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We present a single superchain/effective medium approximation calculation of the electronic
density of states for asp® fluid in a tight-binding Hamiltonian approximation, with parameters
roughly chosen to represent liquid Hg. Comparison with direct diagonalization of the Hamiltonian
using quenched liquid configurations generated by molecular dynamics shows that the performance
of the theory is more than acceptable for moderate to high densities. Localization is estimated from
the inverse participation ratio calculated from the simulation an in a second order renormalized
perturbation theory proposed by Winn and Logan. Analysis of the results indicate that by increasing
density the metal nonmetal transition occurs well after the band crossing transition. The major
weakness of the theory as far as the density of states is concerned can very likely be coped with by
inclusion of nonlinear corrections. @996 American Institute of  Physics.
[S0021-960606)52041-9

I. INTRODUCTION model, and hence we do not pretend to attain here a quanti-
tative description of the properties of real Hg.

In addition to the inclusion of cross-interactions, one
CHﬂight argue that the effects of non-orthogonality in the basis
functions of the TB Hamiltonian must also be accounted for,
Crbut it is also clear that such effects can actually be built-in in

. . . the parameterization of the model without further complica-
tems of interest have been studied to the level of linear ap- : o
tions. Therefore, the issue of the non-orthogonality is not to

proximations like the mean spherical approximation the L >
closely related single superchain/effective medium approxipe pursued here any further, although its inclusion in the

mation (SSCA/EMA.® Two of the authors have actually SSCA/EMA formalism is rather straightforwatd.

taken advantage of the simple formulation of this latter ap-h ’fA‘ partllcgla; fgatut:e made arl]pgatr)entjln Rgrs' 10 adndhll IS
proach to develop a fast and stable algorithm for its numerii"€ formal similarity between thp“-band problem and that
)osed in liquid theory by determination of the structure of

cal solution, that has been successfully tested for an exted©; ) X ) 4 : ; )
sion of the SSCA/EMA to mixtures of one-band fluids andflUids with dipole-dipole interactions. We will see that this
for two-band fluids, Yet, to our knowledge, most of the Similarity can be carried further by establishing a corre-
systems dealt with hitherto are far from being representativéPonding link between thep® TB band problem and the
of materials of interest, in particular as regards electroni¢olution of the Ornstein-ZemikeOZ) equation for the
properties. In this connection, we must recall that the formal€harge-dipole mixturérestricted primitive model of electro-
ism employed is particularly suited to deal with systems!Ytes), which was solved analytically by Bluth™® in the
where the electronic degrees of fluids can be approximated ifiean spherical approximatidMSA). We will see that fol-
terms of tight binding(TB) Hamiltonians® which typically lowing the ideas of Chen and Stratt it is actually simple to
should include at least and p-bands. In this regard, we are recast the SSCA/EMA multi-band equations of Winn and
only aware of Chen and Stratt's wdtkon a liquid state Logar® when written for thesp® problem in a form that
theoretical approach for thep® problem. These authors, closely resemblegsand hence can be handled by the same
however, neglect the—p band interaction. On a more el- procedurep the aforementioned ion-dipole statistical me-
ementary level, Winn and Log%used the Hubbard DoS chanical problem. As shown in Ref. 7 the SSCA/EMA equa-
(which is the low-density limit of other linear theorielor a  tions are particularly suitable for numerical treatment, and
complete treatment of the localization and DoS of a somethus it is possible to go beyond the limitations of pure ana-
what nave model for liquid Hg(Ref. 13 which fully in-  lytical solutions, which are only attainable for specific func-
cludes the treatment ofp® bands with cross interaction tional forms of the TB transfer matrix elements, such as
present. This work and Chen and Stratt’s paper have inspiredukawa-type interactions and in the MSA. Work on the lat-
us to go beyond the Hubbard DoS approach and use the fuier for a Yukawa-typesp® is in progress®

capabilities of the SSCA/EMA on this problem. For the sake  In this paper we have thus focused on the numerical
of comparison we have chosen the aforementioned simplsolution of the SSCA/EMA equations for a simsg® TB

The electronic density of stat€®oS) or band structure
of liquids and amorphous materials has been the focus
interest of a number of recent work§ that use as starting
point liquid state theory, vs. the more traditional approa
from solid state physicSWith a few exceptiorfs®'°the sys-
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Hamiltonian which might give a rough approximation to the Il. THE MODEL: sp® TB HAMILTONIAN AND
properties of liquid Hg. Future work will deal with the intro- EFFECTIVE INTERIONIC POTENTIAL FOR LIQUID Hg

duction of non-linear correctiohSand will concentrate on .
empirical tight-binding model& Also, our SSCA/EMA cal- 11 Problem to be addressed concerns the calculation of
: ' the distribution of energy levels in a disordered medium, in

culgtlops have been comlpare'd with the result of direct d,'ago\?vhich the electronic degrees of freedom are governed by a
nalization of the TB Hamiltonian along a number of configu-

. . TB Hamiltonian of the form
rations independently generated by standard NVE molecular

dynamics, in accordance with a quenched liquid picture
where the electronic structure depends only parametrically
on the atomic positions, and the feedback between the DoS Lo . . . .
: . . . where the indices andj run over particle positionssiteg
and the spatial correlations of particles is neglected. A more : .
- . . and «, B run over the electronic levels @ndp basis func-
realistic approach should include the self-consistent determl{ions in the present instancecated in each sita!. (a;.,) is
nation of the dispersion forces from the electronic structurey, creation(annihilation operator for the statelgn inCf[ei
which as shown by Winn and Kdfllis perfectly feasible '

o The ¢{*=¢, since we will restrict ourselves to a case of
within the context of the SSCA/EMA approach. Work on ¢ giagonal disordefODD). Differents® per site will intro-

this line is in progress. We find that theory and simulationg,ce site diagonal disordés8DD) which is crucial in mod-
agree remarkably well, already within the linear approxima-gjing the effects of impurities and alloys. In the Hamiltonian
tion. Additionally, following the ideas of Winn and Logén  (2.1) we have considered a two-center approximation, i.e.
who generalized the theory of Abou-Chacra, Anderson andrystal field and three center integrals have been neglected
Thoules&’ to multiband models, we have obtained an esti-for the sake of simplicity. In any case, as mentioned before,
mate of the mobility edges, to get a better insight in local-these simplifications as well as the neglect of nonorthogonal-
ization and the influence of band-crossing on the conductivity of the basis functions can be implicitly corrected in the
ity properties of our model for liquid Hg. Again, as pointed fitting of the parameters of the empirical tight binding model.
out by Winn and Logan, this only serves to illustrate the useginally Vi‘j"g are the transfer matrix elements defined by the
of the theory within the boundaries of applicability of this two center integral
somewhat simplistic TB Hamiltonian, bearing in mind that a e?
proper treatment of Hg should go beyond the independent Vﬁ‘ﬁ(rij)=—f dr¢“*(r—ri)_—¢3(r—rj), (2.2
electron approximatio??! On the other hand, additional [r=ril
qualitative information on the localization of the electronic where ¢“(r—r;) is the basis wave function centered on site
wave functions can also be extracted from the simulationj ande is the electron charge. The full Hamiltonian can be
following the inverse participation ratidlPR) criterion?>  separated into intra- and interatomic components
which although somewhat inconclusive due to the vague
definition of the IPR cutofisee Ref. 23 for a discussion on sz Hi; +2 H;; (2.3
this issu¢ provides interesting information on the presence 1] '
of localized and extended states in the simulated samplevhich in terms ofsp basis functions read
When comparing the two approaches, we will see that the
information provided by the simulations is igualitative HijIVSS(fij)aiTsajs+ 2 Vp#s(rij)afp ajs
agreement with the theoretical predictions which indicate R=XY,Z ®
that the metal-nonmetal transition occurs for densities higher
than the band-crossing transition density in agreement with +VoPu(raka, + X VPePy(rii)al, ajp
the conclusions drawn by Winn and Logan using a Hubbard FomrExyz :
(semicirculay DoS. . .

The rest of the paper is organized as follows. In the next Hii=esaisaist&p ; , aip,f"ipﬂ-
section we define the tight binding Hamiltonian which will pe
be the subject of our study. A brief description of the effec-Using vector and tensor notation we can rewrite the expres-
tive liquid metal potentialbased on pseudopotential thepry sion above reorganizing the transfer matrix elements into
used to model the spatial distribution of atoms in liquid Hg is/ongitudinal () and transversalx) component$? such that
also inclyded. In Section Il we present a bri.ef description of Hij =Vssa;rsa,-erVf,pa;rsajprrVgsfaapaferVﬂp(arpajp)
the multi-band SSCA/EMA theory. Expressions are then re-
formulated and particularized for ttsp® band model, which +[VIP—VPP(r) (8l ) (Fay,) = VoXrijakas
is characterized for Hg by the triple degeneracy of the
levels and the angular dependence of the Hamiltonian. A
brief account on the two methods to analyze the localization (2.9
problem is also included here. Details on the simulation proypere
cedure and the most significant results and conclusions are R
presented in Section IV. V(rip) =Voi(rir,

H=2 8i”‘a?aam+#j2 |, Vialias, 2.0

t T
+aVelriap+apVEri)as+a,Vo(riay,,
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vgs(rij):f\/gs(rij), (2.6) a simple liquid metal potential which we found reproduces
N quite well the experimental structure of liquid 1% This
VPP(r) =VEP(rip L +[VEP—VEP(ri) I, effective interionic potential is defined '

with r=r;; /[r;;| and! is the unit tensor. In the expressions (Ze)? 1 - _

above the creation and annihilation operators have also been U(r)= - (2_77)3f ve(q)F(g)exp(—igr)da,
written in vector notation. One can see, that after some reor- (2.10
dering thepp-term could be rewritten as a linear combina-
tion of the dipole-dipole tensor

T(F)=3fr—1 2.7 4m(Ze)?

and the identity matrix. These quantities are directly related ~ vc(@)= —E (2.1
with the angular dependence of the screened dipole-dipole o _
interaction, which is also given by a linear combination ofand the energy-wave-number characteristic funckgq) is

whereov(q) is the Fourier transform of Coulomb potential
given by

two rotational invariants, 1 3(Q) 2
¢110(12):A51|§2, F(q):<1_ e(q)) 'l‘)’c(q)‘ ! (2.12
PP 2.9
$M12)=5T (S, In this expressiore(q) is the dielectric screening function

wheres is a unit vector in direction of the dipole on particle and??(q) is the Fourier transforr’n of the electron-ion pseudo-
i. Note that heréf is a tensor product, i.e. is @33 matrix, potential. When using Ashcroft’'s empty core model we have

whereas the products in E@.5 are either scalar products or 0 for <R,

standard matrix-vector products. Also, thp (ps) term has _ 7

a similar relation with the charge-dipoléipole-charggin- v(N=1 _2 for r>Rq, (2.13
teraction, whose angular dependence is described by the r

¢°''=(f'$,) rotational invariant. This again brings up simi- \ynose analytic Fourier transform is
larities between these two systems, which will be exploited

in the following sections. At this point it is also worth men- ~ 4mZe
- - oo h : v(g)=——=—cosqR.. (2.19
tioning that this TB Hamiltonian is equivalent to a system q
composed of particles with embedded three-dimensional plu
one dimensional Drude oscillators that are cougkednodel
for Frenkel excitong (47Z€%q?)11,(q)
Back to our specific problem, far from attempting to ~ €(4)=1+ 1= (4n 2P G(Ily(q) (2.19
model a purely empirical TB Hamiltonian, we have chosen . . ) o )
the simple parameterization of Yonezawa and Matfirior G(q) is the local field correction, W'hICh' in this case is com-
Hg. Consequently, no comparison with experiment will bePutéd using then Ichimaru-Utsumi's fitting formdffaand
attempted here and we will restrict ourselves to the comparillo is the Lindhard function
son theory vs. simulation. As basis fun_ctions we will emplpy mke [ 1 4k§—q2
the usual Slater type 2s and 2p orbitals for hydrogen-like TIy(q)= 2h2(§+ 8K
atoms, by which the transfer matrix elements from &2 . Fq
turn into Herem is the electron mass ang the Fermi wavenumber.
e 2 3 “Ri2 We have usedR.=0.619 A andky=1.37 A taken from Ref.
V=26(1HRI2-RAGRY24e 7, 26. With this effective interionic potential we have run sev-

ﬁlow, the dielectric screening function is given by

q-+2kg
" q—2ke

). (2.16

VPP=2¢,(1+R/2— R3/24)e R2, eral molecular dynamics simulations to generate the spatial
distributions of particles for which the Hamiltonian will be
VPP=26,(1+R/2+R%/12)e "2, (2.9  diagonalized and its eigenvalue distribution averagedhis
ordep. Also reference hypernetted chafRHNC) calcula-
VeP= — 2(R+ R2/2—R3/4)e R2, tions have been carried out and present an excellent agree-
7 3 ment with MD?® The pair distribution functions calculated
VPS— _\/SP via the RHNC integral equation are shown in Figure 1. These

show a qualitative agreement with recent experimental x-ray
whereR=Zr/a*, and e,=—Z€?/8a*, being the effective measurements and present the characteristic behavior of
Bohr radius suggested ifRef. 13 a*=0.64 A andZ=2. liquid metals, i.e. as density increases mostly the height of
Also, we have used,—e,=5.304 eV. As mentioned by the peaks increases whereas the location remains approxi-
Winn and Logart? with this choice one can safely neglect mately unchanged. This pair distribution functions will be
the non-orthogonality of the orbitals. fed into the SSCA/EMA integral equation to provide the
As to the spatial distribution of the particles in our required information on spatial correlations, as will be seen
guenched liquid, given the relative insensitivity of the DoSbelow. It should be mentioned here that the temperature en-
interaction potential in this picturesee Ref. 18 we will use  ters our formalism only through the pair distribution func-
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3.0 . T ements depend on the magnitude and orientatianofThis
equation can be rewritten more compactly in matrix notation

ZEZH-pf droV(r 1) G(r ) (3.3

- ::28-37 g%;?ll:ﬁ‘éf% With [Z] 5= SapZa (Za=2—¢,) and VH1=VsS, Vi2=VsP,

—— p=3.97 glem’, T=2803°C and V??=VPP, The same applies to the elementsGf but
additionally, due to the degeneracy of therbitals,GPP is a
diagonal matrix with  GPP),;=GPP(GPP),,=(GPP)33
=GPP (for linear approximation GPP=GPP=GPP) and
G®P=G*®P(1,0,0). Here the coupling of the spherical basis
functions with the longitudinal component of theband(the

one lying along thex-axis as defined herds understood.
The transversal components will always be decoupled. Now
one can reorganize the series of the average off-diagonal
Green'’s function following Refs. 5 and 30, and thus express
this in terms of its diagonal counterpart as

20 |

a(n

@ﬁmz):Eﬁ G“(2)H(11)G%(2), (3.4
Y

and the spatial dependence is now transferred to a new func-
tion H?(r,). This function in turn can be split into sets of
diagrams with and without articulation poififsthus defining

a functionC?°(r,) whose constituents resemble those of the
direct correlation function in fluid theory, and being
FIG. 1. Pair distribution function for liquid Hg at three thermodynamic Cyg(rlz) andHY&(rlZ) linked by an OZ-like equation

states indicated on the legend computed via a RHNC integral equations. H“'B(rlz) = C“B(rlz)

0.0

7o

o s 5B
tion, being absent in the zero temperature quantum- +p% fdr3H "(rp)G™(2)C™(rap).
mechanical description of the quenched system. 35

lIl. SSCA/EMA EORMALISM EOR MULTI-BAND Once again it must be recalled that neithéf#?(r,,) nor
MODELS. APPLICATION TO sp® SYSTEMS C%A(r,,) are spherically symmetric functions, and conse-
guently some care must be taken to deal with this equation in

In this section we will briefly summarize the essentialsFourier space. Equatidﬁ 5 has to be solved in COﬂjUﬂCtiOl’]

of Winn and Logan’s treatment of multi-band tight binding with a corresponding closure, which in our case will be the
models? and the equation will then be cast into a form suit- SSCA/EMA which reads

able for thesp® band problem, which is somewhat peculiar o _ op B
given its triple degeneracy and its angular dependence. CH(r12 =9(r V(i) +(9(r) = 1)

A. The SSCA/EMA formalism X[H*(r15) —C*(r15)] (3.6

ith ing the pair distribution function of the fluid.
For a disordered system with a TB Hamiltonian given byWIt 9(r1z) being the pair distribution function of the fluid

Egs.(2.5 the Green’s function for a given configuration ful- B. Dealing with the angular dependence: The

fills the equation molecular fluid approach
Due to the nature of our problem, we will have a set of
(Z—Sf)Gﬁﬁ(Z)—zk: > Vi?GlF(2)= 66,5, (3.1  equations in which scalar, vector and matrix functions are
Y

combined, except for the closure, which given its linear na-
wherea,3=s,p and we know thaV;? and V" are a three ture will remain homogeneous. Thus, the OZ equation writ-
dimensional vector and a>33 matrix respectively. In Eq. ten explicitly reads
(3.1 z=E+ie (e—0+). This equation when averaged over _ _ _
ensemble configurations leads to the following expression HS%5= Css+pf [ HSSG33C3%4 HSSG3PCPS+ H3PGPSCSS
for the average diagonal Green’s function o
_ _ + H3PGPPCPS]dr,
2,672)= 0,5+ 93 [ A V(G 1), (32 o _
o ’ H3P= CSp+pf [ H®SGSSC®P+ HSSGSPCPP+ HSPGPSCSP
G”A(r,,) being the average off-diagonal Green’s function. o
Note that now both this quantity and the transfer matrix el- + HSPGPPCPP]dr,
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— — — These equations are now formally identical to the equations
HPs= CszFPf [HPPGPPCPE+ HPPGPSC®*+ HPSG®*C®* 4 an equimolar mixture of charged and dipolar particles, and
_ are appropriate to apply Blum and Torruella’s treatment of
+ HPSGSPCPS]dr, molecular fluid$! based on the expansion of the angular
functions in rotational invariants

HPP=CPP4 pf [HPPGPPCPP4 HPPGPSCSP+ HPSGSSCSP
F(rip,01,07)= % Fklm(r12)¢klm(w1,wz,wr1 ).

(3.1)
These equations can be simplified introducing new angular

degrees of freedom, so that the quantities that now have d|§Iote that these quantities will appear in the definition of the

mensionalities higher than one would reduce to scalar quarH"?meer matrix elements when the transforma@@) 'S ap-
tities with extra angular dependence. In some sense thgl"EOI (see Ed2.8)). Expansion(3.11) translates into Fourier

would be equivalent to consider explicitly the presence ofPace in

Drude oscillators and averaging over their orientational de- _

pendence. These simplifications are possible due to the de- F(q,wl,w2)=2 Fk'm(q)¢k'm(wl,w2,wq), (3.12
generacy of th@ band. Now, we can simply define a new set kim

of angular dependent functions such that

HP(12) = HM(r 15, w,) = H3M(r 1)$,,

+HPSGSPCPP]dr . 3.7

where the coefficients are given By

HPS(12) =HSP(r 15, 1) = $;HPS(r ), Fklm(q):477imf0 rszlm(r)jm(qr)dr (3.13
HPP(12) =HPP(r 5,1, 0,) =S5 HPP(r1))S,, (3.8 and conversely

wherew; denotes the Euler angles describing the orientation 1 o

of the unit vectors which has been placed on each site as  FX'M(r)= WL a?F™M(q)jm(ka)dq (3.14

additional degree of freedom. Similar transformations are
needed for the components@fandG. In this latter case the with j (qr) being a spherical Bessel function or ordar
angular functions do not depend en , and particularly we  Now, it can be shown that if the laboratory reference frame

have $,GPP(r,,)S,=GPPs;s,. Additionally, we must take implicit in the expansior(3.1]) is changed to an axial refer-
into account an important angular convolution property,ence frame in which the-axis is located along the line join-

namely ing the centers, the OZ equation, once deconvoluted in Fou-
rier space and applying the expansi@?12, will decouple

f (Aéi)(éB)dwi=lAB. (3.9 in a set of equations for the expansion coefficients. This

3 change of reference frame translates into the the definition of

By using the convolution relatio3.9) and the definitions & New set of coefficients defined with respect to the new
(3.8), and bearing in mind théinear nature of the closure reference frame in terms of a spherical harmonic expafion

which makes a good number of angular averages vanish, one

arrives at the following set of equations E(q,wl,wz)zz Ek,ﬂ(q)YkM(wl)Y,,M(wz). (3.19
M
Hss(flz)zcss(flz)JFPf dwsdrs[ G3(2)H®Y(r 13) Both sets of coefficients are linked via the following linear
. combination
X C3(r 32) + 3GPP(2)H®M(r 13, 03) CP(r 35, w3) ],
_ T:'kl - 1 kim ! m)’l‘:’klm
HSp(I‘lz,wz)=C5p(l‘12,w2)+pf dw3dl’33Gpp(Z) ” \/(2k+ l)(2|+1) m M M O
(3.1
sp, PP
XH(1 13, 03) CP(V o, 03, 02), and the inverse relation
HPS(r 15, w{) =CP(r 15, +Jd dr,3GPP(z ~ 2m+1 k | m\-
(riz2,@1) (ri2,01)+p w3Ul3 (2) Fkim_ 2k+1)(21+ 1) i E ( . Fk|,u
7R I
XHPP(r13,0103) CPH(r 3, w3), (3.17
- with
HPP(r1p,01,2) =CPP(ri5,01,wp) +p | dosdrs[3GPP(2)
I
Kim_
XHPP(r13,0103)CPP(r 35,03, 05) =
+55'4ps(rl3,a)1)CSp(r32,w1)]- (31@ 0 0 O)
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where { _}, &) are Wigner's 3 symbols. These relations ss =SS
obviously hold both in real and Fourier space. Hence once an
initial solution is proposed foH—C, one can compute the VP —\/SP/ 3

. . . . . . 010 o ’
rotational invariant projections of tHé matrix from the clo-
sure VEi= VPPI3,
Cap (N =8(NVg'(r)+(g(r) = DIHEZ(r) = Ceg(n)],

(3.18 VIR =VEL 1= - V213,

which can then be Fourier transformed using B913. Use  We see that the spherical harmonic expansion actually splits
of Fourier-Bessel transforms of order higher than zero can bthe pp interaction into a longitudinalg£=0, i.e.,o) and two
avoided using Blum’'s step-up/step-down proceddr®. transversal 4= =1, i.e., m) components.

Now the spatial coefficients are transformed into axial coef- Now we have to apply the same transformati¢8<)
ficients by means of Eq3.16 which in our particular case and expansiong3.15 to the Green’s function equatigB.2)

reduce to with Eq. (3.4) inserted. One then simply obtains for a linear
Fsp —F 011/\/— closure
F :_[F110+ 2F11 (319) ZS§S:1+47TPJ [(ES)ZVSS(F)HSS(I‘)
—3GPPGSVE 1) HES(1)Ir2dr, (3.223
FPP =2 [F112 F11

By insertion of the expansio(8.15 into Eq.(3.10 and due 2,G*P= 47Tpf [G*G*PV*Ar)H(r)

to the orthogonality properties of the spherical harmonics,

this latter equation decouples into a set of matrix equations, —3GPPGPVER(r)HEG4r)Ir?dr, (3.22h
. M:O . o
o 2,67~ amp [ (3GPGIVEL1)HERT)
H HOlO P
HES HBL - +3GPPGPSVER (1) HEP (1)
— GSSGPSVESHSP r2dr, (3.229
CSS 8?0 e HSS HOlO
=| Chs, CPR | +p| HES, HPR, ... Zpa)p=1+477pf [3(GPP)2VER(r)HEP(T)
— - +6(Gpp)2V111(r)H111(r)
G 0 ..\/[C cOlo R B 112
— ~ -3G Viod r)Hoidr)1r<dr. 3.22
Again Egs. (3.22h and (3.229 can only be satisfied if
G®P=GP=0. Now we can define the self-energy in matrix
(3.20 .30
notatior?
° M>O
~p = o Tpp = 2)=p | V(12G(z)H(21)dr 3.2
HE&:CE&+(_1)”3PGW2 HEP,CPP, . 3.21) S(2) PJ (12G(2)H(21)dr, (3.23

In our particular case onlg.=1 is relevant, by which Eq. PY which the average diagonal Green’s function is
(3.21) is a scalar equation and EB.20 is a 2x2 matrix —

equation. Note that the cross contributions to the Green’s G(2)=[z-S(2)] " (3.24
function G®P and GP*® for linear approximations do not play
any role, as was found by Yonezawa and Martindhese
equations can be solved fbk— C and a new solution can be o
generated. It has to be pointed out that to invert the Fourier G3%z)=
transform one must proceed stepwise, first obtaining the spa-

tial coefficients using Eq(3.17) and then invert using the sp <pp bs 1.2
reverse Fourier-Bessel’s transfofB114). Finally, it is worth —3Vo1gGP(2)Higolr “dr
to write down the explicit expressions for the axial coeffi-

cients of the expansion of the transfer matrix elements and

The elements of?are then

z— 83—4Wpf [VSSES(Z)HSS

-1

(3.29
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E’p(z)z Z—sp—477pf [3VEPG pp(z) D(E)=— lim —[GSS(E+|6 +3Gpp(E+|e)] 3.29
e—>0+
+6VEGPP(2)HIY,
100 ss(Z)H O]rzdr} ’ (3.26 glét%clzahzed and extended states: Simulation and

where the elements of the matrix are defined below Eq.

(3.3. These equations, as indicated in Ref. 7, are numeri- The starting point to deal with the localization issue
cally very stable and thus will be the ones to which thefrom a simulation perspective is the diagonalization of the
algorithms proposed in Ref. 7 will be applied. Finally, the 4ANX 4N (N is the number of particledHamiltonian matrix,
total energy density of states of our degenerate multi-bandhich can be constructed fro\xXN submatricesV;;,

system is given by i,j=1, ... N, such that
|
vss V3P mVeP nvsP
—1VPS  |2(VPP_\/PPy /PP Im(VPP—VPP) In(VPP—VPP)
V= , 3.2
T SmVes mIVEPSVER)  mR(VEP—VER) VPP VPR veP) (328
—n\VPs nl(VPP—VPP) nm(VPP—\PP) nZ(VPP—\PP) 4 PP
|

wherel,m,n are thex,y,z components of the unit vector As to the theory, Winn and Logan proposed a second

Fzrij Irij andi # j. The diagonal submatrices are given by order renormalized perturbation approach that leads to very
simple expressions once the Green'’s functions are kréwn.

es 0 0 O Briefly summarized, the crucial quantity is the eigenvalue
v_|? & 00 N(E) = { TS5+ TP+ 2TPP' 4+ [ (TS5 TPP— 2TPP')2
"10 0 & O y
o o0 o +12TSPTPS]Y2 2, (3.30
€
P wherep refers to anyp,,p, or p, andp’ # p. Then
The complete/ matrix has to be diagonalized for a number B _ ap 2
of quenched liquid configurations generated according to the T(p.B) =27 317 (p)Dp(B)I3, (331
interaction potential described in the previous section, ansvhere
the density of states is obtained from the average of the dis- 1
tribution of eigenvalues using a standard counting procedure. D 4(E)=— lim —GFA(E+ie)
The eigenvectors provide crucial information on the localiza- w0t
tion of the wave function. The inverse participation ration 4
(IPR) is given by?
2 JF= f drg(r)[Vas(r)|. (3.32
L.(E Ci(Eg*] , 3.29 ,
(Bs)= 2 (2 ol ) (329 Here|---| denotes the absolute value a¥igy is the corre-

sponding matrix element of;; as defined in Eq(3.28), i.e.
where @ runs over the basis functions on each siteuns it includes the angular dependence. According to Ref. 12 for
over the sites; designates a given quenched configuration ofa given density, a state corresponding to energywill be
sites,Es is the energy eigenvalue and the coefficients of theocalized if and only ifA<1 and extended ik >1.
corresponding normalized eigenfunction &g (Es). If the
wave function is fully localized theh, =1 and if completely
delocalized thenL,—1/N (i.e. for an infinite system
L,=0). Gibbons, Logan and Madd@rused a cutoff value The solution of the coupled system of integral equation
L.=K/N=0.16(with K~30-60) to distinguish between lo- in complex space presented in the previous section can be
calized and extended states. In any case, there seems to l@ndled with the various numerical methods introduced in
enough dispute concerning the proper choice of the cutofRef. 7, and we did not encounter any new difficulties asso-
value, and therefore we will here simply use the IPR as aiated with the particular nature of this problem. As to the
gualitative indication of the localization of the mobility simulation, we have run a standard NVE simulation for 256
edges. particles, and the DOS and IPR averages were carried out

IV. RESULTS AND DISCUSSION
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FIG. 3. Same as Figure 2 far=1803 K and 6.80 g/ci(upper figur¢ and

FIG. 2. DoS for liquid Hg aff =4073 K and 0.95 g/cfn(upper figurg and 1073 K, 11.57 glerh (lower figurs.

3076 K, 3.97 g/crh (lower figurg in the SSCA/EMA. The shaded areas
indicate localized states. Dash dotted lines represent the contribution from
the p-band and long dashed lines that of théand. A vertical line shows

the location of the Fermi energg,. localized and consequently the system is insulating, both

from the location of the Fermi energy with respect to the

band gap and from the localization criterion.
every 50 MD steps, along a 10000 step run. We have con- For higher densitie$3.97 g/cni) the band gap has al-
sidered four thermodynamics states, 0.95 ¢/afi=4073 ready disappeared and we can now find evidence of extended
K), 3.97 g/lcni (T=3076 K), 6.80 g/cmi (T=1803 K) and  states, with a narrow localized region at high energies and a
11.57 g/lcm (T=1073 K). The choice of these states does much wider localized region at low energies. It is important
not claim to physical relevandgvhich is also due to the fact to note that the Fermi energy lies within the low energy
that the TB phase diagram might differ from the “real” localized region, and hence this state would be insulating
phase diagraimbut have rather been chosen for technicaleven if we have a partially filled band and there is no band
reasons. In particular, the first density is artificially low andgap. This is in accordance with the findings of Winn and
was used to be able to generate a band gap illustrating tHeogan using the Hubbard Dd although the distribution of
low density behavior of the linear closure and the temperalocalized and extended stat@d obviously the shape of the
ture is sufficiently high to avoid spinodal divergences whenbands except for the very low densiig somewhat different.
calculating the pair distribution function. The second densityAs the density is further increased the localized states turn
is close to the state chosen by Winn and LodaRigures 2  less and less important and the system becomes conducting.
and 3 present the theoretical results with bstAnd p con- Now if one compares the SSCA/EMA results with the
tributions explicitly indicated. The shaded area denotes theomputer simulation generated Ddbigs. 4 and § it is
presence of localized states. The Fermi energy has been calessible to appreciate the typical low density departures
culated with the requirement of one fourth of the band filled.which stem from the missing two-particle contribution to the
It can be appreciated the nearly semicircular band ski@pe DoS in linear theorie$® At higher densities the results
sembling a Hubbard Dg®btained at very low density, with clearly improve (especially for 6.8 g/cf), although at
the Fermi energy lying in the band gap. All the states arep=11.57 g/cm the s-peak is overestimated. This is also a
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FIG. 4. Simulation(thin lines vs. SSCA/EMA(thick lineg DoS for liquid ~ FIG. 5. Same as Figure 4 fdr=1803 K and 6.80 g/cf(upper figurg and
Hg at T=4073 K and 0.95 g/ci(upper figure and 3076 K, 3.97 gichh 1073 K, 11.57 g/crh (lower figure.
(lower figure.

case, this region is expected to appear at lower densities, and

well known problem of linear approximations which tend to that is probably the case both in theory and in simulation.
overestimate the heights of the peaks at high densities. Anwe have not bothered to investigate this further since in the
other characteristic shortcoming of the linear approximatiorpresent instance it does not seem crucial for the metal/
is the incorrect treatment of the wings of the spectrum, anghsulator transition. Finally, for the larger densities, the re-
this can also be appreciated in Figs. 4 and 5. gions of localized states shrink almost completely, to the

As to the information on localization extracted from the point that are hard to detect using the IPR criterion, being the
simulation this is collected in Figures 6 and 7. We would like statistics of the significant portions of the IPR much poorer
to point out discrepancies with the results obtained from thgyhen the number of localized states diminishes. In summary,
IPR approach. For one thing, and in accordance with Winmaccording to both theory and simulation the metal/insulator
and Logan’s theory, the very low density state is completelytransition is induced in this model by localization effects but
localized. At higher densities however, we see that localizedhould occur at densities somewhat lower that those pre-
states are expected to appear in the low energy region of thficted by the theory. It should be pointed out that the theory
spectrum and in a much narrower area close to the highgg susceptible of improvement if the treatment of localization
energy states. The theoretical prediction for the upper mobilis brought to the same level of approximation as the theoreti-
ity edge is qualitatively correct whereas a large discrepancyg| DoS33
is found for the lower mobility edge which is expected to In summary, we have presented a theory that can actu-
appear at much lower energies according to the IPR criteriorally deal with the problem of the DoS in multi-basg® TB
The small peak exhibited by this quantity around 5 eV isHamiltonians, to the point that even with the limitations of
probably a remnant of a small localized region very likely linear theories gives reasonable results. Non-linear correc-
present at lower densities, which is predictecpat4g/cn?  tions to the SSCA/EMA in the line of work of He et al 51°
when one uses Hubbard D¢&ee Figure 2 in Ref. 22In our  are currently under investigation and we expect that these
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FIG. 7. Same as Figure 6 fdr=1803 K and 6.80 g/cf(upper figur¢ and
FIG. 6. Average inverse participation ratisee Eq(3.29), L(E) for liquid 1073 K, 11.57 g/crh (lower figure. The theoretical mobility edges are
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(lower figure. The theoretical mobility edges are shown as vertical lines.
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