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Pair distribution functions of a binary Yukawa mixture and their asymptotic behavior
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Based on an analytic solution of the mean spherical model for a binary hard sphere Yukawa mixture, we
have examined the pair distribution functionsgi j (r ), focusing, in particular, on two aspects:~i! We present two
complementary methods to compute thegi j (r ) accurately and efficiently over the entirer range.~ii ! The poles
of the Laplace transforms of the pair distribution functions in the left half of the complex plane close to the
origin determine the universal asymptotic behavior of thegi j (r ). Although the meaning of the role of the
subsequent poles—which typically are arranged in two branches—is not yet completely clear, there are strong
indications that the distribution pattern of the poles is related to the thermodynamic state of the system.

DOI: 10.1103/PhysRevE.63.061110 PACS number~s!: 61.20.Gy, 61.20.Ne, 05.20.2y, 02.30.2f
lic
ai
, b

o

ur
s

, b
tiv
t

ab
g
e

b

od
e
th
e

ult

s
od
s

f t
s

i
ti
e
a

of
he
dis-

ion

m-
sen-
he
ion

e

-

s in
the

ns,

ical
al
and

nu-
tro-
n-
we

-

for
en-
in
m

t
nd

e.
ec-

ytic
a-
I. INTRODUCTION

A series of model systems still plays, despite its simp
ity, an important role in the theory of classical fluids: the p
interactions of the particles are characterized, throughout
a hard core part, at contact adding an attractive~or repulsive!
tail. These systems are commonly referred to—in order
increasing complexity—as hard spheres~HS’s!, adhesive
HS’s, charged HS’s, and HS’s with a Yukawa tail~HSY!.
Characteristic of these systems is the fact that their struct
and thermodynamic properties can be obtained from the
lution of the Ornstein-Zernike~OZ! equation—along with a
suitable closure relation—to a large extentanalytically.
These systems were studied in the late 1960s and 1970s
still, considerable effort is being dedicated to research ac
ties of these systems; of course, meanwhile, the ideas tha
pursued have changed to a higher level of complexity.

There are several reasons why these analytically solv
model systems are still that attractive, and in the followin
few of them we list:~i! The interatomic potentials of som
colloidal suspensions can be modeled quite accurately
such hard core interactions@1#. ~ii ! It is certainly more con-
venient to start the development of new theoretical meth
or basic investigations from simple model systems, wher
least for the structural and thermodynamic properties of
uniform fluid analytic expressions are available; three rec
examples of such investigations are the extension of m
component concepts to the polydisperse case@2,3# and the
development of the fundamental measure theory@4# or of the
self-consistent OZ approximation@5#. These development
were started, throughout, for such analytically solvable m
els.~iii ! Despite the simplicity of their interactions, such sy
tems show phenomena which arequalitativelysimilar to sys-
tems with more realistic potentials.

The present paper is dedicated to a detailed analysis o
structural properties of a binary HSY mixture; we addre
aspects of the above mentioned items~ii ! and ~iii !. Among
the series of model systems mentioned before, the HSY
teraction represents undoubtedly the most general poten
since it covers—via special limiting prescriptions—the r
maining three cases. The properties of a HSY mixture
given within the mean spherical model~MSM! to a large
1063-651X/2001/63~6!/061110~10!/$20.00 63 0611
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extent by analytical expressions only. While the solution
the MSM in terms of the direct correlation functions and t
calculation of the thermodynamic properties have been
cussed~see Ref.@6# and subsequent papers!, in the present
paper we focus on a closer analysis of the pair distribut
functions~PDF’s! gi j (r ) of a binary HSY mixture: first, we
present two complementary semianalytic methods to co
pute the pair distribution functions; based on these repre
tations of gi j (r ), in a subsequent step we investigate t
asymptotic behavior of these functions and the distribut

of the poles of theĝi j (t), the Laplace transforms of th
@rgi j (r )#, in the left half~LH! of the complext plane.

Additional motivation for our investigations on HSY sys
tems comes from a moremethodologicalaspect. HS and
HSY systems play an important role as reference system
thermodynamic perturbation theories. In this context,
HSY system can be used in at least three ways:~i! as a
reference system for potentials with long range interactio
~ii ! as an improved parametrization of a HS system~as for
instance in the framework of the generalized mean spher
model @7#!, and ~iii ! as an exact benchmark for numeric
solutions of integral equations. In all cases an accurate
efficient calculation of the PDF’s in the entirer range is
required, avoiding, at the same time, time-consuming
merical Fourier transforms and numerical inaccuracies in
duced by discontinuities of the correlation functions at co
tact. This aspect is covered by the first goal of this paper:
present a generalization of two methods@known in literature
as the shell representation~SR! and the asymptotic represen
tation ~AR!; for a brief historic review, see Ref.@8## to the
case of a HSY system, which together form a reliable tool
the calculation of the PDF’s. The methods are complem
tary in the sense that they allow a computation of PDF’s
the entirer range: the SR is more suitable for distances fro
contact up to intermediater values, while in more distan
regions ~where the SR becomes conceptually tedious a
numerically inaccurate! the AR becomes more appropriat
The overlap region is located around five times the resp
tive HS diameter.

Both approaches are based on the availability of anal
expressions forĝi j (t) which can be extracted from an an
©2001 The American Physical Society10-1
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lytic solution of the MSM for the HSY system: they can b
derived via the Wiener-Hopf~WH! factorization of the OZ
equations for this system. In the SR the Laplace transfo
back intor space is done shell by shell, a shell being defin
via $r ur>j% andj being a linear combination of the two H
diameters. The method is particularly useful for small a
intermediate distances, where the number of terms~which is
increasing rapidly with increasingr ) is still reasonable. The
AR is based on an application of the residue theorem;
PDF’s can be represented as a series of exponentially de
ing or damped oscillating functions. The attractive feature
this method is that the functional form of the terms in th
series is always the same, and that hence each addit
term added to the above expansion requires a fixed am
of resources. This representation gives results with high
curacy for intermediater values up to infinity. In this pape
we provide all expressions required to implement both
SR and AR for a binary HSY system~with one Yukawa tail!.
The paper contains, furthermore, a discussion of the num
cal validity and reliability of the combined methods.

From the structure of the AR it is obvious that the poles
the ĝi j (t) closest to the origin determine the asymptotic b
havior of the PDF’s. Lebowitz and Percus@9# were ~prob-
ably! the first to discover that for large distances a PDF
characterized by an exponential decay or by an exponent
damped oscillatory behavior. Martynov@10# found that even
in a more component system there is only one single ex
nential decay length and only one oscillatory wavelength
all partial PDF’s. In subsequent work, Evans and Hender
~with their respective co-workers! discussed thisuniversal
asymptotic behaviorin a more systematic and detailed wa
@11–16#. They focused their interest, in particular, on the tw
poles located closest to the origin@17#, one of them being
real, the other a pair of complex conjugates. The fact t
either the real pole is closer to the origin and the comp
conjugate poles further away, or vice versa, leads to a
damentally different long range behavior of the PDF’s; t
corresponding two thermodynamic states of the system
separated in the phase diagram by the so-called Fis
Widom ~FW! line @18#. This investigation was also extende
to study the influence of this effect on density profiles~e.g.,
Ref. @11#!. In this paper we resume this analysis for o
binary HSY mixture; in addition, we go one step further
extending the search for poles to a larger subarea of the
of the complext plane. The poles arrange in two branch
plus two~independent! poles on the real axis, apart from th
trivial double pole at the origin. We were able to identify
a qualitative way how these poles vary as we modify
system parameters. While these additional poles do not
tribute to the asymptotic behavior of the PDF’s, there
strong indications that the information contained in such
pole distribution is related to the thermodynamic state
system is in.

The paper is organized as follows: in Sec. II we brie
review the MSM for the HSY mixture and present the S
and the AR~along with the expressions required for the a
tual calculations!; this section is concluded with a discussio
of the accuracy and efficiency of the two representations
Sec. III we discuss the universal asymptotic behavior of
06111
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PDF’s and the topology of the pole distribution ofĝi j (t).
The paper closes with concluding remarks.

II. REPRESENTATIONS OF THE PAIR DISTRIBUTION
FUNCTIONS

A. Analytic solution of the MSM for a binary HSY mixture

The structure of a binary HSY mixture is obtained fro
the OZ relation

hi j ~r !5ci j ~r !1(
k

rkE hik~r 8!ck j~ ur2r 8u!d3r 8,

i , j ,k51,2 ~1!

along with the hard core MSM closure relations

hi j ~r !521, r ,Ri j , ~2!

ci j ~r !5
1

r
Ki j exp@2z~r 2Ri j !#52bF i j ~r !, r .Ri j .

~3!

hi j (r ) and ci j (r ) are the total and direct correlation func
tions, andF i j (r ) are Yukawa potentials.Ri (5Rii ) are the
core radii of speciesi, R125(R11R2)/2, Ki j are the contact
values, andz is the screening length.b51/(kBT), kB being
the usual Boltzmann constant andT the temperature.r
stands for the total number density,ci is the concentration of
speciesi, andr i5rci are the partial number densities. W
also introduce the partial (h i) and total (h) packing frac-
tions:

h15
p

6
r1 , h25

p

6
r2 , h5h1R1

31h2R2
3 . ~4!

One should point out here that the MSM can also be sol
for the more general case whereF i j (r ) in Eq. ~3! are super-
positions ofk Yukawa tails, each of them characterized
contact valuesKi j

(n) and screening lengthszn , k51, . . . ,n
@6,19#. This extended concept can also be used in the SR
AR ~introduced in Sec. II B!, leading, however, to expres
sions that are thus substantially more complex than those
the case of one Yukawa tail.

The MSM for a HSY system may be solved either
using the Laplace transform technique introduced by W
theim @20# or by using the WH factorization technique intro
duced by Baxter@21#. In this paper we use the latter, follow
ing the derivation of Blum and Ho”ye @6#: to this end, factor
functions, Qi j (r ), are defined; for the HSY case they a
found to be@6#

Qi j ~r !5Qi j
0 ~r !1Di j exp@2zr#, ~5!
0-2
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Qi j
0 ~r !5H 1

2
qi j9 ~r 2Ri j !

21qi j8 ~r 2Ri j !1Ci j $exp@2zr#2exp@2zRi j #%, l j i <r ,Ri j

0, Ri j <r

~6!
-
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with l i j 5(Ri2Rj )/2. Note that theQi j (r ) are not symmet-
ric, i.e., Qi j (r )ÞQji (r ) @21#, and that different parametriza
tions for theQi j (r ) are used in Refs.@21,6,22#. As worked
out in detail by Blum and Ho”ye @6# the unknown coefficients
qi j8 , qi j9 , Ci j , and Di j are determined from five sets o
coupled nonlinear equations. Among the multiple solutio
of this system of equations only one corresponds to a no
verging solution of the original equations~1!–~3! @6,22#.
Once we have obtained this solution we can determ
Qi j (r ) and all the structural and thermodynamic propert
of the HSY system for the MSM.

We then define the functionsQ̂i j (t) as

Q̂i j ~ t !5E
l j i

`

ds e2stQi j ~s!, ~7!

which may be cast into the form

Q̂i j ~ t !5
exp~2tRi j !

2t3~ t1z!
$ f i j

0 ~ t !1exp~ tRi !@ f i j
1 ~ t !2 f i j

0 ~ t !#%,

~8!

wheret is henceforward acomplexvariable. The coefficient
functions f i j

0 (t) and f i j
1 (t) are polynomials int and are com-

piled in the Appendix. Some of the expressions presen
there require symmetry relations which hold between theqi j8
andqi j9 @6#. Furthermore, as shown in Ref.@6#, the following

expressions forĝi j (t), i.e., the Laplace transforms of th
@rgi j (r )#, can be obtained from the WH equations:

ĝ11~ t !52
1

4pt2~ t1z!

1

D~ t !
$exp~2tR1! f 11

0 ~ t !

3@12r2Q̂22~ t !#1r2 exp~2tR12! f 12
0 ~ t !Q̂21~ t !%,

~9!

ĝ12~ t !52
1

4pt2~ t1z!

1

D~ t !
$exp~2tR12! f 12

0 ~ t !

3@12r1Q̂11~ t !#1r1 exp~2tR1! f 11
0 ~ t !Q̂12~ t !%,

~10!

ĝ22~ t !52
1

4pt2~ t1z!

1

D~ t !
$exp~2tR2! f 22

0 ~ t !

3@12r1Q̂11~ t !#1r1 exp~2tR12! f 21
0 ~ t !Q̂12~ t !%,

~11!

with
06111
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D~ t !5@12r1Q̂11~ t !#@12r2Q̂22~ t !#2r1r2Q̂12~ t !Q̂21~ t !.
~12!

We now define the functionsLi(t) ( i 50, . . . ,3) and
S(t) as follows

L0~ t !5r1r2

1

t2 @ f 11
0 ~ t ! f 22

0 ~ t !2 f 12
0 ~ t ! f 21

0 ~ t !#, ~13!

L1~ t !5r2

1

t2 $2 f 22
0 ~ t !t3~ t1z!2r1@ f 11

1 ~ t ! f 22
0 ~ t !

2 f 12
1 ~ t ! f 21

0 ~ t !#%1L0~ t !, ~14!

L2~ t !5r1

1

t2 $2 f 11
0 ~ t !t3~ t1z!2r2@ f 22

1 ~ t ! f 11
0 ~ t !

2 f 21
1 ~ t ! f 12

0 ~ t !#%1L0~ t !, ~15!

L3~ t !5
1

2p

1

t3 H 2t3~ t1z!@ f 12
0 ~ t !1 f 21

0 ~ t !#

1
1

2
r1@ f 11

1 ~ t ! f 12
0 ~ t !2 f 11

0 ~ t ! f 12
1 ~ t !#

1
1

2
r2@ f 22

1 ~ t ! f 21
0 ~ t !2 f 22

0 ~ t ! f 21
1 ~ t !#J , ~16!

S~ t !5
1

t2 $4t6~ t1z!222t3~ t1z!@r1f 11
1 ~ t !1r2f 22

1 ~ t !#

1r1r2@ f 11
1 ~ t ! f 22

1 ~ t !2 f 12
1 ~ t ! f 21

1 ~ t !#%1L1~ t !1L2~ t !

2L0~ t !. ~17!

which—despite the prefactorst2n—turn out to bepolynomi-
als in t. Here, for the HSY case, theLi(t) ( i 50, . . . ,3) are
polynomials of orders 2, 4, 4, and 3, andS(t) is of order 6.
Throughout they are higher by an order of 2 than the co
sponding polynomials of the HS case@8#. Further, for a HSY
system the polynomials are considerably more complex:
have therefore shifted the explicit and rather lengthy expr
sions for theLi(t)’s and S(t) as polynomials int to the
Appendix.

With definitions~13!–~17!, we simplify expressions~9!–
~11!, and finally arrive at

ĝ11~ t !5
t@L0~ t !2L2~ t !exp~ tR2!#

12h1D~ t !
5

N11~ t !

D~ t !
, ~18!

ĝ12~ t !5
t2L3~ t !exp~ tR12!

D~ t !
5

N12~ t !

D~ t !
, ~19!
0-3
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ĝ22~ t !5
t@L0~ t !2L1~ t !exp~ tR1!#

12h2D~ t !
5

N22~ t !

D~ t !
, ~20!

where we have explicitly symmetrizedĝ12(t).
Furthermore, one should mention at this point tha

closer look on thealgebraic structureof ĝi j (t) ~obtained
from the WH solution route! for the present model revea
that this form iscommonto all the other analytically solvable
model systems mentioned above~solved along with a suit-
able closure relation!: ĝi j (t) can indeed be represented
such a form, ifQi j (r ) can be expressed in terms of analy
functions. To be more specific, this observation is valid
apart from the HSY system discussed here@6,23#—for HS’s
@for the Percus-Yevick~PY! equation @24##, for adhesive
HS’s ~both for the PY equation and the MSM@25,3#!, and for
charged HS’s~for the MSM @26#!.

To conclude, one must remark that the WH route to so
the OZ equations along with the MSM is only equivalent
the direct solution of the OZ equation, if the functionD(t)
5det@d i j 2Ar ir j Q̂i j (t)# has no zeros in the right half~RH!
plane of the complext plane @21#; it is possible to give a
local test to detect the presence of zeros in the RH of tht
plane @27#. A sufficient condition to find at least one zer
there, is given byD(0),0 @21,27#.
a
-
d

se

06111
a

e

B. Shell representation

The SR starts from expressions~18!–~20!: the common
denominatorD(t) is rewritten as

D~ t !5L0~ t !2L1~ t !exp~ tR1!2L2~ t !exp~ tR2!

1S~ t !exp@ t~R11R2!#. ~21!

Following the idea of Throop and Bearman@28# ~first illus-
trated for the pure HS case!, we expand 1/D(t) for suffi-
ciently large Re(t) in the form

1

D~ t !
5

exp@2t~R11R2!#

S~ t ! (
n50

` F I ~ t !

S~ t !G
n

, ~22!

with

I ~ t !5L2~ t !exp~2tR1!1L1~ t !exp~2tR2!2L0~ t !

3exp@2t~R11R2!#, ~23!

so that we obtain for the PDF’s inr space:
rg11~r !5
1

12h1
(
n50

`
1

2p i E t@L0~ t !2L2~ t !exp~ tR2!#I n~ t !exp$t~r 2@R11R2# !%

@S~ t !#n11
dt, ~24!

rg12~r !5 (
n50

`
1

2p i E L3~ t !
I n~ t !t2exp@ t~r 2R12!#

@S~ t !#n11
dt, ~25!

rg22~r !5
1

12h2
(
n50

`
1

2p i E t@L0~ t !2L1~ t !exp~ tR1!#I n~ t !exp$t~r 2@R11R2# !%

@S~ t !#n11
dt. ~26!
the

be

e
ntri-
e
es
the

the
The integrations in Eqs.~24!—~26! have to be taken along
line in the RH of the complext plane, parallel to the imagi
nary axis and to the right of all the poles of the integran
these poles are the six roots ofS(t), denoted ast i .

We now start to discuss the case ‘‘11’’; the other ca
follow similar lines. Expression~24! may be transformed
into

rg11~r !5
1

12h1
(
n50

`
1

2p i E 1

@S~ t !#n11 (
a1 ,a2

tQn;a1a2
~ t !

3exp$t@r 2~a1R11a2R2!#%dt,

a151, . . . ,n11 a25n112a1 , . . . ,n11, ~27!

Qn;a1 ,a2
(t)—being products ofL0(t), L1(t), andL2(t)—are

polynomials of order 2@3(n11)2(a11a2)# in t. They are
:

s

formally identical to the corresponding expressions of
HS case which are listed in the Appendix of Ref.@8#.

If r is now either smaller or larger than (a1R11a2R2),
the integration path parallel to the imaginary axis has to
closed either by a semicircle in the RH or LH of thet plane:
~i! In the first case all poles of the integrand will lie outsid
the area encircled by the integration path; hence the co
butions tog11(r ) will be zero.~ii ! In the second case we hav
to close the circle in the LH of the complex plane; all pol
of the integrand lie within the enclosed area. The value of
integral is then determined by the residuesRn;a1a2

i , given in

Eq. ~19! of Ref. @8#, assuming single multiplicity of all the
zerost i .

For the second, i.e., the nontrivial case, we introduce
so-called subshell structure: for a givenR1 andR2, the @(n
11)(n14)/2# n subshellsSn;a1a2

are defined by

Sn;a1a2
5$r ur>~a1R11a2R2!%,
0-4
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1<a1<n11, n112a1<a2<n11. ~28!

The contribution of eachn subshell tog11(r ), denoted by
gn;a1a2

11 (r ), is then given by

gn;a1a2

11 ~r !5
1

12h1

1

n!(i 51

6

an
i exp$t i@r 2~a1R1

1a2R2!#%(
j 50

n

bn;a1a2

j ,i @r 2~a1R11a2R2!#,

ja151, . . . ,n11, a25n112a1 , . . . ,n11. ~29!

The first sum is taken over the six rootst i of S(t). Formally,
the expressions for the coefficientsai andbn;a1a2

j ,i are listed

in the Appendix of Ref.@8#. The actual expressions for th
case of a HSY system are obtained from these functions
simply replacing the HS polynomials by the HSY polynom
als. Finally, summing over all subshells, we arrive at

rg11~r !5 (
n50

`

(
a1a2

rgn;a1a2

11 ~r !Q@r 2~a1R11a2R2!#.

~30!

Similar argumentations also hold for the other two PDF
yielding the following expressions for case ‘‘22’’:

rg22~r !5
1

12h2
(
n50

`
1

2p i E 1

@S~ t !#n11 (
a1 ,a2

tQ̃n;a1a2
~ t !

3exp$t@r 2~a1R11a2R2!#%dt,

a251, . . . ,n11, a15n112a2 , . . . ,n11, ~31!

gn;a1a2

22 ~r !5
1

12h2

1

n!(i 51

6

an
i exp$t i@r 2~a1R11a2R2!#%

3(
j 50

n

b̃n;a1a2

j ,i @r 2~a1R11a2R2!# j ,

a251, . . . ,n11, a15n112a2 , . . . ,n11, ~32!

rg22~r !5 (
n50

`

(
a1a2

rgn;a1a2

22 ~r !Q@r 2~a1R11a2R2!#.

~33!

Finally, for case ‘‘12,’’

rg12~r !5 (
n50

`
1

2p i E 1

@S~ t !#n11 (
a1 ,a2

tu~ t !Q̄n;a1a2
~ t !

3exp$t@r 2~a1R11a2R2!/2#%dt, ~34!
06111
y

,

gn;a1a2

12 ~r !5
1

n!(i 51

4

an
i exp$t i@r 2~a1R11a2R2!/2#%

3(
j 50

n

b̄n;a1a2

j ,i @r 2~a1R11a2R2!/2# j

a151, . . . ,2n11~2!,

a252n122a1 , . . . ,2n11 ~2!, ~35!

rg12~r !5 (
n50

`

(
a1a2

rgn;a1a2

12 ~r !Q@r 2~a1R11a2R2!#,

~36!

u~ t !5tL3~ t !. ~37!

Again Q̃n;a1a2
(t) and Q̄n;a1a2

(t) ~as well asb̃n;a1a2

j ,i and

b̄n;a1a2

j ,i ) are formally identical to those of the HS case a

are listed in the Appendix of Ref.@8#: the HSY expressions
are obtained by replacing the HS polynomialsLi(t) ( i
50, . . . ,3) andS(t) by the corresponding polynomials i
the HSY case@Eqs.~13!–~17!#. Everything which was told in
Ref. @8# for the HS case about the subshell structure~which
is imposed by the values ofR1 and R2) and the resulting
limits of validity of this method@cf. Eqs. ~24! and ~25! of
Ref. @8## also holds for the HSY case of the present pape

C. Asymptotic representation

In the AR we start again from Eqs.~18!–~20!, and we
obtain the PDF’s inr space via an inverse Laplace transfor
i.e.,

rgi j ~r !5
1

2p i Ed2 i`

d1 i`Ni j ~ t !

D~ t !
etrdt, ~38!

d being an arbitrary positive number. Forr ,Ri j we can
evaluate integral~38! by using a contour integration in th
RH of the complex plane, and we will obtaingi j (r )50. For
r .Ri j we have to close the contour in the LH plane. Sin
D(t) has an infinite number of zeros in the LH plane, t
contributions of the residues from these poles ofĝi j (t) form
a series representation ofrgi j (r ). The poles ofĝi j (t) have to
be determined numerically; we have made—for all the s
tems investigated—the following observations:~i! There is
one pole oforder 2 at t50, contributing the value 1 to the
PDF’s. ~ii ! We observe two branches~pairs of complex con-
jugate values! of simple poles; two additional~and indepen-
dent! poles are located on the real axis. The question
whether further higher order poles are present has not b
answered rigorously up to now@29#: Perram and Smith@30#
proved, for the one-component case of pure HS’s, that all
poles are simple. For a more general system with~possibly!
more components, no such proof is available. Our obse
tions were confirmed in Ref.@12,13,15#.

Thus we arrive at@assuming single multiplicity of the
zeros ofD(t)]
0-5
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TABLE I. Parameters of four of the binary HSY mixtures investigated in this study;R1 is assumed to be
1 in all cases. The partial PDF’sg11(r ) and the pole distributions of all these systems are shown in
figures.

System h c1 R2 K11 K12 K22 z

I 0.30 0.65 1.500 1.3947 1.3947 1.8828 2.00
II 0.50 0.75 1.167 0.8333 1.2508 1.8662 1.75

III 0.50 0.25 1.167 0.6897 1.0352 1.5445 2.25
IV 0.40 0.35 1.500 1.1111 1.1111 1.5000 1.75
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(n)~r !, ~39!

where the sum is taken over the rootst i of D(t) in the LH of
the complext plane. The contributionshi j

(n) are given by

hi j
(n)~r !5j ReS Ni j ~ tn!

D8~ tn!

etnr

r D , ~40!

with

j5H 1, tn real

2, tn complex.
~41!

In the following we shall order~and label! the polest i ac-
cording to their respective real parts, pairs of complex c
jugate poles count as one. Typical pole distributions will
presented and discussed in Sec. II D.

It is worthwhile to point out once again the remarkab
conclusion that one can draw from Eq.~38!: the behavior of
the PDF’s for intermediate and large distances is determ
by the poles of theĝi j (t), i.e., the zeros of the denominato
D(t). This denominator is common to all partial PDF’s, a
so is the pole structure; hence,all gi j (r ) will show the same
asymptotic behavior~independent of the specific potenti
parameters!. Only the amplitude and the phases of the os
lations@which are determined by bothD(t) andNi j (t)] will
be different for the partial PDF’s. Presumably the first on
who studied this universal asymptotic behavior~for the one
component case! were Lebowitz and Percus@9#; Martynov
@10# showed that this effect can even be observed in
multicomponent case, i.e., that the asymptotic behavio
the partial PDF’s is determined by one set of poles. Fina
systematic and comprising studies of this effect~including
the interrelation with the FW line! and its consequences, fo
instance, on density profiles, were studied in detail by Eva
Henderson, and their respective co-workers@12–16#.

D. Comparison

In the following we present the results for the part
PDF’s g11(r ) for four selected systems~labeled I–IV; the
system parameters are compiled in Table I!, and compare
results obtained by the SR and AR, including an increas
number of poles~n! in expansion~39!. We have chosenn to
be 3, 6, and 12, respectively. The PDF’s of system I show
exponentially decaying long-range behavior, while t
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gi j (r )’s of systems II–IV are characterized by damped lo
range oscillations; hence they are located on the oppo
side of the FW line~surface! from system I~following the
classification of Refs.@12–16#!. The respective pole distribu
tions will be discussed in Sec. III~cf. also the figures pre-
sented there!. Results forg11’s are shown in Fig. 1.

A different asymptotic behavior is clearly visible: in sy
tem I @Fig. 1~a!#, the firsttwo poles~according to the above
ordering! are purely real, leading to an asymptotic expone
tial decay; superimposed are the oscillations induced by
third pole ~a pair of complex conjugate values!. In systems
II–IV @Figs. 1~b!–1~d!# we observe damped long range o
cillations that stem from the smallest~complex conjugate!
pole, while the contribution from the real pole~which is
further away from the origin! is considerably less pro
nounced. In system III the two poles closest to the origin
pairs of complex conjugate values.

The results confirm observations already presented in R
@8#: for short distances the AR fails, even forn512; it fails,
in particular, at and near the contact~Gibbs phenomenon!.
The region, where substantial differences between the
and AR are observed depends strongly on the system pa
eters. For this contribution we have studied 36 systems;
can conclude from our observations that the error–on
basis of a six pole expansion–between the SR and AR in
gi j (r )’s for distances five times the respective hard core
ameter is throughout less than 1023%; for larger n values
this difference decreases drastically.

III. POLE DISTRIBUTION

For the discussion of the pole distribution we have e
tended the search fort i to a subarea in the LH of the comple
t plane, limiting ourselves to the rectangle$213<Re(t)
<0%3$0<Im(t)<60%, i.e., we discuss only the upper le
quarter of thet plane~the lower quarter being symmetric an
containing only the complex conjugate values of thet i ’s!.
The poles were computed by solving the transcende
equationD(t)50; note that the determination of thet i some-
times becomes—depending on the system parameter
rather delicate task: this is particularly the case when the
pole on the real axis is very close to the origin~e.g., the
system is near to a phase separation; see below!. Since we
determined the poles directly from the explicit expression
D(t) ~i.e., what Leote de Carvalhoet al. @16# called the
‘‘analytic path’’! we did not encounter ‘‘spurious poles
@16# ~which stem from numerical convergence problems!.

From previous studies we know that in the one comp
0-6
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FIG. 1. Partial PDF’sg11(x) as functions ofx5r /R1 for systems I–IV@~a!–~d!; for system parameters see Table I#. •, SR; lines, AR
@taking into accountn poles in expansion~39!: broken line,n53; dot-dashed line,n56; full line, n512].
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nent case the poles are arranged in one single branch~cf., for
instance, Refs.@12,14,16# for various one component sys
tems!. For the PY equation of a binary HS mixture@8# ~the
only binary system that was investigated in this respect u
now! the poles are located along two branches. Calculati
for the ternary HS case~again using the PY equation and th
expressions presented in Ref.@31#! showed that also here tw
branches of poles are found@32#; hence the significance o
the number of branches is presently unclear.

The pole distributions of systems I–IV represent arc
types of pole distributions that we have filtered out from o
results; these distributions are displayed in Fig. 2. Note
despite the large variety in the parameters of the syst
presented here~cf. Table I!, the topologies of the two
branches of the pole distributions of systems I, III, and
are astonishingly similar.

A. Universal asymptotic behavior

We come back to the asymptotic behavior of the PDF
In this subsection we consider only the two~or three! poles
closest to the origin; as explained in Sec. II, these poles
exclusively responsible for the asymptotic behavior of
PDF’s: the classification in which either the pole closest
the origin is located on the real axis, followed by a pair
complex conjugate poles, or vice versa, decides whethe
observe an exponentially decaying or a damped oscilla
long range behavior of the PDF’s. Systems classified
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these criteria lie on different sides of the FW line~on the
surface, in the binary case! in the phase diagram. Our stud
leads to a natural generalization of this classification sche
we encountered examples where the firsttwo poles are lo-
cated on the real axis~system I!, and only the third one
represents a pair of conjugatet i ’s; or, conversely, the first
two poles closest to the origin are pairs of complex conjug
values, the third pole being located on the real axis~system
III !.

B. Topology of the pole distributions

In the case of a binary HSY mixture thet i ~observed in
the area defined above! are arranged in two branches. I
addition, two poles on the real axis are found; we have
served that these poles are typically much closer to the or
than the single real pole for binary HS’s@8#. The role of the
poles located further away from the origin is not yet cle
theset i are certainly irrelevant for the behavior of the PDF
at intermediate distances and for their asymptotic behav
However, we surmise that the pattern they form is related
the thermodynamic state the system is in. Of course, with
a knowledge of the phase diagram, it is not possible to c
firm this conjecture.

The systematic variation of the system parameters~den-
sity, concentration, and screening length! leads to a clear
picture of the respective influence of these quantities on
pole distribution; we summarize our observations in the f
0-7
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FIG. 2. Distribution of the polest l of the ĝi j (t) in a subarea of the upper left quarter of the complext plane for systems I–IV@~a!–~d!#;
the double poles located at the origin have not been marked. The search fort l has been restricted to$213<Re(t)<0%3$0<Im(t)<60%.
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lowing: ~i! A large difference betweenr1R1
3 andr2R2

3 leads
to clearly separated branches~cf. system III!. ~ii ! Increasing
the densityr shifts the branches toward the imaginary a
of the t plane, but leaves the relative positions of the poles
the branches almostunaffected; this shift is easily under-
stood, since the now less negative real parts of thet i bring
about more pronounced oscillations of the PDF’s~as it is
expected for higher densities!. ~iii ! Finally, a variation of the
screening lengthz shifts the relative position of the two pole
on the real axis, leaving the branches of the purely comp
conjugate poles nearlyunaffected~forming hence a robus
pattern!.

In Fig. 2~a! we show the pole distribution of system
which—as we know from literature—undergoes a pha
separation@22#. The first pole on the real axis is already clo
to the origin, leading to a very slow exponential decay in
PDF’s ~an additional hint at the onset of a phase transitio!;
the partial PDFg11(r ) for this system is displayed in Fig
1~a!. Figure 2~b! shows the pole distribution of system II; th
corresponding PDFg11(r ) is presented in Fig. 1~b!. The first
four poles~two of them are on the real axis, and the othe
are two pairs of complex conjugates! are clearly separate
from the other t i ; these poles are arranged in a patte
where—in contrast to other systems investigated for
study—the two branches are less clearly distinguisha
Certainly, without knowing the phase diagram one is n
able to interpret this effect. Figure 2~c! shows the poles of a
system where the difference in ther iRi

3 is quite large: here
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the branches are clearly separated; the branch with
smaller real parts has been pushed to the far end of
observation area. Finally, in Fig. 2~d! we present the pole
structure of a system, where the distribution is very similar
the one observed for a binary HS mixture@8# ~apart from the
additional pole on the real axis!.

We are aware that our investigations have left seve
interesting questions unanswered; we hope to clarify them
a future contribution. There we shall try to relate our obs
vations made for the pole distribution to the thermodynam
state of the system. This can only be done in a compreh
sive and a more systematic study: already the phase diag
of a symmetricbinary mixture~using a subset of system pa
rameters only! is known to be somewhat involved~see, e.g.,
Ref. @33#!, so the general case will be even more comp
cated.

IV. CONCLUSION

Based on the WH route to solve the MSM for a bina
HSY mixture we have presented two complementary rep
sentations of the PDF’s, the SR and AR. Both dwell on
fact that ĝi j (t), the Laplace transforms of@rgi j (r )#, are
available in terms of algebraic expressions for this mod
The two representations follow from two different expa
sions of ĝi j (t). The SR is obtained from a shell by she
inversion of these functions, leading to expressions which
with increasing distancer—become extremely tedious an
0-8



nl
vin

r
a

e
s

ll
p
er

ly

S
ju
W
m

he
p
f t
te

te

th
s
ill

i
f

-
1

ar

s

PAIR DISTRIBUTION FUNCTIONS OF A BINARY . . . PHYSICAL REVIEW E63 061110
complex. The AR, being valid for large distances, can o
be extended to intermediate and short distances by invol
an increasing number of poles ofĝi j (t) in the LH of the
complex t plane. However, the two representations a
complementary in the sense that together they allow an
curate determination of the PDF’s over theentire r range;
this includes an overlap region~located around five times th
respective hard core diameter! where both representation
determine the PDF’s with a comparable accuracy~errors of
less than 1023 % for a six pole AR!. We have presented a
the expressions that are necessary to implement both re
sentations; they allow a simple extension to the more gen
case, where the potentials are superpositions ofk Yukawa
tails.

The determination of the poles ofĝi j (t) required in the
AR leads us—as a natural consequence—to a closer ana
of the positions~and distributions! of these poles in thet
plane. We have shown that the poles of the binary H
mixture can be collected in two branches of complex con
gate values and two independent poles on the real axis.
could work out qualitatively how the variation of the syste
parameters~density, concentration, and screening length! is
able to shift the position of the real poles and of t
branches. Further, there must be a relation between the
patterns of the branches and the thermodynamic state o
system: at the level of the PDF’s the role of the poles loca
further away from the imaginary axis is mainly to guaran
the correct contact value~Gibbs phenomenon!; however, this
means, in particular that—on the level of the thermodynam
properties—these distant poles are responsible for giving
correct equation of state of the system. A detailed analysi
this relation will be reported in a later publication, which w
also include investigations of whether a similar analysis
feasible for a system where the required expressions
ĝi j (t) are not available as closed analytic expressions.
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APPENDIX

f i j
0 (t) and f i j

1 (t) used in Sec. II may be written as

f i j
0 ~ t !52(

k50

2

v i j
k tk, ~A1!

f i j
1 ~ t !52 (

k51

3

wi j
k tk, ~A2!

with

v i j
0 52zqi j9 , ~A3!
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v i j
1 52~zqi j8 1qi j9 !, ~A4!

v i j
2 5zCi j exp~2zRi j !2qi j8 , ~A5!

wi j
1 52zRiqi j9 , ~A6!

wi j
2 5Ri@2zqi j8 2qi j9 ~zRi22!#, ~A7!

wi j
3 52Ci j @exp~2zRi j !2exp~2zl j i !#22Di j exp~2zl j i !

12qi j8 Ri2qi j9 Ri
2 . ~A8!

Insertion of Eqs.~A1! and~A2! into the defining expression
of the polynomialsLi(t) ( i 50, . . .,3), andS(t) @Eq. ~13!–
~17!#, and ordering in powers oft, yields the expressions:

L0~ t !54r1r2(
i 50

2

l i
(0)t i , ~A9!

L1~ t !54r2(
i 50

4

l i
(1)t i1L0~ t !, ~A10!

L2~ t !54r1(
i 50

4

l i
(2)t i1L0~ t !, ~A11!

L3~ t !5(
i 50

3

l i
(3)t i , ~A12!

S~ t !5(
i 52

6

si t
i1L1~ t !1L2~ t !2L0~ t !, ~A13!

with the coefficients

l m
(0)5 (

k5m

2

~v11
k v22

22k2v12
k v21

22k!, m50,1,2, ~A14!

l 0
(1)5

r1

2 (
k50

1

~v22
k w11

22k2v21
k w12

k22!, ~A15!

l m
(1)5zv22

m211v22
m221

r1

2 (
k5m21

2

~v22
k w11

m122k

2v21
k w12

m1k22!, m51,2,3, ~A16!

l 4
(1)5v22

2 , ~A17!

l 0
(2)5

r2

2 (
k50

1

~v11
k w22

22k2v12
k w21

k22!, ~A18!

l m
(2)5zv11

m211v11
m221

r2

2 (
k5m21

2

~v11
k w22

m122k

2v12
k w21

m1k22!, m51,2,3, ~A19!

l 4
(2)5v11

2 , ~A20!
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l m
(3)52@z~v12

m 1v21
m !1~v12

m211v21
m21!#

1r1 (
k5m

2

~v12
k w11

m132k2v11
k w12

m132k!

1r2 (
k5m

2

~v21
k w22

m132k2v22
k w21

m132k!,

m50,1,2, ~A21!

l 3
(3)5s~v12

2 1v21
2 !,

sm54zdm,412 (
k51,2

rk~zwkk
m211wkk

m22!1r1r2

3 (
k5m21

3

~w11
k w22

m122k2w12
k w21

m122k!, ~A22!
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m52,3,4, ~A23!

s558z12 (
k51,2

rkwkk
3 , ~A24!

s654. ~A25!

In the formalism used in this appendix, it may occur
Eqs. ~A16!, ~A19!, and ~A21!, that formallyv i j

m with nega-
tive m values are required. This is a consequence of
effort to present the above expressions in a very comp
form; in fact,v i j

m50 for negativem.
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