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Structure and thermodynamic properties of a binary liquid in a porous matrix: The formalism

Elisabeth Paschinger and Gerhard Kahl
Institut für Theoretische Physik and Center for Computational Materials Science, TU Wien, Wiedner Hauptstraße 8–10,

A-1040 Wien, Austria
~Received 20 January 2000!

Using the replica trick we derive a formalism to describe the structure and the thermodynamic properties of
a binary liquid in equilibrium with a porous medium. We present the replica Ornstein-Zernike equations for the
general case of ak-component liquid inside a porous matrix; besides the usual liquid-state closure relations, we
consider in particular the optimized random phase approximation~ORPA! restricting ourselves at present to
hard-core potentials exclusively. We present furthermore several thermodynamic relations: the Gibbs-Duhem
equation, the compressibility, and the virial equation. Within the framework of the ORPA~mean spherical
approximation!, closed expressions for the perturbation contribution to the free energy and the chemical
potentials can be presented. Finally, we offer suggestions for numerical implementations.

PACS number~s!: 05.70.Fh, 61.20.Gy, 64.70.Fx
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I. INTRODUCTION

In recent years, considerable effort has been dedicate
developing theoretical tools that allow the investigation
structural and thermodynamic properties of liquids that are
equilibrium with a quenched porous medium. The increa
activity in this field is certainly due to the following reason
on the one hand, in many experiments the phase behavi
liquids and liquid mixtures inside porous matrices has b
studied~for an overview see, for instance,@1,2#! and many
interesting effects were discovered; on the other hand, th
complex systems are of technological interest, with appli
tion in catalysis, gas separation, or purification.

From the theoretical point of view, the main problem
the description of such systems lies in the double aver
required for the calculation of thermodynamic and structu
properties: one average is taken over the configuration
the liquid, keeping the matrix particles in fixed positions, a
the second average is then taken over different matrix c
figurations. The first steps to solving this complex proble
were proposed by Madden and Glandt@3#, who derived clus-
ter expansions for the distribution functions; integral eq
tions for the correlation functions, which are similar to t
Ornstein-Zernike equations in standard liquid state theo
have been presented. In subsequent work, Given and
have applied the replica method~introduced originally in the
theory of spin glasses@4#! to this problem@5–7# and have
thus provided a powerful tool on which many of the prese
day approaches in this field are based. The replica trick
ploits a mathematical isomorphism between a pa
quenched system and a limiting case of a correspond
equilibrium system, which consists of the now mobile mat
particles and ofs noninteracting identical copies of the liq
uid: the properties of the quenched system are obtained
considering the limits→0 of the properties of the equilib
rium system, which, in turn, can be treated by standard liq
state theories. Given and Stell presented in their work
~now correct! formulation of the so-called replica Ornstein
Zernike ~ROZ! equations, the counterpart of the Ornste
Zernike equations in standard liquid state theory: they re
the liquid-liquid, the liquid-matrix, and the matrix-matri
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to
f
n
d

of
n

se
-

e
l
of

n-

-

y,
ell

-
x-
y
g

by

id
e

-
te

correlation functions. Finally, thermodynamic relations f
such systems have been presented by Rosinberg, Stell
co-workers@8,9#. Using the ROZ equations, the phase d
grams of simple liquids inside a porous matrix have be
calculated in combination with different closure relatio
~see, for instance,@1,2#!; recently, a formalism to treat sys
tems containing partly quenched mixtures with electrosta
interactions between various species has also been pres
@10#. To conclude this overview, one should mention th
several of these numerical calculations were complemen
by computer simulations~for instance,@11–13#!.

Similar to thehomogeneouscase, the step from a one
component to a binary liquid offers—due to the increas
number of parameters—a much richer variety of phase
grams and phenomena: the concentrations of the species
the differences in the particle size and in the interatom
potentials can now be varied and can lead to interesting
fects. While the case of a one-component liquid in a poro
medium has been considered thoroughly during the p
years by several groups, practically no attention has b
paid to describe binary liquids inside a porous matrix.
further and important motivation to proceed to liquid mi
tures is the fact that several experiments have been mad
such systems. In the present study, we present the gene
zation of the formalism to binary liquids: using the replic
trick we have proceeded along similar lines to the on
component case; we derive the ROZ equations, which n
consist of one decoupled equation for the matrix correlat
functions h00 and c00 ~as in the case of a one-compone
liquid! and a set of eight coupled integral equations for
set of the remaining correlation functions~versus three
coupled equations in the case of a simple liquid!. These
equations can be solved along with one of the standard liq
state closures~such as Percus-Yevick or hypernetted cha
approximation! using efficient numerical algorithms, like th
one proposed by Lombaet al. @11# for the simple one-
component case. As a further closure relation, we have
considered the random-phase approximation~RPA!—as al-
ready done by Kierlik and co-workers@2# in the one-
component case—along with an optimization criterion in t
closure relation~ORPA @14,15#!, which guarantees that th
5330 ©2000 The American Physical Society
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pair distribution functions vanish inside the core region. W
should also note that the present version of the ORPA
equivalent to the MSA. We show that the solution of t
ROZ equations together with the MSA closure relation c
be mapped on the solution of a variational problem: a s
ably defined functional~which turns out to be a second-ord
contribution to the free energy! is minimized with respect to
variations of the direct correlation functions inside the co
region. We give numerical hints for the solution of the int
gral equations and of the variational problem which leads
the determination of the correlation functions and hence
the structure of the system. We present thermodynamic r
tions, some of which can be used to calculate phase
grams: the Gibbs-Duhem equation, the compressibility,
energy, and the virial equation. Furthermore, the ORP
MSA allows us to derive closed expressions for the per
bation contribution of the free energy and the chemical
tentials. The presentation of numerical results will
postponed to a future contribution: currently we are inve
gating a symmetric liquid inside a porous matrix@16#; we
show that the increase of the matrix density leads to va
tions of the phase diagram similar to those observed fo
binary symmetric liquid when modifying the strength of th
unlike interaction@17#.

In the subsequent section, we present the formalism,
derive the ROZ equations, and present different closure
lations; in particular, we concentrate on the ORPA and d
cuss possibilities for its numerical implementation. We th
present the relations for the thermodynamic quantities.
paper is closed with concluding remarks.

II. FORMALISM

A binary liquid inside a porous~one-component! matrix
can be considered as a very special three-component liq
where the particles of the matrix are fixed in place and
not affected by the mobile particles of the liquid. Physic
quantities are hence obtained by two successive avera
one average is taken over the degrees of freedom of the
particles~where the positions of the matrix particles are ke
fixed! and the other average is performed over all poss
degrees of freedom of the matrix particles. The actual ca
lation of such averages turns out to be very difficult; to c
cumvent these problems, Given and Stell have applied
replica method~introduced originally in@4#! to liquid-state
systems@5–7#: this method exploits a mathematical isomo
phism between a partly quenched system and a limiting c
of a corresponding equilibrium system, which is usually d
noted as the replicated system. We briefly demonstrate
trick for the case of a binary liquid, using a canonical e
semble for both the matrix and the binary liquids. For
given matrix configuration~the positions of theN0 matrix
particles are denoted byqN05$qi%), and a given temperatur
T1 (b151/kBT1), the free energyA is given by

2b1A~N1 ,N2 ,V,T1 ;qN0!5 ln Z~qN0!, ~1!

Z(qN0) being the usual canonical partition function, i.e.,

Z~qN0!5
1

N1!N2! E drN1dsN2 exp@2b1~H011H021H11

1H121H22!#. ~2!
e
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The Hi j are the configurational parts of the Hamilton fun
tions describing the interactions between matrix particles~in-
dex 0! and particles of the liquid~indices 1 and 2!. The
positions of theN1 (N2) fluid particles of component 1
~component 2! are denoted byrN15$r i% (sN25$si%). The free

energy of the quenched system,Ā, where the matrix particles
are distributed according to a canonical ensemble at a t
peratureT0 (b051/kBT0), is obtained via averaging over th
qN0, i.e.,

2b1Ā52b1Ā~N0 ,N1 ,N2 ,V,T1 ,T0!

5
1

N0!Z0
E dqN0exp@2b0H00~qN0!# ln Z~qN0!,

~3!

whereZ0 is a normalizing factor. The logarithm in the abov
expression makes the calculation of the average very d
cult. However, using the identity lnx5lims→0dxs/dx, one
obtains

2b1Ā5
1

Z0
lim
s→0

d

dsF 1

N0! E dqN0 exp@2b0H00~qN0!#

3@Z~qN0!#sG . ~4!

The bracketed term in the above equation is denoted
Zrep(s) and can be explicitly written for integer values ofs as
an iterated integral,

Zrep~s!5
1

N0! ~N1! !s~N2! !s

3E dqN0 dr1
N1
•••dr s

N1 ds1
N2
•••dss

N2

3exp@2b0H00~qN0!#

3expF2b1 (
a51

s

@H01
a ~qN0,ra

N1!1H02
a ~qN0,sa

N2!#G
3expF2b1 (

a51

s

@H11
a ~ra

N1!1H12
a ~ra

N1 ,sa
N2!

1H22
a ~sa

N2!#G . ~5!

If we assume that the interactions between the particle
the system can be described via pair potentialsF i j , then Eq.
~5! is the equilibrium partition function of a system with th
following configurational part of the Hamilton function:
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H5 (
i , j

i , j P$1, . . . ,N0%

F00~qi ,qj !1 (
a51

s

(
i , j

i P$1, . . . ,N0%
j P$1, . . . ,N1%

F01
a ~qi ,ra, j !

1 (
a51

s

(
i , j

i P$1, . . . ,N0%
j P$1, . . . ,N2%

F02
a ~qi ,sa, j !

1 (
a51

s

(
b51

s

(
i , j

i , j P$1, . . . ,N1%

F11
ab~ra,i ,rb, j !

1 (
a51

s

(
b51

s

(
i , j

i P$1, . . . ,N1%
j P$1, . . . ,N2%

F12
ab~ra,i ,sb, j !

1 (
a51

s

(
b51

s

(
i , j

i , j P$1, . . . ,N2%

F22
ab~sa,i ,sb, j !

5H00~qN0!1 (
a51

s

@H01
a ~qN0,ra

N1!1H02
a ~qN0,sa

N2!

1H11
a ~ra

N1!1H12
a ~ra

N1 ,sa
N2!1H22

a ~sa
N2!#. ~6!

F i j
ab denotes the pair interaction between a fluid particle

componenti in replica a with a particle of componentj in
replicab, etc., and the system is characterized by the follo
ing pair potentials:

F01
a ~qi ,ra, j !5F01~qi ,ra, j !, F02

a ~qi ,sa, j !5F02~qi ,sa, j !,
~7!

F11
ab~ra,i ,rb, j !5dabF11~ra,i ,rb, j !, F12

ab~ra,i ,sb, j !

5dabF12~ra,i ,sb, j !,

~8!

F22
ab~sa,i ,sb, j !5dabF22~sa,i ,sb, j !.

Equation~5! represents the canonical partition function
a fully equilibrated (2s11)-component system, consistin
of the matrix and ofs identical copies~replicas, denoted by
the Greek index! of the liquid mixture where the interactio
of the liquid particles has a very special feature: pairs
liquid particles interact only if they belong to the same re
lica.

In the following we assumeT05T1[T, hence

2bĀ5
1

Z0
lim
s→0

d

ds
Zrep~s!5 lim

s→0

d

ds
@2bArep~s!#. ~9!

Thus we have related the thermodynamic potential of
partly quenched system to the limiting case of the thermo
namic potential of a fully equilibrated system. Structu
functions and further thermodynamic properties of the pa
quenched system can now be obtained from the corresp
ing quantities of the fully equilibrated replicated system
special prescriptions, involving throughout limitss→0: a
complete set of these rules is compiled in Ref.@8#.
f
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A. The structure

1. The replica Ornstein-Zernike equation

The structure of a binary liquid inside a porous matrix c
be most readily determined via the replica Ornstein-Zern
~ROZ! equations. Following similar lines to the one
component case, these relations are derived from the s
dard Ornstein-Zernike~OZ! equations for the fully equili-
brated (2s11)-component system, relating correlatio
functions hi j

rep(s)5hi j
rep(r ;s) and ci j

rep(s)5ci j
rep(r ;s). Since

there is no risk of ambiguity, we can suppress in the follo
ing the argumentsr andq of the functions; the arguments ar
obvious from the following notation: functions inq space
carry a tilde, while all other functions are inr space. The
densities of the matrix is denoted byr0, the partial densities
of the two liquid components byr1 and r2. IntroducingO
~E! as the set of odd~even! numbers less equal than 2s and
using the symmetry relations

c0i
rep~s!5c01

rep~s! i PO; c0i
rep~s!5c02

rep~s! i PE; ~10!

cii
rep~s!5c11

rep~s! i PO; cii
rep~s!5c22

rep~s! i PE;

ci j
rep~s!5c12

rep~s! i PO, j 5 i 11; ~11!

ci j
rep~s!5c13

rep~s! i , j PO, iÞ j ;

ci j
rep~s!5c14

rep~s! i PO, j PE, j Þ i 11; ~12!

ci j
rep~s!5c24

rep~s! i , j PE, iÞ j ~13!

~and similar relations for theh’s! and finally taking the limit
s→0, one finally arrives at the following set of integra
equations wherê represents a convolution:

h005c001r0c00^ h00,

h015c011r0c00^ h011r1c01^ h111r2c02^ h122r1c01^ h13

2r2c02^ h14,

h025c021r0c00^ h021r1c01^ h121r2c02^ h222r1c01^ h14

2r2c02^ h24,

h115c111r0c01^ h011r1c11^ h111r2c12^ h122r1c13^ h13

2r2c14^ h14,

h125c121r0c01^ h021r1c11^ h121r2c12^ h222r1c13^ h14

2r2c14^ h24,
~14!

h225c221r0c02^ h021r1c12^ h121r2c22^ h222r1c14^ h14

2r2c24^ h24,

h135c131r0c01^ h011r1c11^ h131r2c12^ h141r1c13^ h11

1r2c14^ h1222r1c13^ h1322r2c14^ h14,

h145c141r0c01^ h021r1c11^ h141r2c12^ h241r1c13^ h12

1r2c14^ h2222r1c13^ h1422r2c14^ h24,

h245c241r0c02^ h021r1c12^ h141r2c22^ h241r1c14^ h12

1r2c24^ h2222r1c14^ h1422r2c24^ h24.
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To some of the above relations, alternative equations ca
derived:

h015c011r0c01^ h001r1c11^ h011r2c12^ h022r1c13^ h01

2r2c14^ h02,

h025c021r0c02^ h001r1c12^ h011r2c22^ h022r1c14^ h01

2r2c24^ h02,

~15!

h125c121r0c02^ h011r1c12^ h111r2c22^ h122r1c14^ h13

2r2c24^ h14,

h145c141r0c02^ h011r1c14^ h111r2c24^ h121r1c12^ h13

1r2c22^ h1422r1c14^ h1322r2c24^ h14.

Similarly to the one-component case, we can introduce
blocking ~disconnected! parts of the correlation functions
i.e., h11

b 5 lims→0h13
rep(s), h12

b 5 lims→0h14
rep(s), and h22

b

5 lims→0h24
rep(s) and the corresponding connected parts,

fined as

h11
c 5h112h13, h12

c 5h122h14, h22
c 5h222h24. ~16!

Similar relations hold for theci j . For the definition of the
blocked and the connected parts of the correlation functi
see, for instance,@7#. Introducing finally the matrix-notation

r15S r1 0

0 r2
D , h015S h01

h02
D , c015S c01

c02
D ,

~17!

h115S h11 h12

h12 h22
D , c115S c11 c12

c12 c22
D ,

h125S h13 h14

h14 h24
D , c125S c13 c14

c14 c24
D ,

the ROZ equations~14! can be written in the following com
pact form~‘‘T’’ denotes the transpose of a vector!:

h005c001r0c00^ h00,

h015c011h01^ r0c001r1h11^ c012r1h12^ c01,

~18!

h115c111h01^ r0c01
T 1r1h11^ c112r1h12^ c12,

h125c121h01^ r0c01
T 1r1h12^ c111r1h11^ c12

22r1h12^ c12.

These equations are formally equivalent to the ROZ eq
tions of the one-component case. In addition, one can s
@18# that by extending the definitions~17! in a straightfor-
be

e

-

s

a-
w

ward way, the above equations are also valid for the gen
case of a k-component liquid inside a porous~one-
component! matrix.

2. Integral-equation closure relations

The ROZ equations can now be solved with one of
standard closure relations of liquid-state theory@19#, such as
the Percus-Yevick~PY! or the hypernetted chain~HNC! ap-
proximation. Our program package is based on Lomb
implementation to solve the ROZ equations for the on
component case, using a hybrid Newton-Raphson proce
to solve integral equations in liquid-state physics; the ori
nal numerical concept stems from Gillan@20# and was re-
fined in subsequent work by Labik, Malijevsky, and Von
~LMV ! @21# and by Ho”ye, Lomba, and Stell@22#. Our imple-
mentation follows closely the one outlined in Ref.@11#; in
particular, the Newton-Raphson part of the algorithm
quires the inversion of the Jacobian of the system of integ
equations; this matrix is built up by quantitiesFabmn which
are defined as

Fabmn~q!5
dG̃ab~q!

dC̃mn~q!
. ~19!

The capitalized quantities stand forC̃mn(q)5qc̃mn(q), etc.,
andgmn5hmn2cmn . The pairs of indices (a,b) and (m,n)
now run over~0,1!, ~0,2!, ~1,1!, ~1,2!, ~2,2!, ~1,3!, ~1,4!, and
~2,4! and the 64Fabmn are of course considerably more com
plex than in the one-component case. In principle, they
be derived in a straightforward manner by using symbo
languages, such asMAPLE; they can be provided upon re
quest.

3. The optimized random phase approximation

Another closure relation to the ROZ equations is the o
timized random-phase approximation~ORPA!, which can
also be obtained from a perturbative approach@14#. The for-
malism of the ORPA can be extended to porous systems
again it is most convenient to use the replica trick: we f
mulate the ORPA for the replicated system and then take
limiting case.

In the ORPA one assumes that all the pair potentials
tween the different particles can be split up into a refere
part ~index ‘‘r’’ ! and a perturbation part~index ‘‘p’’ !, i.e.,

F i j ~r !5F r; i j ~r !1Fp;i j ~r !. ~20!

Since in the present contribution we consider exclusiv
hard-core interactions, it is most obvious that theF r; i j (r ) are
represented throughout by hard-sphere potentials, chara
ized by hard-sphere diameterss i j . This definesFp;i j (r )
apart from finite variations inside the core. In a similar wa
the correlation functions are split up into reference and p
turbation parts. In the following, it is convenient to introdu
matricesC andH, which collect these correlation function
via Ci j 5Ar ir j ci j , etc.
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The RPA closure relation assumes that

cp;i j ~r !52bFp;i j ~r !, r .s i j ~21!

and—for instance—cp;i j (r )50 for r ,s i j , which leads to a
violation of the core condition, i.e.,gi j (r )Þ0 inside the core
region. This deficiency is compensated by the additional~op-
timized! closure relation:cp;i j (r ) is chosen inside the core s
that

gi j ~r !50 for r ,s i j ⇔ hp;i j ~r !50 for r ,s i j .
~22!

For completeness, we would like to point out that in the c
of soft interactions, the reference part of the potentials can
mapped back onto a set of suitably chosen hard-sphere
tentials using the prescription of Weeks, Chandler, a
Andersen@15,23#.

It can now be shown that the reduced~dimensionless!
excess free energy of the system~over the ideal gas! is given
by @14#

A* 52
bAex

V
5Ar* 1AHTA* 1AORPA* , ~23!

whereAr* is the excess free energy of the~hard-sphere! ref-
erence system,AHTA* is the high-temperature correction
given by

AHTA* 5
1

2 (
i j

r ir jE drgr; i j ~r !cp;i j ~r !, ~24!

andAORPA* is the sum of composite ring diagrams, which
found to be

AORPA* 5AORPA* @C̃p#52
1

2~2p!3E dq $Tr @C̃p~q!Sr~q!#

1 ln Det@ I2C̃p~q!Sr~q!#%. ~25!

‘‘Tr’’ and ‘‘Det’’ denote the trace and the determinant of
matrix, I is the unit matrix, andSr(q) is the matrix of the
partial structure factors of the hard-sphere reference sys
The ORPA contribution to the free energy is now a fun
tional of the perturbation part of the direct correlation fun
tions cp;i j . It is straightforward to show that

FdAORPA*

dcp;i j
G~r !}hp;i j ~r !. ~26!

This relation points out that the solution of the OZ equatio
along with the ORPA closure relations~21! and ~22! is
equivalent to a minimization problem of the function
AORPA* @C̃ p# with respect to variations of the direct correl
tion functionscp;i j (r ) inside the core region as the minim
zation condition~26! is equivalent to the optimization con
dition ~22!. This fact is particularly useful for thenumerical
solution of the ORPA: although, of course, the numeri
solutions of integral equations and of the minimization of t
functional should lead to the same results, we found tha
e
e
o-
d

m.
-
-

s

l

from the numerical point of view—in some cases it can
more convenient to solve the minimization problem.

As shown in @2,18#, the expression for the free energ
~23! can be rewritten with the help of the OZ equations a
Parseval’s theorem as follows:

A* 5Ar* 1
1

2 (
i , j

r ir j c̃p;i jU
q50

2
1

2 (
i

r icp;i iU
r 50

2
1

2~2p!3E dq $ ln Det@12C̃~q!#2 ln Det@1

2C̃r~q!#%. ~27!

The replicated system is now a (2s11)-component sys-
tem with a very special set of interatomic potentialsF i j (r ).
We assume that the matrix particles are pure hard sphe
then the RPA closure relations read

c00
rep~s!5cr;00

rep ~s!,

ci j
rep~s!5cr; i j

rep~s!1cp;i j
rep ~s! for i , j 501,02,11,12,22,

~28!

ci j
rep~s!5cr; i j

rep~s! for i , j 513,14,24

with cp;i j
rep 52bFp;i j (r ), while the core conditions now rea

hp;i j (r )50 for r ,s i j . Using the symmetry properties of th
replicated system, the expression for the free energy in
replicated system, (Arep)* , is given by

~Arep!* ~s!5~Ar
rep!* ~s!1

1

2 F s (
i 51,2

r i
2c̃ p;i i

rep ~s!

12s (
i , j

i 50,1

r ir j c̃ p;i j
rep ~s!G

q50

2
1

2 Fs (
i 51,2

r icp;i i
rep~s!G

r 50

2
1

2~2p!3E dq $ lnDet@12C̃rep~s!#

2 ln Det@12C̃r
rep~s!#%. ~29!

Again, closer investigation of the symmetry of the tw
matrices appearing in the above equation allows us to de
the following identity, which can be applied to both contr
butions to the above integral:
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ln Det@12C̃rep~s!#5~s21!ln„$12r1~ c̃11
rep~s!2 c̃13

rep~s!#%$12r2@ c̃22
rep~s!2 c̃24

rep~s!#%

2r1r2@ c̃12
rep~s!2 c̃14

rep~s!#2
…1 ln„@12r0c̃00

rep~s!#$@12r1c̃11
rep~s!2r1~s21!c̃13

rep~s!#

3@12r2c̃22
rep~s!2r2~s21!c̃24

rep~s!#2r1r2@ c̃12
rep~s!1~s21!c̃14

rep~s!#2%

2sr0r1@ c̃01
rep~s!#2@12r2c̃22

rep~s!2r2~s21!c̃24
rep~s!#222sr0r1r2c̃01

rep~s!c̃02
rep~s!

3@ c̃12
rep~s!1~s21!c̃14

rep~s!#2sr0r2@ c̃02
rep~s!#2@12r1c̃11

rep~s!2r1~s21!c̃13
rep~s!#2

…. ~30!
th
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The free energy of the quenched system,Ā, is now obtained
via Ā5 lims→0(d/ds)Arep(s) @8,2#,

Ā* 5Ar* 2A@C#1A@Cr#1
1

2
@r1

2c̃p;111r2
2c̃p;2212r0r1c̃p;01

12r0r2c̃p;0212r1r2c̃p;12#q50

2
1

2
@r1cp;111r2cp;22# r 50 , ~31!

where the functionalA@C# is defined as follows:

A@C#5
1

2~2p!3E dqH ln$~12r1c̃11
c !~12r1c̃22

c !

2r1r2@ c̃12
c #2%2

1

@12r1c̃11
c #@12r2c̃22

c #2r1r2@ c̃12
c #2

3H r1c̃13~12r2c̃22
c !1r2c̃24~12r1c̃11

c !

12r1r2c̃14c̃12
c ~q!1

r0

12r0c̃00

@r1c̃ 01
2 ~12r2c̃22

c !

1r2c̃ 02
2 ~12r1c̃11

c !12r1r2c̃01c̃02c̃12
c #J J . ~32!

Finally, one can show that for the above expression of
free energy the following relation holds:

S dĀ*

dcp;i j
D ~r !5

22d i j

2
r ir j@gr; i j ~r !1hp;i j ~r !#, ~33!

which means that the minimization of the functionalĀ* @Cp#
with respect to variations of thecp;i j (r ) inside the core re-
gion is equivalent to the optimization requirement~22!.

The numerical solution of the ORPA leads to the corre
tion functions; to this end we have discretized these fu
tions both in r and in q space, using typically 1024 grid
points and a mesh-size ofDr 50.01s11 (s11 being the diam-
eter of species 1 of the binary liquid; furthermore, we assu
s11,s22). Given the system, we first calculate the corre
tion functionshr ; i j andcr ; i j of the reference system by solv
ing the ROZ equations~14! along with the PY closure using
the LMV algorithm adapted to the present problem@11#.
Then we solve the ORPA by minimizing the function
e

-
-

e
-

A@C# ~32! using the steepest-descent method. The advan
of this minimization algorithm lies in the fact that the e
plicit calculation of the functional is not required; we on
need its derivatives, i.e.,hp;i j , which we easily obtain from
the so-called residual ROZ equations@18#. Starting from an
initial guess for the direct correlation functions inside t
core region~for instance, the simple RPA expression!, we
create with these gradients a sequence of new, improved
rect correlation functions until we obtain a minimum in th
functional within a sufficient accuracy. The step size in t
sequence of these estimates is triggered by a parametj,
which measures the degree of violation of the core condit
by the resulting perturbation parts of the total correlati
functions,hp;i j ,

j5H F (
j 51,2

(
k:r k,s0 j

@Hp;0j~r k!#
2

1 (
i , j 51,2;i< j

(
k:r k,s i j

@Hp;i j ~r k!#
2GDr J 1/2

. ~34!

B. The thermodynamic properties

1. General expressions

Using the replica trick we derive—as a straightforwa
generalization of the one-component case@8#—in a first step
the Gibbs-Duhem relation and the virial equation. If we us
grand-canonical ensemble for the replicas and a canon
ensemble for the matrix, one can easily derive an expres
between the grand potential of the replicated syste
V rep(s), and the quenched system,V̄, i.e., V̄
5 lims→0(d/ds)V rep(s). dV rep(s) now contains—with re-
spect to the one-component case— an additional term du
changesdm2 and we can proceed along similar lines: t
expression fordV̄ can be integrated to give

V̄52PV, ~35!

P, the pressure of the partly quenched system, being g
by

P52S ]V̄

]V
D

T,m1 ,m2 ,r0

. ~36!

In a similar way we find for the free energy,Ā,

Ā52PV1m1N11m2N2 . ~37!
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To derive the virial equation, we start again from the e
pression for the pressure in the replicated system,Prep(s). As
in the one-component system, the pressure in the pa
quenched system,P, is given by

bP5b lim
s→0

dPrep~s!

ds
1r0S ]bP

]r0
D

V,T,m1 ,m2

. ~38!

Inserting the virial equation for the replicated system, o
therefore obtains

bP2r0S ]bP

]r0
D

V,T,m1 ,m2

5(
i

r i2
b

6E dr r Fr0
2 lim

s→0

dg00
rep~s!

ds
F008 1 (

i 51,2
r i

2gii F i i8

12 (
i 51,2

r0r ig0iF0i8 12r1r2g12F128 G , ~39!

which reduces for hard-core interactions to

bP2r0S ]bP

]r0
D

V,T,m1 ,m2

5(
i

r i2
2p

3 Fr0
2s00

3 lim
s→0

dg00
rep~s00;s!

ds
1 (

i 51,2
r i

2s i i
3gii ~s i i !

12 (
i 51,2

r0r is0i
3 g0i~s0i !12r1r2s12

3 g12~s12!G . ~40!

To derive the compressibility equation we proceed as
lows. From Eq.~35! one finds

V

kT S ]P

]r1
D

V,T,N2 ,r0

52
1

kT
S ]V̄

]r1
D

V,T,N2 ,r0

5 lim
s→0

d

dsF2
1

kT

]V rep~s!

]r1
rep~s!

G
V,T,N2 ,r0

. ~41!

Introducing an external potentialu(r ) in the replicated sys-
tem that acts on the liquid particles only, we can use
standard relation of classical density-functional theory@24#
to rewrite the bracketed term of the above equation as
lows:

F2
1

kT

]V rep~s!

]r1
rep~s!

G
V,T,N2 ,r0

5(
i 51

2s E E dr 1dr 2

3F d ln J rep~s!

d„b@m i2u~r 1!#…

d„b@m i2u~r 1!#…

dr1
(1),rep~r 2;s!

G
u50

, ~42!
-

tly

e

l-

e

l-

where r1
(1),rep(r ;s) is the inhomogeneous one-particle de

sity of species 1 in the replicated system. The two functio
derivatives of the right-hand side of the above relation c
easily be calculated and yield

d ln J rep~s!

d„b@m i2u~r 1!#…
5r i

(1),rep~r 1;s!

5H r1
(1),rep~r 1;s! for i 51,3,. . . ,2s21

r2
(1),rep~r 1;s! for i 52,4,. . . ,2s

and

d„b@m i2u~r 1!#…

dr1
(1),rep~r 2;s!

5 (
j 51

2s21

8 S d i j

d~r 1,r 2!

r j
(1),rep~r 2;s!

2ci j
(2),rep~r 1,r 2;s!D , ~43!

where summation is taken only over oddj values. Inserting
this into Eq.~42! and settingu(r )50, we find

V

kT S ]P

]r1
D

V,T,N2 ,r0

5V lim
s→0

d

ds
$s2sr1

rep~s!c̃11
rep~q50;s!

2s~s21!r1
rep~s!c̃13

rep~q50;s!

2sr2
rep~s!c̃12

rep~q50;s!

2s~s21!r2
rep~s!c̃14

rep~q50;s!%,

~44!

which finally yields

S ]bP

]r1
D

V,T,N2 ,r0

512r1c̃11
c ~q50!2r2c̃12

c ~q50!. ~45!

In a similar way we obtain

S ]bP

]r2
D

V,T,N1 ,r0

512r1c̃12
c ~q50!2r2c̃22

c ~q50!. ~46!

One can furthermore relate the above equations to
chemical potentialsm i . To this end we start from the relatio
m152(]Ā/]N1)V,T,N2 ,r0

5 lims→0m1
rep(s) and a similar re-

lation for m2. Using again the density-functional formalism
and Eq.~43!, one finds
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r1S ]bm1

]r1
D

V,T,N2 ,r0

5 lim
s→0

F r1
rep~s!

]bm1
rep~s!

]r1
rep~s!

G
5 lim

s→0
E dr2F r1

(1),rep~r2 ;s!
d„b@m1

rep~s!2u12~r1!#…

dr1
(1),rep~r2 ;s!

G
u50

5 lim
s→0

$„12r1
rep~s!c̃11

rep~q50;s!

2~s21!r1
rep~s!c̃13

rep~q50;s!…%

512r1c̃11
c ~q50!. ~47!

Following similar lines one derives also

r1S ]bm1

]r2
D

V,T,N1 ,r0

52r1c̃12
c ~q50!, ~48!

r2S ]bm2

]r2
D

V,T,N1 ,r0

512r2c̃22
c ~q50!, r2S ]bm2

]r1
D

V,T,N2 ,r0

52r2c̃12
c ~q50!. ~49!

Consistent with the Gibbs-Duhem relation, one finds tha

S ]bP

]r j
D

V,T,Nj 8 ,r0

5 (
i 51,2

r i S ]bm i

]r j
D

V,T,Nj 8 ,r0

, ~50!

where j 851 for j 52 and vice versa.
Finally, to derive the expression for the excess inter

energy of the quenched system,Ūex, we start again from the
corresponding expression for the replicated system,

Uex; rep~s!

V
5

1

2 H (
i 51,2

2sr0r i
rep~s!E dr g0i

rep~s!F0i

12sr1
rep~s!r2

rep~s!E dr g12
rep~s!F12

1 (
i 51,2

s@r i
rep~s!#2E dr gii

rep~s!F i i J ~51!

and using the relationŪex5 lims→0(d/ds)U ex; rep(s), hence,

Ūex

V
5 (

i 51,2
r0r iE dr g0iF0i1

1

2 (
i 51,2

r i
2E dr gii F i i

1r1r2E dr g12F12. ~52!

It should be noted that the same relation can be obta
by using the definition thatŪex is given by a double averag
of the Hamilton function: one over the degrees of freedom
the liquid for a fixed matrix and then over all possible mat
l

d

f

configurations. Furthermore, it is straightforward to sho
that the following Gibbs-Helmholtz relation holds:

Ūex5
]

]b
~bĀ!. ~53!

2. MSA and ORPA expressions

As shown in the preceding section, in the ORPA one c
derive closed expressions for the free energyĀ @Eq. ~31!#. In
addition, in the version of the ORPA used in this contrib
tion ~which is equivalent to the MSA! one is able to derive
closed expressions for the perturbation contribution to
chemical potentials,mp;i ,

bmp;15bm12bm r;152@r1c̃p;111r0c̃p;011r2c̃p;12#q50

1
1

2
@cp;11# r 50 , ~54!

bmp;25bm22bm r;252@r2c̃p;221r0c̃p;021r1c̃p;12#q50

1
1

2
@cp;22# r 50 . ~55!

The m r; i are the chemical potentials of the reference syste
Above expressions can equally well be derived from the g
eral MSA expressions for the replicated system@25# and tak-
ing the limit s→0.

Using the results forĀ and the chemical potentials, on
can obtain the pressure directly from the Gibbs-Duhem re
tion ~37!.

III. CONCLUSIONS

In this contribution we have presented the formalism
describe the structural and the thermodynamic properties
binary liquid in equilibrium with a porous matrix. Following
a similar approach to that in the one-component case,
used the replica trick, which establishes an isomorphism
tween the partly quenched system and a fully equilibra
system, consisting of the matrix ands identical, noninteract-
ing copies of the binary liquid. In particular, we focus o
hard-core systems. The formalism is based on the rep
Ornstein-Zernike equations which have been presented
the general case of ak-component liquid in equilibrium with
a porous matrix. These coupled integral equations can
complemented by standard liquid state closure relatio
such as the Percus-Yevick or the hypernetted chain appr
mation. In particular, we have considered the optimiz
random-phase approximation~ORPA!, an MSA-type closure
relation that fully takes into account the core condition f
the hard-sphere pair distribution functions. We have sho
that the solution of the ORPA is equivalent to minimizing
suitably defined functional with respect to variations of t
direct correlation functions inside the core region. Gene
expressions for thermodynamic quantities and relations h
been presented; for some of these~such as the perturbatio
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contribution to the free energy or the chemical potentials! the
ORPA/MSA allows us to give closed expressions.
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