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Pole topology of the structure functions of continuous systems
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We develop a theory of the pole topology of the Laplace transform of the structure functions of continuous
N component systems based on the Wiener-Hopf technique. We classify systems according to the spectrum of
the Nx N matrix Q(t), with elementsfgij (=0;—- 277\/ijfe’”qij (r)dr, associated with their factor func-
tions ¢;(r). For the simplest nontrivial class of systems—namely, that with only two eigenvalu@¢tpf
different from one—a full and explicit analysis of the pole topology is possible. We illustrate the theory with
exactly solvable examples, such as the Percus-Yevick equation for arbitrary mixtures of hard @p8eaes]
polydisperse HS and the mean spherical model for binary mixtures of adhesive spheres.
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. INTRODUCTION cij(k) the three-dimensional Fourier transforms of the total
_ o . hij(r) and the direct correlation functia;(r) of anN com-
The Wiener-Hopf(WH) factorization technique has— ponent system, whereis the distance between the particles

since its invention in 1931—proved to be an immensely im-¢ species andj, and Ietﬂij(k)zzwmﬁij(k) as well as
portant method in mathematical physics. It provides one OE»(k)=2wWE--(k) with p;=c,p the partial particle
the very few approaches to obtain exact solutions to a Clas&lejnsity andc-l tjhlej co’ncentratilon Iof componelit and p
of integral equation§l]. Its applicability to problems in the =3,p; the totlal particle density. Then the OZ r,elation be-
theory of exactly solvable statistical mechanical models Wa%omlels(in matrix notation, withE being the unit matrix

first demonstrated by BaxtdR] in 1968. Baxter not only

did present in detail the function theoretic background of [E—C(K)][E+HA(K)]=E. 1)

the method, from which a general transformation of the

Ornstein-Zernike (OZ) relation between the direct and The WH factorization of Eq(1) uses the positive definite-
the total correlation function follows, but also illustrated the ness of the complete direct correlation function, which trans-
elegance of the WH technique by reexamining the Percusates in Fourier space to the decompositjdi (T denotes
Yevick (PY) solution for hard spheredlS) (see, e.g., Wer- the transpose of a matpix
theim[3] for a related approagh

In 1970 Baxter generalized his analysis to the casBl of E-C(k)=QT(—k)Q(k), 2
component systemgl]. The specific example treated in de-
tail was the PY equation for aN component system of HS. where
During the 1970s several models beyond HS were solved
exactly via the WH technique: Perram and SnjBhderived A _ ikr
a soluéc/ion of the PY equatcilon for multicomporr:ltianﬂ': systems of Qi (k)= - ZW\/TPJ era;(rdr ©
adhesive HJAHS), Blum and Hgye[6] solved the mean
spherical model(MSM) for HS Yukawa (HSY) mixtures  with dj the usual Kronecker delta. The mat|®<(k) [with
[immediately afterwards also the examination of the MSMeIementsQij(k)] is analytic and nonsingular in the upper

for the special case of mixtures of charged {€H1S) via the  pajf k plane. On using the factorizatid®) and the OZ rela-
WH decomposition was startdd]], and at the end of the o (1) we have that

decade Blum and StdlB] already extended the technique to
the polydisperse case: they solved the PY equation for poly- A o —TAT(_1)1-1
disperse HS in 1979. The structure functions of the MSM for QUOTE+H{K]=[Q (=k)] “@
polydisperse CH$9] and AHS[10,11] were obtained not LA : . . .
before the late 1990s, and the thermodynamic functions O[FIOW’ 5|nceQT(—k? 'S angl_ync Fimd nonsingular _|n the lower
the MSM for a polydisperse system of AHS only with the half k plane, the singularities dfl (k) are determined by the
turn of the centuryf12,13. roots of

As shown, for instance, if14], the WH formalism can ~
also be used for numerical calculations of the pair distribu- detQ(k)=0 )
tion functions over the entirerange in a convenient way.

The main step in the WH factorization of the OZ relation in the lower halfk plane. This shows that, by using the WH
is the introduction of an additional function, the so-calledtechnique, the problem of the transform inverséi¢k) may

factor functiong;;(r). In this paper we will be mainly con- e reduced to the determination of the singularitie€k)
cerned with the algebra|c and analytIC propertlgs of this fUnC'i'n the lower halfk p|ane1 and hence the importance of the
tion for the following reasons. Let us denote by(k) and  algebraic and analytic properties @f (r).
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Methods based on this observation appeared in the 198@ke complex plane. There is no special reason for going over
[15] and are nowadays known as asymptotic representatiorte Laplace space apart from making contact with previous
(AR) (for an historic overview, see, e.16]); they represent paperg16—-18§.
an easy to use and yet accurate tool to compute the pair We start our analysis with a classification of continuous
distribution functionsg;;(r) directly from theh;;(k) for in- N component systems according to the spectrum of the ma-
termediate and large values. So far, AR have been pre- trix Q(t), with elementgct. (3)]
sented in detail for the PY equation of binary H%], for the
PY equation and the MSM for binary AHR7], and for the - o
MSM for binary HSY system§18]. For all these models, the Qij(t)=6;; —ZWVPiPJf e g (r)dr. (6)
singularities ofH (k) are an infinite sequence of poles. But
the singularities are not always poles: Snjitl9] has solved \we denote by{\;(t)};=;=y the spectrum ofd(t). Then we
the MSM for a generalized Yukawa system with a branch cuf,5ye
in the lower halfk plane.

Restricting ourselves here to cases where all the singulari- n
ties are poles, the two main properties of the distribution of deté(t)=H Ni(1), n=<N, (7)
roots of deQ(k) [of poles ofH (k)] in the lower halfk plane =1

are the following. . S
(i) The rootk, closest to the reak axis determines the Where any eigenvalue of multiplicityn is counted asn of

asymptotic behavior oh;;(r) for r—co: if —ik,eR, then theN eigenvalues. Now, let us classifycomponent systems
the h;;(r) converge to their asymptotic values exponentiallydccording ton. Generically, we have=N, but, surprisingly
monotonic, or if —ik, e C, then exponentially oscillatory. €nough, for several exactly solved modgls a small inte-
The crossover of these two behaviors was termed Fisheger for allN (and hence also in the stochastic lif24]): for
Widom (FW) line [20]. The concept of the FW line was the PY equation of HS mixtures<2 [8], for the MSM of
reintroduced by Evans respective Henderson and their comixtures of CHSn<3 [25], and for the MSM of Lorentz-
leagues in the 199021,22 (and subsequent papgr§hey  Berthelot mixtures of AHS$I<5 [10] or n=<3 [11].

also examined the relevance of the FW line f@nuniform Forn=1, nothing is to be shown, since there is only one
systems. The common asymptotic behavior of all partial totakequence of roots of déX(t) =0 in the left half(LH) t plane.
correlation functions was discovered by Martyri@a]. As the first nontrivial case, let us consider the class charac-

(i) In contrast to the singularities closest to the teakis,
much less is known, from a mathematical point of view,
about the overall distribution of poles, which we refer to as
pole topology it is only known that the complete sequence

of poles is necessary to represent the thermodynamics of t equation forN component H$16,18, (ii) of the MSM

15,1 i j hat—
system correcty{ 15,18, and it was conjectured that—at for binary AHS[17], and iii) of the MSM for binary HSY

Ieast_for two-component systems—the poles arrange typ|[18 th les in the LHt bl tpically in t
cally in two branche$16-1§. So far a proof of this conjec- | the poles in the plane arrange typically in two

ture was obtained only for the special case of the MSM fofPranches. Subsequently, we prove this conjecture for the ex-
symmetric binary mixture of AHJ17]. A general math- amples(i) and(ii), as well as for the PY solution of polydis-

terized by n=2, that contains—in principle—all two-

component systems and also the PY equation for HS mix-

tures with arbitraryN=2 (including thus polydisperse HS
particular, it was conjectured that for the soluti@nof the

ematical theory is not available yet. perse HS, at least ag — .
In this paper we start such a qualitative theory of the
distribution of roots of de®(k) in the lower halfk plane. B. Analytic properties

First, we reduce the problem by considering the algebraic

properties ofQ(k). This part can be carried out in complete ) . )
generality and is based on an examination of the eigenvalues Consider anN component system of HS with diameters
of Q(k). Second, we deal with the much less handy analytithi - Itr;]troduceRij = it(Ri,Jr Ri?j' Sij ? 2(Ri— Rg and Et’r:‘“trger'

. 2 . ) ate the components in order of increasiRg, so thatS;
properties ofQ(k) to derive results on the pole topology: for ) _ . : J
this part we restrict ourselves to examples of the simples?.o' Fix Ry = 1b' Then the_solﬁtl?n of the PY equation for HS
nontrivial class of systems, namely, that with only two eigen-TX{Ures can be written in the forif]
values ofQ(k) different from one, such as the PY equation a.
for an N component and a polydisperse mixture of HS and  q;;(r)=6(r - S;) El(r_Rij)2+(bi+aiRij)(r_Rij)
the MSM for binary mixtures of AHS. For these cases the

1. PY equation for HS mixtures

function theoretic problem involved can be settled. The gen- X (R —T) )
eralizability of these results to more complicated systems is .
discussed in concluding remarks. with the Heaviside functior® and

Il. POLE TOPOLOGY 1 N 3R, R

A. Algebraic classification ;= 1-&  (1-¢ )2, T
3

=aiRi+2bi s (9)

At the outset let us change from Fourier to Laplace space.
Of course, the two transforms are completely equivalent invhere
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&F% 2 pRY, aeN. (10) detQ(t)=detDy(t), (11
Hence, on following Blum and StefB], it is found that where
|
14 6,  B[&—my(b)] 126, 6% 1 &o—mo(D)]

(1-&)t  (1-¢y)t? (1-&)t 1-¢&3 (1—&x)t2
Dn(t)= (12

1 3[E—mp(h)] I+ 6,  B[&—my(1)]

U (1-¢t? (1-&)t  (1-)t?
|
with e = wy(t?), (22)
ma(t)=g2 pie  RRY,  aeNl, (13)  Wwhere the functionsw, (t) are defined via the solutions

Now use Eq.(11) to write detQ(t)=0 in the form of a
quadratic equation ie !,

2
kzo di(t) e =0, (14)

where the coefficientd,(t) are found upon using Eq§l2)
and(10) to be

do(H)=u(t)?—v(t)w(t), (15

12O 120Dt Bo(Da(t)
WO T e (e
3 3 3
(16)
3 )% — o(t) wolt
dz(t)z 6[#1((1 f,U«)oz(tjluvz( )] (17)
— 63
with
L eg 6%,
u(t)=1+ e A=t (18
65 124, 126,
YOTTTE T Tt e
1 3¢,
- U= 20
w(t) {1 (20

andu,(t)=e'm,(t). Denote the two solutions of E¢L4) by
x1.At). Then we find for the two sets of roots of d@@tt) in

the LH t plane, written as{t{} and {t{®)} (the latter se-
qguence contains the roots closer to the imaginary)axis

e = wy (1), (21)

Xx1.t) so that the roots closer to the imaginary axis are ele-
ments of{t(?)}.

Since the coefficientd,(t), which build up the right-hand
side of Eqs(21) and(22), are not very handy functions in
(and in the A system parameterswe consider instead the
leading order asymptotic behavior of the (t) as|t|— in
the LH t plane. Upon using definitiond5), (16), and(17), it
is found via(18), (19), and(20) that

3
e W=

2
27pN-1SN(N-1)

(@) t?
ek =<— (24)

X ( 13 ) ’
NI-E T 216 | e
k

as|t|—< in the LH t plane. This is our principal result. It
shows that the two sequencg§’)} and{t{?)} are exponen-
tially separatedin the sense that the quotient of the right-
hand side(RHS of Egs. (23) and (24) is an exponential
function in t for any given set of system parameferm
addition, it states foft{")} that the number of roots inside a
box with a subset oft{’)} in its interior, decreases with
increasingSyy-1), and that both{t{"} and {t’} move
closer to the imaginary axis gs increases. Of course, the
detailed structure of the distribution of roots is clearly out-
side the realm of this asymptotic analysis.

2. PY equation for polydisperse HS

In the probabilistic description of polydisperse systems of
HS, introduced by Salacuge4], the particles are uniquely
characterized by their diamete® whereR is distributed
according to a continuous probability densit{R). In the
thermodynamic limit the systems have a composition given
by f(R), and contain(with probability ong¢ a countable in-
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finity of distinct particles. Hence aN particle polydisperse case. Based on Egdll), (12), and the law of large numbers,

system can be interpreted as Bncomponent system with it js found that de€(t) of the PY solution for polydisperse
pi=p/N. Itis this fact that allow \(t) [and so deQ(t)]to  HS is given by[8,24]
be generalized from th& component to the polydisperse

66,  6[&H—m(D)] 12, 66, 18— mo(h)]

. Yimat Taigr &l -6 (-a)p
detQ(t)=detD.(t)=de , (25
1 3[E—ma(D)] 14 6,  Bl&—my(D)]
t (1—&5)12 (1=§3)t (1—&5)12
[
with the generalized momentsf. [26]) @ (—1)B(a,b)
et = — . ' > tb+2 ,
_m ~tRpya \ 27p(b—1)! 2 )
m,(t) pr f(R)e"RR*dR, aeN, (26) mp(b—1) (1_§3+2(1_§3)2 e

and the moments (30
as|t|—o in the LH t plane. As for HS mixtures, the two
£a=My(0),  ael. (27 sequences of root&(V} and{t®} are shifted towards the
imaginary axis with increasing particle densjty However,
for the solution of the PY equation for polydisperse HS,
these two branches of roots are now polynomially separated.

A frequently used standard distribution f6¢R) is thel’
distribution. But as already stated[i27], the latter one gives
for arbitrarily large particles nonzero probabilities, which is

qn_physical, whereas realistic distributions should _ha\{e only 3. MSM for binary AHS
finite support. Hence, we choo$€R) to be a beta distribu- .
tion, which satisfies this requirement, So far, we analyzed the pole topology of the PY equation

for an N component system of HS and polydisperse HS. We
found for both cases two branches of poles, that are asymp-
Ra‘l(l—R)b‘ll(ovl)(R), abeR,, totically separated for any given set of system parameters.
The sequences separate exponentially fast for HS mixtures,
(28 \whereas for polydisperse H$(")} and{t(?)} separate poly-
nomially fast agt|—< in the LHt plane.

Now let us apply our technique to an exactly solvable
model with an attractive interaction. One of the simplest ex-
tensions of the PY solution fad component HS is the MSM
“1)1 for N component AHS10], characterized by one additional

- . set of parameters, the interaction stren@thstickiness v;; .

N~°W we have, as for the casg of HS m|>_<ture_s, thatWe examine the pole topology of the MSM for binary :AHS.
detQ(t) =detD..(t), and thatD.(t) is formally identical ~ The treatment of the cagé=2 gives also the opportunity to
with Dy(t). Hence, the two sequences of roots of @ét) put the results of17] for the simplified case of the MSM for
=0, {t{"} and{t{?)}, are formally given by Eqgs(21) and  symmetric binary AHS into context.

fR=5G@D)

wherel 4 is the indicator function of the sed, andB(a,b)
= [5x31(1—x)P~*dx is known as beta function. In the fol-
lowing we restrict ourselves ta,b e \\{0}. Then the beta
function simplifies to B(a,b)=[(a—1)!(b—1)!]/(a+b

(22), where in the functionsl,(t) the ¢, andm,(t) of Egs. Consider arN component system of AHS with diameters
(10) and (13) are replaced by their generalizatiof®’) and  R; and stickinesg;; = ;i € R, between particles of species
(26). andj [5]. Enumerate the components in order of increasing

In general, even foa,b e N\{0}, the solutionsw; (t) are  R;, so thatS;;=0, and fix againRy=1. Apply the WH
complicated functions int. Thus, let us again consider the technique in the usual way. Then the solution of the MSM
asymptotic behavior of the; [t) as|t|—o in the LHt  for anN component system of AHS in terms @f(r) is [10]
plane. We find via Eq¥28), (26), and(25) [and by using the
definitions(15)—(17)] that fora,b e \\{0}, a

(19-7] =i (1) = 01— S)| 51— R+ (by+ iRy )(r —Ry) + T

_m  (=1)P2B(a,b)

e x—m—————
mp b!

, X O(Rij—r) (39
29  with
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1- 12§, 3R &, R detQ(t)=0 can be rewritten as algebraic equation of degree
1-¢&, (1_§ B 1_53:aiRi+2bi’ B2 2ine, >2_,di(t)e ¥'=0, where the coefficients(t)
3 follow from Eq. (34),

a=
where the¢, are given by Eq(10) and
_ do(t) =1+ 27 p1F (1) + pof 5 (1)]
Gi=g 2 pdiRe Ty= 7R (33 +am2pp [F OO0 - FDOIDD], (@D

On substituting Eq(31) into Eq. (6), it is found that(cf. dl(t)=27r[p1f(ﬁ)(t)e2‘521+ pzf(zg)(t)]
[17])

_ +4m2p1p,{ TP () - D))
Qij(t)=8;+2mpip;[e” RifD(t) +e SifD(t)]

(34) +HFPOIRPO - 1RO FP0]1e* 2y, (39
with 42 2t (0)(£0)+y — £(0) 4y 5(0)
do(t) =4m2p1p,e® 2 F17(1) 1) (1) — (D) 7 (1)].
(39
© ARG 53 L _
fiy (O = T + T (39 Thus, the two sets of roots of da(t) =0 are formally given
by Egs.(21) and (22), where Eqs.(37)—(39) are used as
definitions for the coefficientd,(t).
f(l)(t)_ aiR; RiR —£O)1). (36) Finally, let us again analyze the asymptotic behavior of
2 2(1-§&t Y the solutionsw; At) as|t|—c in the LHt plane. Letl’ be

5 the matrix with element$’;; . Assume del’ #0. Then, upon
Now let us examine the distribution of roots of d(t) using definitiong37)—(39) in Egs.(21) and(22), it is found
for the caseN=2. Then, as in the proof for HS, we have that that

L | 1
2mpydetl’ | _ if Sne(03),
k
o] (40
(p1l'12t+pal' oot 4pypodetl’ ,
" amppdett | VTN O T2 it Sx1=0.
L mp1p20e€ (p1l'11+ pal’20) -t
( t
- i 1
27Tp2F22 t:t(kz) |f 3216 (012)1
e (49
(pal'11+pal'oo)t 4p1podetl’ _
4 detl’ I=\1i- 2 if Sp;=0,
Tp1p20e (pal'11t+pol'20) =t
\
|
as|t|— in the LH t plane. Hence we have two cases. branch of roots fotwherec{"? denotes the two solutions for
(i) For S,1e(0.%), the two sequences of roofs”’} and  the concentratior,),
{t{®)} are exponentially separatéds for HS mixturel and
also the number of roots in a given box with a subset of
{t{M) in its interior decreases with increasig,. The two (1 A(T) = 2 (42)
branches are shifted toward the imaginary axis with increas- L'y, o
|ng p. trI'—2 F_(F12+ —detF)

(ii) For S,;=0 (i.e., equally sized particlgsthe quotient
of the RHS of(40) and(41) is a constant function infor any
given set of parameters. In particular, there is only ondf we assumey,,=0, then Eq.(42) simplifies to
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trivial casen=1, we provided fon=2 an asymptotic analy-

al)=—- (43)  sis for three exactly solvable examples. For the PY equation

1+ = of N component HS we found that the two sequences of
poles{t{} and{t{?)} separate exponentially fast f$— o
so that if we interpret the stickiness as a function of thell the LH t plane, whereas for the solution of the PY equa-
reciprocal temperaturésee, e.g.[28]), then Eq.(43) de- t|9n for polyd|sp1erse Hfﬂx\ngh a composmon.gwen by a beta
scribes a line in the concentration-temperature plane, wher@stribution, {t} and {t{”} are polynomially separated.
there is only one branch of roots. One-component HS ar&0r the case of the MSM for binary AHS we found two
recovered in Eq(43) via y;;=0 (c;=1) or y,=0 (c; different asymptotic behaviors: B,,<(0,3), then the two
=0), and one-component AHS vig,= y,1 (C;=3). More-  sequences are again exponentially separated, wher&as if
over, if we specialize Eq$40) and(41) to the case of sym- =0 (equally sized particlésthen the quotient of the RHS of
metric binary AHS,y,,=y1; and y;,= w15, then the re- the two equations which determide("} and {t{*)}, Egs.
sults(38) and(39) in [17] are reproduced. Finally, the usual (40) and (41), is a constant function it For the latter case
shift of the branches toward the imaginary axis with increaswe found conditions such that only one branch of poles

ing p is also encountered. exists.
Finally, from a mathematical point of view we can say
Ill. CONCLUDING REMARKS that, although we could give elementary proofs for the above

examples, an analysis for arbitramwill have to apply com-
We started a theory of the pole topology of the Struct“reputer mathematics in a nontrivial way. From a physical point

functions 9f continuous component systems based on theof view our results might be of value in a thermodynamic
WH technique. Our method consists of two stages. First, W?nterpretation of the pole topologii8]. We hope that this

determine the number of eigenvalues(<N) of Q(t) dif-  contribution will inspire further research in this direction.
ferent from 1, and reduce the problem of the overall distri-

bution of the poles to an analysis of the solutions of an

: SR . )
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