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Generalized collective modes in a binary He0.65-Ne0.35 mixture
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We have applied the parameter-free collective modes approach to investigate the collective excitation spec-
tra of a He0.65-Ne0.35 gas mixture at 39.3 K. The static and dynamic correlation functions were calculated
directly in molecular dynamics simulations of an ensemble of 864 particles which interact via Aziz potentials.
We have compared the spectra calculated within the~basic! hydrodynamic and various extended basis sets of
dynamical variables and with results obtained directly from the computer simulation. Within this formalism we
were able to obtain ‘‘fast sound’’ type modes using an extended hydrodynamic set of seven dynamical
variables. A detailed analysis of the contributions of the different spectra of collective modes to the partial
dynamical structure factors showed that these ‘‘fast sound’’ type excitations appear due to the dynamics of the
lighter He particles in the mixture.@S1063-651X~97!00509-6#

PACS number~s!: 51.30.1i, 64.75.1g
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I. INTRODUCTION

During the last decade essential progress in understan
the dynamical properties of binary systems has b
achieved@1–6#. The theoretical and experimental investig
tions showed that the dynamic structure factorsS(k,v) of
liquid water @1#, liquid Li 4Pb @2#, and of gas mixtures suc
as He-Ne@3,4# or He-Ar @5,6# display a behavior which can
be explained in terms of two pairs of propagating mod
namely so-called ‘‘slow’’ and ‘‘fast sound’’ modes. Th
‘‘slow sound’’ excitations~or simply sound excitations! are
characterized by a linear dispersion relation in the hydro
namic region of wave vectorsk and frequenciesv, while the
high-frequency propagating excitations~or ‘‘fast sound’’
modes! appear and can be observed for wave numberk
beyond the hydrodynamic region. For the case of liquid w
ter @1# the dispersion relations for the propagating longitu
nal (L) and transverse (T) modes have been obtained b
fitting the current-current correlation functionsC(L,T)(k,v)
which were calculated in molecular dynamics~MD! simula-
tions: in both cases the excitation spectra contained h
frequency modes. For the He-Ne mixture a different a
proach has been used in@3#: Here a simple kinetic model
developed within the generalized collective mode appro
@7–9# has been proposed; in this model the dynamic struc
factor S(k,v) is a sum of four Lorentzians, where the p
rameters have been calculated@3# using a fitting procedure
for theexperimentalvalues ofS(k,v) of a dense gas mixture
of He0.65-Ne0.35. These results were obtained within th
five-mode description of the generalized modes appro
where the model contained several fitting parameters.

This contribution is dedicated to an application of the a
proach of generalized collective modes~Refs. @7–9#! to a
binary system. In contrast to@3# our calculations are
parameter-free; the only inputs required are the static co
lation functions and so-called correlation times determined
MD simulations. This method, which makes investigatio
of time-correlation functions of fluids possible, represe
nowadays a modern and powerful tool: it allows one to o
tain the self-consistent description of the dynamical prop
561063-651X/97/56~3!/2903~13!/$10.00
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ties in a wide range of wave numbers and frequencies, s
ing from the hydrodynamic regime up to the Gaussian-l
region. Within this framework, time-correlation function
can be written as a weighted sum of partial terms, each
them being associated with a specific generalized collec
mode and can be characterized via the corresponding ei
vector and eigenvalue of so-called generalized operator
evolution ~see @9,10#!. Some of the generalized collectiv
modes correspond in the hydrodynamic limit to the we
known hydrodynamic excitations. The other collecti
modes with higher eigenvalues are called kinetic modes
have finite damping coefficients in the hydrodynamic regio
It is important to note that this approach is based on
extendedset of dynamic variables which contains, in add
tion to the conserved variables, their higher-order time
rivatives. In general, the required number of the generali
collective modes~or the dynamic variables!, which should be
taken into account, depends on the considered range in
(k,v) space; this will be demonstrated in this contributio

The parameter-free generalized collective mode appro
based on the so-called Markovian approximation for
higher-order memory functions, has been suggested in
@10#: There the five- and seven-variable description of
longitudinal fluctuations for a pure Lennard-Jones liquid h
been studied. The extension of the formalism to a ni
variable description has been presented in@11#. The calcula-
tion of the time-correlation functions for a Lennard-Jon
fluid @12# showed that in a wide range ofk and v a very
satisfactory agreement of the theory with MD data can
observed already within the lower-order approximations, i
starting from the five-variable description. Similar resu
have been found for the dynamic correlation functions
liquid Cs near the melting point@13#.

One of the attractive features of the generalized mo
approach is that it makes it possible to describe propaga
kinetic modes which have been observed in some case
MD or scattering experiments. For instance, it was sho
with this method for the transverse current-current corre
tion function@10–12#, that shear waves are in fact propaga
ing kinetic modes. The same conclusion can be drawn ab
2903 © 1997 The American Physical Society
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fast sound modes in the case of binary mixtures@3#.
This work is an application of theparameter-freegener-

alized collective modes approach to a binary mixture. W
concentrate our attention on the study of two main proble
~i! to calculate the collective mode spectrum of a He0.65-
Ne0.35 mixture and to investigate the dependence of the
sults on the choice of the set of dynamical variables;~ii ! to
determine the main physical mechanism which forms the
sound excitations and to study those conditions under wh
such modes may be observed in the dynamic structure
tors.

The paper is organized as follows: Section II outlines
key ideas of the generalized collective modes approach
the case of a binary mixture; in Sec. III we present results
a MD simulation for the static correlation functions and t
generalized thermodynamic quantities of a dense gas mix
He0.65-Ne0.35 at a temperature 39.3 K; the results for t
spectra obtained within the generalized collective modes
proach and the dynamical structure factors as well as
discussion of the results are given in Sec. IV. The pape
concluded by a summary.

II. THEORETICAL FRAMEWORK

Let us consider a binary mixture in a volumeV containing
N1 particles of massm1 andN2 particles of massm2. Hence
N11N25N is a total number of particles and

c15N1 /N, c25N2 /N512c1 ~1!

are the concentrations of the components ‘‘1’’ and ‘‘2’’
the mixture.

We now introduce the partial operators of particles
speciesl ( l 51,2); for a binary mixture these operators a
the partial number densities

n̂l~r ,t !5
1

AN
(
i 51

Nl

d„r2r i
l~ t !…, ~2!

the partial densities of momenta

Ĵl~r ,t !5
1

AN
ml(

i 51

Nl

vi
l~ t !d„r2r i

l~ t !…, ~3!

and the partial densities of energies

êl~r ,t !5
1

AN
(
i 51

Nl

ei
l~ t !d„r2r i

l~ t !…, ~4!

where

ei
l~ t !5

ml@vi
l~ t !#2

2
1

1

2 (
l 851

2

(
i 851

Nl 8

F l l 8„ur i
l~ t !2r i 8

l 8~ t !u….

~5!

r i
l(t) andvi

l(t) denote the position and the velocity of partic
i of speciesl at timet, andF l l 8(r ) is a two-body interaction
potential between a particle of speciesl and a particle of
speciesl 8 at distancer . The total number densityn̂(r ,t), the
total momentumĴ(r ,t), and the total energyê(r ,t) are sim-
ply defined as the sum of the relevant partial operators:
e
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n̂~r ,t !5n̂1~r ,t !1n̂2~r ,t !,

Ĵ~r ,t !5 Ĵ1~r ,t !1 Ĵ2~r ,t !, ~6!

ê~r ,t !5ê1~r ,t !1ê2~r ,t !.

For an isolated binary system the partial number densi
of particles, the density of total momentum, and the den
of total energy are conserved quantities. Thus these four
croscopic dynamical variables form the so-called hydro
namic setÂH(k,t),

ÂH~k,t !5$Âa
H~k,t !%5$n̂1~k,t !,n̂2~k,t !,Ĵ~k,t !,ê~k,t !%,

~7!

where the Fourier transformsAa
H(k,t) are defined as follows

n̂l~k,t !5
1

AN
(
i 51

Nl

exp@ ik•r i
l~ t !#, ~8!

Ĵ~k,t !5 Ĵ1~k,t !1 Ĵ2~k,t !, ~9!

ê~k,t !5ê1~k,t !1ê2~k,t !, ~10!

and

Ĵl~k,t !5
1

AN
ml(

i 51

Nl

vi
l~ t !exp@ ik•r i

l~ t !#, ~11!

êl~k,t !5
1

AN
(
i 51

Nl

ei~ t !exp@ ik•r i
l~ t !#. ~12!

For the study of the dynamical properties of a binary mixtu
the hydrodynamic set of dynamical variables~7! should be
considered as the smallest and the basic one: With th
functions we can describe the behavior of the system c
rectly in the hydrodynamic region ofk and v, where the
processes on a slower time scale are dominant. For inter
diate values ofk andv we have to take into account thos
processes which are realized on a faster time scale: They
now be described within the generalized mode approach
systematically extending the basis set~7! and by considering
extendedsets of dynamic variables which include variabl
responsible for the processes on this time level. To this p
pose, one may—for example—include in addition to the co
served quantities also their time derivatives, as has b
demonstrated for a simple fluid@10#.

In order to work out the general formalism~independent
from the number of dynamic variables to be considered!, let
us define the square matrix of time-correlation functio
F0(k,t) using a set of M dynamical variables

$Â1(k,t),Â2(k,t), . . . ,ÂM(k,t)%. The elementsFi j
0 (k,t) of

this matrix are given by the correlation functions of tw
dynamical variablesÂi(k,t) and Âj (k,t) as follows:

Fi j
0 ~k,t !5^Âi~k,0!Âj* ~k,t !&, kÞ0. ~13!

The asterisk denotes complex conjugation and the ang
brackets denote the equilibrium ensemble average.
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56 2905GENERALIZED COLLECTIVE MODES IN A BINARY . . .
Within the Mori-Zwanzig formalism it is now straightfor
ward to write down the generalized Langevin equation
the matrixF0(k,t) @14,15# defined above:

]

]t
F0~k,t !2 i V~k!F0~k,t !1E

0

`

M ~k,t!F0~k,t2t!dt50,

~14!

where i V(k) andM (k,t) are the frequency matrix and th
matrix of the memory functions, respectively. This mat
equation can be rewritten in Laplace space as follows:

@zI2 i V~k!1M̃ ~k,z!#F̃0~k,z!5F0~k,0!. ~15!

Using the Markovian approximation~denoted by anM) for
the memory functions, i.e.,M̃ (k,z).M̃ (k,0), we obtain the
equation

@zI1T~k!#F̃M~k,z!5F0~k,t50!, ~16!

where the generalized hydrodynamic matrixT(k) is given by
~for details see@10#!

T~k!52 i V~k!1M̃ ~k,0![F0~k,0!@ F̃0~k,0!#21, ~17!

I is the unit matrix, andF̃M(k,z) denotes the matrix o
Laplace transforms of time-correlation functions within t
Markovian approximation for the memory functions. Usin
Eq. ~16! it is easy to prove the relations

E
0

`

FM~k,t !dt5E
0

`

F0~k,t !dt, ~18!

FM~k,t50!5F0~k,t50!, ~19!

which are very important for the sum rules of the tim
correlation functionsFi j

M(k,t) ~see@12#!.
Introducing the eigenvectorsXj ,a and the eigenvaluesza

of the matrixT(k) ( j 51, . . . ,M anda51, . . . ,M ),

(
j 51

M

Ti j ~k!Xj ,a5za~k!Xi ,a , i 51, . . . ,M ~20!

we can write the solution of the matrix equation~16! in the
form

F̃ i j
M~k,z!5 (

a51

M Gi j
a~k!

z1za~k!
, ~21!

where the weight coefficientsGi j
a (k) are defined by

Gi j
a~k!5(

l 51

M

XiaXa l
21Fl j

0 ~k,0!. ~22!

In time-space the solution~21! has the form

Fi j
M~k,t !5 (

a51

M

Gi j
a~k!exp$2za~k!t%. ~23!

Hence we see from Eq.~23! that the time-correlation func
tionsFi j (k,t) calculated in the Markovian approximation v
r
Eq. ~16! can be expressed as a weighted sum overM terms,
where each term is characterized by the corresponding ei
valueza(k). The eigenvalues$za(k)% represent the spectrum
of collective modes of the system defined for the

$Â1(k,t),Â2(k,t), . . . ,ÂM(k,t)%.
At this point we have to emphasize that the theoreti

approach described above does not contain any adjustab
fitting parameters. Just the Markovian approximation h
been assumed, which enables us to obtain the matrix e
tion ~16!. As will be seen below, all the elements of th
generalized hydrodynamic matrixT(k) can be expressed vi
the static correlation functions and the so-called correlat
times ~both are functions ofk only! which, in turn, may be
calculated directly in a MD simulation.

In particular, it must be emphasized that the matrix eq
tion ~15! is exactfor any set of dynamic variables. Theap-
proximateequation~16! is derived by applying the Markov
ian approximation to Eq.~15!; hence the results obtaine
from Eq. ~16! will depend on the chosen set of variables.

Thus the study of the dynamic properties of a binary m
ture within the generalized mode approach can be divi
into the following steps:~i! the choice of the appropriate se
of dynamical variables; this depends on the concrete phys
situation considered herein@i.e., for instance, the range i
(k,v) space#; ~ii ! the calculations of all the required matri
elements ofT(k); ~iii ! the solution of Eq.~16! and calcula-
tion of the collective modes spectrum and the tim
correlation functions. Beyond that, it can be shown@11,20#
that the generalized transport coefficients of the system m
also be found within the formalism of the generalized colle
tive modes.

III. GENERALIZED COLLECTIVE MODES APPROACH
FOR VARIOUS SETS OF DYNAMICAL VARIABLES

We would like to emphasize that the starting point for o
study is the hydrodynamic basis set~7!, which consists of
conserved variables. It is well known~see, for instance
@14,15#! that one can correctly reproduce the behavior of
hydrodynamic time correlation functions for small values
k and v in the Markovian approximation for the memor
functions using the hydrodynamic variables. In such a c
one should expect to find among the hydrodynamic long
dinal collective modes two propagating sound modes
two purely diffusive modes due to the heat and the conc
tration fluctuations. In ak andv rangebeyondthe hydrody-
namic regime we have to take into account memory effe
in a more explicit form, i.e., where the dependence of
memory functions on wave number and frequency must
included. This may be achieved in two ways:~i! using some
higher-order approximations for the hydrodynamic memo
functions, or~ii ! applying the Markovian approximation t
the higher-order memory functions defined on an exten
set of dynamic variables. We shall follow in the next cons
eration to the second way.

One of the most systematic ways to extend the hydro
namic set of dynamic variables~7! follows from the projec-
tion operator technique@15,10#, where a dissipation of the
dynamic variables is described mainly via the dynamics
their time derivatives. Hence, we shall consider below
scheme when the extended set of dynamic variab
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includes—in addition to the hydrodynamic variables—a
the ~first! time derivatives of these variables.

A. Hydrodynamic set of dynamic variables

Within the hydrodynamic set of dynamic variables~7! for
the longitudinal fluctuations we have to deal with a 434
matrix F0(k,t). It can be shown that in the static limitt50
the number of the nonzero elements ofF0(k)5F0(k,0) is
equal to seven, so thatF0(k) is a Hermitian matrix and ha
the form

F0~k!5S f n1n1
f n1n2 0 f n1e

f n1n2
f n2n2 0 f n2e

0 0 f JJ
~L ! 0

f n1e f n2e 0 f ee

D . ~24!

Since the system is isotropic we have assumedk to be par-
allel to thez axis; taking into account the relation

]n̂l~k,t !

]t
5

ik

ml
Ĵl

~L !~k,t !, l 51,2 ~25!

and using some additional properties of the time-correla
functions@9,10#, the matrixF̃0(k,z50) can be written in the
form

F̃0~k,0!51
tn1n1

f n1n1
tn1n2

f n1n2

i

k
fnn

tn1ef n1e

tn1n2
f n1n2

tn2n2
f n2n2

i

k
fnn

tn2ef n2e

i

k
fnn

i

k
fnn 0

i

k
fne

tn1ef n1e tn2ef n2e
i

k
fne teef ee

2 ,

~26!

where

fnn~k!5m1f n1n1
~k!1m2f n1n2

~k!, ~27!

fne~k!5m1f n1e~k!1m2f n2e~k!, ~28!

and the correlation timest i j (k) are defined by the expressio

t i j ~k!5
1

Fi j
0 ~k,0!

E
0

`

Fi j
0 ~k,t !dt. ~29!

B. The extended sets of dynamic variables

The simplest way to extend the hydrodynamic set of
namic variables~7! is to include in addition to the hydrody
namic variables their first time derivatives. Thus one obta
n

-

s

the seven-variable set which we shall call the extended
drodynamic setÂEH(k,t) labeled by EH,

ÂEH~k,t !5$Âa
EH~k,t !%

5$n̂1~k,t !,n̂2~k,t !,Ĵ1~k,t !,Ĵ2~k,t !,

3ê~k,t !, J̇̂~k,t !,ė̂~k,t !}, ~30

introducing the new operators

J̇̂~k,t !5 J̇̂1~k,t !1 J̇̂2~k,t !, ~31!

ė̂~k,t !5 ė̂1~k,t !1 ė̂2~k,t !. ~32!

The microscopic expressions for the operatorsĴ
˙

l(k,t) and

ê˙ (k,t) follow directly from Eqs.~3! and ~4!,

Ĵ
˙

l~k,t !5
1

AN
(
i 51

Nl

ml$ai
l~ t !1 i @k•vi

l~ t !#vi
l~ t !%

3exp@ ik•r i
l~ t !#, l 51,2 ~33!

ė̂l~k,t !5
1

AN
(
i 51

Nl

$ėi
l~ t !1 i @k•vi

l~ t !#ei
l~ t !%

3exp@ ik•r i
l~ t !#, l 51,2 ~34!

whereai
l(t) denotes the acceleration of particlei of speciesl .

We note that using Eqs.~33! and ~34! one may directly cal-
culate the corresponding correlation functions of the va
ables~31! and ~32! in a MD experiment~as has been don
for a Lennard-Jones fluid in@10#!.

In this contribution we shall consider in addition als
some other extended sets of dynamic variables in orde
investigate the dependence of the results for the collec
modes spectrum on the choice of dynamic variables. In R
@3,4# the following five-variable set has been used:

Â5A~k,t !5$Âa
5A~k,t !%

5$n̂1~k,t !,n̂2~k,t !,Ĵ1~k,t !,Ĵ2~k,t !,ê~k,t !%.

~35!

In contrast to Eq.~7! this set of variables includes the parti
currentsĴ1 andĴ2 instead of the total currentĴ. By analogy,
we may consider another five-variable set where the pa
densities of energiesê1 and ê2 are included instead of the
density of total energyê, namely,

Â5B~k,t !5$Âa
5B~k,t !%

5$n̂1~k,t !,n̂2~k,t !,Ĵ~k,t !,ê1~k,t !,ê2~k,t !%.

~36!

As an extention of set~36! one may also introduce the seve
variable set of dynamic variables in the form
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Â7B~k,t !5$Âa
7B~k,t !%

5$n̂1~k,t !,n̂2~k,t !,Ĵ~k,t !,ê1~k,t !,

3ê2~k,t !, J̇̂~k,t !,ė̂~k,t !%. ~37!

We see in Eq.~37! that in addition toÂ5B(k,t) the set of
variablesÂ7B(k,t) includes the first time derivatives ofĴ and
ê. In this sense, the extended hydrodynamic setÂEH(k,t)
may also be considered as an extension of the five-vari
set Â5A(k,t). It is worth noting that the extended hydrod
namic set~30! may be consistently introduced through t
time derivatives of the hydrodynamic variables~7!.

One of the main goals of this contribution is to find o
what different scenarios@corresponding to different ranges
the (k,v) plane# can be described by using various sets
dynamical variables discussed above; in particular, we wo
like to study propagating modes in the collective mode sp
tra in order to find out under which conditions the fast sou
excitations can be observed in the dynamic structure fact

IV. RESULTS AND DISCUSSION

A. Molecular dynamics simulations

We performed MD simulations for a gas mixture
He0.65-Ne0.35 at a number densityn50.0186 Å23 and at a
temperatureT539.3 K, considering a system of 864 pa
ticles interacting through Aziz potentialsF l l 8(r ) @16,17# at
constant volumeV5L3. The potentials were calculated i
tabular form on a grid with a mesh size of 0.04 Å. With th
kind of interatomic potentials we found the static and d
namic properties of the He-Ne mixture to be in a good agr
ment with experimental data@4#.

The equations of motion were integrated by means o
fourth-order predictor-corrector Gear algorithm with time i
crement ofDt55310215 s. The initial configuration of par-
ticles was a face-centered cubic lattice, and the initial velo
ties were randomly distributed according to a Maxwelli
distribution. The melting of the initial configuration and th
following thermalization to the desired temperature we
performed in 15 000 time steps. The system was observe

FIG. 1. Neutron-weighted total static structure factorStot(k) for
the He0.65-Ne0.35 mixture investigated in this study. Solid line—
integral-equation approach; diamonds—MD data for a 2048 par
ensemble; dots—experimental neutron diffraction data@3#.
le

f
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e
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the equilibrium state over a macroscopic time of 1200
~240 000 time steps! except for the smallestk value, where it
has been extended over 2400 ps~480 000 time steps!. Every
sixth configuration was taken into account for the compu
tion of the static equilibrium averages. The time correlati
functions were calculated by shifting time origin
(Dt056Dt) on a grid of 2000 points with a step size of 6Dt.
Additional averages for the correlation functions have be
performed over allNk possible vectorsk ~with uku5k),
which are compatible with the periodic boundary condition
We have considered 17 wave numbers in the range f
k5kmin50.175 Å21 to k525kmin . Note that the first maxi-
mum of the total static structure factor is located atk0;2.15
Å 21.

B. Static properties

Two pilot calculations have been performed to check
reliability of the calculation of the static averages obtain
directly in the MD simulation for the smaller ensemble~864
particles!: we compare these data with results for a larg
ensemble~2048 particles! and with data obtained in a ver
accurate integral-equation approach. This integral-equa
approach has a modified-hypernetted-chain-type closure
lation and is based on the universality hypothesis of
bridge functional~for details we refer the reader to@18,19#!.
In Fig. 1 we show the total neutron-weighted structure fac

Stot~k!5b1*
2c1S11~k!12b1* b2* Ac1c2S12~k!1b2*

2c2S22~k!,
~38!

whereb1* andb2* are the normalized neutron amplitudes

bl* 5
bl

Ac1b1
21c2b2

2
, l 51,2 ~39!

and theSll 8(k)5 f nl ,nl 8
(k)/Aclcl 8 are the partial static struc

ture factors, which have been calculated as Fourier tra

le

FIG. 2. Bhatia-Thornton static structure factorsSNN(k), SNC(k),
andSCC(k) for the He0.65-Ne0.35 mixture investigated in this study
the results obtained by the integral-equation approach are show
solid curves; MD data for an 864 particle ensemble are represe
by symbols @diamonds—SNN(k); crosses—SCC(k); boxes—
SNC(k)#.
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forms of the MD partial pair correlation functions and/
from the data obtained via the integral-equation method.
comparison with the experimental results@3# of neutron dif-
fraction experiments on He0.65-Ne0.35 is shown in Fig. 1 and
one may see that the position and the magnitude of the
peak are in good agreement with the experimental d
Hence we may conclude that the results of two pilot cal
lations ~Fig. 1 and the upper curve in Fig. 2! performed for
the 864 and 2048 particle ensembles are in good agree
and correlate well with the experimental data and the res
of the integral-equation method. It is worth noting that t
specific behavior of the static structure factor observed in
range of smallk values is typical for a system which is clos
to the demixing transition.

All the static correlation functions required for the calc
lation of the generalized hydrodynamic matrixT(k) have
been obtained directly in MD simulations. The correlati
times t i j have been calculated directly via Eq.~29!. In this
section we shall present results for the static structure fac
and the generalized thermodynamic quantities~defined be-
low! which are expressed via static correlation functions a
tend to the well-known thermodynamic expressions wh
k→0.

The Bhatia-Thornton structure factors can be expres
via the static correlation functions calculated directly in M
simulations@20–22#,
e

st
a.
-

ent
ts

e

rs

d
n

d

SNN~k!5 f nn~k!, ~40!

SNC~k!5 f n1n~k!2c1f nn~k!, ~41!

SCC~k!5 f n1n1
~k!22c1f n1n~k!1c1

2f nn~k!. ~42!

Using these definitions theSNN(k), SNC(k), andSCC(k)
tend for largek to 1, 0, andc1c2, respectively. Results fo
SNN(k), SNC(k), and SCC(k) are shown in Fig. 2 by dia-
monds, boxes, and crosses, respectively.

The generalized thermodynamic quantities as function
k investigated in this study are the generalized isother
compressibilitykT(k), the generalized second derivatives
the Gibbs potential~see@21#! or so-calledZ factors@ZP(k)
and ZV(k)#, the generalized ‘‘N2C’’ dilatation d(k) ~see
@21#!, the generalized thermal expansion coefficienta(k),
the generalized specific heat at constant volumeCV(k), and
the generalized ratio of specific heatsg(k) at constant vol-
ume and constant pressure; they are plotted in Fig. 3.
closed expressions for these quantities have been der
@20# on the basis of the thermodynamic theory of fluctuatio
and can be written as follows (kB is the Boltzmann constant!:
n

FIG. 3. Generalized thermodynamic quantities for the He0.65-Ne0.35 mixture atT539.3 K: ~a! generalized compressibilityu(k); ~b!
generalized factorsZV(k) ~1! andZP(k) (h); ~c! generalizedN2C dilatationd(k); ~d! generalized linear expansion coefficienta(k); ~e!
generalized specific heat at constant volumeCV(k) ~the asterisk fork50 points at MD value forCV calculated via temperature fluctuatio
in the MD simulation!; ~f! generalized ratio of specific heatsg(k).
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u~k!5
N

V
kBTkT~k!5

f nn~k! f̃ n1n1
~k!

SCC~k!
and

lim
k→0

u~k!5
N

V
kBTkT ~43!

for the generalized compressibilitykT(k) @see Fig. 3~a!#,
where

kT52
1

VS ]V

]PD
T,N,N1

~44!

and

f̃ n1n1
~k!5 f n1n1

~k!2
f n1n

2 ~k!

f nn~k!
, ~45!

ZP~k!5
kBT

SCC~k!
, ZV~k!5

kBT

f̃ n1n1
~k!

, and

lim
k→0

ZP~k!5
1

NS ]2G

]c1
2 D

P,T,N

~46!

for the generalizedZP(k) andZV(k) factors@see Fig. 3~b!#,
whereG is the Gibbs potential;

d~k!52
SNC~k!

SCC~k!
and lim

k→0
d~k!5

V12V2

V
~47!

for the generalizedN2C dilatation @see Fig. 3~c!#;

a~k!T5
N

V

kT~k!

ikkBT
f̃ J̇e

~L !
~k! and

lim
k→0

a~k!5
1

VS ]V

]TD
P,N1 ,N2

~48!

for the generalized thermal expansion coefficienta(k) @see
Fig. 3~d!#, where

f̃ J̇e
~L !

~k!5 f̃ J̇e
~L !

~k!2 ikkBTS f ne~k!

f nn~k!
2

f̃ n1e~k!

f̃ n1n1
~k!

SNC~k!

f nn~k! D
~49!

and

f̃ n1e~k!5 f n1e~k!2 f ne~k!
f n1n~k!

f nn~k!
, ~50!

CV~k!5
1

kBT2S f ee~k!2
f ne

2 ~k!

f nn~k!
2

f̃ n1e
2 ~k!

f̃ n1n1
~k!

D and

lim
k→0

CV~k!5CV,N,N1
~51!
for the generalized specific heat at constant volume@see Fig.
3~e!#;

g~k!511
@a~k!T#2

u~k!

kB

CV~k!
~52!

for the generalized ratio of specific heats@see Fig. 3~f!#. For
the k dependence of these quantities one may observe
following.

~i! The reduced generalized compressibilityu(k) @Fig.
3~a!# differs from SNN(k) ~plotted in Fig. 2! in the region
k,0.7 Å21. Note that

lim
k→0

SNN~k!5
N

V
kBTkT,m52

1

VS ]V

]PD
T,N,m

,

where kT,m is a compressibility given in (P,T,N,m) en-
semble.

~ii ! The curves ofZP(k) and ZV(k) @Fig. 3~b!# coincide
for k.1.5 Å21 but differ in the region of smallk.

~iii ! The generalizedN2C dilatation@Fig. 3~c!# becomes
negative fork→0 because the particles of the first spec
~Ne! are heavier.

~iv! The generalized thermal expansion coefficient@Fig.
3~d!# decreases rapidly for small values ofk (k,0.5 Å21)
as the wave number increases, while for largerk values it has
a maximum at the position of the main peak ofSNN(k). Such
a behavior can also be observed in pure liquids@10,13#.

~v! The extrapolated value ofCV(k) for k→0 @Fig. 3~e!#
is in good agreement with the value obtained from MD d
via the fluctuation formula~marked by an asterisk!.

~vi! In the hydrodynamic region the generalized ratio
specific heatsg(k) is rapidly decreasing as a function ofk.

We note the following.
~1! The difference between the functionsu(k) andSNN(k)

as well as the functionsZP(k) andZV(k) is due to the dif-
ference between the fluctuation formulas of the same qu
tity defined in various ensembles. This difference is prop
tional to the ratiof̃ n1n1

(k)/SCC(k) in both cases and tends t

zero ask becomes larger.
~2! The coupling of thermal and viscous processes

mainly described by the generalized thermal expansion c
ficient a(k). Comparing the behavior ofa(k) for a mixture
He0.65-Ne0.35 and for a simple fluid~see, e.g.,@10,13#! in the
range ofk smaller thank0 ~see above!, one may conclude
that the energy fluctuations play an important role for t
system considered here.

~3! Using the extrapolated values ofg(k) andkT(k) for
k→0, we can calculate the adiabatic velocity of sound@21#
defined by the expression

cs5S g

rKT
D 1/2

, ~53!

wherer is the mass density. In such a manner~and depend-
ing on the extrapolation procedure! we have found values fo
cs which are within the range of 300–350 m/s. As will b
seen below these values correlate well with the results
tained from the study of the spectra of the generalized c
lective modes in the hydrodynamic limit. Using Eq.~53! for
the values ofg(k) and kT(k) taken, respectively, at the
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2910 56TARAS BRYK, IHOR MRYGLOD, AND GERHARD KAHL
smallestk ~i.e., kmin50.1748 Å21) we obtaincs5376.9 m/s
which is close to the value 362 m/s obtained from a pheno
enological equation of state~see references in@3#!. However,
it should be noted that the valuekmin lies in factoutsidethe
hydrodynamic region of wave numbers as will be seen fr
the spectra of the generalized collective modes: At thik
point already new propagatingkinetic modes appear which
can be identified as fast sound modes.

C. Dynamical properties

In this section we present the numerical results for
dynamic structure factors and the spectra of the longitud
collective modes calculated within the generalized mode
proach. It should be noted once again that all the requ
quantities which form the generalized hydrodynamic ma
have been obtained directly in a MD experiment, so t
neither adjustable nor fitting parameters were required
used. To illustrate the internal consistency of our appro
we plotted in Fig. 4 thek dependence of the fourth frequenc

momentsv4
l l 8(k) of the partial dynamic structure factors d

vided byk2: We display the values calculated directly in th
MD simulation as the static averagesf J̇l J̇l 8

(L) , (l ,l 85He, Ne!

and the valuesv4
l l 8/k2 calculated via the partial radial distr

bution functions and the derivatives of interatomic potenti
on the basis of well-known expressions~see, e.g.,@14#!. One
may see in Fig. 4 that the results are in very good agreem
In addition we point out that, for example, the tim
correlation functionFnn(k,t), calculated on the basis of th
extended hydrodynamic set~30!, gives the exact values fo
the frequency moments up to fourth order, due to the f
that the first time derivatives of the hydrodynamic variab
are taken into account explicitly in this case~see also@12#!.
Hence we expect that the short-time behavior of the tim
correlation functions will be described more precisely with
the extended hydrodynamic set.

In Figs. 5 we compare the partial density-density tim
correlation functions calculated in the MD simulation~open

FIG. 4. Fourth frequency moments of the partial dynami
structure factors divided byk2 as functions ofk for the He0.65-
Ne0.35 mixture investigated in this study: solid lines—calculat
using the partial radial distribution functions; symbols—calcula
directly in the MD simulation as static averagesf J̇l J̇l 8

(L)
~crosses—

He-He; boxes—He-Ne; diamonds—Ne-Ne!.
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circles! with those obtained within the generalized mode a
proach for the hydrodynamic@ÂH(k)—dotted curve# and ex-
tended hydrodynamic@ÂEH(k)—solid curve# sets of dy-
namic variables. The results are given at two wave numb
k, namely,k50.350 Å21 andk50.857 Å21 ~both of them
are much smaller thank0). In Figs. 5 it is clearly seen tha
the results obtained within the extended hydrodynamic
provide a much better agreement with MD data compare
the results for the hydrodynamic set~7!; the difference
becomes—as expected—more pronounced for larger va
of k.

The spectra of the generalized collective modes obtai
for the hydrodynamic~7! and the extended hydrodynam
~30! sets of dynamic variables are shown in Figs. 6. T
eigenvaluesza are given in reduced units, using the tim
scalets ,

ts5
1

kmin
Ac1m11c2m2

kBT
.

As expected, we found for the hydrodynamic setÂH(k)
@Figs. 6~a! and 6~b!# four generalized modes, which can b
considered as the extension of usual hydrodynamic mo
known in the literature~see, e.g.,@21#!. In the hydrodynamic

l

d

FIG. 5. Partial density-density correlation functions for tw
fixed values ofk for the He0.65-Ne0.35 mixture investigated in this
study: open circles—MD data; dotted lines—the results obtai
for the hydrodynamic set of variables~7!; solid lines—the results
for the extended hydrodynamic set of variables~30!.
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FIG. 6. Spectra of eigenvalues obtained for the hydrodynamic set of variables~7! ~a!, ~b! and the extended hydrodynamic set of variab
~30! ~c!, ~d! for the He0.65-Ne0.35 mixture investigated in this study. The linear dispersion of sound withcs5362 m/s~see@3#! is plotted by
a dotted line. The imaginary~a!, ~c! and real~b!, ~d! parts of the eigenvalues are shown by symbols@sound modes by boxes; concentratio
modes~b!, ~d! by triangles; fast sound modes~c!, ~d! by diamonds; the pair of propagating modes~c!, ~d!, which transform at small values
of k into two purely diffusive modes by3 and1#. The time scale unitts ~see text! is given by 3.109 ps.
ion

of

nt
ne

at
th

i-

-

t

al

time
dy-

id-

e of
ons
to

s

lues

ote

ve

-

limit k→0 these modes are~i! two complex conjugated
propagating modes which correspond to sound excitat
with the eigenvalues

zs
65Gk26 icsk, ~54!

wherecs andG are the velocity and damping coefficient
the sound excitations, respectively;~ii ! two purely diffusive
modes describing the concentration (c) and heat (h) fluctua-
tions

zc5Dck
2, ~55!

zh5Dhk2, ~56!

whereDc andDh are the concentration damping coefficie
and the heat diffusivity, respectively. Our estimates, obtai
for kmin within the hydrodynamic set~7!, givecs5286.7 m/s,
G57.5231028 m2/s, Dc50.8031028 m2/s,
Dh54.3731028 m2/s. Furthermore, it should be noted th
one can also extract the transport coefficients using
known expressions@21#, which relate the hydrodynamic e
genvalues to these transport coefficients~the viscosity, the
concentration diffusion coefficientD, and the thermal con
ductivity k).

The spectra of the generalized collective modes calcula
within the extended hydrodynamic setÂEH(k) are shown in
Figs. 6~c! and 6~d!. In this case we obtained seven eigenv
uesza which describe the time dependence of the system@cf.
Eq. ~23!#. In the hydrodynamic limit, we find~as it should
s

d

e

ed

-

be! in addition to the previous results@Eqs. ~54!–~56!# two
relaxing kinetic modeszk1(k) andzk2(k) @denoted by1 and
L in Fig. 6~d!# with finite damping coefficients,

lim
k→0

@Rezk1~k!#5zk1
0 .0, lim

k→0
@Rezk2~k!#5zk2

0 .0.

The kinetic modes describe processes of a subsequent
scale, i.e., faster processes in comparison with the hydro
namic ones.

In Fig. 6~d! we can see that for large values ofk there
exist one purely real relaxing mode, which may be cons
ered as the extended concentration mode~triangles!, and
three pairs of complex conjugated propagating modes, on
which corresponds to the generalized sound excitati
~boxes!. The other two pairs of propagating modes reduce
the modes with purely real eigenvalues ask decreases.

~i! For k<0.3 Å21 the imaginary part of the eigenvalue
for the propagating kinetic modes@denoted by3 in Fig.
6~c!# becomes zero, and they degenerate for smaller va
of k into two relaxing modes@denoted by3 and1 in Fig.
6~d!#, one of which is an extension of the heat mode. N
that the dispersion of these modes fork.0.3 Å21 is always
below vs(k)5csk @dotted line in Fig. 6~c!#.

~ii ! The third pair of propagating modes~plotted by dia-
monds! with the largest real part of the eigenvalues beha
in the range of small and intermediate values ofk similar to
the fast sound modes found in@3,4#. This means that the
dispersion of these modes,vk(k), is larger than the disper
sion of the sound modesvs(k) for all the values ofk con-
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2912 56TARAS BRYK, IHOR MRYGLOD, AND GERHARD KAHL
sidered in the simulations; however, there is a clear tende
thatvk(k) tends to zero ask tends tokH from above, so that
for k,kH these modes reduce to two relaxing kinetic mod
with purely real eigenvalues@where the valuekH can be
defined by the equationvk(kH)50#. From Fig. 6~c! one may
estimate the value ofkH to bekH.0.1 Å21. Due to the finite
size of our ensemble~introducing thuskmin) we are not able
to give a more accurate result forkH . Such properties are in
agreement with the conclusion given in@3#.

We also list our estimates for the quantities which d
scribe the behavior of the generalized hydrodynamic m
ask tends to 0, obtained within the extended hydrodynam
set ~30!: cs5296.5 m/s, G59.1131028 m2/s,
Dc50.8131028 m2/s, Dh54.5931028 m2/s. These values
correlate well with the estimates found for the hydrodynam
set of dynamic variables.

Summarizing, one may conclude that the fast sound e
tations which have been observed experimentally@2,3# in
binary mixtures can be described within the generaliz
mode approach on the basis of the extended hydrodyna
setÂEH(k). We add that a similar behavior of the propag
ing kinetic modes has also been found for a Lennard-Jo
fluid @11#. However, in the case of simple liquids the dispe
sion of the propagating kinetic modes was belowvs(k), so
that these modes were not directly visible in the dynam
structure factor.

Therefore, in an effort to find more precisely the reaso
under which conditions the fast sound solutions appear
consider in the following also the other sets of dynami
variables discussed above@see Eqs.~35!–~37!#. Such inves-
tigations are also motivated by the fact that such a kind
solution has been found previously@3,4# within the variable
set ~35!, using the seven-parameter fitting procedure for
elements of the generalized hydrodynamic matrix.

Before analyzing the results we note that for any set
dynamical variables which includes the conserved hydro
namic variables, the spectra of the collective modes m
describe correctly the hydrodynamic behavior. This me
that four of the eigenvalues should be hydrodynamic eig
values@which, in the limitk→0, describe two complex con
jugated propagating modes~sound excitations!# and two ei-
genvalues should be purely diffusive ones@see Eqs.~54!–
~56!#. The other collective modes have to be kinetic on
with finite damping coefficients ask tends to 0; they contrib-
ute only to the central peaks~located atv50) of dynamical
structure factors whenk is small.

The results for spectra of the generalized collective mo
obtained within various sets of dynamic variablesÂ5A(k),
Â5B(k), andÂ7B(k) are shown in Fig. 7.~i! In Fig. 7~a! the
imaginary parts of the eigenvalues, calculated for the
~35!, are plotted. In this case and fork.0.4 Å21 we found
two pairs of propagating modes and one mode with a pu
real eigenvalue: The first pair describes sound excitatio
the second pair of propagating modes decomposes into
relaxing modes whenk is smaller than 0.4 Å21: one of them
is the heat mode and the other one is a kinetic mode. He
the general behavior of solving the eigenvalue problem
the setÂ5A(k) is very similar to that found in@3#. However,
it is seen in Fig. 7~a! that in contrast to@3# these modes
cannot be considered as fast sound excitations. More lik
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they are related to the kinetic propagating modes found
the extended hydrodynamic set@compare the low-lying
curves in Fig. 7~a! and Fig. 6~c!#. ~ii ! The imaginary parts of
the eigenvalues, calculated for the setÂ5B(k) where the par-
tial densities of the energies are taken into account,
shown in Fig. 7~b!. In the entire range ofk considered, we do
not find any other propagating modes at all@except for sound
modes ~plotted by boxes!#. ~iii ! For the setÂ7B(k) such
modes appear again fork.0.2 Å21 @see Fig. 7~c!#. We em-
phasize that set~37! can be considered as an extension of
~36!, so that we now might expect to obtain more accur
results for the low-lying collective modes. However, prop
gating kinetic modes, which could be identified as fast sou
excitations, have not been found. Thus we conclude thatonly

the extended hydrodynamic setÂEH(k) of dynamical vari-
ables provides a way to describe fast sound modes.

Let us consider now the results for the partial dynami

FIG. 7. Imaginary parts of the eigenvalues obtained for the v

ous setsÂ5A, Â5B, and Â7B of dynamic variables, namely,~a! for
Eq. ~35!, ~b! for Eq. ~36!, and~c! for Eq. ~37!. The dispersions of
sound and propagating kinetic modes are shown by boxes and
monds, respectively. The time scale unitts is given in the caption
of Fig. 6.
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FIG. 8. Total neutron-weighted dynamic structure factors~58! for six different values ofk obtained within the hydrodynamic set~7!
~dotted curves!, the extended hydrodynamic set~30! ~solid curves!, and by numerical Fourier transformation of MD data~open circles!.
Arrows display values of the imaginary parts of eigenvalues for propagating modes obtained within the extended hydrodynamic~30!.
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structure factors. As follows from Eq.~23! we get

Sll 8~k,v!5
1

pAclcl 8

ReF (
a51

M Gnlnl 8

a ~k!

iv1za~k!
G . ~57!

Using Eqs.~38! and~57! one can calculate the total neutro
weighted dynamic structure factorStot(k,v) for our system,

Stot~k,v!5
1

p
ReF (

a51

M Ga

iv1za~k!G , ~58!
where the coefficientsGa are the corresponding linear com
binations of theGnlnl 8

a .

In Fig. 8 the total dynamic structure factorStot(k,v) cal-
culated with the hydrodynamic setÂH(k) and the extended
hydrodynamicÂEH(k) sets are plotted for six different val
ues ofk ~dotted and solid curves, respectively!; MD data are
shown by open circles. The positions of the propagat
modes found for the extended hydrodynamic set are sh
by arrows. We see that the results obtained within the sev
variable approximation of the generalized collective mo
approach agree well with MD data for all the consider
values ofk. The hydrodynamic set gives results which agr
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with computer simulation data only for smallk’s, which
shows clearly that, ask is increased, the nonhydrodynam
effects become more important. One can see in Fig. 8 tha
k50.699 Å21 andk50.857 Å21 the contributions from the
propagating kinetic modes, which may be identified as f
sound modes, are visible~the positions of fast sound excita
tions are shown by arrows on the right-hand side!. For
smaller wave numbers (k,0.7 Å21) these modes can n
longer be observed because the contributions from
kinetic modes in Eqs.~57! and ~58! are proportional tok2

and the damping coefficient is too large. On the other ha
for k.0.9 Å21 the fast sound modes are not visible eith
due to the increasing damping coefficient. Still, one m
conclude from the results in Fig. 8 that for large values ok
the fast sound excitations should be taken into account f
correct description of the dynamic structure factor: they i
prove the accuracy in the range of intermediate values ok
andv.

In Figs. 9 and 10 the results for second frequency mom
M2(k) of the total dynamic structure factor calculated with
the extended hydrodynamic set,

FIG. 9. Second frequency momentM2(k) of the total dynamic
factor ~diamonds! calculated in comparison with the theoretic
value ~solid line!.

FIG. 10. Half-width at half heightvH ~diamonds! calculated for
the total dynamic structure factor. The pure contributions from
thermodiffusion and concentration diffusion terms@see Eq.~58!#
are plotted by upper and lower dotted lines, respectively.
or

st

e

d,
,
y

a
-

nt

M2~k!5
v2

tot~k!

k2
5

1

k2E2`

`

v2Stot~k,v!dv,

and the half-width at half heightvH(k) are plotted as func-
tions of k, respectively. Within the accuracy of 2% the se
ond frequency moment~diamonds in Fig. 9! is in a good
agreement with the theoretical value~see@3#! shown by a
solid line. In Fig. 10 the half-width at half height o
Stot(k,v) ~diamonds! in the region of smallk values is a
function proportional tok2, as it should be. Two dotted line
in Fig. 10 are the functionsDhk2 ~upper dotted line! and
Dck

2 ~lower dotted line!, whereDh andDc are the values of
thermodiffusion~56! and concentration diffusion~55! coef-
ficients, respectively. In binary systems the width of the c
tral peak ofStot(k,v) in the hydrodynamic region depend
on interplay between thermodiffusion and concentration d
fusion processes. Therefore for small values ofk the function
vH(k) is in between the dotted curves.

In order to investigate the influence of the high-frequen
propagating kinetic modes~fast sound! on the partial dy-
namical structure factors we display in Fig. 11Sll 8(k,v)
( l ,l 85He, Ne!, using the extended hydrodynamic s
ÂEH(k). There the partial dynamic structure factors are pl
ted for k50.857 Å21, i.e., for k values when the fast soun
modes could be clearly identified in the total dynamic stru
ture factor ~see above and Fig. 8!. We present results fo
Sll 8(k,v): the full line represents the sum~57! containingall
terms, while the broken line shows data when the contri
tion from the fast sound modes is neglected. It is obvio
that the fast sound contribution affects mainly the dynam
of lighter He particles and has no visible effect on the d
namics of the heavier Ne particles. This is consistent with
conclusion made previously in Refs.@2,3#.

V. CONCLUSION

In the present paper, the generalized collective mode
proach, extended to binary mixtures in the parameter-f
form, has been applied to study the dynamical properties

e

FIG. 11. Partial dynamic structure factors obtained for the
tended hydrodynamic set~30! ~solid curves!. The dotted curves
show the partial dynamic structure factors if the contribution fro
the fast sound like modes is neglected.
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He0.65-Ne0.35 mixture. In particular, the spectra of the gene
alized collective modes have been studied for various se
dynamical variables. Our main concern was to investig
the excitations of fast soundlike modes, described previou
in @3,4#: We recall that such excitations have been obtain
in @3,4# using a seven-parameter fitting procedure for the
of variables~35!.

One of the most important aspects of our results is t
from all the sets of dynamical variables considered in t
study the appearance of fast sound modes can only be
scribed within theextended hydrodynamicset ~30!. For all
the other sets we have not found modes which could
identified as fast sound modes. We recall that in contras
theexactformalism@see Eq.~15!#, where all sets of dynami
cal variables are equivalent, the Markovian approximati
which is the key point of the generalized mode approa
brings along that these sets are no longer equivalent. H
ever, as has been shown for pure liquids in Refs.@12#, by
extending a set of dynamical variables by including th
time derivatives the following is observed: the short-tim
kinetic properties can be described more precisely and a
dency for the convergence of the results for the collect
modes spectra as well as a better agreement of the t
correlation functions with MD data in the generalized mo
approach is observed. In contrast to the other sets consid
here, the extended hydrodynamic set~30! is the most natura
one because it contains all the first time derivatives of
hydrodynamic variables and therefore short-time kinetic p
cesses of the same scale are considered.

Furthermore, it has been shown that the parameter-
generalized mode approach for the extended hydrodyna
ns
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setÂEH gives results for the time-correlation functions~such
as the dynamic structure factors! which are in good agree
ment with MD data. In our study it has been found that t
condition under which the fast sound excitations may be
served depends on the ratio of the damping coefficients
function ofk. From the physical point of view the fast soun
modes are found to be closely connected with the dynam
of the lighter component in a mixture.

Based on the results given here, further time-correlat
functions and generalized transport coefficients, such as
generalized shear and bulk viscosities, the generalized t
mal conductivity, and the generalized diffusion coefficie
can be computed. It would also be interesting to investig
the spectra of generalized collective modes in higher
proximations, taking into account second- and higher-or
time derivatives of the hydrodynamic variables, since it h
been shown for simple fluids@11,12# that in this way the
low-lying eigenvalues can be reproduced with higher ac
racy. We plan to present results of such a study~extension to
the binary case! elsewhere.
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