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Pair distribution functions of a binary Yukawa mixture and their asymptotic behavior
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Based on an analytic solution of the mean spherical model for a binary hard sphere Yukawa mixture, we
have examined the pair distribution functiagg(r), focusing, in particular, on two aspec(s: We present two
complementary methods to compute the(r) accurately and efficiently over the entireange.(ii) The poles
of the Laplace transforms of the pair distribution functions in the left half of the complex plane close to the
origin determine the universal asymptotic behavior of gh€r). Although the meaning of the role of the
subsequent poles—which typically are arranged in two branches—is not yet completely clear, there are strong
indications that the distribution pattern of the poles is related to the thermodynamic state of the system.
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[. INTRODUCTION extent by analytical expressions only. While the solution of
the MSM in terms of the direct correlation functions and the
A series of model systems still plays, despite its simplic-calculation of the thermodynamic properties have been dis-
ity, an important role in the theory of classical fluids: the paircussed(see Ref[6] and subsequent papgrin the present
interactions of the particles are characterized, throughout, bgaper we focus on a closer analysis of the pair distribution
a hard core part, at contact adding an attractreepulsive  functions(PDF’s) g;;(r) of a binary HSY mixture: first, we
tail. These systems are commonly referred to—in order opresent two complementary semianalytic methods to com-
increasing complexity—as hard spher@sS’s), adhesive pute the pair distribution functions; based on these represen-
HS's, charged HS's, and HS's with a Yukawa télSY).  tations of g;;(r), in a subsequent step we investigate the

Characteristic of these Systems is the fact that their StrUCtUrﬂsymptotiC behavior of these functions and the distribution
and thermodynamic properties can be obtained from the so- -
. . ) : . of the poles of theg;;(t), the Laplace transforms of the
lution of the Ornstein-ZernikéOZ) equation—along with a [rg--(r)l]D in the Iefte%gll(f()LH) of thg complext plane
suitable closure relation—to a large exteanalytically. U ’ '

These systems were studied in the late 1960s and 1970s, but,'A‘ddition"’II motivation for our invest!gations on HSY sys-
still, considerable effort is being dedicated to research activit€ms comes from a mormethodologicalaspect. HS and
Y systems play an important role as reference systems in

ties of these systems; of course, meanwhile, the ideas that aHsS ) ] : :
pursued have changed to a higher level of complexity. thermodynamic perturbatlon_ theories. In this Cpntext, the
There are several reasons why these analytically solvabldSY System can be used in at least three wdjsas a
model systems are still that attractive, and in the following aféference system for potentials with long range interactions,
few of them we list:(i) The interatomic potentials of some (i) &s an improved parametrization of a HS systes for
colloidal suspensions can be modeled quite accurately bipstance in the framework of the generalized mean spherical
such hard core interactiori4]. (ii) It is certainly more con- Model[7]), and (i) as an exact benchmark for numerical
venient to start the development of new theoretical methodgolutions of integral equations. In all cases an accurate and
or basic investigations from simple model systems, where &fficient calculation of the PDF's in the entirerange is
least for the structural and thermodynamic properties of théequired, avoiding, at the same time, time-consuming nu-
uniform fluid analytic expressions are available; three recenfnerical Fourier transforms and numerical inaccuracies intro-
examples of such investigations are the extension of multiduced by discontinuities of the correlation functions at con-
component concepts to the polydisperse d&s8] and the tact. This aspect is co_vered by the first goal of th_ls paper: we
development of the fundamental measure th¢dtpr of the ~ Present a generalization of two methdésown in literature
self-consistent OZ approximatiof]. These developments as the shell representati¢8R) and the asymptotic represen-
were started, throughout, for such analytically solvable modtation (AR); for a brief historic review, see Reff8]] to the
els. (i) Despite the simplicity of their interactions, such sys- ¢ase of a HSY system, which together form a reliable tool for
tems show phenomena which ayealitativelysimilar to sys-  the calculation of the PDF's. The methods are complemen-
tems with more realistic potentials. tary in the sense that they allow a computation of PDF’s in
The present paper is dedicated to a detailed analysis of tH€ entirer range: the SR is more suitable for distances from
structural properties of a binary HSY mixture; we addresscontact up to intermediate values, while in more distant
aspects of the above mentioned itetiig and (iii). Among ~ regions (Whe_re the SR becomes conceptually tedlou§ and
the series of model systems mentioned before, the HSY indumerically inaccurajethe AR becomes more appropriate.
teraction represents undoubtedly the most general potentialh€ overlap region is located around five times the respec-
since it covers—via special limiting prescriptions—the re-tivé HS diameter. o _
maining three cases. The properties of a HSY mixture are Both approaches are based on the availability of analytic
given within the mean spherical modéVISM) to a large  expressions fopg;;(t) which can be extracted from an ana-

1063-651X/2001/6@)/06111@10)/$20.00 63061110-1 ©2001 The American Physical Society



TUTSCHKA, KAHL, AND PASTORE PHYSICAL REVIEW E63 061110

|yt|C solution of the MSM for the HSY SyStem: they can be PDF'’s and the topo|ogy of the po|e distribution élﬁ (t)
derived via the Wiener-HopfWH) factorization of the OZ The paper closes with concluding remarks.
equations for this system. In the SR the Laplace transform
back intor space is done shell by shell, a shell being defined
via{r|r=¢} and¢ being a linear combination of the two HS Il REPRESENTATIONS OF THE PAIR DISTRIBUTION
diameters. The method is particularly useful for small and FUNCTIONS
intermediate distances, where the number of tefwtsch is
increasing rapidly with increasing is still reasonable. The ) ) . i
AR is based on an application of the residue theorem; the The structure of a binary HSY mixture is obtained from
PDF’s can be represented as a series of exponentially decaile OZ relation
ing or damped oscillating functions. The attractive feature of
this_ mgthod is that the functional form of the terms in Fhis hij(r)zcij(r)+2 pkf hik(r’)ckj(|r—r’|)d3r’,
series is always the same, and that hence each additional k
term added to the above expansion requires a fixed amount
of resources. This representation gives results with high ac-
curacy for intermediate values up to infinity. In this paper
we provide all expressions required to implement both the
SR and AR for a binary HSY systefwith one Yukawa tajl. ~ along with the hard core MSM closure relations
The paper contains, furthermore, a discussion of the numeri-
cal validity and reliability of the combined methods.

From the structure of the AR it is obvious that the poles of

theéij(t) closest to the origin determine the asymptotic be-

havior of the PDF’s. Lebowitz and Perc{i8] were (prob- 1

ably) the first to discover that for large distances a PDF is Cii(1)= 7 Kij exd—z(r =Rij)]= = ®;;(r), r>R;.

characterized by an exponential decay or by an exponentially ®)

damped oscillatory behavior. Martyn®¥0] found that even

in a more component system there is only one single expo- ) ,

nential decay length and only one oscillatory wavelength forij (F) @nd c;;(r) are the total and direct correlation func-

all partial PDF’s. In subsequent work, Evans and Hendersof{onS, and®;;(r) are Yukawa potentials; (=R;) are the

(with their respective co-workersliscussed thisiniversal ~ core radii of species Ri,=(Ry+R;)/2, Kj; are the contact

asymptotic behaviom a more systematic and detailed way values, andzis the screening lengtfg=1/(kgT), kg being

[11-16. They focused their interest, in particular, on the twothe usual Boltzmann constant arid the temperaturep

poles located closest to the origia7], one of them being stanqls for the total number den5|t_y,|s the concentrgpon of

real, the other a pair of complex conjugates. The fact thagPeciesi, and p;=pc; are the partial number densities. We

either the real pole is closer to the origin and the complex@iso introduce the partialz() and total (7) packing frac-

conjugate poles further away, or vice versa, leads to a funlons:

damentally different long range behavior of the PDF’s; the

corresponding two thermodynamic states of the system are - -

separated in the phase diagram by the so-called Fisher- Mm=gP1 M=gP2r N aniJr ang. 4)

Widom (FW) line [18]. This investigation was also extended

to study the influence of this effect on density profilesy.,

Ref. [11]). In this paper we resume this analysis for ourOne should point out here that the MSM can also be solved

binary HSY mixture; in addition, we go one step further by for the more general case whebg;(r) in Eq. (3) are super-

extending the search for poles to a larger subarea of the Ligositions ofk Yukawa tails, each of them characterized by

of the complext plane. The poles arrange in two branchescontact vaIuesKi(j”) and screening lengths,, k=1, ... n

plus two(independentpoles on the real axis, apart from the [, 19]. This extended concept can also be used in the SR and

trivial double pole at the origin. We were able to identify in AR (introduced in Sec. Il B leading, however, to expres-

a qualitative way how these poles vary as we modify thesjons that are thus substantially more complex than those for

system parameters. While these additional poles do not cofihe case of one Yukawa tail.

tribute to the asymptotic behavior of the PDF’s, there are The MSM for a HSY system may be solved either by

Strong indications that the information contained in such %Sing the Lap|ace transform technique introduced by Wer-

pole dis_tripution is related to the thermodynamic state ttheim[ZO] or by using the WH factorization technique intro-

system is in. duced by Baxtef21]. In this paper we use the latter, follow-
The paper is organized as follows: in Sec. Il we brieflyjng the derivation of Blum and He [6]: to this end, factor

and the AR(along with the expressions required for the ac-found to be[6]

tual calculationy this section is concluded with a discussion
of the accuracy and efficiency of the two representations. In 0
Sec. lll we discuss the universal asymptotic behavior of the Qij(r)=Qjj(r) +Djj exd —zr], %)

A. Analytic solution of the MSM for a binary HSY mixture

i,j,k=1,2 1)

hij(r):_l, r<Rij, (2)
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1
Qﬂ(l‘)Z Eqi’}(r_Rij)2+qi,j(r_Rij)+Cij{exq_zr]_exq_ZRij]}1 NjisST<R; ®)

0, Rjs=r

with \;; = (R;—R;)/2. Note that theQ;;(r) are not symmet- —[1—p.C 6 _ A A
ric, i.e.J,Qij(r)a&(Jgji(r) [21], and thatJdifferent parametriza- DO=L1=P1Qu(V]L1=p2Qz(1)] plpZle(t)Qn(E)l'z)

tions for theQ;;(r) are used in Refd21,6,29. As worked

out in detail by Blum and Hge [6] the unknown coefficients We now define the functiong(t) (i=0,..., 3) and
qi’j, q{’j, Cij, and D;; are determined from five sets of S(t) as follows

coupled nonlinear equations. Among the multiple solutions
of this system of equations only one corresponds to a nondi-
verging solution of the original equationd)—(3) [6,22].
Once we have obtained this solution we can determine
Q;j(r) and all the structural and thermodynamic properties 3
of the HSY system for the MSM. L.(t) = pZ_i{Zf AD(t+2)— pl[fll(t)f At)

We then define the functioréij(t) as

1
Lo()=p1p2 [ F1(D o)~ FLO(D], (13

— DO} + Lo, (14
0y(=| dseQy(s), @ 1
‘ ﬁ” ‘ Lo(t) = paz{2F (014 2) = pol 3/ F1(1)
which may be cast into the form (t)f LD+ Lo(b), (15
21
exp(—tR;j)
Q0= O+ R (O~ B0 La(0)= 5 | T+ LA + 1240
(8 .
wheret is henceforward @omplexvariable. The coefficient +§P1[f11(t)f(1)2(t)—f(l)l(t)fiz(t)]

functionsf? (1) andf? j (t) are polynomials irt and are com-
piled in the Append|x Some of the expressions presented 1 1 0 0 1

there require symmetry relations which hold betweencthe + 5P 2O = (DD, (16)
andq; [6]. Furthermore, as shown in R¢é], the following
expressions for@ij(t), i.e., the Laplace transforms of the
[rgi;(r)], can be obtained from the WH equations:

1

S(t) = {4t%(t+2)*= 26%(t+ 2)[paf1(H) + pof (1))
+p1pal (1) F (1) =PI F5 () THLa(t) +Lo(t)
—Lo(t). 17

X[1=poQoo1) ]+ po eXp — tR1) F2(1) Qua(1)}, which—despite the prefactots "—turn out to bepolynomi-
(9) alsin t. Here, for the HSY case, tHg(t) (i=0,...,3) are
polynomials of orders 2, 4, 4, and 3, aB(t) is of order 6.

- 1
gll(t)=—mm{exp( tR) f9,(1)

. 1 1 Throughout they are higher by an order of 2 than the corre-
O(t)=— It 2) D—t){exp( —tRlz)fgz(t) sponding polynomials of the HS calg&. Further, for a HSY

mt(t+2) D system the polynomials are considerably more complex: we

><[1—P1Q11(t)]+pl exp(—tR)f l(t)le(t)} have therefore shifted the explicit and rather lengthy expres-

sions for theL,(t)’s and S(t) as polynomials int to the
(10 Appendix.
With definitions(13)—(17), we simplify expressiong9d)—
(12), and finally arrive at

“ 1 1
Oaot) = — ypr st m{exﬁ—tRz)fgz(t)
() = t[Lo(t) —La(t)exp(tRy)]  Nyy(t)

X[1-p1011(1)]+ py exp — Ry F (1D A1)}, 9(t)= 127.D(0 “Dbo: 19
o o PLUeXERY  Nih) y
with g1At)= D(1) T D(b) (19
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~ ~ Lo(t) —Ly(t)exptRy)]  Noot) B. Shell representation

9221 = 127,D(t) T D(t) (20 The SR starts from expressiofis8)—(20): the common
denominatoD(t) is rewritten as

where we have explicitly symmetrizegi,(t).

Furthermore, one should mention at this point that a D(t)=Lo(t) —Li(t)exp(tRy) — Lo(t)exptR,)
closer look on thealgebraic structureof @ij(t) (obtained +S(t)exg t(R;+R,)]. (21)
from the WH solution routefor the present model reveals
that this form iscommorto all the other analytically solvable ] ) o
model systems mentioned abofaolved along with a suit- Following the idea of Throop and Bearmg28] (first illus-
able closure relation @ij(t) can indeed be represented in tr'ateclj flor theRpurg HhS (f:a)sewe expand D(t) for suffi-
such a form, ifQ;;(r) can be expressed in terms of analytic ciently large Re{) in the form
functions. To be more specific, this observation is valid—

apart from the HSY system discussed h@23—for HS’s 1 exd —t(R+R,)] & [1(0)]"
[for the Percus-YevickPY) equation[24]], for adhesive o)~ 2 [S—} (22
HS’s (both for the PY equation and the MS|@5,3]), and for (t) S(1) =0 [S(1)
charged HS'¢for the MSM[26]).
To conclude, one must remark that the WH route to solveyiip,
the OZ equations along with the MSM is only equivalent to
the direct solution of the OZ equation, if the functidrt)
=def &;— Vpip;Qi;(1)] has no zeros in the right halRH) I(t)=La(t)exp(—tRy) + L (D) exp —tRp) — Lo(t)
plane of the complest plane[21]; it is possible to give a wexd —t(R: +R 23
local test to detect the presence of zeros in the RH oft the XH R+ Ry, @3
plane[27]. A sufficient condition to find at least one zero
there, is given byA (0)<0 [21,27]. so that we obtain for the PDF’s inspace:
|
1 [ t[Lo(t)—Ly(t)exptRy)I(t)exp{t(r —[Ry+ Rz])}
rgu(r)=-5— 2 5— T t, (24)
12771 n=0 2i [S(t)]n
| "(t)t2exd t(r —Ryy)]
r dt, 25
g1oAr 2 o 27 La(t (SO (25
1 ¢ 1 [HLe®-LiexptRYN"OeXpt(r —[Ri+ Ro}
rgoAr)=o5— 2, 5— T (26)
127, =0 2mi [S(H)]"

The integrations in Eq$24)—(26) have to be taken along a formally identical to the corresponding expressions of the
line in the RH of the complex plane, parallel to the imagi- HS case which are listed in the Appendix of Rigf].
nary axis and to the right of all the poles of the integrand: If r is now either smaller or larger tham (R, + a;R;),
these poles are the six roots 8ft), denoted as; . the integration path parallel to the imaginary axis has to be
We now start to discuss the case “11”; the other case$losed either by a semicircle in the RH or LH of thplane:
follow similar lines. Express|or(24) may be transformed (l) In the first case all pOleS of the Integrand will lie outside
into the area encircled by the integration path; hence the contri-
butions tog,4(r) will be zero.(ii) In the second case we have
to close the circle in the LH of the complex plane; all poles

rgpy(r) = 2 j S tQ (t) of the integrand lie within the enclosed area. The value of the
1 1277 = [S()]"FL atoay 7272 integral is then determined by the residis, . given in
Eqg. (19 of Ref.[8], assuming single multiplicity of all the
Xexp{t[r—(a1R1+ asz)]}dt, Zgl’o(sti). [ ] g g p y
For the second, i.e., the nontrivial case, we introduce the
a;=1,...n+1 ay=n+l-ay,...n+1, (27)  so-called subshell structure: for a giv® andR,, the[(n

+1)(n+4)/2] n subshells,‘swla2 are defined by
Qn;alyaz(t)—being products of ((t), L4(t), andL,(t)—are

polynomials of order P3(n+1)—(a;+a,)] in t. They are Shiaya,={rIr=(a1Ri+ asRo)},

061110-4
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1<a1 n+1 I’H—l—al\az\n-f-l (28)

The contribution of eacm subshell tog,(r), denoted by
gﬁ;lalaz(r), is then given by

6
18
Ontaya,(1) = —mz al explti[r—(a;R;
=1
+a2R2>]}2 bl o [T~ (1R + aaRy)],
la;=1,...n+1, ap=n+l—ay,...n+1. (29

The first sum is taken over the six rodgtsof S(t). Formally,
the expressions for the coefficierd5andb!'  are listed

n; a a

in the Appendix of Ref[8]. The actual expressions for the
case of a HSY system are obtained from these functions byyj.i
simply replacing the HS polynomials by the HSY polynomi-

als. Finally, summing over all subshells, we arrive at

rgll(r)_Z > rgnaa(r) [r—(a1Ri+azRy)].
(30)

=0 ajap

PHYSICAL REVIEW E53 061110

4

1 :
Ontaya, (1) = 72 @n @XP(tr — (@1Ry + azRy)/2]}

n
Z s lT — (@1R1+ @aRy)12]!

a;=1,...,0+1(2),

ay=2n+2—ay, ..., n+1 (2), (35)

rgasr)= 2 > 1002 0, (NO[r = (iR + azRy)],
n— alaz
(36)
u(t)=tLg(t). (37)
and

n; a a

Again Qn aya,(t) @nd Qn aya,(t) (@s well asb!!
ma,a,) are formally identical to those of the HS case and

are listed in the Appendix of Ref8]: the HSY expressions
are obtained by replacing the HS polynomidlg(t) (i
=0,...,3) andS(t) by the corresponding polynomials in
the HSY casé¢Eqs.(13)—(17)]. Everything which was told in
Ref. [8] for the HS case about the subshell structiwraich
is imposed by the values d®; and R,) and the resulting
limits of validity of this method[cf. Egs.(24) and (25) of

Similar argumentations also hold for the other two PDF’s,Ref. [8]] also holds for the HSY case of the present paper.

yielding the following expressions for case “22":

r922(r) 127]2 = 27Tlf [S ]n+1 a§2 th;alaz(t)

Xexp{tlr—(aR;+ a,R,) 1}dt,

a2=l,...,n+1, a1=n+l—a2,...,n+1, (31)

6
E a nexp{tilr — (a1Ry+ aoR,) 1}

1a2 — (1R +ayRy) 1,

éB”

a2=1,...,n+1, a1=n+1—a2, ...,I’H—l, (32)

rg22<r)—n2 aEa (G5, (N O[T — (@R + azRy)].
142 (33)

Finally, for case “12,”

rg1r)= 2 2 tU(t)Qpiaya, (1)

_
[S()]"" arar
X eXp{t[r —(a1R1+ asz)IZ]}dt,

27'r|

(39

C. Asymptotic representation

In the AR we start again from Eq$18)—(20), and we
obtain the PDF’s i space via an inverse Laplace transform,
ie.,

erdt,

221 OO 38)

rg”(r) 271 ) 5—ios D(t)
o being an arbitrary positive number. FOKR;; we can
evaluate integra{38) by using a contour integration in the
RH of the complex plane, and we will obtagy (r)=0. For
r>R;; we have to close the contour in the LH plane. Since
D(t) has an infinite number of zeros in the LH plane, the

contributions of the residues from these pole@@(t) form

a series representation iaf;; (r). The poles 06” (t) have to
be determined numerically; we have made—for all the sys-
tems investigated—the following observatioris: There is
one pole oforder 2 att=0, contributing the value 1 to the
PDF's. (ii) We observe two branchépairs of complex con-
jugate valuesof simple polestwo additional(and indepen-
dend poles are located on the real axis. The question of
whether further higher order poles are present has not been
answered rigorously up to nof29]: Perram and Smith30]
proved, for the one-component case of pure HS’s, that all the
poles are simple. For a more general system \pibssibly
more components, no such proof is available. Our observa-
tions were confirmed in Ref12,13,15.

Thus we arrive afassuming single multiplicity of the
zeros ofD(1)]
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TABLE I. Parameters of four of the binary HSY mixtures investigated in this stRgys assumed to be
1 in all cases. The partial PDFig,4(r) and the pole distributions of all these systems are shown in the

figures.
System n Cl R2 Kll K12 K22 z
I 0.30 0.65 1.500 1.3947 1.3947 1.8828 2.00
1l 0.50 0.75 1.167 0.8333 1.2508 1.8662 1.75
I 0.50 0.25 1.167 0.6897 1.0352 1.5445 2.25
v 0.40 0.35 1.500 1.1111 1.1111 1.5000 1.75
- gij(r)’s of systems II-IV are characterized by damped long
gij(r):1+; hif”(r), (39  range oscillations; hence they are located on the opposite

where the sum is taken over the rogtef D(t) in the LH of
the complext plane. The contributionbi(j”) are given by

N;i (t,) eh’
hMWiry=¢R M_, 40
i (r)=¢ e(D’(tn) r) (40)
with
B 1, t,real
&= 2, t,complex. (43

In the following we shall ordefand label the polest; ac-

cording to their respective real parts, pairs of complex con
jugate poles count as one. Typical pole distributions will be,

presented and discussed in Sec. Il D.

It is worthwhile to point out once again the remarkable
conclusion that one can draw from E&8): the behavior of
the PDF's for intermediate and large distances is determine

by the poles of thef;ij(t), i.e., the zeros of the denominator

side of the FW ling(surface from system I(following the
classification of Refd.12—16). The respective pole distribu-
tions will be discussed in Sec. I[cf. also the figures pre-
sented there Results forg,4,'s are shown in Fig. 1.

A different asymptotic behavior is clearly visible: in sys-
tem | [Fig. 1(a@)], the firsttwo poles(according to the above
ordering are purely real, leading to an asymptotic exponen-
tial decay; superimposed are the oscillations induced by the
third pole (a pair of complex conjugate valyesn systems
II-IV [Figs. 1b)-1(d)] we observe damped long range os-
cillations that stem from the smalle&tomplex conjugate
pole, while the contribution from the real polevhich is
further away from the originis considerably less pro-
nounced. In system Il the two poles closest to the origin are
pairs of complex conjugate values.
~ The results confirm observations already presented in Ref.
[8]: for short distances the AR fails, even for=12; it fails,
in particular, at and near the conta@ibbs phenomengn
The region, where substantial differences between the SR
and AR are observed depends strongly on the system param-
eters. For this contribution we have studied 36 systems; we
can conclude from our observations that the error—on the

D(t). This denominator is common to all partial PDF's, and p5sis of a six pole expansion—between the SR and AR in the

so is the pole structure; hena| g;;(r) will show the same

gij(r)’s for distances five times the respective hard core di-

asymptotic behavio(indepgndent of the specific potentia_l ameter is throughout less than £06; for largern values
parametens Only the amplitude and the phases of the oscil-is gifference decreases drastically.

lations[which are determined by bof(t) andN;;(t)] will

be different for the partial PDF’s. Presumably the first ones
who studied this universal asymptotic behavifor the one
component casewere Lebowitz and Percuy®]; Martynov
[10] showed that this effect can even be observed in th
multicomponent case, i.e., that the asymptotic behavior
the partial PDF’s is determined by one set of poles. Finally

systematic and comprising studies of this eff@ocluding

the interrelation with the FW lineand its consequences, for
instance, on density profiles, were studied in detail by Evan

Henderson, and their respective co-workigia—16.

D. Comparison

Ill. POLE DISTRIBUTION

For the discussion of the pole distribution we have ex-

0%:ended the search forto a subarea in the LH of the complex

t plane, limiting ourselves to the rectangle- 13<Re(t)
'<0} x{0=<Im(t)<60}, i.e., we discuss only the upper left
quarter of the plane(the lower quarter being symmetric and

S(:ontaining only the complex conjugate values of tkis).

The poles were computed by solving the transcendental
equationD (t) =0; note that the determination of thesome-

times becomes—depending on the system parameters—a
rather delicate task: this is particularly the case when the first

In the following we present the results for the partial pole on the real axis is very close to the origmg., the

PDF's g44(r) for four selected system@dabeled 1-1V; the

system is near to a phase separation; see belBince we

system parameters are compiled in Tableand compare determined the poles directly from the explicit expression of
results obtained by the SR and AR, including an increasin@(t) (i.e., what Leote de Carvalhet al. [16] called the

number of polegn) in expansion39). We have chosen to

“analytic path”) we did not encounter “spurious poles”

be 3, 6, and 12, respectively. The PDF’s of system | show af16] (which stem from numerical convergence probleéms

exponentially decaying long-range behavior, while the

From previous studies we know that in the one compo-
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FIG. 1. Partial PDF'gy;4(x) as functions ok=r/R; for systems I-IV[(a)—(d); for system parameters see Tables| SR; lines, AR
[taking into accounh poles in expansiofi39): broken line,n=3; dot-dashed linen=6; full line, n=12].

nent case the poles are arranged in one single br@fclior  these criteria lie on different sides of the FW ligen the
instance, Refs[12,14,14 for various one component sys- surface, in the binary casé the phase diagram. Our study
tems. For the PY equation of a binary HS mixtur@] (the leads to a natural generalization of this classification scheme:
only binary system that was investigated in this respect up tave encountered examples where the fivgdb poles are lo-
now) the poles are located along two branches. Calculationsated on the real axigsystem }, and only the third one
for the ternary HS cas@gain using the PY equation and the represents a pair of conjugatgs; or, conversely, the first
expressions presented in REF1]) showed that also here two two poles closest to the origin are pairs of complex conjugate
branches of poles are fouri82]; hence the significance of values, the third pole being located on the real dxistem
the number of branches is presently unclear. ).

The pole distributions of systems I-IV represent arche-
types of pole distributions that we have filtered out from our B. Topology of the pole distributions
results; these distributions are displayed in Fig. 2. Note that

: ; ; In the case of a binary HSY mixture the (observed in
despite the large variety in the parameters of the system _ _
presented herdcf. Table ), the topologies of the two t?]e area defined aboyeare arranged in two branches. In

branches of the pole distributions of systems I, lll, and IVadd't'on' two poles on the real_ axis are found; we have Qb.'
are astonishingly similar. served that these poles are typically much closer to the origin

than the single real pole for binary HJ8]. The role of the
poles located further away from the origin is not yet clear:
theset; are certainly irrelevant for the behavior of the PDF’s
We come back to the asymptotic behavior of the PDF’sat intermediate distances and for their asymptotic behavior.
In this subsection we consider only the tiar threg poles  However, we surmise that the pattern they form is related to
closest to the origin; as explained in Sec. I, these poles arthe thermodynamic state the system is in. Of course, without
exclusively responsible for the asymptotic behavior of thea knowledge of the phase diagram, it is not possible to con-
PDF's: the classification in which either the pole closest tofirm this conjecture.
the origin is located on the real axis, followed by a pair of The systematic variation of the system parametdesn-
complex conjugate poles, or vice versa, decides whether wsity, concentration, and screening lengtbads to a clear
observe an exponentially decaying or a damped oscillatingicture of the respective influence of these quantities on the
long range behavior of the PDF's. Systems classified byole distribution; we summarize our observations in the fol-

A. Universal asymptotic behavior
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FIG. 2. Distribution of the poleg of the (::]ij (t) in a subarea of the upper left quarter of the complplane for systems 1-1¥(a)—(d)];
the double poles located at the origin have not been marked. The seat¢lthésrbeen restricted fo- 13<Re(t) <0} X{0<Im(t)<60}.

lowing: (i) A large difference betweep, RS andp,R3 leads  the branches are clearly separated; the branch with the

to clearly separated branch@s. system Il). (i) Increasing smaller real parts has been pushed to the far end of our

the densityp shifts the branches toward the imaginary axisobservation area. Finally, in Fig.(® we present the pole

of thet plane, but leaves the relative positions of the poles ofstructure of a system, where the distribution is very similar to

the branches almosinaffected this shift is easily under- the one observed for a binary HS mixtu6d (apart from the

stood, since the now less negative real parts oftfiwing  additional pole on the real ajis

about more pronounced oscillations of the PDEs it is We are aware that our investigations have left several

expected for higher densitiegiii) Finally, a variation of the  interesting questions unanswered; we hope to clarify them in

screening lengtl shifts the relative position of the two poles a future contribution. There we shall try to relate our obser-

on the real axis, leaving the branches of the purely complexations made for the pole distribution to the thermodynamic

conjugate poles nearlynaffected(forming hence a robust state of the system. This can only be done in a comprehen-

pattern. sive and a more systematic study: already the phase diagram
In Fig. 2@ we show the pole distribution of system |, of asymmetricbinary mixture(using a subset of system pa-

which—as we know from literature—undergoes a phasgameters onlyis known to be somewhat involvedee, e.g.,

separatiofi22]. The first pole on the real axis is already close Ref. [33]), so the general case will be even more compli-

to the origin, leading to a very slow exponential decay in thecated.

PDF's (an additional hint at the onset of a phase transjtion

the partial PDFg,4(r) for this system is displayed in Fig. IV. CONCLUSION

1(a). Figure Zb) shows the pole distribution of system II; the

corresponding PDIgq4(r) is presented in Fig.(b). The first HSBase_d on the hWH route to sglve the MSlM for & binary
four poles(two of them are on the real axis, and the others Y m'xwref V‘r/]e Pa[\)/g, prehsensteR tV\ijo ,:gmg err?(antalrly reprze-
are two pairs of complex conjugaleare clearly separated Sentations of the s, the SR an - Both dwell on the

from the othert;; these poles are arranged in a patternfact thatg;(t), the Laplace transforms dfrg;;(r)], are
where—in contrast to other systems investigated for thi@vailable in terms of algebraic expressions for this model.
study—the two branches are less clearly distinguishableThe two representations follow from two different expan-
Certainly, without knowing the phase diagram one is notsions of g;;(t). The SR is obtained from a shell by shell
able to interpret this effect. Figuré@ shows the poles of a inversion of these functions, leading to expressions which—
system where the difference in theR? is quite large: here with increasing distance—become extremely tedious and
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complex. The AR, being valid for large distances, can only vﬁ = —(ZQi’j+Q§]), (A4)
be extended to intermediate and short distances by involving

an increasing number of poles (jf,— (t) in the LH of the vﬁ:ij exp—zR;j)—qjj, (A5)
complex t plane. However, the two representations are

complementary in the sense that together they allow an ac- wﬁ =2zRqjj, (AB)
curate determination of the PDF’s over tkatire r range;

this includes an overlap regidtocated around five times the Wizj =R[2zq;—qi(zR—2)], (A7)

respective hard core diametevhere both representations

determine the PDF’s with a comparable accuréayors of Wf} =2C;j[exp(—zR;)—exp(—z\;;)]—2D;; exp( — 2\ ;)
less than 102 % for a six pole AR. We have presented all

the expressions that are necessary to implement both repre-  +20/;Ri—qj|R?. (A8)

sentations; they allow a simple extension to the more general
case, where the potentials are superpositionk ¥lkawa Insertion of Eqs(Al) and(A2) into the defining expressions
tails. of the polynomiald_;(t) (i=0,...,3), andS(t) [Eq. (13)—

The determination of the poles @ﬁj(t) required in the (17), and ordering in powers df yields the expressions:

AR leads us—as a natural consequence—to a closer analysis 2
of the positions(and distributions of these poles in thé Lo(t)=4p1ps>, 1O, (A9)
=0

plane. We have shown that the poles of the binary HSY
mixture can be collected in two branches of complex conju-

gate values and two independent poles on the real axis. We ‘

— 1)4i
could work out qualitatively how the variation of the system Ll(t)—4P2i:Eo IDE+Lo(t), (A10)
parametergdensity, concentration, and screening lengsh
able to shift the position of the real poles and of the 4
branches. Further, there must be a relation between the pole Lz(t)=4plz 1@t 4 Lo(t), (A11)
patterns of the branches and the thermodynamic state of the i=0

system: at the level of the PDF’s the role of the poles located .
further away from the imaginary axis is mainly to guarantee (3)si
the correct contact valugibbs phenomendnhowever, this (=2 1%
means, in particular that—on the level of the thermodynamic

properties—these distant poles are responsible for giving the

correct equation of state of the system. A detailed analysis of S(t)= 2, siti+Ly(t)+Ly(t)—Lo(t), (A13)
this relation will be reported in a later publication, which will i=2

also include investigations of whether a similar analysis is

feasible for a system where the required expressions fofith the coefficients

@ij(t) are not available as closed analytic expressions. 2
(0): 2 U11022 Uiizvgl_k)’ m=0,12, (Al4)

(A12)
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APPENDIX —ok Wik %), m=1,2,3, (A16)
t andf t) used in Sec. Il may be written as
( ) ( ) Yy I(l)_v22’ (Al?)
2
f2(t)=2 ktk, Al p _ _
ij (1) IZ,O vij (A1) |(()2):?2 g‘o (kg — o ks ), (A18)
1 2 k 1k p 2
= = — e 2
fi== 2 wit" (A2) =zl ol 2+ kz%_ (v wiy 2
with — kWi %), m=1,2.3, (A19)
vy =—2zq);, (A3) 1P=vp2 (A20)
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=220+ vB) +(0f H+o5 Y] m=234, (A3
2
+ Plkgm (Vw3 =Wy 3N
Ss=8Z+2 >, pwi,, (A24)
2 k=12
+ szzm (U;1W212+37k_ U§2W2m1+37k)’
m=0,1,2, (A21) Se=4. (A25)

1£)=s(v3,+03y),
In the formalism used in this appendix, it may occur in
Sm=428n 4t 2 > pr(ZWh T+ W 2) + prps Eqs.(AlG), (A19), and(AZl), tha}t fprmallyv{}‘ with nega-
5 k=12 tive m values are required. This is a consequence of our
Kome2—k_ Kk .omt2—k effort to present the above expressions in a very compact
Xk:%_l (W1 W2, WiWar © ), (A22) form; in fact,v{j'=0 for negativem.
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