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Structure and thermodynamic properties of a binary liquid in a porous matrix: The formalism
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Using the replica trick we derive a formalism to describe the structure and the thermodynamic properties of
a binary liquid in equilibrium with a porous medium. We present the replica Ornstein-Zernike equations for the
general case of kcomponent liquid inside a porous matrix; besides the usual liquid-state closure relations, we
consider in particular the optimized random phase approxim&@iRPA) restricting ourselves at present to
hard-core potentials exclusively. We present furthermore several thermodynamic relations: the Gibbs-Duhem
equation, the compressibility, and the virial equation. Within the framework of the ORR&n spherical
approximation, closed expressions for the perturbation contribution to the free energy and the chemical
potentials can be presented. Finally, we offer suggestions for numerical implementations.

PACS numbes): 05.70.Fh, 61.20.Gy, 64.70.Fx

[. INTRODUCTION correlation functions. Finally, thermodynamic relations for
such systems have been presented by Rosinberg, Stell, and
In recent years, considerable effort has been dedicated w-workers[8,9]. Using the ROZ equations, the phase dia-
developing theoretical tools that allow the investigation ofgrams of simple liquids inside a porous matrix have been
structural and thermodynamic properties of liquids that are ircalculated in combination with different closure relations
equilibrium with a quenched porous medium. The increasedsee, for instancd,1,2]); recently, a formalism to treat sys-
activity in this field is certainly due to the following reasons: tems containing partly quenched mixtures with electrostatic
on the one hand, in many experiments the phase behavior afteractions between various species has also been presented
liquids and liquid mixtures inside porous matrices has beefil0]. To conclude this overview, one should mention that
studied(for an overview see, for instancgl,2]) and many several of these numerical calculations were complemented
interesting effects were discovered; on the other hand, thedsy computer simulation§for instance[11-13).
complex systems are of technological interest, with applica- Similar to thehomogeneousase, the step from a one-
tion in catalysis, gas separation, or purification. component to a binary liquid offers—due to the increased
From the theoretical point of view, the main problem in number of parameters—a much richer variety of phase dia-
the description of such systems lies in the double averaggrams and phenomena: the concentrations of the species and
required for the calculation of thermodynamic and structurathe differences in the particle size and in the interatomic
properties: one average is taken over the configurations gfotentials can now be varied and can lead to interesting ef-
the liquid, keeping the matrix particles in fixed positions, andfects. While the case of a one-component liquid in a porous
the second average is then taken over different matrix cormedium has been considered thoroughly during the past
figurations. The first steps to solving this complex problemyears by several groups, practically no attention has been
were proposed by Madden and Glah8l}, who derived clus- paid to describe binary liquids inside a porous matrix. A
ter expansions for the distribution functions; integral equafurther and important motivation to proceed to liquid mix-
tions for the correlation functions, which are similar to thetures is the fact that several experiments have been made for
Ornstein-Zernike equations in standard liquid state theorysuch systems. In the present study, we present the generali-
have been presented. In subsequent work, Given and Stalation of the formalism to binary liquids: using the replica
have applied the replica methdidtroduced originally in the trick we have proceeded along similar lines to the one-
theory of spin glassept]) to this problem[5-7] and have component case; we derive the ROZ equations, which now
thus provided a powerful tool on which many of the present-consist of one decoupled equation for the matrix correlation
day approaches in this field are based. The replica trick exfunctions hyy and ¢y (as in the case of a one-component
ploits a mathematical isomorphism between a partlyliquid) and a set of eight coupled integral equations for the
guenched system and a limiting case of a correspondinget of the remaining correlation functionsersus three
equilibrium system, which consists of the now mobile matrixcoupled equations in the case of a simple liquidhese
particles and of noninteracting identical copies of the lig- equations can be solved along with one of the standard liquid
uid: the properties of the quenched system are obtained bstate closuregsuch as Percus-Yevick or hypernetted chain
considering the limis— 0 of the properties of the equilib- approximation using efficient numerical algorithms, like the
rium system, which, in turn, can be treated by standard liquicbne proposed by Lombat al. [11] for the simple one-
state theories. Given and Stell presented in their work theomponent case. As a further closure relation, we have also
(now correct formulation of the so-called replica Ornstein- considered the random-phase approximatiBRA)—as al-
Zernike (RO2) equations, the counterpart of the Ornstein-ready done by Kierlik and co-workerf2] in the one-
Zernike equations in standard liquid state theory: they relateomponent case—along with an optimization criterion in the
the liquid-liquid, the liquid-matrix, and the matrix-matrix closure relatiofORPA [14,15]), which guarantees that the
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pair distribution functions vanish inside the core region. WeThe H;; are the configurational parts of the Hamilton func-
should also note that the present version of the ORPA isions describing the interactions between matrix partiGles
equivalent to the MSA. We show that the solution of thedex 0 and particles of the liquidindices 1 and 2 The
ROZ equations together with the MSA closure relation carpositions of theN; (N,) fluid particles of component 1
be mapped on the solution of a variational problem: a SUit(componentZare denoted byN1={r;} (S¥2={s}). The free

ably ‘?'ef"_‘ed functionawhich turns out to be a second-order energy of the quenched systef,where the matrix particles
contribution to the free ener@ys minimized with respect to 2 : )
are distributed according to a canonical ensemble at a tem-

variations of the direct correlation functions inside the core tureT — 1 koTo) s obtained vi . th
region. We give numerical hints for the solution of the inte- p(Nara'ure o (Bo=1/kgTy), is obtained via averaging over the

gral equations and of the variational problem which leads td > '-€-
the determination of the correlation functions and hence to

the structure of the system. We present thermodynamic rela- _ _
tions, some of which can be used to calculate phase dia- —B1A=—81A(Ng,N;1,N,,V,T1,To)
grams: the Gibbs-Duhem equation, the compressibility, the

o X 1
energy, and the virial equation. Furthermore, the ORPA/ _ fd Noexd — BH Noyin Z(gNo
MSA allows us to derive closed expressions for the pertur- No!Zg a7oexH ~ BoHod a0 i 2(a75),
bation contribution of the free energy and the chemical po- &)

tentials. The presentation of numerical results will be
postponed to a future contribution: currently we are investi-

gating a Sym”?et“c liquid inside a porous matfiie]; we . whereZ, is a normalizing factor. The logarithm in the above
S.hOW that the increase of the_ matrix density leads to Va”aéxpression makes the calculation of the average very diffi-
tions of the phase diagram similar to those observed for ALt However using the identity b=lim,_dx¥/dx, one
binary symmetric liquid when modifying the strength of the . ' s=0 '
unlike interaction17]. obtains

In the subsequent section, we present the formalism, we
derive the ROZ equations, and present different closure re-
lations; in particular, we concentrate on the ORPA and dis- —,81K= —Iimi
cuss possibilities for its numerical implementation. We then Zog_ods
present the relations for the thermodynamic quantities. The

paper is closed with concluding remarks.

1
oy | et exi— oo o]

X[Z(qN0)T?|. (4)

Il. FORMALISM

A binary liquid inside a porousone-componentmatrix i .
can be considered as a very special three-component liquidh€ bracketed term in the above equation is denoted by
where the particles of the matrix are fixed in place and are °'(s) and can be explicitly written for integer valuessiés
not affected by the mobile particles of the liquid. Physicalan iterated integral,
guantities are hence obtained by two successive averages:
one average is taken over the degrees of freedom of the fluid
particles(where the positions of the matrix particles are kept
fixed) and the other average is performed over all possible Z"%(s)=

S S
degrees of freedom of the matrix particles. The actual calcu- No! (N1)*(N2!)

lation of such averages turns out to be very difficult; to cir-

cumvent these problems, Given and Stell have applied the X f dg™o drTL - ~dr§1 dSTZ- : ~ds§2
replica method(introduced originally in[4]) to liquid-state

systemg5-7]: this method exploits a mathematical isomor- xexf — BoHoo(qV0)]

phism between a partly quenched system and a limiting case

of a corresponding equilibrium system, which is usually de- ° N N

noted as the replicated system. We briefly demonstrate this xex% _Blgl [HE(Mo,r ) +HeAqMo,5,2)]
trick for the case of a binary liquid, using a canonical en-

semble for both the matrix and the binary liquids. For a s N NN
given matrix configuratior(the positions of theN, matrix xexg — B 21 [Hir HD+Hr, s,?)

particles are denoted ly'o={q;}), and a given temperature
T, (B1=1kgT,), the free energy is given by

a, N
—B1A(N1,N2,V, T1;q%) =In Z(gNo), (1) +H22(S“2)]] ©

Z(qNo) being the usual canonical partition function, i.e.,
1 N If we assume that the interactions between the particles of
NN f drMidshz ex — B1(Hop+ Hoot Hyg the system can be described via pair potentials, then Eq.
re (5) is the equilibrium partition function of a system with the
+HptHy) . (20  following configurational part of the Hamilton function:

Z(gNo)=
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A. The structure

H= ,E<J Pool G, ) + ;::1 ,ZJ Poi(i o) 1. The replica Ornstein-Zernike equation
M et Nok ;iﬁm‘ﬁ The structure of a binary liquid inside a porous matrix can
be most readily determined via the replica Ornstein-Zernike
S (RO2) equations. Following similar lines to the one-
+ E Z Do 1Sy,j) component case, these relations are derived from the stan-
a=1 el Nt dard Ornstein-ZernikéOZ) equations for the fully equili-
je{l,... Ny} brated (3+1)-component system, relating correlation
s s functions h{7(s)=h;ir;s) and ciiA(s)=c{r;s). Since
there is no rlsk of amblgwty, we can suppress in the follow-
aBe : . .
+ gl ;1 ;l Pyr(Faiilp,) ing the arguments andq of the functions; the arguments are
ije{l,... Ny} obvious from the following notation: functions ig space
s s carry a tilde, while all other functions are inspace. The
oBrr o densities of the matrix is denoted by, the partial densities
+§1 le ,EJ P12 (Fai2S,)) of the two liquid components by, and p,. IntroducingO
iefl,.. Ny} (E) as the set of od@evern numbers less equal thars 2nd
Jefl . Nab using the symmetry relations
S S
N co(s)=co(s) ieO; cpAs)=cp(s) ieE; (10
+ 21 21 Z DoL(s, +Sg.j) o o
O B ClR(s)=cs) ie0; cs)=cN(s) ieE;
S re ; A .
ij(s)=ciFs) ieO, j=i+1; (11
@ N @ N
=Hoo(qV0)+ >, [Hol(qNO,ral)"‘Hoz(qNo,Saz) e e
a=1 TAs)=cif(s) i,jeO, i#j;
a N a Ny N a N
FHEAr ) HHEr S, 2 HHEA(s,2)]. (6) ciRs)=cy(s) i€O, jeE, j#i+1; (12)
(I)f}ﬁ denotes the pair interaction between a fluid particle of fep(s) cl(s) i,jeE, i#] (13

component in replica« with a particle of componeritin

replicag, etc., and the system is characterized by the follow-(@nd similar relations for tha’s) and finally taking the limit

ing pair potentials: s—0, one finally arrives at the following set of integral
equations where represents a convolution:

D6y(i Mo, ) =Poa(di s o)y PoATi1Sa,j) = PoAdi 1Sa,j)(l7) hog= Coo PoCoo®Noos

No1= Co1t PoCoo® No1t P1Co1® 11+ P2CE®N15— p1C1® M43
‘I’flﬁ(ra,i )= 0apPra(r i), ‘I’fzﬁ(ra,i 1Sg,j)

—p2C0® N1,
= 5aﬁq)12(ra,i 1sﬁ,j )1

(8) No2= Co2t PoCoo® No2t P1Co1® N1ot P2CER Noo— p1Co1® N1y
(I)ZZ( aI!SIBJ) 5aﬁq)22( aI!SIB,j)- _p2C02®h24’

Equation(5) represents the canonical partition function of N11= €11+ poCo1® o1t p1€11® 13+ paC1o®0 1= p1Ci3® N33
a fully equilibrated (3+1)-component system, consisting —pc@h
of the matrix and of identical copiegreplicas, denoted by P2t142 114,

the Greek indexof the liquid mixture where the interaction h,,=c,,+ pyCo1® s+ p1C11® Mot P2C1o®@ Moo= p1C13® 1y
of the liquid particles has a very special feature: pairs of

liquid particles interact only if they belong to the same rep- —p2C14® Nyy,
lica. (14)
In the following we assum@,=T,=T, hence h22=C2ot PoC2® Noat P1C12® N1ot P2C2® Moo= p1C1a® N1y
— 1 d —p2Cou®h
— A= —lim—Z"(s) = im [~ ARl () p2C2uE Mas:
Zog_ods sods

h13=C13t poCo1®Np1t p1€11® 13+ p2C1o@ N1+ p1Ci3® Ny

Thus we have related the thermodynamic potential of the +ppC14®h1o—2p1C13®0 13— 2p5C14 N 14,

partly quenched system to the limiting case of the thermody-

namic potential of a fully equilibrated system. Structurehjs=Ci4+ poCo1® oot p1C11® N4+ prC1o®hos+ piCi3@hy,
functions and further thermodynamic properties of the partly
guenched system can now be obtained from the correspond-
ing quantities of the fully equilibrated replicated system by
special prescriptions, involving throughout limits—0: a
complete set of these rules is compiled in H&i. +p2C24® Moo= 2p1C14® N 14— 2p5Coa@ Ny

+p2C14® N2~ 2p1C130 N 14— 2prC14Q0 Ny,

N24= Co4F PoC0o2® No2t p1C12® N1gt p2Co2® Nogt p1C14® N1
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To some of the above relations, alternative equations can beard way, the above equations are also valid for the general

derived: case of ak-component liquid inside a porougone-
component matrix.

No1= Co1t PoCo1® Moot P1C11® Noyt p2C12® No2— p1C13® oy

2. Integral-equation closure relations

—p2C14®hoy, . ;
The ROZ equations can now be solved with one of the

standard closure relations of liquid-state thefdg], such as
the Percus-YevickPY) or the hypernetted chaifHNC) ap-
— p2C24®hop, proximation. Our program package is based on Lomba’s
(15 implementation to solve the ROZ equations for the one-
component case, using a hybrid Newton-Raphson procedure
to solve integral equations in liquid-state physics; the origi-
nal numerical concept stems from Gill§a0] and was re-
— p2Cos®hyyg, fined in subsequent work by Labik, Malijevsky, and Vonka
(LMV) [21] and by Hye, Lomba, and Ste[R2]. Our imple-
mentation follows closely the one outlined in REL1]; in
particular, the Newton-Raphson part of the algorithm re-
+p2C®h14—2p1C14®N13—2p,Co4®@ N1y quires the inversion of the Jacobian of the system of integral
equations; this matrix is built up by quantiti€s, z,,,, which
Similarly to the one-component case, we can introduce th@re defined as
blocking (disconnected parts of the correlation functions,
ie., hP=limg_ oh's), ho=lim,_ohA(s), and hb, o ()
fllmsﬂohrzip(s) and the corresponding connected parts, de- Fopu(Q) = ~aB a _ (19)
fined as dC,.(q)

No2= Coat PoCo2® Nopt P1C12® Np1 1 P2C2® Moo= p1C1a® Ny

N12=C1F PoCo2®No1+ p1C12® N1+ P2C2@ N1o— p1C1a® N13

N14=C14t PoCo2® No1t p1C14® N1+ p2Cos®@ N1+ p1C1o® N13

hf1=h11—hiz, hj=hio—hy, h3=hyp—hy,. (16) - N _ -
The capitalized quantities stand far,,(q)=qc,,(q), etc.,
Similar relations hold for the;; . For the definition of the andy,,=h,,—c,,. The pairs of indices4,8) and (u,v)
blocked and the connected parts of the correlation function§ow run over(0,1), (0,2, (1,1), (1,2, (2,2, (1,3), (1,4), and
see, for instancd7]. Introducing finally the matrix-notation (2,4 and the 64,4, are of course considerably more com-
plex than in the one-component case. In principle, they can
P1 0) h _<h01> . _<C01
0 pa)" % lhe/” ™ g

be derived in a straightforward manner by using symbolic
hy= ( hu hlz), = ( cu Clz), Another closure relation to the ROZ equations is the op-

pL= , languages, such asAPLE; they can be provided upon re-
quest.
17
3. The optimized random phase approximation
timized random-phase approximatid@RPA), which can
also be obtained from a perturbative approfth. The for-

his hyg Ci3 Ciq malism of the ORPA can be extended to porous systems and
hi,= , Cio= , again it is most convenient to use the replica trick: we for-

his o Cia €24 mulate the ORPA for the replicated system and then take the

. ) _ . limiting case.
the ROZ equation&l4) can be written in the following com- |5 the ORPA one assumes that all the pair potentials be-
pact form(“T” denotes the transpose of a vecjor tween the different particles can be split up into a reference

part (index “r" ) and a perturbation pafindex “p”), i.e.,
Noo= Coo™ PoCo0® Noo,

No1= Co1 1 No1® poCoot P1N11® Cor— P1h12® Co1, @i (1) =Dpjj (r) + Ppy(r). (20)
(18)
hy=cyy+ h01®Pngl+ p1h11®C¢— pih®cpo, Since in the present contribution we consider exclusively
hard-core interactions, it is most obvious that dng; (r) are
hyo=Cypt+ gy ® Pocgﬁ‘ p1h1,®Cii+ pihp®cyy _represented throughoutn by hard-sphere potgntials, character-
ized by hard-sphere diameters;. This defines® ,;(r)
—2p1h15,®Ch5. apart from finite variations inside the core. In a similar way,

the correlation functions are split up into reference and per-
These equations are formally equivalent to the ROZ equaturbation parts. In the following, it is convenient to introduce
tions of the one-component case. In addition, one can showatricesC andH, which collect these correlation functions
[18] that by extending the definitiond7) in a straightfor-  via C;;=p;p;C;; , etc.
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The RPA closure relation assumes that from the numerical point of view—in some cases it can be
more convenient to solve the minimization problem.
Cpiij (1) =—BPp;i(r), r>o0j; (21) As shown in[2,18], the expression for the free energy

(23) can be rewritten with the help of the OZ equations and

— i = < g i ,
and—for instance-€,;(r) =0 for r <o;;, which leads to a Parseval's theorem as follows:

violation of the core condition, i.eg;;(r) #0 inside the core
region. This deficiency is compensated by the additi¢opd
timized) closure relationcj;(r) is chosen inside the core so

1 ~ 1
that A*=Af ) lE PiP;Cpiij > EI PiCpiii
gij(r)=0 for r<oy; & hy(r)=0 for r<oy. ! q=0 r=0
(22)
f dg{InDet[1—C(q)]—InDet[1
For completeness, we would like to point out that in the case 2(2m)®
of soft interactions, the reference part of the potentials can be .
mapped back onto a set of suitably chosen hard-sphere po- ~ Gl (27)

tentials using the prescription of Weeks, Chandler, and
Andersen15,23. ) .
It can now be shown that the reducédimensionless The_ replicated system Is now ag2 l)_-component sys-
excess free energy of the systéaver the ideal gass given tem with a very special set of interatomic potentidig(r).
by [14] We assume that the matrix particles are pure hard spheres;
then the RPA closure relations read
ﬁAeX

A* =~ v =A7 +Alitat Adreas (23)

Coo(S) =Crool(S),

whereAy is the excess free energy of ttieard-sphereref-

erence systemAj;, is the high-temperature correction,

given by cii(s)=cri(s)+cphi(s) for i,j=01,02,11,12,22,
(28)

1
AﬁTAZE ; pipjf drgr;ij(r)cp;ij(r)v (24)

cii(s)=cp(s) fori,j=13,14,24
and Aggp, is the sum of composite ring diagrams, which is
found to be
with ¢ = — B®;(r), while the core conditions now read
~ h,.ii (r)=0 forr<o;; . Using the symmetry properties of the
* _A* _ pil) 1]
orpa= AoreA Cpl = = 2(2m) f dq {Tr[CP(Q)Sf(Q)] replicated system, the expression for the free energy in the
replicated system,A™P)*, is given by

+InDet[I-Cy(a)S,(a)]}. (25
“Tr” and “Det” denote the trace and the determinant of a ~
matrix, | is the unit matrix, andS,(q) is the matrix of the (A™D* ()= (ArD*(s) +— S 2 pi C'hi(s)
partial structure factors of the hard-sphere reference system.
The ORPA contribution to the free energy is now a func-
tional of the perturbation part of the direct correlation func- +2s E piijrS;ri)j(S)
tionscy,; . It is straightforward to show that i'—<o'1
-0, 4=0
5ABRPA
e (LALAION (26 s 2, PiCyi(S)
! r=0

This relation points out that the solution of the OZ equations
along with the ORPA closure relation®1) and (22) is
equivalent to a minimization problem of the functional

Abrpd C ] with respect to variations of the direct correla- —InDet[1-C/*(s)]}. (29

tion functionsc;;(r) inside the core region as the minimi-

zation condition(26) is equivalent to the optimization con-

dition (22). This fact is particularly useful for theumerical Again, closer investigation of the symmetry of the two
solution of the ORPA: although, of course, the numericalmatrices appearing in the above equation allows us to derive
solutions of integral equations and of the minimization of thethe following identity, which can be applied to both contri-
functional should lead to the same results, we found that—butions to the above integral:

2(2 )3j dqg{InDet[1—C""(s)]
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CHON

— p1pa[ CAS) —CERS) 1D+ IN([ 1 poCi(s) {[1— p1CER(S) — pa(s—1)CiHAs)]

X[ 1= paCiR(s)— pa(s— 1) C5AS) ] — p1po[ CE(S) + (s— 1) (s) 1%

rep

—5pop1[ CER(S) 12 [ 1— poC5S) — pa(s— 1) CER(S) 12— 2Spp1poChr(S) Chal'S)

X[CER(s) + (5= 1)CiR()]— Spop2l CHRS) 1L 1— p1CTAS) — pa(s— 1)Ci(s)

The_free energy of the quenched syste‘Tnis now obtained
via A=limg_ o(d/ds)A™(s) [8,2],

— 1 ~
A*=AF —A[C]+A[C/] *s5 [Pfep;lﬁ‘ Png;zz+ 2pop1Cp;01
+ ZPOPZEp;02+ 2P1P25p;1ﬂq=0

E[plcp;ll"' P2Cp;22]r:0: (31

where the functional4[ C] is defined as follows:

A[C]=

2(277)3J dQ[ In{(1-p1c5)(1-pscs)

1
[1- plzgl][ 1- PzEgz] - Plpz[Eiz] 2

- P1P2[C(1:2]2} -
X [ P1C15(1— paCSy) + paCas(1— p1CSy)

+2p1p2C14C74(Q) + [p1C%y(1—pyCSy)
— PoCoo

+paCh1—paCi)+ 2P1P2E01Eozzgz]} ] . (32

)1%). (30

A[C] (32) using the steepest-descent method. The advantage
of this minimization algorithm lies in the fact that the ex-
plicit calculation of the functional is not required; we only
need its derivatives, i.eh;; , which we easily obtain from

the so-called residual ROZ equatigris3]. Starting from an
initial guess for the direct correlation functions inside the
core region(for instance, the simple RPA expressipwe
create with these gradients a sequence of new, improved di-
rect correlation functions until we obtain a minimum in the
functional within a sufficient accuracy. The step size in the
sequence of these estimates is triggered by a pararéieter
which measures the degree of violation of the core condition
by the resulting perturbation parts of the total correlation

functions,h; ,

=11 2 2 [Hpg(r]?
j=1,2 k.rk<(roj
1/2
+ o> [Hp;i,-(rkﬂz}m] . (34
i,j=1,2ji<j k:rk<zrij

B. The thermodynamic properties
1. General expressions

Using the replica trick we derive—as a straightforward
generalization of the one-component cB8k—in a first step
the Gibbs-Duhem relation and the virial equation. If we use a
grand-canonical ensemble for the replicas and a canonical
ensemble for the matrix, one can easily derive an expression

Finally, one can show that for the above expression of théetween the grand potential of the repllcated system,

free energy the following relation holds:

( on )( )= 22 [0 (1) + Py (D], (33
r= pPiPjlGrij(r 4 (0],

5Cp;ij 2 [Lg] rij Pt

which means that the minimization of the function?él[cp]

with respect to variations of the,;(r) inside the core re-

gion is equivalent to the optimization requiremé¢ap).

Q'®s), and the quenched system(, ie., Q
=limg_ o(d/ds)Q"A(s). dQ™Xs) now contains—with re-
spect to the one-component case— an additional term due to
changesdu, and we can proceed along similar lines: the

expression fod() can be integrated to give

Q=-PV, (35)

The numerical solution of the ORPA leads to the correla-P, the pressure of the partly quenched system, being given
tion functions; to this end we have discretized these funchy

tions both inr and in q space, using typically 1024 grid

points and a mesh-size afr =0.01014 (011 being the diam-

eter of species 1 of the binary liquid; furthermore, we assume
o11<03y). Given the system, we first calculate the correla-
tion functionsh, ;; andc, ;; of the reference system by solv-
ing the ROZ equationgl4) along with the PY closure using

the LMV algorithm adapted to the present probléd].

Then we solve the ORPA by minimizing the functional

P= al 36
=l - (39
Ty 10,00
In a similar way we find for the free energ@
A=—PV+ u;Ng+ uoN,. (37)
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To derive the virial equation, we start again from the ex-where p{®"®{r;s) is the inhomogeneous one-particle den-

pression for the pressure in the replicated systefi#(s). As

sity of species 1 in the replicated system. The two functional

in the one-component system, the pressure in the partligerivatives of the right-hand side of the above relation can

guenched systen®, is given by

_ . dP™Rs) JBP
BP=plim ds +p0(&po)

s—0

(39

V,T,}Ll,ll«z

Inserting the virial equation for the replicated system, one

therefore obtains

JIpP
oo T

V,T,,ul,ll-z

B dgrep(s) ,
E J d”{ ZOS (DooJF_E p?gid
i s—0 i=1,2

+2i:212 PoPi90iPoi+2p102915P 15|, (39)

which reduces for hard-core interactions to

re .
o2 1im dgoglo00;S)
Po ool —d S

+i:212Pi2(Tﬁgii(Uii)

(40

+ 2i:212 PoPiUSiQOi(UOi) +2p10203891012) |

To derive the compressibility equation we proceed as fol-

lows. From Eq.(35) one finds

Vi ( aP) 1 ((9(_2)
kT 8p1 V,T,Nz,po kT (9[)1 V,T,Nz,po

d

=lim—
SHOdS

1 9Q™s)
KT gpiR(s)

(41)

V,T.N,,p0

Introducing an external potentiakr) in the replicated sys-

easily be calculated and yield

SInZ™A(s)

o= ) (1) "Ayr.s
S(Blm—u(rpD) ™ i)
pLeRr ) for i=1,3,...,%5-1
= p(21),rep(rl;s) for i=24,...,%

and

8Bl i—u(rp]) 252 ( S8(ry,rp)
(11) rertrz,s) =1 J(1),rep(|,2;s)
- c&”“e"(rl,rz;s)) , (43)

where summation is taken only over ofl@alues. Inserting
this into Eq.(42) and settingu(r)=0, we find

d
=Vlim—{s—sp*A(s)cEq=0;s)

kT ﬁpl)V,T,Nz, S*}Ods

1<5P
—s(s—1)pAs)ciNq=0;s)
—spSP(s)ciRq=0;s)

—s(s—1)pFA(s)cEq=0;9)},
(44

which finally yields

(?BP =c -c
(_ =1-p1C11(d=0) —paCi(q=0). (45

aPl )V'T'NZ'pO

tem that acts on the liquid particles only, we can use the

standard relation of classical density-functional thejd¥|

to rewrite the bracketed term of the above equation as foltn g similar way we obtain

lows:

1 a0"™s)
KT gpiRs)

V,T,Ny,00

2s
:E J' j drldrz
i=1

SINE™A(s)  S(BLui—u(ry])
5(,3[,U~| ur)l)  sp{treRr,s)

] . (42
u=0

&BP -c ~c
(_ =1-p1C1(q=0)—p2C5(q=0). (46)

07[)2 )VyTleyPo

One can furthermore relate the above equations to the
chemical potentialg; . To this end we start from the relation

1= = (IAIINL)y 1 N, p, = liMs_ow1*(s) and a similar re-

lation for u,. Using again the density-functional formalism
and Eq.(43), one finds
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) (69,3,“1)
1
Ip1 V,T.Ny .00

rep,
=lim { p’lep(s)—(s)l

s—0 aprN(s)
) TRS)—ur
— Ilmf dl’2 pgl),TEFtrz; (ﬁ[lu’ (l§ n)e 12( l)])
50 Sp1 " Mrais) ],
=lim{(1-pAs)ca=0;s)
s—0
—(s=1)pFR(s)cfq=0;9))}
=1-p;c54(q=0). (47)
Following similar lines one derives also
By ~
Pl( 7 ) = —p1Ci(q=0), (48)
p2 V, TNy 00
B2 ~ B2
P2< 3 ) =1—p,C5,(q=0), Pz( 7
P2 1y 1Ng g P11V, TNy .0,
~paCiq=0). (49

Consistent with the Gibbs-Duhem relation, one finds that

, (50
V,TN;/ pg

ﬁﬁP) _ '(19,3,%
i )y 1N =127\ dp;

wherej’=1 for j=2 and vice versa.
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configurations. Furthermore, it is straightforward to show
that the following Gibbs-Helmholtz relation holds:

Uex_@(ﬁA) (53

2. MSA and ORPA expressions

As shown in the preceding section, in the ORPA one can

derive closed expressions for the free enekdyEq. (31)]. In
addition, in the version of the ORPA used in this contribu-
tion (which is equivalent to the MSPone is able to derive
closed expressions for the perturbation contribution to the
chemical potentialsy,,; ,

Brp1= Bir1— Bir1= —[P1Cp;11T PoCp;01T P2Cp;12lg=0

1
+§[Cp;1]]r:01 (54

Blp.2= Bio— Bir2= —[P2Cp;22T PoCp;02T P1Cp;12lg=0

1
+§[Cp;2ﬂr:0- (55)

The u.; are the chemical potentials of the reference system.
Above expressions can equally well be derived from the gen-
eral MSA expressions for the replicated sys{eh] and tak-

ing the limits—0.

Using the results foA and the chemical potentials, one
can obtain the pressure directly from the Gibbs-Duhem rela-
tion (37).

Finally, to derive the expression for the excess internal

energy of the quenched systeﬁ‘?x, we start again from the

corresponding expression for the replicated system,
Uex; re;{s) 1
VA [ 2 2spopi*(s) fdrg(r)?p(s)q)m

+2spT(s)px (s f drgif(s)®;,

+i=2 S[P|ep(s ]Zj drg{fp(s)q)n] (52)

and using the relatioh)®*=limg (d/ds)U ®"}s), hence,

Uex
= 2 pOle’ dr goi®oi+

i=§ZEZ plzf dr g;; D;;

+P1F’2f dr gio®4. (52

IIl. CONCLUSIONS

In this contribution we have presented the formalism to
describe the structural and the thermodynamic properties of a
binary liquid in equilibrium with a porous matrix. Following
a similar approach to that in the one-component case, we
used the replica trick, which establishes an isomorphism be-
tween the partly quenched system and a fully equilibrated
system, consisting of the matrix asddentical, noninteract-
ing copies of the binary liquid. In particular, we focus on
hard-core systems. The formalism is based on the replica
Ornstein-Zernike equations which have been presented for
the general case oflacomponent liquid in equilibrium with
a porous matrix. These coupled integral equations can be
complemented by standard liquid state closure relations,
such as the Percus-Yevick or the hypernetted chain approxi-
mation. In particular, we have considered the optimized
random-phase approximati¢é®@RPA), an MSA-type closure
relation that fully takes into account the core condition for
the hard-sphere pair distribution functions. We have shown
that the solution of the ORPA is equivalent to minimizing a

It should be noted that the same relation can be obtainegyitably defined functional with respect to variations of the

by using the definition thadt)®¥ is given by a double average direct correlation functions inside the core region. General
of the Hamilton function: one over the degrees of freedom ofexpressions for thermodynamic quantities and relations have
the liquid for a fixed matrix and then over all possible matrix been presented; for some of thesech as the perturbation
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