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Thermodynamic properties of a polydisperse system
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We use the virial theorem to derive a closed analytic form of the Helmholtz free energy for a polydisperse
system of sticky hard spheres~SHS! within the mean spherical model~MSM!. To this end we calculate the free
energy of the MSM for anN-component mixture of SHS via the virial route and apply to it—after imposing a
Lorentz-Berthelot type rule on the interactions—the stochastic~i.e., polydisperse! limit. The resulting excess
free energy of this polydisperse system is of the truncatable moment free energy format. We also discuss the
compressibility and the energy routes.
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I. INTRODUCTION

In 1968 Baxter presented@1# sticky hard spheres~SHS! as
an exactly solvable system of the Percus-Yevick~PY! equa-
tion beyond pure hard spheres~HS!, introducing an attractive
interaction on the surface of the particles. Meanwhile, S
have become a well-appreciated analytic model for colloi
systems~for an overview see, for instance, the introducti
of @2#!: typically, interactions of colloidal particles have
harsh repulsion in the core region and a short ranged
strong attraction at the surface of the particles@3#. The par-
ticularity of the composition of colloidal systems is the
polydispersity: in contrast to atomic fluids, the particles o
polydisperse system are no longer equally sized, their
~in terms of their diameterR) is described by a continuou
probability distribution functionf R(R). To take this property
into account in their theoretical description represents a
midable challenge. From the conceptual point of view, su
polydisperse systems can conveniently be viewed as fl
with components characterized by thecontinuousindex R,
their concentrations being given byf R(R)dR. During the
past years considerable effort has been dedicated to the
velopment of concepts describing polydisperse systems~for
a recent overview see, for instance,@4# and references quote
therein!. Results presented up to now confirm that polyd
persity does have a distinct influence both on the struc
@5# as well as on the phase behavior of such systems@4#.

Similar as for the discrete~one-component or multicom
ponent! case, there are only a few models where closed a
lytic expressions can be derived for the structural and th
modynamic properties for the polydisperse~stochastic! case.
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So far, this was accomplished for the mean spherical mo
~MSM! for the following polydisperse systems in closed an
lytical form: HS structure@6# and thermodynamic propertie
@7#, charged HS structure@8#, and SHS structure@9,10#.

In this contribution we consider a polydisperse system
SHS within the MSM. Starting from the explicit expressio
for the structure functions presented in a recent contribu
@9#, we derive—via the virial route—a closed expression
the ~specific! Helmholtz free energy, i.e., a thermodynam
quantity that is sufficient to determine phase coexisten
The analysis starts from anN-component system; results fo
the polydisperse case are derived by imposing a Lore
Berthelot type of relation for the potential parameters and
applying then the stochastic limit: we replace the discr
concentrations viaci→ f R(R)dR, a prescription that is base
on the law of large numbers@11#. The expressions obtaine
are rather complex. We also discuss the energy route and
compressibility route~pointing out in the latter case an in
consistency of the MSM!.

In the next section we present the model and its anal
solution. In Sec. III we calculate the thermodynamic prop
ties via the virial and the energy routes: we start with t
discrete case and treat subsequently the polydisperse
The paper closes with a discussion and a conclusion.

II. MEAN SPHERICAL MODEL FOR A MIXTURE
OF STICKY HARD SPHERES

To define the model, we interpret anN-component system
of SHS as limiting case of anN-component system with
square-well interactions: a mixture of SHS being thus ch
acterized by the set of interactionsF i j
f

bF i j ~r !5 lim
«→0

H ` r P@0,Ri j !

2Q~r 2Ri j !lnFg i j Ri j

« GQ~Ri j 1«2r ! r P@Ri j ,`!,
~1!

whereQ(r ) is the usual Heaviside step function and the parametersg i j PR1
N3N represent the stickiness of the spheres. TheRi

are the core diameters of speciesi ( i 51, . . . ,N), Ri j 5
1
2 (Ri1Rj ), Si j 5

1
2 (Ri2Rj ), and we assumeSji .0. b51/kBT, kB

being the usual Boltzmann constant andT the temperature,r stands for the total number density,ci are the concentrations o
speciesi, andr i5cir are the partial number densities. The Boltzmann factor for the interaction~1! is given by@whered(r )
is the usual Dirac delta function#

e2bF i j (r )5Q~r 2Ri j !1g i j Ri j d~r 2Ri j !. ~2!
©2001 The American Physical Society04-1
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An analytic solution of the Ornstein-Zernike~OZ! equa-
tions along with the MSM closure relation for the syste
under consideration can be given in terms of the total co
lation functionshi j (r ): If we use the Wiener-Hopf~WH!
technique @12#, then the hi j (r ) of the MSM for an
N-component system of SHS are found to be~in the follow-
ing the summation indices are running—unless otherw
stated—from 1 toN)

rhi j ~ ur u!52Qi j8 ~r !12p(
k

rkE Qik~ t !~r 2t !hk j

3~ ur 2tu! dt, r P@Si j ,`!, ~3!

with the factor functionsQi j (r ) @9#

Qi j ~r !5Q~r 2Si j !F1

2
ai~r 2Ri j !

21~bi1aiRi j !

3~r 2Ri j !1G i j GQ~Ri j 2r !, r PR, ~4!

and

ai5
1212z i

12j3
1

3Rij2

~12j3!2
,

Ri

12j3
5Riai12bi , ~5!

z i5
p

6 (
k

rkG ikRk , G i j 5g i j Ri j
2 , ja5

p

6 (
k

rkRk
a ,

a50, . . . ,3. ~6!

To derive Eq.~4!, one considers@9# a representation of the
SHS potential as a limiting case of a HS-Yukawa interacti
there one uses an analytical solution of the OZ equati
with Yukawa closure and examines this solution in the lim
where the interaction becomes~in a suitable manner! both
infinitely strong and infinitely short ranged, thus represent
the surface adhesion of SHS. This limit was first conside
for the one-component case in@13#; the generalization to the
N-component case was presented in@9#.

To conclude one should point out that the solution of
original OZ equations is equivalent to the solution of the W
formulation provided that@12,14#
03110
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D~k!5detFd i j 22pAr ir jE eikrQi j ~r !dr G.0

for all Im~k!>0. ~7!

A necessary condition for the above criterion is the requ
ment thatD(0).0 @12#.

III. THERMODYNAMIC PROPERTIES

A. N-component system

1. Virial route

Introducing the cavity functionsyi j (r ),

11hi j ~r !5e2bF i j (r )yi j ~r !, ~8!

we obtain the virial pressure

bp5r1
2p

3 (
i , j

r ir jRi j
3 $yi j ~Ri j !2g i j †2yi j ~Ri j !

1@ry i j ~r !#8ur 5Ri j
‡%. ~9!

By combining Eqs.~2! and ~8! with Eqs. ~3! and ~4! we
derive the contact values

@ry i j ~r !#ur 5Ri j
52p(

k
rkQik~Sik!Gk j1aiRi j 1bi

52p(
k

rkG ikGk j1
Ri j

12j3
2

6~z iRj1z jRi !

12j3

1
3RiRjj2

2~12j3!2
, ~10!

and the~right-hand side! derivatives of the regular part of th
hi j (r ) at contact

@ry i j ~r !#8ur 5Ri j
5ai12p(

k
rk~aiSik1bi !Gk j

12p(
k

rkQik~Sik!@ryk j~r !#ur 5Rk j
;

~11!

the latter expression can be calculated explicitly using E
~4! and ~10!. Inserting these expressions into Eq.~9! and
introducing ha5(p/6)( lr lz lRl

a , a50,1,2, one obtains fi-
nally
p

6
bp5

j0

12j3
1

3j1j2

~12j3!2
1

3j2
3

~12j3!2
2

24j3

p

6 (
i

r i

p

6 (
j

r jG i j Rj
2p

6 (
k

rkG ik

12j3
1

24~62j3!
p

6 (
i

r iz i
2

12j3
2

24h1j2

12j3

2
12~h2j11h0j3!

12j3
2

12~h1j22h2j1!

~12j3!2
1

36h2j2
2

~12j3!3
296

p

6 (
i

r i

p

6 (
j

r jG i j

p

6 (
k

rkG ikGk j2
12h0

12j3
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1

288
p

6 (
i

r iz iRi

p

6 (
j

r jz jG i j

12j3
1

288
p

6 (
i

r i

p

6 (
j

r jG i j Rj
2p

6 (
k

rkzkG ik

12j3
2

72j2

p

6 (
i

r iz i

p

6 (
j

r jG i j Rj
2

~12j3!2

2

72j2

p

6 (
i

r iz i
2Ri

~12j3!2
2

144h1h2

~12j3!2
2576

p

6 (
i

r i

p

6 (
j

r jG i j Rj

p

6 (
k

rkG ik

p

6 (
l

r lGklG l j , ~12!

if D(0).0, undefined otherwise. Note that the corresponding expression for the PY equation is given for the one-com
case in@1# and for theN-component case in@15#.

In contrast to the PY equation, the MSM solution allows to derive a closed expression for the specific Helmholtz free
~free energy per unit volume!, f, associated with Eq.~12!: if we use the thermodynamic relation

r22p~b,r!5
]

]r
@r21f ~b,r!#, ~13!

we find for the excess~over the ideal gas! specific free energyf̃ of Eq. ~12!

p

6
b f̃ 52j0ln@12j3#1

3j2
3

j3
2

ln@12j3#1
3j1j2

12j3
1

3j2
3

j3~12j3!
112

p

6 (
i

r iz i
2212

ln@12j3#1j3

j3
2 H 10

p

6 (
i

r iz i
2

22
p

6 (
i

r i

p

6 (
j

r jG i j Rj
2p

6 (
k

rkG ik22h1j22h2j12h0j3J 112
p

6 (
i

r i

p

6 (
j

r jG i j Rj
2p

6 (
k

rkG ik

212H ln@12j3#

j3
2

1
1

j3~12j3!J $h1j22h2j1%236H ln@12j3#

j3
3

1
223j3

2~12j3!2j3
2J h2j2

2

248
p

6 (
i

r i

p

6 (
j

r jG i j

p

6 (
k

rkG ikGk j112
ln@12j3#

j3
h02144H 2 ln@12j3#1j3~21j3!

j3
3 J

3H p

6 (
i

r iz iRi

p

6 (
j

r jz jG i j 1
p

6 (
i

r i

p

6 (
j

r jG i j Rj
2p

6 (
k

rkzkG ikJ 272H 1

12j3
1

2 ln@12j3#1j3~21j3!

j3
3 J

3H j2

p

6 (
i

r iz i

p

6 (
j

r jG i j Rj
21j2

p

6 (
i

r iz i
2Ri12h1h2J 2192

p

6 (
i

r i

p

6 (
j

r jG i j Rj

p

6 (
k

rkG ik

p

6 (
l

r lGklG l j ,

~14!

if D(0).0, undefined otherwise.
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2. Compressibility route

For anN-component system of SHS within the MSM
closed analytical expression is also available for the dir
correlation functionsci j (r ) @16#. From this the compressibil
ity pressure is obtained via

b
]p

]r i
5124p(

k
rkE r 2cik~r !dr5w i~r!. ~15!

The explicit, rather lengthy expression for theci j (r ) @from
which follow thew i(r)# is given in Eq.~25! of @16#. How-
ever, a closer inspection of this relation reveals that
03110
ct

]w i~r!

]r j
Þ

]w j~r!

]r i
, ~16!

i.e., the compressibility pressuredoesdependent on the ther
modynamic path, an inconsistency that is certainly due to
MSM.

3. Energy route

If we use the energy equation of state, then the exc
~over a HS reference mixture! specific free energy via the
energy route,f̄ , is determined by@17,15#

]b f̄

]b
522p(

i , j
r ir jRi j

3 yi j ~Ri j !
]g i j

]b
, ~17!
4-3
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which can be directly integrated and yields

p

6
b f̄ 52

18h1j2

~12j3!2
2

12h0

12j3
1

72
p

6 (
i

r iz i
2

12j3

248
p

6 (
i

r i

p

6 (
j

r jG i j

p

6 (
k

rkG ikGk j , ~18!

where we have used the symmetry relationg i j 5
1
2 (g i j

1g j i ); for the PY solution cf.@17# ~one-component case!
and @15# ~multicomponent case!. Again, expression~18! is
valid for D(0).0 and undefined else.

B. Stochastic limit

The expressions derived in the preceding section allow
perform the stochastic limit~cf. Sec. IV in@9#!, arriving thus
at a polydisperse system. In such a system each partic
‘‘uniquely associated with a value of some characteristic
rameterX, distributed according to a probability distributio
function f X(x); X is a continuous random variable’’@11#. In
our case the diameterR of the particles is the natural choic
for the continuous random variable,X5R, R being distrib-
uted according to a probability distributionf R(R). The pre-
scription for this stochastic limit is to replace the discre
concentrationsci and partial densitiesr i of anN-component
system via

ci→ f R~R!dR, r i→r f R~R!dR, ~19!
03110
to

is
-

a replacement that is based on the law of large numbers@11#.
As a consequence, summations over speciesi transform into
integrals overR. Similar to the diametersRi , we have to
transform the stickinessg i i into a random variableG
5G(R), which is—by definition of polydisperse systems—
function of the random variableR. In an effort to make the
stochastic limit possibleand to preserve at the same time th
analyticity of the expressions, we have to introduce—as
ready explained in@9#—a further restriction on theg i j . This
assumption is known in literature as the Berthelot rule an
frequently used in mixtures@18#. Its multicomponent form,
g i j

2 (Ri j )5g i i (Rii )g j j (Rj j ), transforms for the stochastic cas
into the functional relation

G2S 1

2
~R1R8! D5G(R)G(R8) ~20!

with the unique continuous solution

G(R)5g0ezR, ~21!

g0 andz being two positive adjustable parameters.

1. Virial route

On substituting the multicomponent form of Eq.~21! in
Eq. ~14! and applying to the resulting expression the stoch
tic limit, we arrive at the excess~over the ideal gas! specific
free energy via the virial route of the MSM for a polydis
perse system of SHS
p

6
b f̃ 52j0 ln@12j3#1

3j2
3

j3
2

ln@12j3#1
3j1j2

12j3
1

3j2
3

j3~12j3!
112j11

(0)212
ln@12j3#1j3

j3
2 $10j11

(0)22j20
(0)22h1j2

2h2j12h0j3%112j20
(0)212H ln@12j3#

j3
2

1
1

j3~12j3!J $h1j22h2j1%236H ln@12j3#

j3
3

1
223j3

2~12j3!2j3
2J h2j2

2

2
3

4 (
i , j ,k50

2 S 2
i Dm42 i 2 j~2z!S 2

j Dmi 1k~2z!S 2
kDm21 j 2k~2z!g0

3112
ln@12j3#

j3
h02144H 2 ln@12j3#1j3~21j3!

j3
3 J

3$j1
(1)1j2

(0)%272H 1

12j3
1

2 ln@12j3#1j3~21j3!

j3
3 J $j2~j12

(0)1j11
(1)!12h1h2%

2
3

4 (
i , j ,k,l 50

2 S 2
i Dm42 i 2 j~2z!m11 i 1 l~2z!S 2

j Dm21 j 2k~2z!S 2
kDm21k2 l~2z!S 2

l Dg0
4 , ~22!
with the generalized moments

mi~ t !5
p

6
rE f R~R!etR/2RidR, ~23!

the ~usual! moments
mi~0!5j i , i 50, . . . ,3, ~24!

and with

juv
(w)5S g0

4 D 2

(
i , j 50

2

m42 i 2 j 1w~2z!S 2
i Dmi 1u~z!S 2

j Dmj 1v~z!,

~25!
4-4
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hu5
g0

4 (
i 50

2

m22 i 1u~z!S 2
i Dmi 11~z!, ~26!

ju
(w)5S g0

4 D 3

(
i , j ,k50

2 S 2
i Dm42 i 2k1w~2z!mi 1u~z!

3S 2
j Dm22 j 1k~2z!mj 11~z!S 2

kD . ~27!

Note that the ideal gas part has to be treated separately@11#.
A closer inspection of the expression~22! reveals that the
in

03110
knowledge of only 15~generalized! moments @mi(0), i
50, . . . ,3, mi(z), i 50, . . . ,4, mi(2z), i 50, . . . ,5# is suf-
ficient to calculate the complete thermodynamic properties
the system. Hence, Eq.~22! is of what Sollichet al. @19# call
the ‘‘truncatable moment free energy format.’’

As shown in@9#, condition~7! becomes in the stochasti
limit @ limN→`D(k)5detD(2 ik)#

detD~s!.0 for all Re~s!>0, ~28!

with (E5 being the five-dimensional unit matrix!
D~s!5E523S 4j200
(a) 12j110

(a) 4j100
(a) 4j001

(a) 4j011
(a) 4j021

(a)

2j̄2101 j̄120 2j̄110 2j̄011 2j̄021 2j̄031

j2211
1

2
j131 j121 j022 j032 j042

2j2111j121 2j111 2j012 2j022 2j032

j2011
1

2
j111 j101 j002 j012 j022

D ~s!, sPC, ~29!
as-

M

y-
the
an
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mple
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s to
for
and

j0 jk~s!5
1

s
@mj~kz!2mj~kz22s!#g0

k/2, ~30!

j i jk~s!5
1

s Fj ( i 21) jk~s!2S 2
1

2D i 21

g 0
k/2mj 1 i~kz!G , i 51,2,

~31!

j̄ i jk~s!5
j i jk~s!

12j3
, ~32!

j i jk
(a)~s!5 j̄ i jk~s!1

3j2j i ( j 11)k~s!

~12j3!2

2
3

12j3
(
u50

2

j i (21 j 2u)(k11)~s!S 2
uDmu11~z!g0

1/2.

~33!

Thus, the necessary condition detD(0).0 is also calculated
by a limited number of moment densities only: we obta
from Eqs.~30!, ~31!, and~23!,

lim
s→0

j i jk~s!5
~21! i

~ i 11!!
mi 1 j 11~kz!g0

k/2, i 50,1,2; ~34!

hence, D(0) depends onmi(0), i 52,3,4, mi(z), i
51, . . . ,5, andmi(2z), i 51, . . . ,5,i.e., on 13 moments.
2. Energy route

On substituting the multicomponent form of Eq.~21! in
Eq ~18! and applying to the resulting expression the stoch
tic limit, we arrive at the excess~over a polydisperse HS
system! specific free energy via the energy route of the MS
for a polydisperse system of SHS

p

6
b f̄ 52

18h1j2

~12j3!2
2

12h0

12j3
1

72j11
(0)

12j3

2
3

4 (
i , j ,k50

2 S 2
i Dm42 i 2 j~2z!S 2

j Dmi 1k~2z!

3S 2
kDm21 j 2k~2z!g0

3 , ~35!

if detD(0).0, undefined else. Here, 11~generalized! mo-
ments are sufficient to calculatef̄ @mi(0), i 52,3, mi(z), i

50, . . . ,3, mi(2z), i 50, . . . ,4#. Hence again,f̄ is a so-
called ’’truncatable moment free energy’’@19#.

IV. DISCUSSION AND CONCLUSION

In this contribution we have shown that the thermod
namic properties of a polydisperse SHS system within
MSM can be derived from the expressions for
N-component system by fully maintaining the analyticity
the expressions. The model presented here is the most si
extension beyond a polydisperse system of HS, includ
attractive interactions; hence a spinodal decomposition i
be expected. We summarize in the following the criteria
4-5
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phase stability and spinodal decomposition:~i! the system is
stable, if detD(s).0 for all Re(s)>0; ~ii ! a necessary con
dition for this criterion is detD(0).0; ~iii ! the spinodal is
determined via the equation detD(0)50 @12,20,21#.

We have presented closed expressions for the specific
energy f obtained via the virial and the energy route; t
compressibility route has to be discarded due to an incon
tency of the MSM. These expressions are sufficient to de
all thermodynamic quantities that are required to determ
phase coexistence. The pressurep is obtained via differentia-
tion of f with respect to the density@cf. Eq. ~13!#: r emerges
as a prefactor to the~generalized! moments, hence the ex
plicit expressions forp can be derived in a straightforwar
way. The chemical potentialsm i become—as a consequen
of the stochastic limit—m(R), i.e., functions of the particle
sizeR. They are obtained from the specific free energyf via
functional derivative with respect tor f R(R),

d f ~b,r;@ f R# !

d r f R~R!
5m~b,r,R;@ f R# !. ~36!

Explicit application of this rule to the excess part off re-
quires only conventional partial derivatives with respect
ys

03110
ee

is-
e
e

the moments, the inner functional derivates are then given
the weights of these moments~see also@19#!. Both, the ex-
pressions for the pressure and the chemical potentials
out to be rather lengthy~for applications we recommend th
use of symbolic computer languages!, and hence are not pre
sented here.

The special attractive feature of the model presented h
is that both, for the virial and the energy route, the full i
formation on the excess thermodynamic properties can
obtained from a limited number of~generalized! moments of
the given distribution functionf R(R). Other examples of this
class, called ‘‘truncatable systems’’@19#, are the ~well-
known! polydisperse HS@7#, and, more recently considere
in @22#, the polydisperse Zwanzig model of hard rods.
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