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Pole topology of the structure functions of continuous systems
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We develop a theory of the pole topology of the Laplace transform of the structure functions of continuous
N component systems based on the Wiener-Hopf technique. We classify systems according to the spectrum of

the N3N matrix Q̃(t), with elementsQ̃i j (t)5d i j 22pAr ir j*e2trqi j (r )dr, associated with their factor func-

tions qi j (r ). For the simplest nontrivial class of systems—namely, that with only two eigenvalues ofQ̃(t)
different from one—a full and explicit analysis of the pole topology is possible. We illustrate the theory with
exactly solvable examples, such as the Percus-Yevick equation for arbitrary mixtures of hard spheres~HS! and
polydisperse HS and the mean spherical model for binary mixtures of adhesive spheres.
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I. INTRODUCTION

The Wiener-Hopf ~WH! factorization technique has—
since its invention in 1931—proved to be an immensely i
portant method in mathematical physics. It provides one
the very few approaches to obtain exact solutions to a c
of integral equations@1#. Its applicability to problems in the
theory of exactly solvable statistical mechanical models w
first demonstrated by Baxter@2# in 1968. Baxter not only
did present in detail the function theoretic background
the method, from which a general transformation of t
Ornstein-Zernike ~OZ! relation between the direct an
the total correlation function follows, but also illustrated t
elegance of the WH technique by reexamining the Perc
Yevick ~PY! solution for hard spheres~HS! ~see, e.g., Wer-
theim @3# for a related approach!.

In 1970 Baxter generalized his analysis to the case oN
component systems@4#. The specific example treated in d
tail was the PY equation for anN component system of HS
During the 1970s several models beyond HS were sol
exactly via the WH technique: Perram and Smith@5# derived
a solution of the PY equation for multicomponent systems
adhesive HS~AHS!, Blum and Høye@6# solved the mean
spherical model~MSM! for HS Yukawa ~HSY! mixtures
†immediately afterwards also the examination of the MS
for the special case of mixtures of charged HS~CHS! via the
WH decomposition was started@7#‡, and at the end of the
decade Blum and Stell@8# already extended the technique
the polydisperse case: they solved the PY equation for p
disperse HS in 1979. The structure functions of the MSM
polydisperse CHS@9# and AHS @10,11# were obtained not
before the late 1990s, and the thermodynamic functions
the MSM for a polydisperse system of AHS only with th
turn of the century@12,13#.

As shown, for instance, in@14#, the WH formalism can
also be used for numerical calculations of the pair distri
tion functions over the entirer range in a convenient way.

The main step in the WH factorization of the OZ relatio
is the introduction of an additional function, the so-call
factor functionqi j (r ). In this paper we will be mainly con
cerned with the algebraic and analytic properties of this fu
tion for the following reasons. Let us denote byĥi j (k) and
1063-651X/2002/65~5!/051104~6!/$20.00 65 0511
-
f

ss

s

f
e

s-

d

f

y-
r

of

-

-

ĉi j (k) the three-dimensional Fourier transforms of the to
hi j (r ) and the direct correlation functionci j (r ) of anN com-
ponent system, wherer is the distance between the particl
of speciesi and j, and letĤ i j (k)52pAr ir j ĥi j (k) as well as
Ĉi j (k)52pAr ir j ĉi j (k), with r i5cir the partial particle
density andci the concentration of componenti, and r
5( ir i the total particle density. Then the OZ relation b
comes~in matrix notation, withE being the unit matrix!

@E2Ĉ~k!#@E1Ĥ~k!#5E. ~1!

The WH factorization of Eq.~1! uses the positive definite
ness of the complete direct correlation function, which tra
lates in Fourier space to the decomposition@4# (T denotes
the transpose of a matrix!

E2Ĉ~k!5Q̂T~2k!Q̂~k!, ~2!

where

Q̂i j ~k!5d i j 22pAr ir jE eikrqi j ~r !dr ~3!

with d i j the usual Kronecker delta. The matrixQ̂(k) @with
elementsQ̂i j (k)# is analytic and nonsingular in the uppe
half k plane. On using the factorization~2! and the OZ rela-
tion ~1! we have that

Q̂~k!@E1Ĥ~k!#5@Q̂T~2k!#21. ~4!

Now, sinceQ̂T(2k) is analytic and nonsingular in the lowe
half k plane, the singularities ofĤ(k) are determined by the
roots of

detQ̂~k!50 ~5!

in the lower halfk plane. This shows that, by using the W
technique, the problem of the transform inverse ofĤ(k) may
be reduced to the determination of the singularities ofQ̂(k)
in the lower halfk plane, and hence the importance of t
algebraic and analytic properties ofqi j (r ).
©2002 The American Physical Society04-1
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Methods based on this observation appeared in the 19
@15# and are nowadays known as asymptotic representat
~AR! ~for an historic overview, see, e.g.,@16#!; they represent
an easy to use and yet accurate tool to compute the
distribution functionsgi j (r ) directly from theĥi j (k) for in-
termediate and larger values. So far, AR have been pr
sented in detail for the PY equation of binary HS@16#, for the
PY equation and the MSM for binary AHS@17#, and for the
MSM for binary HSY systems@18#. For all these models, th
singularities ofĤ(k) are an infinite sequence of poles. B
the singularities are not always poles: Smith@19# has solved
the MSM for a generalized Yukawa system with a branch
in the lower halfk plane.

Restricting ourselves here to cases where all the singu
ties are poles, the two main properties of the distribution
roots of detQ̂(k) @of poles ofĤ(k)# in the lower halfk plane
are the following.

~i! The rootk1 closest to the realk axis determines the
asymptotic behavior ofhi j (r ) for r→`: if 2 ik1PR, then
the hi j (r ) converge to their asymptotic values exponentia
monotonic, or if 2 ik1PC, then exponentially oscillatory
The crossover of these two behaviors was termed Fis
Widom ~FW! line @20#. The concept of the FW line wa
reintroduced by Evans respective Henderson and their
leagues in the 1990s@21,22# ~and subsequent papers!. They
also examined the relevance of the FW line fornonuniform
systems. The common asymptotic behavior of all partial to
correlation functions was discovered by Martynov@23#.

~ii ! In contrast to the singularities closest to the realk axis,
much less is known, from a mathematical point of vie
about the overall distribution of poles, which we refer to
pole topology: it is only known that the complete sequen
of poles is necessary to represent the thermodynamics o
system correctly@15,18#, and it was conjectured that—a
least for two-component systems—the poles arrange t
cally in two branches@16–18#. So far a proof of this conjec
ture was obtained only for the special case of the MSM
symmetric binary mixture of AHS@17#. A general math-
ematical theory is not available yet.

In this paper we start such a qualitative theory of t
distribution of roots of detQ̂(k) in the lower halfk plane.
First, we reduce the problem by considering the algeb
properties ofQ̂(k). This part can be carried out in comple
generality and is based on an examination of the eigenva
of Q̂(k). Second, we deal with the much less handy anal
properties ofQ̂(k) to derive results on the pole topology: fo
this part we restrict ourselves to examples of the simp
nontrivial class of systems, namely, that with only two eige
values ofQ̂(k) different from one, such as the PY equatio
for an N component and a polydisperse mixture of HS a
the MSM for binary mixtures of AHS. For these cases t
function theoretic problem involved can be settled. The g
eralizability of these results to more complicated system
discussed in concluding remarks.

II. POLE TOPOLOGY

A. Algebraic classification

At the outset let us change from Fourier to Laplace spa
Of course, the two transforms are completely equivalen
05110
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the complex plane. There is no special reason for going o
to Laplace space apart from making contact with previo
papers@16–18#.

We start our analysis with a classification of continuo
N component systems according to the spectrum of the
trix Q̃(t), with elements@cf. ~3!#

Q̃i j ~ t !5d i j 22pAr ir jE e2trqi j ~r !dr. ~6!

We denote by$l i(t)%1< i<N the spectrum ofQ̃(t). Then we
have

detQ̃~ t !5)
i 51

n

l i~ t !, n<N, ~7!

where any eigenvalue of multiplicitym is counted asm of
theN eigenvalues. Now, let us classifyN component systems
according ton. Generically, we haven5N, but, surprisingly
enough, for several exactly solved modelsn is a small inte-
ger for allN ~and hence also in the stochastic limit@24#!: for
the PY equation of HS mixturesn<2 @8#, for the MSM of
mixtures of CHSn<3 @25#, and for the MSM of Lorentz-
Berthelot mixtures of AHSn<5 @10# or n<3 @11#.

For n51, nothing is to be shown, since there is only o
sequence of roots of detQ̃(t)50 in the left half~LH! t plane.
As the first nontrivial case, let us consider the class cha
terized by n52, that contains—in principle—all two-
component systems and also the PY equation for HS m
tures with arbitraryN>2 ~including thus polydisperse HS!.
In particular, it was conjectured that for the solution~i! of the
PY equation forN component HS@16,18#, ~ii ! of the MSM
for binary AHS @17#, and ~iii ! of the MSM for binary HSY
@18# the poles in the LHt plane arrange typically in two
branches. Subsequently, we prove this conjecture for the
amples~i! and~ii !, as well as for the PY solution of polydis
perse HS, at least asutu→`.

B. Analytic properties

1. PY equation for HS mixtures

Consider anN component system of HS with diamete
Ri . IntroduceRi j 5

1
2 (Ri1Rj ), Si j 5

1
2 (Ri2Rj ), and enumer-

ate the components in order of increasingRi , so thatSji
.0. Fix RN51. Then the solution of the PY equation for H
mixtures can be written in the form@4#

qi j ~r !5u~r 2Si j !Fai

2
~r 2Ri j !

21~bi1aiRi j !~r 2Ri j !G
3u~Ri j 2r ! ~8!

with the Heaviside functionu and

ai5
1

12j3
1

3Rij2

~12j3!2
,

Ri

12j3
5aiRi12bi , ~9!

where
4-2
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ja5
p

6 (
i

r iRi
a , aPN. ~10!

Hence, on following Blum and Stell@8#, it is found that
05110
detQ̃~ t !5detDN~ t !, ~11!

where
DN~ t !5S 11
6j2

~12j3!t
2

6@j12m1~ t !#

~12j3!t2
,

12j1

~12j3!t
2

6j2

12j3
2

12@j02m0~ t !#

~12j3!t2

2
1

t
2

3@j22m2~ t !#

~12j3!t2
, 11

6j2

~12j3!t
2

6@j12m1~ t !#

~12j3!t2

D ~12!
s
le-

t

t-

a

e
t-

of

en
with

ma~ t !5
p

6 (
i

r ie
2tRiRi

a , aPN. ~13!

Now use Eq.~11! to write detQ̃(t)50 in the form of a
quadratic equation ine2t,

(
k50

2

dk~ t !e2kt50, ~14!

where the coefficientsdk(t) are found upon using Eqs.~12!
and ~10! to be

d0~ t !5u~ t !22v~ t !w~ t !, ~15!

d1~ t !52
12w~ t !m0~ t !

~12j3!t2
1

12u~ t !m1~ t !

~12j3!t2
2

3v~ t !m2~ t !

~12j3!t2
,

~16!

d2~ t !5
36@m1~ t !22m0~ t !m2~ t !#

~12j3!2t4
, ~17!

with

u~ t !511
6j2

~12j3!t
2

6j1

~12j3!t2
, ~18!

v~ t !52
6j2

12j3
1

12j1

~12j3!t
2

12j0

~12j3!t2
, ~19!

w~ t !52
1

t
2

3j2

~12j3!t2
, ~20!

andma(t)5etma(t). Denote the two solutions of Eq.~14! by
x1,2(t). Then we find for the two sets of roots of detQ̃(t) in
the LH t plane, written as$tk

(1)% and $tk
(2)% ~the latter se-

quence contains the roots closer to the imaginary axis!

e2tk
(1)

5v1~ tk
(1)!, ~21!
e2tk
(2)

5v2~ tk
(2)!, ~22!

where the functionsv1,2(t) are defined via the solution
x1,2(t) so that the roots closer to the imaginary axis are e
ments of$tk

(2)%.
Since the coefficientsdk(t), which build up the right-hand

side of Eqs.~21! and~22!, are not very handy functions int
~and in the 2N system parameters!, we consider instead the
leading order asymptotic behavior of thev1,2(t) asutu→` in
the LH t plane. Upon using definitions~15!, ~16!, and~17!, it
is found via~18!, ~19!, and~20! that

e2tk
(1)�

t2S 12j31
3

2
j2De22tSN(N21)

2prN21SN(N21)
2

U
t5t

k
(1)

, ~23!

e2tk
(2)�2

t2

2prNS 1

12j3
1

3j2

2~12j3!2D U
t5t

k
(2)

, ~24!

as utu→` in the LH t plane. This is our principal result. I
shows that the two sequences$tk

(1)% and $tk
(2)% are exponen-

tially separated@in the sense that the quotient of the righ
hand side~RHS! of Eqs. ~23! and ~24! is an exponential
function in t for any given set of system parameters#. In
addition, it states for$tk

(1)% that the number of roots inside
box with a subset of$tk

(1)% in its interior, decreases with
increasingSN(N21) , and that both$tk

(1)% and $tk
(2)% move

closer to the imaginary axis asr increases. Of course, th
detailed structure of the distribution of roots is clearly ou
side the realm of this asymptotic analysis.

2. PY equation for polydisperse HS

In the probabilistic description of polydisperse systems
HS, introduced by Salacuse@24#, the particles are uniquely
characterized by their diametersR, where R is distributed
according to a continuous probability densityf (R). In the
thermodynamic limit the systems have a composition giv
by f (R), and contain~with probability one! a countable in-
4-3
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finity of distinct particles. Hence anN particle polydisperse
system can be interpreted as anN component system with
r i5r/N. It is this fact that allowsDN(t) @and so detQ̃(t)# to
be generalized from theN component to the polydispers
is
n

-

a

e

05110
case. Based on Eqs.~11!, ~12!, and the law of large numbers

it is found that detQ̃(t) of the PY solution for polydisperse
HS is given by@8,24#
detQ̃~ t !5detD`~ t ![detS 11
6j2

~12j3!t
2

6@j12m1~ t !#

~12j3!t2

12j1

~12j3!t
2

6j2

12j3
2

12@j02m0~ t !#

~12j3!t2

2
1

t
2

3@j22m2~ t !#

~12j3!t2
11

6j2

~12j3!t
2

6@j12m1~ t !#

~12j3!t2

D , ~25!
S,
ted.

ion
We
mp-
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with the generalized moments~cf. @26#!

ma~ t !5
p

6
rE f ~R!e2tRRa dR, aPN, ~26!

and the moments

ja5ma~0!, aPN. ~27!

A frequently used standard distribution forf (R) is theG
distribution. But as already stated in@27#, the latter one gives
for arbitrarily large particles nonzero probabilities, which
unphysical, whereas realistic distributions should have o
finite support. Hence, we choosef (R) to be a beta distribu-
tion, which satisfies this requirement,

f ~R!5
1

B~a,b!
Ra21~12R!b21I (0,1)~R!, a,bPR1 ,

~28!

whereI A is the indicator function of the setA, andB(a,b)
5*0

1xa21(12x)b21 dx is known as beta function. In the fol
lowing we restrict ourselves toa,bPN\$0%. Then the beta
function simplifies to B(a,b)5@(a21)!(b21)!#/(a1b
21)!.

Now we have, as for the case of HS mixtures, th
detQ̃(t)5detD`(t), and thatD`(t) is formally identical
with DN(t). Hence, the two sequences of roots of detQ̃(t)
50, $tk

(1)% and $tk
(2)%, are formally given by Eqs.~21! and

~22!, where in the functionsdk(t) the ja andma(t) of Eqs.
~10! and ~13! are replaced by their generalizations~27! and
~26!.

In general, even fora,bPN\$0%, the solutionsv1,2(t) are
complicated functions int. Thus, let us again consider th
asymptotic behavior of thev1,2(t) as utu→` in the LH t
plane. We find via Eqs.~28!, ~26!, and~25! @and by using the
definitions~15!–~17!# that for a,bPN\$0%,

e2tk
(1)� ~21!b2B~a,b!

pr b! S 12j31
3

2
j2D tb14U

t5t
k
(1)

,

~29!
ly

t

e2tk
(2)�2

~21!bB~a,b!

2pr~b21!! S 1

12j3
1

3j2

2~12j3!2D tb12U
t5t

k
(2)

,

~30!

as utu→` in the LH t plane. As for HS mixtures, the two
sequences of roots$tk

(1)% and $tk
(2)% are shifted towards the

imaginary axis with increasing particle densityr. However,
for the solution of the PY equation for polydisperse H
these two branches of roots are now polynomially separa

3. MSM for binary AHS

So far, we analyzed the pole topology of the PY equat
for an N component system of HS and polydisperse HS.
found for both cases two branches of poles, that are asy
totically separated for any given set of system paramet
The sequences separate exponentially fast for HS mixtu
whereas for polydisperse HS$tk

(1)% and$tk
(2)% separate poly-

nomially fast asutu→` in the LH t plane.
Now let us apply our technique to an exactly solvab

model with an attractive interaction. One of the simplest e
tensions of the PY solution forN component HS is the MSM
for N component AHS@10#, characterized by one additiona
set of parameters, the interaction strength~or stickiness! g i j .
We examine the pole topology of the MSM for binary AHS
The treatment of the caseN52 gives also the opportunity to
put the results of@17# for the simplified case of the MSM fo
symmetric binary AHS into context.

Consider anN component system of AHS with diamete
Ri and stickinessg i j 5g j i PR1 between particles of speciesi
and j @5#. Enumerate the components in order of increas
Ri , so thatSji >0, and fix againRN51. Apply the WH
technique in the usual way. Then the solution of the MS
for anN component system of AHS in terms ofqi j (r ) is @10#

qi j ~r !5u~r 2Si j !Fai

2
~r 2Ri j !

21~bi1aiRi j !~r 2Ri j !1G i j G
3u~Ri j 2r ! ~31!

with
4-4
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ai5
1212z i

12j3
1

3Rij2

~12j3!2
,

Ri

12j3
5aiRi12bi , ~32!

where theja are given by Eq.~10! and

z i5
p

6 (
k

rkG ikRk , G i j 5g i j Ri j
2 . ~33!

On substituting Eq.~31! into Eq. ~6!, it is found that~cf.
@17#!

Q̃i j ~ t !5d i j 12pAr ir j@e2tRi j f i j
(0)~ t !1e2tSi j f i j

(1)~ t !#
~34!

with

f i j
(0)~ t !5

ai

t3
1

aiRj1
Ri

12j3

2t2
1

G i j

t
, ~35!

f i j
(1)~ t !5

aiRj

t2
1

RiRj

2~12j3!t
2 f i j

(0)~ t !. ~36!

Now let us examine the distribution of roots of detQ̃(t)
for the caseN52. Then, as in the proof for HS, we have th
o

a

n

05110
detQ̃(t)50 can be rewritten as algebraic equation of deg
2 in e2t, (k50

2 dk(t)e
2kt50, where the coefficientsdk(t)

follow from Eq. ~34!,

d0~ t !5112p@r1f 11
(1)~ t !1r2f 22

(1)~ t !#

14p2r1r2@ f 11
(1)~ t ! f 22

(1)~ t !2 f 12
(1)~ t ! f 21

(1)~ t !#, ~37!

d1~ t !52p@r1f 11
(0)~ t !e2tS211r2f 22

(0)~ t !#

14p2r1r2$ f 22
(0)~ t ! f 11

(1)~ t !2 f 12
(0)~ t ! f 21

(1)~ t !

1@ f 11
(0)~ t ! f 22

(1)~ t !2 f 21
(0)~ t ! f 12

(1)~ t !#e2tS21%, ~38!

d2~ t !54p2r1r2e2tS21@ f 11
(0)~ t ! f 22

(0)~ t !2 f 12
(0)~ t ! f 21

(0)~ t !#.
~39!

Thus, the two sets of roots of detQ̃(t)50 are formally given
by Eqs. ~21! and ~22!, where Eqs.~37!–~39! are used as
definitions for the coefficientsdk(t).

Finally, let us again analyze the asymptotic behavior
the solutionsv1,2(t) as utu→` in the LH t plane. LetG be
the matrix with elementsG i j . Assume detGÞ0. Then, upon
using definitions~37!–~39! in Eqs.~21! and~22!, it is found
that
e2tk
(1)�5

2
G22te

22tS21

2pr1detG U
t5t

k
(1)

if S21P~0,1
2 !,

2
~r1G111r2G22!t

4pr1r2detG S 11A12
4r1r2detG

~r1G111r2G22!
2D U

t5t
k
(1)

if S2150,

~40!

e2tk
(2)�5

2
t

2pr2G22
U

t5t
k
(2)

if S21P~0,1
2 !,

2
~r1G111r2G22!t

4pr1r2detG S 12A12
4r1r2detG

~r1G111r2G22!
2D U

t5t
k
(2)

if S2150,

~41!
r
as utu→` in the LH t plane. Hence we have two cases.

~i! For S21P(0,1
2 ), the two sequences of roots$tk

(1)% and
$tk

(2)% are exponentially separated~as for HS mixtures!, and
also the number of roots in a given box with a subset
$tk

(1)% in its interior decreases with increasingS21. The two
branches are shifted toward the imaginary axis with incre
ing r.

~ii ! For S2150 ~i.e., equally sized particles!, the quotient
of the RHS of~40! and~41! is a constant function int for any
given set of parameters. In particular, there is only o
f

s-

e

branch of roots for~wherec1
(1,2) denotes the two solutions fo

the concentrationc1),

c1
(1,2)~G!5

G22

tr G22
G12

G22
~G127A2detG!

. ~42!

If we assumeg1250, then Eq.~42! simplifies to
4-5
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c1~G!5
1

11
G11

G22

, ~43!

so that if we interpret the stickiness as a function of
reciprocal temperature~see, e.g.,@28#!, then Eq. ~43! de-
scribes a line in the concentration-temperature plane, wh
there is only one branch of roots. One-component HS
recovered in Eq.~43! via g1150 (c151) or g2250 (c1
50), and one-component AHS viag225g11 (c15 1

2 ). More-
over, if we specialize Eqs.~40! and~41! to the case of sym-
metric binary AHS,g225g11 and g125mg11, then the re-
sults ~38! and~39! in @17# are reproduced. Finally, the usu
shift of the branches toward the imaginary axis with incre
ing r is also encountered.

III. CONCLUDING REMARKS

We started a theory of the pole topology of the struct
functions of continuousN component systems based on t
WH technique. Our method consists of two stages. First,
determine the number of eigenvaluesn (<N) of Q̃(t) dif-
ferent from 1, and reduce the problem of the overall dis
bution of the poles to an analysis of the solutions of
algebraic equation ine2t of degreen. As an immediate con-
sequence of this algebraic stage, we find at mostn poles on
the negative real axis in thet plane.

The second, analytic stage consists in the mathema
analysis of the qualitative features of thesen solutions in the
LH t plane. In general, they are arbitrarily complicated fun
tions in t ~and in the systems parameters!. Going beyond the
ue
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trivial casen51, we provided forn52 an asymptotic analy-
sis for three exactly solvable examples. For the PY equa
of N component HS we found that the two sequences
poles$tk

(1)% and $tk
(2)% separate exponentially fast asutu→`

in the LH t plane, whereas for the solution of the PY equ
tion for polydisperse HS~with a composition given by a bet
distribution!, $tk

(1)% and $tk
(2)% are polynomially separated

For the case of the MSM for binary AHS we found tw

different asymptotic behaviors: IfS21P(0,1
2 ), then the two

sequences are again exponentially separated, whereasS21
50 ~equally sized particles!, then the quotient of the RHS o
the two equations which determine$tk

(1)% and $tk
(2)%, Eqs.

~40! and ~41!, is a constant function int. For the latter case
we found conditions such that only one branch of po
exists.

Finally, from a mathematical point of view we can sa
that, although we could give elementary proofs for the abo
examples, an analysis for arbitraryn will have to apply com-
puter mathematics in a nontrivial way. From a physical po
of view our results might be of value in a thermodynam
interpretation of the pole topology@18#. We hope that this
contribution will inspire further research in this direction.
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