt;mkDt;k j .

Expressions forM t
(a) ,Lt

(a) ,A0, and B0 in terms of r i ,zn ,
ands51 are again compiled in the Appendix A of Ref. 1
Note that indices that have become redundant in these
pressions as a consequence of the symmetry of our sy
have been dropped~e.g., Aj

0→A0, etc.!. Inserting the solu-
tion of the linear systemD(r,G) in expressions~32! yields
Aj (r,G).

In our reduced units the internal energy via the ene
route ~5! is given by

u52
2pr2

z2
@x2G2;111ax~12x!G2;121ax~12x!G2;21

1~12x!2G2;22]. ~33!

The SCOZA closure relations~4! now read (i , j 51,2)

gi j ~r !50, r ,1,

cii ~r !5K1~r!
1

r
e2z1(r)(r 21)

1K2~r,T,x!
1

r
e2z2(r 21), r .1,

c12~r !5K1~r!
1

r
e2z1(r)(r 21)

1aK2~r,T,x!
1

r
e2z2(r 21), r .1. ~34!
Downloaded 16 Sep 2003 to 128.131.48.66. Redistribution subject to A
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The first terms on the right-hand side of the expression
the ci j (r ) in ~34! represent the Waisman parametrization
the direct correlation function for the reference syste
K1(r) andz1(r) are well-defined functions ofr ~see Appen-
dix of Ref. 7!.

The link between the MSA parametersK̃n; i j and the
SCOZA functionK2(r,T,x) is established via the following
relations:

K̃1;i j 5K1~r!, i , j 51,2,

K̃2;115K̃2;225K2~r,T,x!, ~35!

K̃2;125K̃2;215aK2~r,T,x!.

We now go back to the SCOZA–PDE~11! and insert the
Aj (r,G) of Eq. ~30!; this leads to

2(
j

xj

Aj

~2p!2 (
m;rs

]Aj

]Gm;rs

]Gm;rs

]u

]u

]b
5r

]2u

]r2
~36!

or

B~r,u!
]u

]b
5C~r!

]2u

]r2
~37!

with

B~r,u!52(
j

xj

Aj

~2p!2 (
m;rs

]Aj

]Gm;rs

]Gm;rs

]u
,

~38!
C~r!5r.

We now have to determineAj , ]Aj /]Gm;rs , and]Gm;rs /]u
as functions ofr andu. This is outlined in the following.

In a first step we determineG for a given value ofr and
u: to this end we establish a set of eight nonlinear equati
the solution of which givesG(r,u). The first of these rela-
tions is the energy equation~33! which is formally written as
F1(r,G2;11,G2;12,G2;21,G2;22,u)50. Further we consider
Eq. ~20! for n51 andi , j 51,2: we have inserted the solutio
D(r,G) of ~21! and use ~22! which has becomeA1;i j

(4)

52pK1(r), i , j 51,2. We formally write these equations a
Fi(r,G)50 (i 52, . . . ,5). Theremaining three equations
written asFi(r,G)50 (i 56, . . . ,8), areobtained from Eq.
~20! for n52 and eliminating the unknown functio
K2(r,T,x) via the relations

A2;11
(4) 5A2;22

(4) , A2;12
(4) 5A2;21

(4) , A2;12
(4) 5aA2;11

(4) . ~39!
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For givenr andu, theG are determined by solving the coupled set of eight nonlinear equations via a Newton–Ra
algorithm. Explicit expressions for the Jacobian,Ji ,(m;rs)5]Fi /]Gm;rs can be provided: fori 51, these quantities are obtaine
from ~33!, while the remainingJi ,(m;rs) are recovered from a differentiation of~20! with respect to theGm;rs , e.g.,

]F2

]Gm;rs
~r,G!5(

l
Am1;sr1l

(1) Dm;slD1;1l1 (
t; lmk

At1;mk1l
(1) Gt;kmS ]Dt;ml

]Gm;rs
D1;1l1Dt;ml

]D1;1l

]Gm;rs
D

1(
t

At1;m1l
(2) S ]Dt;ml

]Gm;rs
D1;1l1Dt;ml

]D1;1l

]Gm;rs
D1A1;1l

(3) ]D1;1l

]Gm;rs
~40!
e

e

c

r
io

ue
r

o

-

el-
re

s-
ns
, for
insertingD5D(r,G) and (]D/]G)(r,G) from solutions of
the linear equations~23! and~29!. Similar expressions can b
derived for the other derivatives.

The G(r,u(r,b2Db)) from the previous temperatur
step in the solution algorithm of the PDE~37! are taken as
initial values of the Newton–Raphson technique. In ea
step of the iteration, for givenG the linear system~23! is
solved yielding D(r,G). Then the derivatives
(]Dt;ml /]Gm;rs)(r,G) are obtained by solving the linea
equations~29!. These solutions are inserted in the express
for J. Convergence in the Newton–Raphson method
achieved if the relative difference of two successive val
of G is less than 10210. Furthermore it is checked whethe
the solution is physical, i.e., ifG2;125G2;21. With this solu-
tion G(r,u) one calculatesD(r,u)5D(r,G(r,u)) via ~23!,
Aj (r,u) via ~31! and ~32!, and (]D/]G)(r,u) via ~29!.

We now proceed to calculate the coefficient functions
the SCOZA–PDE~37!. The derivatives (]Aj /]Gm;rs)(r,u)
required in~38! are obtained from~31! and are given by

]Aj

]Gm;rs
5A0

]M j

]Gm;rs
24B0

]Nj

]Gm;rs
, ~41!

where

]M j

]Gm;rs
52(

t

1

zt
2 (

m
rmH M t

(a) ]Dt;m j

]Gm;rs

1~12M t
(a)e2zt!

] f t;m j

]Gm;rs
J ,

]Nj

]Gm;rs
5(

t

1

zt
3 (

m
rmH Lt

(a) ]Dt;m j

]Gm;rs

1~12Lt
(a)e2zt!

] f t;m j

]Gm;rs
J , ~42!

] f t;m j

]Gm;rs
5

2p

zt
2 (

k
rkS dmtdmrdksDt;k j

1Gt;mk

]Dt;k j

]Gm;rs
D .

The derivatives]Gm;rs /]u are obtained by implicitly differ-
entiating the equationsFi50 (i 51, . . . ,8) with respect tou;
inversion by use of the JacobianJ leads to
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S ]G1;11

]u

]G1;12

]u

A

]G2;22

]u

D 5J 21
•S 21

0

A

0

D . ~43!

Inserting the values of G(r,u), D(r,G(r,u)), and
(]D/]G)(r,u) in Eqs. ~41! and ~42! in J of ~43! finally
gives (]Aj /]Gm;rs)(r,u) and (]G/]u)(r,u). Now, the
SCOZA–PDE~37! is ready for being solved. Numerical de
tails for its solution are presented in Sec. II D.

Onceu(r,T,x) has been determined the quantities r
evant for the calculation of the phase diagram, the pressuP
and the chemical potentialsm i ( i 51,2), are obtained by in-
tegrating]bP/]b and]bm i /]b with respect tob via

]bm1

]b
5

]u

]r
1

12x

r

]u

]x
, ~44!

]bm2

]b
5

]u

]r
2

x

r

]u

]x
, ~45!

]bP

]b
52u1r

]u

]r
, ~46!

with the Carnahan–Starling values26 for bP andbm i as in-
tegration constants atb50

bP~r,b50,x!5r
11h1h22h3

~12h!3
, ~47!

bm i~r,b50,x!5 ln r i1
8h29h223h3

~12h!3
. ~48!

h5(p/6)r is the packing fraction. The symmetry of the sy
tem induces symmetry relations in the correlation functio
and hence in the thermodynamic properties. For instance
the chemical potentials and for the pressure we find

m1~r,T,x!5m2~r,T,12x!, ~49!

P~r,T,x!5P~r,T,12x!. ~50!

D. Numerical solution

As a consequence of the simplifying assumption~10! the
SCOZA–PDE is now only a PDE inb andr, which can be
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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solved for differentx values independently. The SCOZA
PDE ~37! is a nonlinear diffusion equation, that has be
solved by an implicit finite-difference algorithm27 described
in detail in Ref. 28 on a (b,r)-grid @0,b f #3@0,r0#; the grid-
size inr, Dr, is 0.001,Db is in general 1025, but becomes
even smaller in the liquid–vapor critical region, andDx
50.01 with xe@0,1/2#. In contrast to conventional liquid
state theories the SCOZA can be solved even in the crit
regions.

Integration with respect tob starts atb50 and then
proceeds to lower temperatures. At each temperature
nonlinear equationsFi50 ~introduced in the preceding sec
tion! are solved, leading to theG(r,u): to ensure rapid con
vergence the values of theG(r,u) obtained at the previou
temperature step (b2Db) in the solution algorithm of the
PDE are taken as initial guess for the solution of the sys
of nonlinear equations atb. In the next step,D(r,u),
Aj (r,u), ]D/]G, ]Aj /]G, and]G/]u are calculated, from
which we calculate the coefficient functionB(r,u) via ~38!.

For the boundary condition we have used forr50

u~r50,b,x!50 for all b and all x ~51!

and for the boundary condition at high density (r051) we
make use of the high temperature approximation~HTA!:2

this approximation is known to be very accurate for hi
densities such that for a sufficiently large value ofr0 a
boundary condition based on the HTA should be reasona
good.

For the initial condition atb50 we assume that th
direct correlation functions coincide with those of a HC sy
tem. Explicit expressions for these functions are obtain
from the MSA formalism, by settingK̃n; i j 50 for all i and j
and forn52. For details we refer to Ref. 8.

E. Thermodynamic stability

To find out the limits of thermodynamic stability be
comes for a fluid mixture a considerably more complex pr
lem than in the one component case: now, for a given co
position, density, and temperature the requirements for b
mechanicalandmaterial stability must be fulfilled. Mechani
cal stability is expressed~similar as in the one componen
case! via xT.0, while material stability is expressed via th
criterion

S ]2G

]x2 D
T,P,r

>0, ~52!

whereG is the Gibbs free energy of the system.
It is more convenient to trace back the above two sta

ity criteria to the long-wavelength limit of two structure fa
tors, the number–numberSNN(q) and the concentration–
concentrationScc(q) structure factors which are suitab
linear combinations of the Fourier transforms of the dir
correlation functions,hi j (r ):
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SNN~q!511r$x2h̃11~q!1~12x!2h̃22~q!

12x~12x!h̃12~q!%,

Scc~q!5x~12x!$11rx~12x!@ h̃11~q!1h̃22~q!

22h̃12~q!]], ~53!

SNc~q!5rx~12x!$x@ h̃11~q!2h̃12~q!#

2~12x!@ h̃22~q!2h̃12~q!#%.

Their long-wavelength limits are related to the thermod
namic properties via29

SNN~0!5xT1d2Scc~0!,

Scc~0!5
NkBT

S ]2G

]x2 D
T,P,r

, ~54!

SNc~0!52dScc~0!

with d5r( v̄12 v̄2) where thev̄ i are the partial molar vol-
umes.

From the above criteria for stability it follows that as w
reach the limits of mechanical stability,SNN(0) diverges,
while at the border of material stabilityScc(0) diverges. In
addition, one also considers the~sub-!case of the so-called
azeotropic instability, where the mixture is mechanically
stable~i.e., diverging compressibility! while remaining ma-
terially stable@i.e., finiteScc(0)]. Thespinodal of a mixture
is thus located at those points where eitherSNN(0) or Scc(0)
or both diverge.

Arrieta et al.12 have shown that if any of the above in
stabilities occurs, then the quantityD(0), defined as

D~0!5$det@d i j 1Ar ir j h̃i j ~0!#%21/2

5$det@d i j 2Ar ir j c̃i j ~0!#%1/2

5det~d i j 2Ar ir j Q̄i j ! ~55!

becomes zero. As also outlined in Ref. 12,D(0) can readily
be calculated from parameters available from the MSA so
tion:

Q̄i j 5E
0

`

Qi j ~r !dr

5
1

6
Aj2

1

2
bj2(

t

1

zt
2 ~Ct; i j M t

(a)2 f t; i j ! ~56!

with

bj5b0~11M j !1A0Nj , ~57!

Ct; i j 5 f t; i j e
2zt2Dt; i j , ~58!

and Eqs.~31! and ~32!. b0 is calculated fromr and s ~see
Appendix A of Ref. 12!.

Of course fromD(0)50 we do not learn which limit of
instability is actually reached; this has to be decided in
more detailed investigation. It should also be noted, that
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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sign ofD(0) plays an important role when deciding wheth
an MSA solution is acceptable for a given system: Pas
has shown rigorously25 that if D(0)<0 then the solution has
to be rejected. On the other hand, the fact thatD(0) is posi-
tive does not guarantee that the solution is physical: only
fact thatD(s) has no zero in the complex right half-plane
s is a criterion that the solution is physical~and hence
unique25!. However, it has turned out,12 that the simpler cri-
terion, i.e.,D(0).0, is very reliable to detect physical solu
tions.

We have used the ‘‘D(0).0’’ criterion in our calcula-
tions to determine the spinodal and assume—accordin
the simplified criterion outlined above—that it also separa
physical~and hence unique! solutions from unphysical solu
tions of the MSA/SCOZA. From the numerical point of vie
we proceeded as follows: the boundary conditions on
spinodal lines are

u~rS ,b!5uS~rS!, ~59!

where the densityrS is the approximation for the spinoda
density on the discrete density grid at a given temperatur
is located at that grid-point whereD(0) changes sign and

FIG. 1. The three different cases of the instability region on the inte
@0,r0# for a given value ofx andT for a HCY fluid. The full lines are the
stable regions whereD(0).0, while the dashed lines represent the unsta
regions that are excluded from the integration of the SCOZA–PDE.

FIG. 2. Spinodal line in the (r!,T!,x51/2) plane for an equimolar binary
HCY mixture witha50.9 andzs50.8. Different line symbols are used fo
the density regimes in which eitherx red ~full line! or Scc(0) ~dashed line!
diverge.
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becomes negative.uS(r) is the value of the excess intern
energy whereD(0)50. This value is determined from th
set of eight nonlinear equations

D~0!~r,G!50,
~60!

Fi~r,G!50, i 52, . . . ,8,

with the functionsFi introduced above. These equations a
solved forG using a Newton–Raphson technique where
Jacobian of the nonlinear system is provided. This Jacob
can be calculated in a straightforward way analogous to
one in Sec. II C. Inserting the solutionG(r) in the energy
equation~33! finally yieldsuS(r). For the binary symmetric
HCY fluid that we have investigated, three cases of insta
ity regions in the interval@0,r0# for a given value ofx andT
have to be distinguished that are shown in Fig. 1.

l

FIG. 3. Phase stability lines in the (T!,x) plane for a HCY mixture with
a50.65 andzs51.8. The point wherex red diverges is marked by a dia
mond. Everywhere elseScc(0) diverges~dashed line!.
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FIG. 4. Three-dimensional view of the spinodal curv
of a symmetric binary HCY mixture witha50.65 and
zs51.8 in the (r!,T!,x) space.
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III. RESULTS

We present results for the stability and for the pha
diagram of a binary symmetric mixture determined via t
SCOZA. Now that the number of system parameters is
duced substantially the phase behavior of such a system
be studied very easily in a systematic way; as noted ab
the unique parameter that triggers the phase behavior ia,
the ratio between the unlike and the like interaction. A me
field study by Wildinget al.3 has already revealed the pha
behavior of such a system in a qualitative way. We exp
four phases which we denote as follows: the vapor~G!, the
mixed fluid~MF! and two phases of a demixed fluid~DF!—a
1-rich and a 2-rich fluid; the latter ones are oft
counted—as a consequence of the symmetry with respe
x—as one single phase. For convenience we introduce
reduced dimensionless densityr!5rs35r and the reduced
dimensionless temperatureT!5kBTs/K115kBT.

A. Thermodynamic stability

We start our discussion on the stability of our syste
with a projection of the three-dimensional spinodal onto
(r!,T!,x51/2)-plane, shown in Fig. 2. The stable phases
~as also in the following plots! above the spinodal line. Th
curve shown in Fig. 2 consists of two parts that intersect
threshold densityr t

!;0.76: forr!,r t
! , x red diverges while

Scc(0) remains finite, while forr!.r t
! , Scc(0) diverges

while the compressibility remains finite.r t
! is a dependent;

this has been discussed in detail in Ref. 30.
We then proceed to a projection of the spinodal onto

(T!,x) plane, shown in Fig. 3 for two differentr! values,
one of them being below, the other one being abover t of this
system. For the higher density, all points of the spinodal
characterized by a divergence ofScc(0), while for the den-
sity smaller thanr t

! , Scc(0) diverges everywhere except fo
x51/2 wherex red diverges. We also observe that the curv
ture of the projections of the spinodal on the (T!,x) plane
changes as the density is varied. Physical reasons for
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observation are, for instance, discussed in Ref. 31.
A three-dimensional plot of the spinodal in th

(r!,T!,x) space is shown in Fig. 4. Let us approach th
stability boundary from above on different paths: we fix t
concentrationx to 1/2, choose some density and reduce
temperature until we reach the stability boundary. If we
duce, for a given density larger than the threshold va
(r!.r t

!), the temperature until we cross the stability boun
ary whereScc(0) diverges, self-aggregation will take plac
and the fluid will demix into a 1-rich and a 2-rich phas
~DF!. For r!,r t

! , where x red→` the fluid becomes me
chanically unstable and separates into a MF and a G ph
Finally, by further reducing the density the scenario w
again change and the fluid will decompose into three pha
a G phase and two DF phases.

B. Phase diagrams

The phase diagram is calculated by solving the coex
ence equations, i.e. equal chemical potentials and equal p
sure of the coexisting phases at a given temperature.
characterize coexisting phases by (r,x) and (r8,x8) and pro-
ceed as follows: the G–MF coexistence curve is obtained
solving the set of equations

m i~r,T,x51/2![m~r,T,x51/2!5m~r8,T,x51/2!,
~61!

P~r,T,x51/2!5P~r8,T,x51/2!. ~62!

For the G–MF and the MF–DF transitions we proceed
two steps: first we determine the phase diagram of the
mixing transition, i.e., looking at a given temperatureT for
two coexisting states with the same fluid density but differ
composition by fixingr5r8 and by determining concentra
tions x andx8512x of the coexisting phases. The equilib
rium condition for the pressure is automatically fulfille
while the equilibrium conditions for the chemical potentia
become at givenT andr
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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m1~r,T,x!5m2~r,T,x! ~63!

which defines~if it exists! the linex(r) of the second orde
demixing transition. Along this line the chemical potentia
of the two species are equal by construction; they are
noted bym@T,r,x(r)#. In a second step the solution of th
two equations

m@r,T,x51/2#5m@r8,T,x~r8!#, ~64!

P@r,T,x51/2#5P@r8,T,x~r8!# ~65!

gives the densityr of the G or MF and the densityr8 of the
DF with concentrationsx(r8) and 12x(r8), in equilibrium.

We only consider the more interesting case wherea
,1: here we observe a competition between the G–MF tr
sition and the demixing transition. According to the lo
where thel line ~i.e., the critical line of the demixing tran
sitions! intersects the second order G–MF transition one
distinguish three types of phase diagrams. In Figs. 5 an
we show the (r!,T!) phase diagrams of two binary symme
ric mixtures for three different values ofa ~as indicated!;
they are projections of the three-dimensional (r!,T!,x) dia-
grams onto the (r!,T!) plane. Thea values are chosen s
that each of the types of phase diagrams is represented.~i! In
the type I case, thel line approaches the G–MF coexisten
curve well below the critical point; the intersection point
called a CEP: here, a critical liquid coexists with a noncr
cal gas. AboveTCEP a gas and a homogeneous liquid
intermediate density coexist, becoming identical at
G–MF critical point. When increasingr, the liquid demixes
as one crosses thel line. The ~full ! curve below the CEP
temperature~cf. bottom panels in Figs. 5 and 6! is a triple
line where a gas, a 1-rich and a 2-rich liquid coexist.~ii ! In
the type III case thel line intersects the G–MF curve at th
G–MF critical point. Now there is no first order transitio
between the gas and the mixed liquid and thel line ends at
a tricritical point where three phases become critical at
same time: a gas, a 1-rich and a 2-rich liquid. Two ord
parameters, the difference in the coexisting liquid and va
densities, and the concentration difference vanish at the s
time. ~iii ! Finally, type II represents the intermediate ca
where thel-line intersects the G–MF coexistence cur
slightly below the critical point. One finds—as in type I—
critical point of the G–MF transition and, similar as in typ
III, a tricritical point. In addition, we observe a triple poin
where a gas, a mixed liquid at intermediate density, an
1-rich and a 2-rich liquid at high density coexist.

Concluding, it should be pointed out that similar arch
types of phase diagrams are also encountered in other li
systems with completely different interatomic interaction
such as the Heisenberg fluid32 or the Stockmayer fluid.33

IV. CONCLUSION

The SCOZA is an advanced liquid state method tha
known to give reliable results for continuous one compon
systems even in the critical region. This is achieved by
forcing thermodynamic self-consistency between the co
pressibility and the energy route via a state dependent fu
tion K(r,T) which is determined by solving a PDE. In th
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contribution we have generalized the formalism of t
SCOZA to the case of a binary symmetric mixture. Introdu
ing an approximation on the now three yet undetermin
state-dependent functionsKi j (r,b,x) we can reduce the
three coupled PDEs~for u in r, T, andx) to one single PDE
for u in T and r. In the first part of this paper we hav
presented the formalism, we have given details of the
merical solution of the PDE and have discussed stability
teria of binary mixtures. Assuming a simple HCY interactio
for the interatomic potentials we have then calculated

FIG. 5. SCOZA phase diagrams in the (r!,T!) plane for variousa values
and zs51.8. The full lines represent first-order phase coexistence,
dashed lines thel line and the dotted curves metastable G–MF transitio
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phase diagram of such a system. Varying the parametea,
i.e., the ratio between the like and the unlike interactions,
encounter three archetypes of phase diagrams characte
by the intersection of the line of the second order demix
transition and the first order liquid–vapor coexistence cur
each of them characterized by a specific critical behavior
contrast to conventional liquid state theories, the coexiste
curves can be determined also very close to the critical po
offering thus the possibility to study critical phenomena o
quantitativelevel.

FIG. 6. The same as in Fig. 5 forzs52.5.
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