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Abstract. A recently introduced algorithm for solving the inverse problem for simple classical
fluids (i.e. the deduction of the interatomic interaction from structural data), which is based on the
fundamental-measure free-energy density functional for hard spheres, is analysed in comparison
with other methods. In a benchmark test for the Lennard-Jones system near the triple point, it
is comparable with aboutten simulationsin the iterative predictor–corrector scheme proposed
some years ago by Levesque, Weis, and Reatto. The method is used to extract the effective pair
potential of Kr from very accurate experimental neutron scattering structure factor data.

The inverse problem, i.e. the deduction of the interatomic interaction from structural data
obtained from scattering experiments, has been the object of much attention [1–15] in the
physics of liquids. The determination of the interatomic interaction in condensed matter is
of fundamental importance. Although many-body forces are always present in condensed
systems, even in monatomic systems, an effective state-dependent two-body interaction (a
pair potential,ϕ(r)) is still an important and useful quantity. The insensitivity in a dense
fluid of the pair radial distribution functiong(r) to the exact shape of the pair potential
ϕ(r) plays a major role in the solution of the direct problem, i.e.ϕ(r) → g(r). As a
result, the solution of the inverse problem, i.e.g(r)→ ϕ(r), requires a highly accurate and
non-perturbativetheory for the fluid structure. A non-perturbative theory should be equally
applicable to quite disparate potentials (e.g., the hard-sphere and Coulomb ones), and the
quest for such a theory has led to many developments. The simulation of model fluids
provides the testing ground for theoretical methods and has played a key role in addressing
both the ‘direct’ and ‘inverse’ problems.

The first non-perturbative accurate theory of fluid structure, the modified hypernetted-
chain (MHNC) theory, was based on theansatzof universality of the bridge functions [16].
Using the bridge functions for hard spheres, it proved accurate for the ‘direct’ problem,
and motivated several other integral equation approximations [17, 18]. It also led to the
first successful results for the solution of the inverse problem [7]. Yet, these ‘inverse’
results were not accurate enough in certain density–temperature regions of the fluid, and
for certain types of liquids. The predictor–corrector method of Levesque, Weis, and Reatto
(LWR) [11, 12], which is based on the MHNC scheme and on simulations, overcomes
these drawbacks (at least in the one-component case): it can be applied to any liquid and
gives reliable results even near the triple point. Applications to realistic systems (e.g. liquid
Ga [13]) demonstrated the power of this approach. One should bear in mind, however,
that in the iterative predictor–corrector algorithm each ‘corrector’ step is represented by a
full computer simulation for a fluid with a given ‘predictor’ pair potential, and about ten
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such iteration steps are required near the triple point. The initial guess is provided by the
MHNC equation with the hard-sphere bridge functions. The convergence of the iterative
predictor–corrector procedure is due to the general high accuracy of the approximation of
universality of the bridge functions. The generalization of the predictor–corrector formalism
to the binary case is straightforward, but its realization [14] is by no means trivial and even
fails in some cases: for small concentrations of the minority component the statistical errors
in the computer simulation (‘corrector’) steps accumulate and the simulation does not lead
to satisfactory results.

A recent development in density functional theory is the fundamental-measure functional
(FMF) for the free energy of hard spheres and hard convex bodies [19–24]. The
FMF, which is based on geometrical rather than van-der-Waals-like considerations, brings
together the Percus–Yevick [25] and scaled-particle [26] theories. It is the first free-energy
functional for hard spheres with adequate properties of crossover between different effective
dimensionalities of the fluid, which result from spatial confinement of the fluid by external
potentials. Due to its accuracy, the FMF enabled the extension of the approximation of
universality of the bridgefunctions to that of universality of the bridgefunctional [22].
This provides an accurate non-perturbative theory for the static structure of fluids [22,
15] which also enables one to overcome [15] the problems encountered by the predictor–
corrector algorithm for the inverse problem for mixtures. As we recently demonstrated [15],
the interaction potentials extracted from the simulation pair correlation data are accurate to
such an extent that this method can become a more efficient alternative to the use of
simulations in the inversion problem.

In this letter we highlight the special features of this method [22, 15] in comparison
with other possible schemes for solving the inverse problem. We further test the density
functional method by comparison with the LWR-simulation predictor–corrector results [11,
12] for the Lennard-Jones (LJ 12–6) system near the triple point. We find that the potential
obtained by our method is comparable to that obtained by aboutten simulation predictor–
corrector steps. We apply this method to very accurate scattering experiments on Kr [27],
and extract the effective pair potentials from the experimental structure factor data.

The exact diagrammatic MHNC equation has the following form:

βϕ(r)+ b(r) = g(r)− 1− c(r)− ln g(r) (1)

wherec(r) is the usual Ornstein–Zernike direct correlation function given by

h(r)− c(r) = ρ0

∫
dr′ c(|r − r′|)h(r ′) (2)

whereh(r) = g(r)−1, ρ0 is the bulk number density, and where hereafter we denote 1/kBT

as β. In terms of the Fourier transforms̃h(k) and c̃(k), and the structure factorS(k), it
reads

S(k) = 1+ ρ0h̃(k) = 1

1− ρ0̃c(k)
. (3)

When the bridge function is ignored,b(r) = 0, we have the hypernetted-chain (HNC)
approximation

ϕHNC(r) = 1

β
(g(r)− 1− c(r)− ln g(r)). (4)

Given a pair correlation functiong(r), the right-hand side of this equation is fully specified
(with c(r) given by the Ornstein–Zernike relation (2)), so we can regard it as a functional
of g(r):

ϕHNC(r) = 8HNC [g(r)]. (5)
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We thus have the following exact relation:

ϕ(r) = 8HNC [g(r)] − 1

β
b(r) (6)

and the strategy for the solution of the inverse problem depends on how the information
about the bridge function,b(r), is given. Like in the diagrammatic analysis (see the
discussion and the list of references in [16]), we consider the following two possibilities,
(a) and (b).

(a) The bridge function is given as afunctional of the pair potential:

b(r) = B[ϕ(r)]. (7)

Within the diagrammatic analysis this case corresponds to (a1) the elementary diagrams
with the Mayerf -bond [16]. It also corresponds to (a2) the simulation (indicated by the
subscriptsim) results for the structure with agivenpair potential, for which we have

B[ϕsim(r)] = β8HNC [gsim(r)] − βϕsim(r). (8)

When the bridge function is given as a functional of the pair potential (which is the
quantity we seek!), then given theexperimentalpair structuredata (or, if we just want to
test the method, then given the simulation results for some test pair potential),gdata(r), we
are forced to use an iterative scheme (which is assumed to converge; see below):

ϕ0(r) = 8HNC [gdata(r)]

ϕk+1(r) = ϕk(r)+ (8HNC [gdata(r)] −8HNC [gk(r)]).
(9)

These iteration cycles are based on theapproximationof ‘universality’ (i.e. their insensitivity
with respect to changes in the potential) of the bridge functions, in the form

ϕk+1(r)− ϕdata(r) = − 1

β
(B[ϕk(r)] − B[ϕdata(r)]). (10)

But if and when they converge,ϕ∞(r) = ϕdata(r), the result is in principle exact if the
functional B[ϕ(r)] is exact. The converged result will, however, reflect approximations
in the functionalB[ϕ(r)]. In the LWR predictor–corrector scheme [11, 12] each iteration
cycle in (9) is carried out as a full simulation run.

(b) The bridge function is given as afunctional of the pair correlation function:

b(r) = B[g(r)]. (11)

This case corresponds to (b1) the diagrammatic description of the bridge function in terms
of a subset of the elementary diagrams (those with at least triply connected field points)
with g(r)−1 bonds, to (b2) the MHNC approximation with a given (‘universal’) parametric
set of bridge functions, and also to (b3) the density functional formalism.

When the bridge function is given as a functional of the pair correlation function
there is no need for an iterative procedure: given the pair structure data,gdata(r), we
can immediately obtain the corresponding pair potential, via equation (6), from

ϕdata(r) = 8HNC [gdata(r)] − 1

β
B[gdata(r)] (12)

where, of course, the inverted potential,ϕdata(r), will reflect approximations in the
functionalB[g(r)].

The most important example of case (a) is the LWR predictor–corrector algorithm using
simulations [11, 12]. The first important example of case (b) is the ‘universality’ approx-
imation using the bridge functions for hard spheres of radiusR [16, 9]:

b(r) = bHS(r;R). (13)
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Figure 1. The inverted potential (full line) and original potential (Lennard-Jones, dot–dashed
line) as functions ofr for the Lennard-Jones system near the triple point, as specified in the
text. The inverted potential was extracted from the ’experimental’g(r) data, obtained in a
molecular-dynamics simulation of 4096 particles over 20 000 time steps; the cut-off radius for
the potential in the simulation was 6σLJ .

Together with a condition for choosing the optimal (indicated by the subscriptopt) R = Ropt ,
e.g. the extremum condition for the MHNC free energy [28],∫

d3r [gdata(r)− gHS(r)] ∂b
HS(r;R)
∂R

= 0 for R = Ropt (14)

the relation (13) defines a functional dependence

B[gdata(r)] = bHS(r;Ropt ). (15)

This allows one to obtain the MHNC inversion result

ϕdata(r) ∼= ϕMHNC(r) = 8HNC [gdata(r)] − 1

β
bHS(r;Ropt ) (16)

which provides a much better approximation than8HNC [gdata(r)].
Indeed [11, 12],ϕMHNC(r) was chosen as the starting point, i.e. the initial predictor,

for the iterative predictor–corrector scheme. As a demonstration of the universality of
the bridge functions [16], it is found [11, 12, 14] thatϕMHNC(r) reproduces correctly the
repulsive-core part of the interaction, and only in the vicinity of the triple point does one
need many simulation predictor–corrector steps. The general validity of the universality
of the bridge functions also implies themonotonicbehaviour of the functionalB[ϕ(r)]
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Figure 2. Inverted potentials (full lines) for two Kr states (as specified in the text) as functions
of r from neutron scattering data [27]. The top curves correspond toT = 169 K, and the bottom
curves toT = 130 K. In comparison we show a Lennard-Jones potential (dotted lines) with the
usual parametrization for Kr (cf. [18]) and the Aziz–Slaman potential (broken line; cf. [33]).

in terms of the essential features of the the potential (notably the repulsive-core ‘radius’),
which is responsible for the convergence of the predictor–corrector scheme. In practice one
can use in (13) and (14) either the parametrized simulation results for hard spheres [29] or
the analytical solution of the Percus–Yevick equation [25], which give approximately the
same results [9].

The central quantity in density functional theory (DFT) is the excess (over ideal-gas)
free-energy functional,Fex [ρ(r)], of the density profile,ρ(r). Taking the test-particle limit
[30] for the bulk fluid with densityρ0, ρ(r) = ρ0g(r), it is possible to obtain the bridge
functional in the following form [22]:

BDFT [g(r)] = β(−c(1,FD)[ρ0g(r); r] − µex(ρ0))



L94 Letter to the Editor

Figure 3. Pair distribution functionsg(r) as obtained from neutron structure factor data
(symbols; [27]) for the two Kr states investigated in this letter: top—130 K and bottom—
169 K. The full lines represent the theoretical integral equation results as obtained from the
inverted potentials in figures 2 and 5.

+ ρ0

∫
dr′ c(2,FD)[ρ0; (|r − r′|)](g(r ′)− 1) (17)

whereµex(ρ0) is the bulk excess chemical potential, andc(n,FD) are functional derivatives
of the the excess free energy:

c(1,FD)(r) = −β δFex [ρ(r)]

δρ(r)
c(2,FD)(r1, r2) = −β δ2Fex [ρ(r)]

δρ(r1) δρ(r2)
. (18)

However, the exact excess free-energy functional is generally not known, and we must resort
to approximations. In particular, the FMF for hard-sphere mixtures [19–24] proved very
accurate. With this functional it was possible to extend the approximation of universality
of the bridge functions to that of ‘universality of the bridge functional’ [22]:

b(r) = BHSDFT,FMF [R; g(r)]. (19)
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Figure 4. The bridge functionsb(r) as obtained from the experimental pair distribution functions
(reference [27]) by using the FMF bridge functional for the two Kr states investigated in this
letter; broken line: 130 K, with 2Ropt = 3.58 Å (corresponding toη = (4π/3)ρR3

opt = 0.41);

full line: 169 K with 2Ropt = 3.47 Å (corresponding toη = 0.32). Notice the change of scale
(factor 20) forr > 5 Å.

The FMF bridge functional for the hard spheres,BHSDFT,FMF [R; g(r)], depends parametrically
on the hard-sphere radiusR. The optimal value,R = Ropt , is obtained from the following
equation [22]:∫

d3r [g(r)− gHSPY (r)]
∂BHSDFT,FMF [R; g(r)]

∂R
= 0 for R = Ropt (20)

which is similar to (14). Note, however, that in accordance with the build-up of the FMF
functional we must use in (20) the Percus–Yevick (PY) equation [25] results for the hard-
sphere pair functiongHSPY (r). By considering simulation data for given pair potentials we
found that the resulting bridge functional

b(r) = BHSDFT,FMF [Ropt ; g(r)] (21)

is very accurate for both the direct and inverse problems, for both single-component fluids
and mixtures [22, 15]. We would like to emphasize that the evaluation ofbdata(r) =
BHSDFT,FMF [Ropt ; gdata(r)] requires only several one-dimensional integrations. The inverted
potentials obtained from more recent modifications [23] of the FMF functional are almost
identical to those obtained from the original functional [22].

In practice8HNC [gdata(r)] depends on the quality of the data and on the method for
its handling. In particular, since both the simulationgsim(r) and the experimental structure
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Figure 5. Inverted potentials for the two Kr states (as specified in the text) as functions ofr

from neutron scattering data [27], compared on a common scale. The full line corresponds to
T = 169 K, and the broken like toT = 130 K.

factorSdata(k), which is related togdata(r) by the Ornstein–Zernike equation, are given only
over a limited range of their arguments (the distancer and the wave vectork, respectively),
these data need to be ‘extended’ to cover the full range ofr and k. There are several
satisfactory schemes for solving this ‘extension’ problem (see, e.g., [31, 27, 32]). From the
conceptual point of view (but, however, with little practical consequence), the extension
method should be (and can be made to be) consistent with the inversion method.

Before applying our method to the recent high-quality set of experimental structure
factor data for Kr [27], we would like to further gauge its accuracy against the benchmark
which was used to test the LWR predictor–corrector algorithm [11, 12]. In figure 1 we
compare the potential from our inversion method to the original LJ potential. The input
structural data are the simulation results for the LJ system under triple-point conditions
ρ? = ρσ 3 = 0.84, T ? = kBT /ε = 0.75. This figure should be compared with figure 1
in [11], from which we find that the accuracy of our method is comparable with about
ten iterations in the predictor–corrector procedure. In particular, this inversion yields a
potential which is almost identical to the LJ potential, except for small wiggles after the
minimum. We know from previous work [15] (and see figure 2 above) that these wiggles
are much smaller when the first peak ing(r) is smaller (i.e. at lower densities and/or higher
temperatures). These wiggles reflect the imperfections of our bridge functional, which are
demonstrably small. This means that if we begin with our result for the inversion problem



Letter to the Editor L97

as the initial predictor potential in the LWR scheme, a single corrector simulation step
(using this potential) will give us an estimate of the accuracy of our result and, at the same
time, will provide a somewhat improved result (e.g. by smoothing and averaging the small
wiggles after the minimum for the LJ potential). However, in view of the high accuracy
of our inversion scheme, and the inherent statistical noise in the simulations, only little is
expected to be gained from additional corrector steps by simulations.

In figure 2 we compare the potential from our inversion method with the LJ [18] and

Aziz–Slaman [33] potentials for Kr atT = 169 K, ρ0 = 0.014 57Å
−3

, andT = 130 K, ρ0 =
0.017 01 Å

−3
, respectively. These states correspond toρ? = 0.726, T ? = 1.448, and

ρ? = 0.848, T ? = 1.114, in reduced LJ units (recall [18] thatεLJ = 116.7 K, σLJ = 3.68Å).
The input data are the experimental pair correlation functions, given in figure 3, which were
obtained from very accurate neutron structure factor data for Kr [27]. The corresponding
bridge functions,b(r), are presented in figure 4. The apparently too high oscillations just
after the first minimum (at aboutr = 5 Å) give rise to the wiggles in the inverted potentials.
At shorter distances the bridge functions are accurate, while at larger distances they are too
small to have an appreciable effect on the inverted potential. Finally, by comparing the
inverted potentials atT = 169 K andT = 130 K on a common scale (figure 5) we find
that they are very close, demonstrating the validity, in general, of the an effective state-
independent pair potential for Kr. However, there are small but significant differences
between the two potentials even near the minimum and at shorter distances. This indicates
a weak density and temperature dependence of the effective pair potential for Kr, which
can be accounted for [8, 27] by adding a three-body interaction to a state-independent pair
potential. It will be interesting to repeat the analysis of the three-body interactions in view
of the present, more accurate, effective two-body interactions.

In summary, we have demonstrated the high accuracy of our new algorithm for
solving the inverse problem for simple classical fluids (i.e. the deduction of the interatomic
interaction from structural data), which is based on the fundamental-measure free-energy
density functional for hard spheres, and which can be easily applied to scattering results of
real liquids even near the triple point.
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