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Abstract

In an effort to describe the structural and thermodynamic properties of a
liquid adsorbed in a disordered porous matrix we have used in the present
study the Madden-Glandt approach [W. G. Madden and E. G. Glandt, J.
Stat. Phys., Vol. 51, 537 (1988)]. Here the system is treated as a special
partly quenched binary mixture, i.e., a system where the matrix particles are
frozen in place (quenched), and the fluid particles are annealed, or allowed to
equilibrate in the rigid matrix structure. Using the replica method introduced
by Given and Stell [J. A. Given and G. Stell, J. Chem. Phys., Vol. 97, 4573
(1992)], which allows to replace the study of the partly quenched system by
that of a fully equilibrated system we can treat the system with methods
of standard liquid state theory, and are able to derive integral equations
for the correlation functions of a fluid mixture confined in a matrix. We
also present derivations of the Gibbs-Duhem relation, the energy equation,
the virial equation, and the compressibility equation for a binary fluid in
equilibrium with a quenched matrix. Furthermore, the optimised random
phase approximation has been extended to the case of a two-component
fluid in a matrix. We present results for the correlation functions obtained
from integral equation and perturbation theory calculations and compare
them with Monte Carlo simulations. The perturbation theory approach has
been applied to a single-component square-well fluid in a matrix: we have
determined the liquid-vapour phase diagram and have investigated the effects

of the matrix density on the shape of coexistence curves.
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Chapter 1

Introduction

In recent years the behaviour of fluids confined in disordered porous materials
has been a subject of great interest both from an experimental and theoretical

point of view.

A porous material (or matrix) can be considered as a mixture of disordered
voids and solid regions. The detailed shapes of the pores depend on the shape
of the solid particles, their size distribution and their mode of packing. The
overall structure, however, can be considered as statistically homogeneous
and isotropic at length scales larger than the dimensions of the constituent
particles. This means that the material can be characterised by statistical
quantities such as an average density and a specific void volume (or porosity).

Due to the importance of porous materials in many technological applica-
tions such as catalysis, gas separation and purification, a large amount of
experimental data on gas adsorption on porous substrates have been accu-
mulated over the years [1]. Another point of interest in experimental research
has been the study of liquids adsorbed in porous media. Investigations have
been focussed on the influence of the properties of the porous media on the
critical behaviour and on the process of phase separation of a liquid ad-
sorbed in this material. This research was motivated by de Gennes [2] who
suggested that binary mixtures adsorbed in porous media near the critical
point may be thought as experimental realisations of the random field Ising

model (RFIM) [3] — a spin model of random magnets. In this model the
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random field describes the spatially varying preference of the pore network
for the adsorption of one of the fluid components. However, this model does

not take account of the confinement of the fluid in the pore network.

Some of the results of experimental studies of the phase behaviour of binary
mixtures [4] in porous glasses and single-component fluids or fluid mixtures
in dilute silica gels (porous materials with high porosity where the porosity
can be as high as 99.9%) were interpreted by this model. The liquid-vapour
phase transition of pure *He in a silica aerogel was studied by Wong and
Chan [5]. They discovered that the coexistence curve of the confined fluid
was strikingly different from that of the bulk fluid: the critical point is shifted
to a lower temperature and a higher density and the coexistence curve is
narrower. What is remarkable is that even a small amount of impurity can

alter the phase diagram drastically.

On the other hand, it has been argued that the experiments in Vycor (which
is a glass with a fairly low porosity) can be interpreted in terms of wetting
phenomena in a confined geometry with no randomness [6]. Theoretical
studies of confined fluids have generally been limited to ‘single pore’ models
with idealised pore geometries, (e.g. fluids confined to narrowly spaced plane
walls, cylindrical or spherical pores [7]) which lack the ability to represent
a truly disordered structure. In reality, however, porous solids are often
disordered, containing an interconnected network of pores of various sizes
and shapes. On the other hand, confinement in the pores plays no role in
the RFIM. Hence, both approaches do not seem sufficient to describe the
vast variety of phase behaviour observed. Consequently, a more realistic
continuum description for the fluid/solid system was required which is able

to comprise randomness, confinement and connectivity between the pores.

Such an approach was first proposed by Madden and Glandt [8, 9]. These au-
thors modelled such a system as a special binary mixture: the solid is treated
as an ensemble of particles in some predefined micro-structure which is as-
sumed to be rigid, i.e., which is not affected by the introduction of the liquid.
Therefore, the solid is simply viewed as a disordered matrix of quenched (or
frozen in place) obstacles in with which the fluid establishes itself in a state

of thermal equilibrium. The configuration of the quenched matrix of immo-



bile particles is assumed to have been formed by an instantaneous thermal
quench of a fluid in equilibrium at a higher temperature. Any restructuring
of the matrix during quenching is neglected; that is, the quenched particles
are distributed according to an equilibrium ensemble corresponding to some
specified potential in the absence of the fluid. Madden [9] subsequently gen-
eralised the formalism to the case in which the distribution of the quenched

particles is essentially arbitrary.

The field acting on each fluid particle depends on the local structure of the
rigid obstacles. However, it is clear that observable quantities, such as the
free energy of the adsorbed fluid, its density and its structural properties, etc.
should only depend on some averaged characteristics of the porous material.
Thus, one has to perform two successive averages, first a thermal average
over the fluid configurations in a given matrix realisation, and then a sec-
ond average over all possible matrix configurations, a procedure that is, for
instance, realised in computer simulations of porous materials [10]. A ma-
jor consequence of this average over disorder is that translational invariance
is recovered in the statistical mechanical treatment. This allows an exten-
sion of the conventional methods of liquid state theory to quenched-annealed

systems.

Similar as in conventional liquid state theory, the structure of the mixture
is described through so-called correlation functions. Madden and Glandt
derived cluster expansions for these functions by exploiting the similarity
of this system with a fully equilibrated binary mixture and omitting those
graphs that are not compatible with the fact that there is no structural
response of the matrix to the presence of the fluid. In addition, they derived
integral equations for such systems as counterparts to the standard Ornstein
Zernike (OZ) equations relating the total pair correlation functions to the

direct correlation functions.

However, later Given and Stell [11] showed that these integral equations de-
rived by Madden and Glandt are only an approximation in which a certain
class of terms was neglected in the cluster expansion of the direct correlation
function for the fluid particles. They derived the exact so-called replica OZ
equations (ROZ) making use of the replica trick [12, 13], originally developed



in the context of the theory of spin glasses [14, 15]. This method allows us,
to replace the study of the original quenched-annealed mixture by that of
a limiting case of a special, fully equilibrated (s + 1)-component mixture —
called the replicated system. This system consists of s noninteracting iden-
tical copies (replicas) of the original fluid, each interacting with the matrix
particles. As an application of the replica formalism, closed expressions for
the structural and thermodynamic properties of the systems were developed
[16, 17, 18].

The simplest example of such a quenched-annealed mixture, where only
excluded-volume interactions are taken into account, is a hard-sphere fluid
inside a matrix of hard spheres arranged in an equilibrium structure or a
hard-sphere fluid which is contained in the interstices of a bed of randomly
placed spherical obstacles (i.e., a quenched ‘ideal gas’) [19, 10, 20]. Integral
equation theories which use approximate closures to the ROZ equations have
been applied to the calculation of pair distribution functions [19, 10, 20, 21].
Comparison with results from Monte Carlo simulations [10, 20] indicates that

the approach has an accuracy comparable to that of bulk liquid state theory.

Recently, theoretical research has focused on the phase behaviour of fluids
in disordered porous materials, since experiments indicate deviations from
the phase behaviour of bulk fluids. Page and Monson [22] observed in their
Monte Carlo simulation of a Lennard-Jones fluid that is confined in a rigid
matrix of spherical obstacles a significant narrowing of the liquid-vapour co-
existence curve as well as the evidence of a second fluid-fluid phase transition
at low temperature. Kaminsky and Monson [23] and Ford and Glandt [24] ap-
plied a mean-field theory to model systems and showed that both the critical
temperature and the critical density decrease with increasing matrix concen-
tration. Kierlik et al. [25] have applied an improved perturbation theory —
the optimised cluster theory — to describe phase diagrams of Lennard-Jones
fluids. They observed that the liquid-vapour coexistence curve was simi-
lar to that of a bulk fluid, although displaced and narrowed. Additionally,
the theory predicted the appearance of a second fluid-fluid transition at low

temperatures.

So far, theoretical research was mainly restricted to atomic single-component



classical fluids. Generalisation of the theory to ionic fluids has partly been
done [26, 27].

This study presents the formal theory generalised to the case of a two-
component fluid inside a porous matrix. We make use of the replica trick to
derive both structural as well as thermodynamic relations. The ROZ equa-
tions for a binary fluid in a matrix are derived and formulated in a compact
matrix notation. The Gibbs-Duhem relation, the compressibility equation,
the virial equation, and the energy equation are presented for the case of
a two-component fluid in a matrix. The optimised cluster theory (OCT)
and optimised random phase approximation (ORPA) introduced by Weeks,
Andersen, and Chandler [36] is extended to the case of a binary fluid in a
matrix. The ROZ equations for the one-component fluid were solved numer-
ically in different approximations for various kinds of model systems (pure
hard-sphere system and hard-sphere system with attractive square-well or
Lennard-Jones tail) and the results of the two latter ones compared with the
solutions obtained within the perturbation theory and are presented with
results from Monte Carlo simulations. A phase diagram was calculated for
a one-component fluid in a matrix in the case of a hard-sphere interaction

with attractive square-well tail.

The report is organised as follows: In chapter 2 we give a brief introduction
into the structural properties of fluids adsorbed in disordered porous me-
dia. The ROZ equations for a two-component fluid in a matrix are derived
and the generalisation to a k-component fluid is presented. In addition, we
rewrite these equations in a compact matrix notation. In chapter 3 the nu-
merical algorithm is presented which was used to solve the integral equations
together with some approximate closure relation. In chapter 4 we develop
the thermodynamics of a two-component fluid in a matrix. In particular, we
present an alternative derivation of the compressibility equation. In chap-
ter 5 the perturbation theory (the optimised random phase approximation)
which was used in this work is presented and generalised to the case of a two-
component fluid in the matrix. Numerical results, including a phase diagram

are presented in chapter 6.



Chapter 2

Structure of fluids in porous

media

2.1 Model and basic notations for fluids in

porous media

In the present study we will investigate the properties of continuum systems
with quenched disorder. Examples for such systems are porous materials,
gels, amorphous materials and spin glasses. In a theoretical model such ma-
terials are treated as being constructed in layers: each layer is added to those
already in place, allowed to equilibrate at some temperature, then frozen in
place without structural relaxation before the next layer is added and start-
ing to interpenetrate the previous ones. Such materials are distinguished
from fully equilibrated mixtures in that they are formed by a step-by-step

annealing or equilibration process.

We now concentrate on the simplest of such systems consisting just of two
layers. The first one is quenched or frozen in place, the second one is an-
nealed or allowed to equilibrate. The particles in the quenched layer consti-
tute a matrix through which the particles in the annealed layer move. This
model describes a one-component fluid in a porous medium as a special two-

component mixture: in contrast to a ‘standard’ two-component equilibrium
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Model and basic notations for fluids in porous media 7

mixture, there is no structural response of the matrix to the particles in the
fluid. The particles of the matrix form a rigid structure that is not affected
by the mobile phase. It can be regarded as a field of obstacles through which

the fluid particles move.

Physical quantities describing such systems are therefore formulated as dou-
ble averages. First, one averages over all degrees of freedom of the fluid
particles, keeping the matrix particles fixed, then one performs a matrix
average over all degrees of freedom associated with the matrix.

Consider the two-component system in a volume V. The matrix particles
which are fixed in place are denoted as species 0 particles, the fluid parti-

cles as species 1 particles. The latter ones are allowed to equilibrate with

_1
kT~

particles are distributed according to a canonical equilibrium distribution at

some inverse temperature fy = ;- In a particular realisation they will be

located at positions g™ := {q;,qo,-..,qn,}- The matrix particles are thus
distributed with the probability density

some inverse temperature 3; = We assume now that the Ny matrix

1
No) — Ze*ﬂoHoo(qNO), (2_1)

where Hy is the potential energy of the N, particles and

_ 1 No ,—BoHoo(a™¥0)
ZO_N_O!/dqoe oHoo

Po(d

is the canonical partition function (to be more precise, it is the configura-
tional integral, but in the following we stick to the convention found in the
literature of fluids in porous media). Furthermore, we write dqg™ to represent
integration over all the positions of particles of species 0.

No

For a specified realisation of the matrix q™*° we assume that the conditional

probability density that the system contains /N; fluid particles at positions

r™ = {r;,ry,..., Ty, } is given by a grand canonical distribution
1 _ No pN N
prMa) = o ate el (2)

where 2z is the specific activity of the fluid particles, Hy + H;1 is the potential

energy of the N; fluid particles in the presence of the Ny matrix particles and

1
Z1(a™) = 2 A" / drr e~ Ai[Hon(@™0x™) +Hi ()] (2.3)

Ny



Dual ensemble formalism 8

is the matrix configuration dependent grand partition function.

This choice of ensemble distributions corresponds to the experimental situa-
tion where the fluid is in contact with a reservoir fixing its chemical potential
and temperature and penetrates a matrix characterised by its average density
po = % In the literature also other choices of ensembles can be found. In
[13] for instance, both fluid and matrix particles are treated in the canonical
ensemble. This approach will be used in the case of a two-component fluid
in a matrix (see subsection 2.7.1). On the other hand, Madden and Glandt
[8] and Given [12] have used the grand canonical ensemble for both fluid
and matrix particles. Both this and the aforementioned models relax the
constraint that the number of annealed particles belonging to each replica
must be exactly equal. It was shown in [17], that methods based on different

choices of ensembles become equivalent in the thermodynamic limit.

2.2 Dual ensemble formalism

For a specified matrix realisation q™° the thermal average of any mechanical
variable X (r™; q™0) over the fluid variables is

1
(X) (21,11, V;9™) =Y N /dI'NlX(I'Nl; a™)p, (£ [q™), (2.4)
N1 N

where the angular brackets indicate an average over the annealed degrees of
freedom at a given temperature 77, chemical activity z; and volume V. So
the resulting quantity is a function of q¥° and may further be averaged over

the ensemble of matrix particles to give

X (21,11, p0, 10, V) = (X (21,11, V;qMo)
= [ 4T Via (™), (29

where the over-bar denotes an average over matrix configurations. Inserting

egs. 2.1, 2.2 and 2.4 in eq. 2.5 we obtain

X(ZlaTlaPOaTOa Z N Z / /derX N1 No) %
04V0-

efﬁomom ) [Hm(qNo,rNIHHn(er)], (2.6)




The replicated system 9

It is worthwhile to compare eq. 2.6 with the corresponding expression for a
binary mixture in complete thermodynamic equilibrium, characterised by a
single inverse temperature 8 where one component is distributed according
to a canonical ensemble, and the other one according to a grand canonical

ensemble, i.e.,

11 M
Xomia(21, 0, T,V) = =5 3 & ,/qu"/derX(er;qN") X
:.No. Ny Nl.
o~ B[Hoo(aN0)+Hox (a0 arN1)+H11("N1)], (2.7)
where
N-
== Lya [ g [ ariemslma et @ syt
No! &= N,

is the corresponding partition function.

The essential difference between eq. 2.6 and 2.7 is not the appearance of two
different temperatures in eq. 2.6 which is only of quantitative interest, but
the presence of the partition function Z;(q™°) (eq. 2.3) within the integral

over matrix positions.

2.3 The replicated system

Following Given [12], we will use the replica trick to show that the partly
quenched system is isomorphic to a limiting case of a corresponding equi-
librium system, called the replicated system. This system is an equilibrium
mixture of a one-component fluid (composed of matrix particles that are now
mobile) with an s-component fluid, given by s identical copies (or replicas)
of the annealed species. Each pair of particles has the same pairwise interac-
tion in the replicated system as in the original system except that a pair of
annealed particles from different replicas do not interact. Exploiting this iso-
morphism we will be able to replace the study of the partly quenched system
by that of the replicated system. For example, the correlation functions of
the quenched system are obtained by taking the s — 0 limit of the correlation

functions of the replicated system. In particular, we can use the standard



The replicated system 10

OZ equations for the replicated system and then take the s — 0 limit to
obtain the integral equations for the original system, called the replica Orn-
stein Zernike (ROZ) equations. All thermodynamic relations of the system

can be obtained in a straightforward manner.

To demonstrate the replica trick we start with the average value of the grand
potential of the system (see eq. 2.3)

—B1Q1(21,T1,V;a™°) = InE(q"0), (2.8)

which is given as

1
ZoNy!

—5151(31, Ti, po, To, V) = /quoefﬁOHoo(qNo) InZ, (qNO)- (2-9)

The average is difficult to treat because of the presence of the logarithm under
the integral. We thus make use of the replica trick [14, 15] which consists of

replacing the logarithm by an exponential, using the identity

-1 d
Inz = lim = = lim —z°. (2.10)
s—0 S s—0 (s

Inserting eq. 2.10 in eq. 2.9 yields
1 d
1

1 No ,—BoHoo(q™M0)
ng%%{N—o‘/dq (& X

N
(Z 2 / dere—ﬁl[Hm(qNOerlHHﬂ(er)])S
& Nyl
1

1 d
— ; =rep
=7 £1_I>% R (s), (2.11)

—pith =

where Z°(s) can be written — if s is an integer — as

Ny
1 21

N
orep(oy — ! / No 3.N1 . .. 35.Ns
B (s) A NZ NN dq°dr dr

1...Ng

o BoHoo(a™0) ,—B1 327 _, [Hoa(aV0,xNe )+ Hoo (r)] ’

where r’™» denotes the positions of the N, fluid particles in replica a (o =
1,...,8), Hy, the potential energy of interaction between matrix particles
and fluid particles of replica o and H,, the energy of interaction between

fluid particles of replica a.
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The fluid particles have been replicated and now appear in s copies. For
integer values of s, Z"(s) is the equilibrium partition function of an (s+ 1)-
component fluid (if we neglect the appearance of two different temperatures)
in which there is no interaction between particles of components o and
(1<a#B<s). More precisely, we are considering a grand canonical ensemble
for the replicas and a canonical ensemble for the matrix.

Furthermore, the s — 0 limit of =" (s)
s —rep 1 No ,—BoHoo(q™0)
lim = (s)=N—0!/dq e =2,

is the partition function of the matrix.

Thus if we assume equal temperatures (8o = =f), which is not a restriction
in the following, since we will only consider random or hard-sphere matrices

for which 3, can be equally well replaced by (1, eq. 2.11 can be simplified to

_ d d
_ — lim 2 In="(s) — — B lim —()"eP
B llLI(I) s In E"P(s) B }91&(1) dsQ (s), (2.12)

where

OreP(s) = —kpTInE7P(s).

If we introduce the pairwise interaction potentials ¢go (between a pair of
quenched particles), ¢1; (between a pair of annealed particles) and ¢g; (be-
tween a quenched and an annealed particle), the interaction potential of the

replicated system can be written as

H = Z d)OO(q’ia qj) + Zl Z d)gl(q’i: rOz,j)

i,j€{L,....,No} i€{1,..., No}
jedL,..., Na}
K] K] 5
«Q
+2.2 2 di(raiTsy)
a=1 =1 i<y
ie{1,..., Na}
je{t,..., Ng}

with

o = $110a8
P01 = o1, (2.13)
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where ¢ is the pairwise interaction potential between fluid particles of the
replicas a and 3, ¢f; is the pairwise interaction potential between matrix
particles and particles of replica o, r, ; is the position of particle j in replica

a, etc.

The Kronecker delta on the right hand side of eq. 2.13 indicates that pairs
of replica particles only interact if they belong to the same copy. Thus the
component of the species 0 particles can be thought of as a ‘solvent’ which
mediates interactions between species 1 particles of different replicas.

Note that the limiting case s — 0 cannot be interpreted physically. Firstly, a
physical interpretation of the replicated system as an equilibrium mixture of
(s + 1) components is only valid if s is an integer. Furthermore, although in
the limit s — 0 the replica system becomes an equilibrium system contain-
ing only the quenched particles, we still have nontrivial correlation functions
hi1(r) and hio(r) describing the correlations between a pair of annealed par-
ticles in the same replica and a pair of particles in different replicas. Instead,
one must envision the replica method merely as a mathematical tool which
tells us how to relate the thermodynamic potential of a partly quenched
system to that of a fully equilibrated system

— d
— 1 rep
Q= 1811% dsQ (s).

Starting from this point, one is able to relate all thermodynamic properties
of the partly quenched system to those of the replicated system which can
be found by methods of standard liquid state theory.

2.4 Derivation of the ROZ equations

The structure of the partly quenched system is described by correlation func-

tions similar to those used in equilibrium liquid state theory. The pair dis-
2
o
finding a particle of species ¢ within the infinitesimal volume dr at r; and a

tribution functions g;;’ (r1, ry) give the probability density for simultaneously

particle of species j within dr at ro. We now pose the question how these

correlation functions are obtained from those of the replicated system.
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By definition, the pair density pg) (r1,ry) for the mobile phase is the aver-
age of pg) (r1,12;q™°) — the two-particle density of the fluid in a particular
matrix realisation — over all matrix configurations. We introduce the pair
distribution function as in standard liquid state theory (see eq. A.1)
2
(2) Pg1) (ry,13)

g11 (rl; 1'2) = )
Pgl) (1‘1),051) (r2)
(1)

where p;7/(r) is the one-particle density of the fluid component. Thus the

total correlation function hﬁ) = gg) — 1 (see eq. A.2) is given by

(1) (2) (

P (1'1):09) (Tz)hﬁ) (1'1, 1‘2) = P11 1‘1,1‘2) - Pgl) (1'1):09) (1'2)-

For further investigations we only consider homogeneous systems. In ad-
dition we restrict our considerations to systems with spherically symmetric

interaction potentials. Under such conditions, the simplifications

Py =p and A (rr, 1) = AT (|t — o)) = i (r10)

can be made. Assuming that the fluid-fluid interaction potential is a sum of
pairwise interactions ¢1;(r;,r;), one can use =;(q™°) as a generating func-
tional for the densities and perform a functional derivative with respect to
¢11(r1, 1) to obtain

§In =, (q™°)
5¢11(I‘1, 1'2)

(see [28, 29]). Thus we find, using eqs. 2.8 and 2.12,

:0521) (rl, ra; qNO) = —2kgT

= No
(2 O o) — _op O E(a™)
pir (r1,12) pit (r1,12;q™0) B S (r1,T2)
o0 . d QP (s) )
=2—— =2lim— | ———
d¢11(ry,12) s=0 ds (5(!511(1'1, ry)
_ 21imi ( 0P () o8P () 5P (s) )
=0 ds \0¢ii(r1,r2) 047 (ry,T2) 01 (r1,12)
. d re : sTE
= E}%% (5/3521)’ p(7“12;8)) = il_I}%Pﬁ) p(7"12;5)a

where we have considered the fact that there are s identical replicas which

do not interact to obtain the symmetry properties of the functional QP (s)



Derivation of the ROZ equations 14

which lead to the last equalities. Thus
hn (7'12) = ll_I)I(l) hﬁp(Tlg; S). (214)
hgo, ho1 and hio are related to their counterparts in the replicated system by
similar equations
hoo(q12) = lim hoo” (q12; 5)
hoi(Jr1 — qq]) = hm hmp(|r1 — Q25 8) (2.15)
hia(r12) = }91_1)1(1)h12 (1125 8)-

The replica system has the following symmetry properties which we assume
to be also valid for non-integers such that there is no breaking of the replica

symmetry when performing the analytic continuation to s=0:

coil = cpf; hg? = hit for i=1,...,s
P =cdF; hiP=hniPF for i=1,...,s
cit =cgy hit =hy’ for 4, j=1,...,sand i #j
i = p1 for i=1,...,s, (2.16)

where h15(s), 15 (s) denote the correlation functions between two different

replicas, and h17"(s), {7 (s) between the same replicas.

Furthermore, we have the usual symmetry relation

EP =P BP =P for i,j=0,...,s. (2.17)

Now we write down the standard OZ equations (see eq. A.5) for the repli-
cated system and isolate the s-dependence of these equations by grouping
together identical terms (for notational simplicity we drop out the explicit r
dependence):

hoo' (s) = oo’ (s) + pocog’ (s
hot"(s) = cot’ () + pocog’ (s
+ (s = 1)prcor’(

"

(

o (s)+ spicor (s) @ hot'(s)  (2.18)

1 (s) + picor” (s) ® hii" (s)

s s) (2.19)

Rt (s) = c177(s) + pocos i (s)
+ (s = Dpcry” )

hig'(s) = c15'(s) + pocor” (s 7 (s) + prcii’(s) ® b5’ (s)

+ picig’ (s) © i (s) + (s — 2)prchs’ (s) @ his’ (), (2.21)

rep
rep
rep
re

S P

rep

2 (
s) + prcii’(s) ® i’ (s)
2 (

s s (2.20)

rep

)®
) ®
)®
) ®
) ®
)®
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where the symbol ® denotes a convolution integral.

Exploiting the symmetry relations 2.17 and using the equation for hi¢f(s) an

alternative equation for hgi?(s) is
hot' (s) = cor’ (s) + pocor” (s) ® hog” (s) + prcri”(s) @ hor' (s)
+ (s = 1)p1ci3’(s) ® hoy’ (s),
which can also be derived from above equations.

We now take the s — 0 limit of egs. 2.18 - 2.21 and use eqgs. 2.14 and 2.15
to obtain the ROZ equations:

hoo = coo + pPocoo @ hoo (2.22)
ho1 = co1 + pocoo @ hor + p1cor ® hir — prcor ® haz (2.23)
hii = c11 + pocor ® hor + picii ® hiy — picia @ hig (2.24)
hiz = c12 + pocor ® ho1 + prc11 @ hig + prciz @ hyy

—2p1c12 ® hia (2.25)

An alternative equation for hg; is
ho1 = co1 + pocor @ hoo + prc11 @ hor — picia @ hor-

Note that the equation for the matrix decouples from the others because the

matrix configurations are not influenced by the fluid.

2.5 Reformulation of the ROZ equations

We now introduce (for reasons outlined below)

hoy =hi2;  he= hi1 — hio

Cp = C12;, Cec = C11 — C12,

the so called blocking (or disconnected) parts and connected parts of hy; and
ci11. With these definitions eqs. 2.22 - 2.25 become

hoo = coo + pocoo @ hoo (2.26)
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ho1r = co1 + pocoo ® hoy + p1cor ® he (2.27)
hi1 = c11 + pocor ® ho1 + prc11 ® he + pre. @ hy

= ¢11 + pocor ® ho1 + p1cc ® hiy + pi1cy @ he (2.28)

he = cec+ p1ce @ he (2.29)

or, alternatively,
hot = co1 + pocor @ hoo + p1ce @ hoi.-

Given and Stell [13] introduced the two correlation functions h. and hy, by
their diagrammatic expansion. It should be borne in mind that h,5 describes
the correlation between particles of different replicas which do not interact
directly. They only interact indirectly through the mediation of the quenched
particles. Therefore h, = hio consists precisely of those graphs contributing
to the function h;; that contain at least one py-field point in all paths between
the fluid root points, i.e., they do not have an annealed path connecting
their root points (for a brief introduction in graph theory see [29]). The
connected function h,. describes correlations between a pair of fluid particles
that are transmitted through successive layers of fluid particles whereas the
blocking function hj; describes correlations between fluid particles blocked or
separated from each other by matrix particles. Note that, though the matrix
particles are immobile, they tend to order the fluid particles on either side
of them and thus are capable of mediating correlations through a layer of
matrix particles. At very low matrix porosities, i.e. very high densities of the
matrix, the volume accessible to fluid particles is divided into small cavities.
In this limit the function A, describes correlations between fluid particles in
the same cavity, whereas h, describes correlations between fluid particles in

different cavities.

In [17] another way was presented to introduce these functions. By defining

the connected pair density as

2 2 1 1
pALe(rs, 723 0™) = 17 (1,72 0™) — o (1. 0™) 1" (r25.0™),
where pgl) (r; g™°) is the matrix dependent one-particle density, we can define

the following correlation functions h. and h; by

PPhe(ria) = pie(r1, 125 qN0) = a1 (r12) — P17 (213 @Mo) i (05 g0)
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and

phy(r12) = Pgl) (ry; qN")Pgl) (r2; q™o) — pf,

hence
hi1(r12) = he(r12) + hy(r12)-

In [17] it is shown that these functions satisfy the relation
he(ri2) = ll_ﬁ% Pt (r12; 8) — £1_I>% hi3" (r12; 5)

which is precisely the definition of the connected correlation function intro-
duced by Given and Stell.

2.6 Closure relations

The ROZ equations do not represent a closed set of equations for the corre-
lation functions, therefore — as in standard liquid state theory — additional
relations, the so-called closure relations, have to be provided. To obtain
approximate closures for porous systems we start from standard approxima-
tions (see [29] and eqgs. A.8, A.9) for the equilibrium replicated system and
then take the s — 0 limit. Since particles belonging to different replicas do
not interact, the replicated system is characterised by highly non-additive
interactions. Thus far the standard closure relations have only been investi-
gated in additive systems; therefore, the validity of these approximations can
be judged only by the resulting predictions for some specific systems [10, 20].

2.7 Structure of a binary fluid in a porous

medium

The generalisation of the formalism presented in the previous sections to
the case of a binary fluid in a porous media is straightforward. As a first
step we will generalise the replica method to the case of the two-component

fluid. Then, using this formalism we will be able to present the corresponding
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ROZ equations which will be rewritten in terms of blocking and connecting
parts of the correlation functions. Finally, we suggest how to generalise the

formalism to a k-component fluid in a matrix.

2.7.1 The replicated system

As before, we use the subscript 0 for quantities concerning the matrix par-
ticles. The particles of one of the fluid components are denoted as species
1, those of the other component as species 2 particles. The subscript 12 will
be used for properties of the whole binary mixture. We use the formalism
of a canonical ensemble both for the matrix and the fluid mixture. Thus we

obtain the following probability densities
1

(") = e e
0
and
p12(rN1 SN2|qN0) — #X
Z12(q™)
67,312[}]01(qNO,I‘Nl)+H02(qN0,SN2)+H11(I‘N1)+H12(1‘N1 ,SN2)+H22(SN2)]
where ™ = {r;,...,ry,} denote the positions of the N; particles of com-
ponent 1 and s = {si,...,sy,} denote the positions of the N, particles of
component 2, H;; is the interaction potential between particles of species i
and j,
1
N N1 3o No_—B1a2[Ho1+Hop+Hiy+Hyo+H
Z12(q 0) — NI!NQ! /dI‘ 1ds™2e Bi2[Ho1+Hoo+H11+Hia+Hoz] (230)

is the matrix dependent partition function and £, = %12 the inverse tem-

kB
perature of the fluid mixture.

Again, we obtain the thermodynamic quantities of this system via quenched
averages. In particular, the Helmholtz free energy of the fluid mixture for a

given matrix configuration,

—512F12(N1, Ny, V, Thg; qNO) =In Z12(qN°)
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must be averaged over the matrix realisations to yield

_/612F12(N0, Nl; N27 V T12; TO)

= InZo(qNo) = No ,—BoHoo(a™"0) N,
= In Z12(q 0) N IZ /dq 0 01700 an ( 0) (2.31)
Using the replica trick 2.10 and 1nsert1ng eq. 2.30 into 2.31 we obtain
— 1
— F.o = — lim /d No —,30H00(q O)Zs No
Br2F'12 Zo L ds No q 5, (q™?)
= iZT"””( ) (2.32)
N Z() Sl_I}I(l) ds 5): :

Using the fact that
lim Z™P(s) = Z,

s—0
eq. 2.32 simplifies to
— d
— — lim — rep
B1aF1a ll_% T In Z"P(s). (2.33)

For integer s

re 1
S AT A /qu"dri“ --drtds)? - - ds)” x
e—ﬂoHoo(qNO)e*/J’m [H & (gMo, ra1)+H°‘( No g ] %
e—ﬂ12 [H (ral)-I-H (ra sy 2)+HS, (sa )] (234)

where H§; is the potential energy of interaction between matrix particles and
fluid particles of component 1 in replica c, r¥* denotes the positions of the
N; fluid particles of component 1 in replica «, etc. If we assume that the
system can be described through pairwise interaction potentials ¢go, @1, Po2,
011, G12, Poo, then eq. 2.34 is the equilibrium partition function of a system

with the interaction potential

H= > ¢ola q)+ > b1 (s Taryj)
i<j a=1 0,

i,j€{1,....,Np} ief{l,..., No}
jefL,..., N1}
S S S
O,
+3 Y dh(ansa) YD Y 6 (e Tsy)
a=1 irj a=18=1 _ i<j
ief{l,..., No} i,j€{1,...,N1}
jed{L, ..., Ny}
S S S S ﬂ
(0% o
33 Y oW (anss) XD Y 655 (Sai Ssy)
a=18=1 irj a=1p8=1 i<j
ie{1,..., N1} i,j€{1,...,Na}
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with

O = b110ap
65 = $120ap
¢35 = br0as
P51 = b
Ppy = Poa-

qﬁ%ﬁ denotes the pairwise interaction potential between particles of the two
different fluid components belonging to the copies o and f3, r,,; is the position
of particle number j of fluid component 1 in replica «, etc.

The binary mixture now appears in s identical copies. For integer values
of s, Z™P(s) is the equilibrium canonical partition function of a (2s + 1)-
component mixture (if we neglect that the temperatures are different) with
the same interactions as in the original system, except that fluid particles
from different replicas do not interact.

2.7.2 Derivation of the ROZ equations

In order to obtain the ROZ equations for the partly quenched system we
first write down the standard OZ equations for the (2s + 1)-component mix-
ture, exploiting the symmetries of the replica system and grouping together
identical terms. For this purpose we introduce the following convention to

number the (2s + 1) fluid components in the equilibrium mixture:

0 for the matrix
1,3,...,2s — 1 for fluid component 1 in replica number 1,... s
2,4,...,2s for fluid component 2 in replica number 1,...,s.

If we define the following sets, which contain the odd and even numbers of
the fluid components

0 =1{13,...,2s— 1}
E ={2,4,...,2s},
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we obtain the following symmetry relations in the replica system for integer

values of s:

ol = s hy? = hgtt for i€ O
EP— FD PP PP for e E
7 I
af = WP =hF for i€O
P =P WP =K for i€0, j=i+]1
Gt = hi? =hy’ for i€ E (2.35)
ciit = ¢y hiP =hig? for 4,5 €0, i#]
rTep _ TeEp, rep __ prep . . . .
cit =cii; hij =hy for i€0,j€E, j£i+]

P = b, h"e” hy for i, jE€E, i#]
pi = pi for 1€0

Pi = P2 for 1€ FE
in addition to the usual symmetry relations which are valid in mixtures

= P B = hP for 4,j=0,...,2s. (2.36)

Cij Ji

The correlation functions hi3, h14 and hey describe correlations between par-
ticles from different replicas and are therefore equivalent to the blocked parts

of the correlation functions hq1, hio and hsy (see section 2.5).

Using the symmetry relations 2.35, 2.36 for the equilibrium system we obtain

the OZ equations for the mixture

hoo” (s) = cog’ () + pocoq” (s) ® b’ (s) + spichi” (s) ® hot” (s)

+ 5922 (s) ® WP (s) (2.37)
B2 (5) = () + poci? (5) @ 2 (5) + puch?(5) @ Wi ()
P (s) O P () + (s — Dpud () O HF(s)  (239)

+ (s = 1)p2cy’ (s) ® hif’(s)
hoo' (5) = o3’ (s) + pocoq’ (5) ® ho’ () + prcpr” (s) @ hig’(s)
+ p2cog’ () ® hog’(s) + (s — 1)prcor’ (s) ® hig(s) (2.39)
+ (s = 1)pacoy’ (s) ® hof(s)
hit’(s) = ii"(s) + pocor” (s) ® hot' () + prcii”(s) @ hit’(s)
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i (s) =

7 (s) =

W (s) =

W (s) =

W5 (s) =

+ paciF () @ WIF () + (s — 1)picfF (s) ® RS (s)
+ (5 = Dpcif () © Wi (s)

ci3’(s) + pocor’ (8) ® hog"(s) + preit’ (s) @ his’(s)
+ p2ciS (5) @ hayg (s) + (s — 1) picis (s) @ hig (s)
+ (s = )pacif (5) © by (s)

& (5) + pocis? (5) ® b () + puc () ® Wi (s)
+p2crep( ) ® hrep( )+ (s — 1)plc1l"zp(s) hrep(s)
+ (s = 1)pach (5) ® ho (s)

I (5) + poch(5) ® K (5) + pucl () ® i ()
+ paciF (s) @ hif(s) + prcis (s) ® hiTP(s)

+ 2011 (5) ® B13" () + (s — 2)prcis’ (s) ® hig'(s)
+ (s = 2)pacif (s) ® AT (s)

P () 4 pocy®(s) @ hiF (s) + pici$P(s) @ W (s)
+ 02615 (5) ® hai (s) + prcis’(s) ® hig(s)

+ P2 () @ W5 (5) + (s — 2)pr & (5) @ WP (s)
+ (s = 2)paci (5) ® hof (s)

e’ (5) + pocgy’ (5) ® ho3' (s) + prcis (s) ® M (s)
+ pacas (8) ® hag (s) + prci (s) @ ki (s)

+ a5 (s) @ AP (s) + (s — 2)p1 P (s) @ RIP(s)
+ (5 = 2)pao () © By (s).

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

Alternative equations for hgi’, hg', hiy’ and hiy’, which can be derived from
eqs. 2.37 - 2.45 or by exploiting the symmetry relations 2.35, 2.36 in the OZ

equations for hiF, hyl, hyt and hyiP, are

i (s) =

i (s) =

= cor (8) + pocor” (5) @ hog’ (s) + preii’ (s) @ hot (s)

+pacis’ (s) @ hoa'(s) + (s — D) pres”(s) @ hoi"(s)
+ (5 = 1)p26is" (s) ® hoo'(s)

= oo’ (8) + pocos’ (5) @ hog’ (s) + preis’ (s) @ hot' (s)

+ pachs (5) @ hog'(s) + (s — 1) prcia” (s) @ hoi"(s)
+ (5 = 1)p2cis” (5) ® hoo'(s)
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g’ (s) = i3’ (s) + pocez”(s) ® hot” (s) + prcia”(s) ® M’ ()
+ pach’ (5) © P’ (5) + (5 — 1)pacia” (s) © Rz’ (s)
+ (5 = 1)pach” (s) © b1’ (s)

hi'(s) = aif’ (s) + poces”(s) ® hot' (s) + 16" (s) ® It (s)
+pacad’ (8) @ hig’(s) + preas’(s) @ hag”(s)
+ pacy’ (5) ® b1y’ (s) + (s — 2)pcrd’ (s) @ b’ (s)
+ (5 = 2)p2cos” (5) ® B’ (5)-

Similar as in the one-component case, the correlation functions hgg, ho1, ho2,

hi1, hia, hoo, hi3, h14, hos describing the structure of the partly quenched

system are related to the corresponding functions in the replicated system

by equations similar to 2.14, 2.15. For example, we find

0522) (1'1, 52) = ,0522) (1'1, S2; qNO)

- 5@12 _ im i [ (59T€p(8) ]
d12(r1,52) s=0 ds | 012(r1,82)
Cd [ sre(s)  oreR(s) 5rep (s)
= 21 —_— .- +
slj}l(l) ds <6¢%% (1‘1, SQ) 6¢%% (rla SZ) (5¢28 1,28 (rl, S2)

d
= lg% gsﬂgz P(|ry — a5 8) = hmP

57 (Iry — sa; ),

which yields

hia(|r; —s9]) = hm R (Jr1 — sal; 8).

Therefore we take the s — 0 limit of egs. 2.37 - 2.45 to obtain

hoo = coo + pocoo @ hoo

)

(2.46)

hot = co1 + pocoo @ hor + picor @ hi1 + pacoz @ hia — picor @ his

— p2co2 @ hig

(2.47)

hoa = co2 + pocoo @ hoz + p1cor @ hia + pacoz @ hog — p1co1 @ hig

— p2co2 @ hoy

(2.48)

hi1 = c11 + pocor @ ho1 + pici1 ® hiy + paciz @ hig — prc13 @ has

— p2C14 @ hyy

(2.49)

his = c12 + poco1 ® hoa + pici1 @ hia + pacio @ has — prc13 @ hig

— p2C14 @ hoy

(2.50)
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h22

has

h24

= oo + pPocoz @ hoa + prciz @ hig + pacee @ hoy — p1c1a @ hig

— P2C24 @ hay (2.51)

13 + pocor @ ho1 + p1c11 @ hiz + pacia @ hig + pre13 @ hy

+ pacia @ hia — 2pic13 @ hiz — 2pacis @ by (2.52)
= c1a + poCo1 ® hoz + prc11 ® hig + paciz ® has + prc13 ® hio

+ p2cis @ hao — 2p1€13 @ hig — 2pacis @ hoy (2.53)

C24 + PoCo2 @ hoa + piciz @ hig + pacor @ hos + picis & hio

+ p2cos @ hog — 2p1¢14 @ hia — 2p2cos @ hoy (2.54)

or alternatively,

hoy

h02

h12

h1a

= Co1 + PoCo1 @ hoo + p1c11 ® ho1 + pacia @ hos — p1c13 @ hoy

— pacis ® hoo (2.55)
= co2 + PoCo2 ® hoo + p1c12 ® hor + p2ca2 ® hoa — p1c14 @ hoy

— paCas ® hoo (2.56)

c12 + poco2 @ hot + piciz @ hit + pacar @ hia — picia @ haz

— paCas ® hiy (2.57)

= C14 + poCo2 @ ho1 + p1c1a @ hi1 + pacas @ his + picia @ his

+ pacoa @ his — 2p1c14 @ hig — 2pacos @ hag. (2.58)

Note that again the equation for hgy is decoupled from the others since the

matrix particles are unaffected by the fluid. Furthermore, it can easily be

shown that the above equations satisfy necessary symmetry relations. By

exchanging

pL & P2
ho1 < hoa Co1 > Cop2
hi1 < hao C11 <7 C22
hiz <> hoy C13 <> Co4

while keeping hi4, c14, h12 and c;o fixed, the equations for hg1, h11, hi13 become

those for hga, hoo, hos and vice versa. The equations for A4 and A turn into

the alternative ones.
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2.7.3 Reduction to the one-component fluid

Eqgs. 2.46 - 2.54 simplify to the ROZ equations of the one-component system
if we assume that the two fluid components become identical, i.e.

(]501 = ¢02a ¢11 = ¢12 = ¢22-

In this case we have to replace

p1+p2 — P1
Co2 — Co1
C12,C22 — C11

Ci4,Co4 — C13

in eqgs. 2.46 - 2.54 and obtain

hOl = h02
hll = h12 = h22
h13 = h14 = h24

The remaining equations correspond to the eqgs. 2.22 - 2.25.

In fact, we will use this limiting case to calculate an initial estimate for the
numerical solution of the ROZ equations in the case of the two-component
fluid. Another possibility in order to approach the case of a one-component
fluid is to set the density of one fluid component equal to zero. For p, =0
the ROZ eqs. 2.46 - 2.54 are satisfied if

h02 = hig = hog = hiy = hoy = Co2 =Cig =Cp =Cig =Cq =0

The nontrivial remaining equations are equivalent to eqs. 2.22 - 2.25.

2.7.4 Matrix formulation of the ROZ equations

In this section we introduce a compact matrix formulation of the ROZ equa-
tions for a binary liquid in a matrix. This notation has the following advan-

tages: It is a compact notation, in which the ROZ equations have the same
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structure as in the one-component case. Furthermore, it helps us to extend
the formulation of the ROZ equations to a k-component fluid in a matrix.

If we define the following vectors and matrices

h
hy, = ( 01) Co1 = (601>
hoz Co2
h hi1 hig C11 C12
11 = Ci1 =
hia hoo C12 C22
h h,13 h,14 C13 Ci14
12 = Ci2 =
hia hos C14 C24
p, = p1 0
' 0 po

then egs. 2.46 - 2.58 take the form

hoo = oo + pocoo @ hoo (2.59)
ho; = co1 + ho1 ® pocoo + prhir @ cor — prhi2 @ coy (2.60)
hi; = ci1 + hoy ® pocd; + pihit ® €11 — prhiy ® iz (2.61)
hi; =ci2+hy ® Pocgl + pihis ®cii + prhi ®cop
—2php®c,  (2.62)

which are formally equivalent to the ROZ equations of the one-component
case 2.22 - 2.25.

2.7.5 Reformulation of the ROZ equations

Similar to section 2.5 we introduce the blocking and connecting parts of the

correlation functions
h11 = ht{l + hlfl Wlth h’?l = h13
h12 = h€2 + h[{Q Wlth h’({Z = h14
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Again, h?j describes correlations between fluid particles of species 7 and j

which are mediated through matrix particles and A{; describes correlations

ij

transmitted through successive layers of fluid particles. The ROZ equations

thus simplify to

hOO
hOl
h02
hll

h12

h22

c
hll

c
12

c
22

= Coo + PoCoo @ hoo (2.63)
co1 + pPocoo ® ho1 + pico1 ® iy + pacor ® hi, (2.64)
co2 + pocoo ® hoz + prcor @ hiy + pacor @ hjy (2.65)
c11 + pocor @ hot + prc1y @ h§y + pacia @ hy + pic§; @ hl;

+ pack, ® by (2.66)
ci2 + pocor @ hoa + picSy @ hig + packy @ o + pichy ® RS,
+ pacy ® h (2.67)

€22 + Pocoz @ hoa + picia @ RSy + pacas ® hS, + pic§y ® B,
+ pacsy ® R,

cfy + p1ciy ® hiy + paci; ® hiy

cfo + p1€is ® hiy + pacs, ® hi

o F P1€To @ hiy + pacsy @ h3y,

or, alternatively

hoy
hoz
h12

c
12

= co1 + pocor ® hoo + pici; @ hor + paciy, @ hoo
= o2 + Pocoz ® hoo + p1cie ® ho1 + pP2cse @ hoy
= ci2 + poco2 ® ho1 + piciz @ hi; + pacee @ hiy + piciy @ hl{l

+ pacs, ® hi,

= Clp + 1€y ® hiy + paciy ® hi,.

2.7.6 Generalisation to a k-component fluid

The formulae introduced in section 2.7 for a two-component fluid in a ma-

trix can easily be generalised to a k-component fluid in a matrix. Using

the replica trick one finds that the partly quenched system is isomorphic to a
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limiting case of a (ks+1)-component equilibrium mixture. We choose the fol-
lowing convention to number the fluid components in the (ks+1)-component

mixture of the replica system:

0 for the matrix

1,k+1,2k+1,...,(s—1)k+1 for fluid 1 in replica number 1,2,... s
2,k+2,2k+2,...,(s—1)k+2 for fluid 2 in replica number 1,2,... s
k,2k,3k, ..., sk for fluid £ in replica number 1,2,...,s

If we define the following partition of the set {1,2,..., sk}

P ={1,k+1,2k+1,...,(s—1)k+1}
P, ={2,k+2,2k+2,...,(s—1)k+2}

P, = {k,2k,3k,..., sk}

we obtain the following symmetry relations in the replica system where the
number to the right of the curly brackets gives the number of symmetry

relations:
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rep __ rep rep __ prep .
Coi = Co1 hoi = hoy fori € P,
rep __ _rep rep __ prep .
Coi = Co2 hoi” = hgy for i € P,
rep __ . Tep rep __ prTep .
COi - COk‘ h()z' —_ hOk fOI‘ 7 6 Pk
rep rep rep rep . . . \
Cij = Cn hii" = hiy forie P, j=1
rep __ Trep rep __ prep . .
Cij = C12 hij” = hiy forie P, j=1+1
rep _ rep Tep __ pTep . .
Cij = Ci3 hij” = his forie P, j=1+2 | (k+1)
: 2
rep _ rep Tep __ pTep . .
i = g i = Pl fori€ Py, j=1+1
rep _ rep rep __ prep . .
Cij- = Ckk hij = hyy, forie Py, j=1
3\
rep _ rep rep _ prep . S,
Cijo = Crpr1 Pigs = P forie P, j#1
TEP __ TEp rep __ 1 Tep ) i .
Cij. = Cipya  Pij = hijio forie P, j#i+1
rep _ Tep rep __ prep . .
Cij. =Cipys  Pij = hijes foric Py, j#i+2 | (k+1)
. ) !
rep __ rep rep __ yrep . ] )
Cij- = Ck—1,2k hz’j = hk—1,21c forve Py, j#1+1
rep __ rep rep __ yrep . i )
Cij = Cr2k hz’j - hk,zk for 7 € Pk, 7 7& 7 )

Again, the last block of lines denotes correlation functions between fluid
components of different replicas. Furthermore we see that the number of
ROZ equations, i.e.

1+k+<k;1>+(k;r1) = (k+1)°

is rapidly increasing with increasing number of fluid components.
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If we define the following vectors and symmetric matrices

ho1 Co1
hoa Co2
hy, = ] Co1 =
hOlc Cok
hit hig <+ hyg Ci1 Ci2 *++ Cig
hag -+ hog Cog ++ - ha
hll = Ci1 =
Rk Ckk
hl,k:+1 hl,k—|—2 h1,2k Cik+1 Crk+2 - Ci2k
h2,k+2 h2,2k Cok+2 " h2,2k
h; = . ) Ci2 =
P2k Ck 2k

P = diag(pla P2y, Pk)

then egs. 2.59 - 2.62 represent also the ROZ equations for a k-component

fluid in a matrix.



Chapter 3

Numerical solution of the ROZ

equations

In this chapter an algorithm for the numerical solution of the ROZ integral
equations for a one and two-component fluid in a quenched matrix is pre-
sented. The method used here is a hybrid of the iterative Picard scheme and
the Newton-Raphson technique which was developed by Gillan [30]. The nu-
merical solution of the ROZ equations is based on an algorithm introduced by
Labik, Malijevsky and Vonka (LMV algorithm [31]), an extension of Gillan’s
work, which was originally proposed for solving numerically the OZ equa-
tions for homogeneous liquids (and mixtures) and extended by Lomba [10]
to the case of the ROZ equations.

In section 3.1 a brief overview is given over those numerical algorithms for
solving the OZ integral equations which are necessary to understand the
LMV algorithm. A detailed description of the LMV algorithm for solving
the ROZ equations will be presented in section 3.2 for the one-component
case. In section 3.3 those modifications are presented which are necessary
to adopt the algorithm for the two-component fluid. In the last section we
describe the model potentials for the fluid and the matrix which were used

in our calculations.

31
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3.1 Introduction to numerical algorithms for

solving integral equations

In many frameworks of liquid state theory we search for numerical solutions
of integral equations which contain convolution integrals such as the OZ or
ROZ equations and which are supplemented with some closure relations. To
demonstrate the following considerations we consider here for simplicity the
one-component OZ equation for a homogeneous, radially symmetric liquid,

y(r) = p/dr'h(r')c(|r —r1'|), where ~(r) = h(r) — c(r). (3.1)

The simplest method of solving this equation numerically together with a

closure relation of the form

c(r) = f(y(r), o(r)) (3.2)

is one of direct iterations: an initial estimate for v(r) is used in eq. 3.2 to
obtain ¢(r) and h(r) = v(r) + ¢(r). These functions are inserted in the right
hand side of eq. 3.1 to obtain a new estimate for (7). This cycle, which is
called the Picard cycle, is repeated until numerical convergence is achieved,
i.e., the procedure is repeated until the difference between the input- and
output-y(r) is smaller then a certain value. Except in the weak-coupling
limit (i.e., at low densities or high temperature) this method is divergent. The
divergence can be cured by Broyles mixing procedure. It is usually sufficient
to mix the output of two previous iterations to construct the subsequent

input according to the rule
() = (1= )y (r) + ay (),

where the mixing parameter o (0< « <1) is adjusted empirically. In sub-
section 3.2.4 a modified Broyles mixing-iterates method is presented which
was proposed by Lomba [32]. But still a very accurate initial estimate is

necessary and convergence remains slow.
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A more attractive approach is to evaluate the convolution integral by the
Fourier transform method rather than by direct integration since less opera-
tions are required. On taking the Fourier transform of eq. 3.1 we obtain an

algebraic relation between ¥(k) and é(k)

(k) = 22

= (3.3)

Here the tilde on top of a function denotes its Fourier transform. An initial
estimate for y(r) is inserted in eq. 3.2 to yield ¢(r). ¢(r) is Fourier trans-
formed and inserted into eq. 3.3 to give the Fourier transform (k) of the
new approximation y(r). This is the Picard cycle which will be used in the
LMV algorithm.

An alternative to the Picard method is to use egs. 3.1 and 3.2 in discrete form.
The range of r is divided by N equally spaced grid points r;. The functions
~(r) and ¢(r) may then be regarded as vectors 4 and ¢, with components
vi = y(r;) and ¢; = ¢(r;), ¢ = 1,...,N. The OZ relation, together with
some approximate closure relation, yields a set of N nonlinear, simultaneous
equations for the components of 4. Sets of equations of this type are usually
solved by the Newton-Raphson method (see Appendix B for the NR-method
or [33]). The power of the NR-method lies in its property of an extremely
rapid convergence. On the other side, however, the method requires consid-
erable computational effort: in each iteration a matrix of dimension N (the
Jacobi-matrix), with N typically of the order 103, has to be calculated and

inverted.

We therefore come to the conclusion that the Picard method is slow and
instable while the NR-method is not convenient when applied to large sets
of equations. Gillan therefore proposed an effective combination of the two
methods which overcomes the slowness of the Picard iteration while retaining
the power of the NR-method [30].

In this approach, the solution v(r) is decomposed into a coarse part, written
as an expansion in terms of functions P;(r), j = 1,..., M, and a fine part

Av(r) whose length scale is much smaller than the scale characterising the
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solution 7(r) (i.e. its Fourier components are mainly at large wave vectors):

y(r) = 2_:1 a; P;(r) + Ay(r).

The instability of the Picard method stems from coarse displacements of
v(r) from the solution which change the overall shape and magnitude of
~(r) whereas displacements in the fine part are rapidly reduced by direct
iterations. Therefore, the coarse part of (r) is determined by the NR-
method, leaving the fine part to be dealt with to the Picard method. The
basis functions P;(r) must be chosen in such a way that only a few of these
functions is necessary to give an adequate representation of the overall shape
of y(r). Thus the problem of large matrices, which troubles the NR-method,
will be removed. In his work, Gillan used roof functions as basis functions.
At this point it becomes clear why the smooth function 7(r) was introduced
in eq. 3.1 and why the OZ equation was solved for «(r): this function is
more easily represented in terms of a few basis functions P;(r), the fine part
will be small so that more weight will be given to the efficient NR-method.
The functions ¢(r) and h(r) are less suitable for this purpose, since they are

rapidly varying in the region of the core diameter.

Labik, Malijevsky and Vonka [31] proposed a quite similar procedure whose
main advantage lies in the use of a sine function basis instead of Gillan’s roof
functions. The coarse part is decomposed into sine functions with small wave
vectors giving a representation of the general shape while higher terms give
a detailed description. Let us have a look at figure 3.1 where the blocked
function 4,(k) as a function of k is shown for a partly quenched system with
pure hard-sphere interactions. The figure shows that 7, is a non-negative
oscillating function that decays rapidly with increasing k. Thus the sine
functions with small wave vectors give already a good representation of the

function.

Furthermore, in contrast to the Gillan algorithm, the calculation of the
Jacobi-matrix for the NR-iteration is very rapid since no additional Fourier
transformations are involved in the NR-iteration. This is achieved by a
Fourier transformation of the linearised closure relations and applying the

NR-scheme directly in the Fourier space.
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Figure 3.1: Fourier transform of ~,(r) for a partly quenched system with pure
hard-sphere interactions and parameters ogg = 091 = 011 = 1, pp = 0.1 and
p1 = 0.25 in the HNC approximation.

3.2 LMYV Algorithm for the one-component
case
In this section the LMV algorithm is presented for solving the ROZ equations

for a one-component liquid in a porous medium. As a first step for the
solution of the set of eqs. 2.27 - 2.29

hor = co1 + pocog @ ho1 + p1cor @ he (3.4)
hi1 = c11 + pocor ® hot + pici1 @ he + pic. @ hy (3.5)
he = ¢+ pice ® h, (3.6)

we introduce smooth functions

Ve (1) = has(r) = cap(r), (3.7)
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where o is 01, 11 or 12. Eqs. 3.4 - 3.6 are now Fourier transformed, yielding
algebraic equations which are solved for h,g; using eq. 3.7 one obtains

. . ¢or (1 + poiloo)

= —& + _ .

o - p1Ci1 + p1Ci2

_ _ 11 + poCoy (1 + pohoo) —p1 (611 — 512)2

Y11 = —C11 + - o (3.9)
(1 — p1¢11 + p1é12)

12 + poCay (1 + Pohoo)

(1—p1é1y + ,01512)2

Yi2 = —Ci2 +

3.2.1 Fourier transformation

Exploiting the spherical symmetry of the functions, the three-dimensional
Fourier transform of e.g. ~(r),

(k) = [ dke™ry(r)

can be simplified to a one dimensional integral

27 L o0 .
i(k) = [ do [ dosing [ drrtet ety )

_ o0 sin(kr)
—47T/O drry(r) e

Similarly, the inverse three-dimensional Fourier transform

1 —ikry
1) = Gy / dke™™5(k)

becomes

1) = o [ k()22

If we adopt the notation that capitalised quantities are related to the corre-
sponding uncapitalised quantities by a factor £ in Fourier space and a factor

r in real space, e.g.
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the Fourier transforms can be written as

(k) = 4r /0  dr T(r) sin(kr) (3.13)

and
r(r) = # [ k) singer), (3.14)

For the numerical solution of the ROZ equations, the range of r is divided
into a set of N equal mesh points r;, = iAr, i = 1,..., N, where N is
assumed to be a power of 2, a feature which is recommended if a fast Fourier
transform method is used; the functions 7(r) etc. are represented by their
values 7; = y(r;) etc. on these grid points. In a similar way one proceeds in
the Fourier space where the range of k is divided into N equal mesh points
k; = iAk. In a fast Fourier approach Ar and Ak are related via
s
ArAk = —.
" N

In a discrete form eqgs. 3.13 and 3.14 now read

N-1

f(k~)—47rA7‘ZPT, smwﬁ7T for j=1,2,...,N—1 (3.15)
=1
A N-1

ri) = WIEZ Sin% for i=1,2,...,N—1. (3.16)

Egs. 3.8 - 3.10 then become
- ~ C k
Loi(kj) = —Coi(ky) + on (k) (k)
kj — pCui(k;) + prCira (k)
[1i(kj) = —Cu(ky) (3.18)
~ ~ ~ 2
+k?011(kj) + poCot (k;)*x(kj) — kjp: (Cn(k ) — 012(’%'))
(kj - ,01é1l( )+ 01012 )
k2Cua(k;) + poCor (k) 2x (k)
- ~ 2
(kj = p1Cui(kj) + p1Cia(ky))

(3.17)

fl?(kj) = —C~'12(kj) + (3.19)

with x(k;) = k; + poHoo(k;)-
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3.2.2 Linearised Fourier transformed closure relations

The ROZ equations are supplemented by providing additional functional
relations between I'yg and Cypg, i.e., by

Cop(r) = f(Tup(r)) for af =01,11,12; (3.20)
for instance, in the case of the HNC approximation eq. 3.20 reads
Cap(r) = relas(r)/r=Boap(r) _ . _ Lag(r) for af=01,11

and
Cio(r) = rel 2/ _p T, (r),

while in the PY approximation eq. 3.20 reads
Cop(r) = (e_ﬂ%ﬂ(r) - 1) (Cop(r) +7) for af =01,11

and

012(7') =0.

In the NR-cycle we will need the closure relation in Fourier space. Therefore
we perform a first order Taylor expansion of Cas(r) in eq. 3.20 around the
point I'%;(r) and obtain

Cap(r) 2 Coa(r) + @2 (r) (Tas(r) = Tos(r)), (3.21)
where

0 = i) 3.22
aﬂ(T) (draﬂ(T) Tap(r)=T94(r) ( )

and
Cag = f(Tag(r)).
The derivative 3.22 depends of course on the closure relation to be used. For

instance, the HNC closure yields

ap(r) = hap(r)

while in the PY approximation we find

¢25(7') — ¢ BPap(r) _ 1
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Eq. 3.21 is discretised and Fourier transformed to give

. . N-1 i

Cap(k;) = Cog(k;) + 4mAr ; dos(ri) (Fag(ri) — Fgﬁ(ri)) sin jﬁ

Substituting for ['ss(rs) and I'Q4(r;) (eq. 3.16) we obtain

~ ~ ~ .l 1
Cap(k;) = Cy 5(kj) + N 2 2 b0 (ri) (Fag(kl) — Fgﬁ(kl)) sin —- sin -
Using the identity
mil_w in@ 1 (=g il+g)m
sin - sin = = o | cos = co N
yields
Caplky) = CO5(k;) + Y Capyi (Tas(kr) = Tos(k)) , (3.23)
=1
where
Capsjt = Dap(|j — 1) = Dap(j +1) (3.24)
and .
1 i
= — — 2
Z Pos(ri) cos N (3.25)

Expression 3.25 can easily be evaluated by means of fast Fourier transforms.

3.2.3 Calculation of the Jacobian

Inserting eqs. 3.23 - 3.25 in eqgs. 3.17 - 3.19 we arrive at a set of 3(N — 1)
non-linear equations for the unknown T'os(k;). The problem now reduces to

determine the zeros of the 3(N — 1) functions

\I]()l(l{]]) = f()l(l{]]) - F()l(é“y(k])) for j = 1, ceay N-1 (326)
\Illl(kj) = fll(kj) - Fll(é;w(kj)) for ] = 1, ey N-1 (327)
\1112(l€j) = f12(l€j) - Flg(éw/(kj)) for ] = 1, ey N — 1, (328)
where by F,s we denote the algebraic expressions on the right hand side of
egs. 3.17 - 3.19 and the C,,, (k;) required in the F,j are calculated from the

linearised closure relations 3.23 - 3.25.
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The Jacobian of these equations

M S S dFop [CHV(FNV(kj))]
Al (k) v dr (k)
dFa/J’(kj) dCNV(km)

m AC, (k) dTy (ki)

/\

Jopuji =

dFaﬁ(kj)é‘, C/M/;ml
dCpy (kj) 7™

AFaphy)
= uvij
dCIW (kj)

= Oaudpuoj —

is a 3(N — 1)-dimensional matrix. Explicit expressions for the Jacobian

elements can be found in the Appendix of [10].

Again we have a look at figure 3.1 which shows 4;(k). The plot shows that
(k) is rapidly decreasing with increasing k. The solution of the set of
non-linear equations 3.26 - 3.28 will therefore primarily depend on fag(k)
at small k. Thus the following procedure will be efficient: we calculate the
coarse part f(kj), j < M, using the NR-method. When convergence is
obtained the values f(kj), j > M, are determined by direct iteration. Thus

we obtain an algorithm as outlined in the subsequent subsection.

3.2.4 The Labik-Malijevsky-Vonka Algorithm

1. The matrix contribution is calculated e.g. using the analytic solution
of the OZ equation (we only assume hard-sphere or randomly centred
matrix particles)

hoo = coo + pohoo ® coo

in the PY approximation.
2. Given a first estimate of I'qg, i.e.,
Iog(ri), i=1,...,N; «af=01,11,12
and its Fourier transform

fgﬁ(kj)a j=1,...,N—-1; af=01,11,12
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3.

10.

one gets Cgg from the chosen closure relation
Cogri) = f(Tog(ry)) i=1,...,N—1.

@gﬁ (r;) is calculated via eq. 3.22 for the chosen theory.

. CY4(r;) and ®4(r;) are Fourier transformed to obtain

égﬂ(k])aDa/B(k]) .7: ]-77N -1

. For a chosen M, Cyg,; is calculated for j,{ =1,..., M from eq. 3.24.

. The initial estimate for the NR-iterations is

Cag(kj) =Tog(k) 7=1,...,M.

. Cap(k;) are calculated from

Coplky) = CO4(k;) + ; Copiit (Cas(kr) — T4 (k1))

and inserted in
dFop(k;)

Ja u-':5a6u6'_~7jcu" ;lzlaM
Buvsjl 198v0;1 dc;w(kj) priil J

to calculate the elements of the Jacobian.

. The Jacobian is inverted.

. By means of the NR-method the

Aluslly) == 30 (7)

wy o 1=1

Suw(ky) 7=1,....M

afuvijl
are calculated and a new estimate is obtained via

Lap(ks) + Alag(k;) = Lag(k;) j=1,..., M.

" 1/2
(S5 @rum)) >

ap j=1

a new NR-cycle is started by returning to operation (7).
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11.

12.

Once a converged solution from the NR-method is obtained for T o5 (k;),
j =1,..., M, one performs a direct iteration for the remaining grid

points, i.e.

faﬁ(kj):Faﬁ(élW(kj)) ]:M+175N_1

(the F,z are defined in egs. 3.26 - 3.28) and the result is combined
with the output of the NR-method to yield a complete new estimate
for Tys(k;)-

Ip(k;) are transformed back to r-space to obtain I'yg(r;). If

N-1 ) 1/2
£ = (Z > (Fag(ri) — Fgﬂ(ri)) Ar) >10°

af =1

we set
Tag(r) = T8s(r;) and Tog(k;) = T9(k;) 4,5=1,...,N—1

and return to operation (3). In order to improve the convergence of the
direct iterations we make use of the Broyles mixing iterates method.
The new I'?

(6%

5(r;) and fgﬁ(kj) are obtained from

(1= a)To4(ri) + alap(r) — Tog(ri) i=1,...,N—1
(1—a)Tos(ky) + alas(k;) — Tog(ky) j=1,...,N—-1

with the mixing parameter being determined by

B (67 if £>§m
“= 1—(1—0@)(5%)2 if £<&n

where q; is the initial variable and &, is the threshold of the error at
which we start to decrease the mixing parameter. This choice of the
variable o ensures that the direct iteration will also converge for large
displacements from the final solution. Furthermore when approaching
the final solution, « tends towards 1 and the convergence is considerably
speeded up. In our calculations «; was chosen to be 0.5.
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3.3 LMYV algorithm for the two-component

case

The generalisation of the LMV algorithm to the case of a two-component
fluid in the matrix is complicated, but straightforward. Now eqs. 2.63 - 2.71
are Fourier transformed and the resulting algebraic equations solved for the
has(k) (af = 01, 02, 11, 12, 22, 13, 14 and 24). Replacing has(k) by eq.
3.7 we obtain the explicit formulae for the J,5(k) which are compiled in

Appendix C.

Again we introduce the capitalised quantities as in eqs. 3.11 and 3.12. The
Jacobian of the 8 M functions

Uos(ky) = Tap(k;) — Faglky)  j=1,...,M
aff = 01,02, ...,24,

where the Fig are the algebraic expressions on the right hand side of egs. C.1
- C.5 with the capitalised quantities, is now a 8 M x 8 M-matrix, which means
that we had to calculate 64 expressions similar to those in the Appendix of
[10].

For a numerical solution of the eqs. C.1 - C.5 the algorithm presented in
subsection 3.2.4 can be adopted with the following modifications:

1. Whenever the pair of indices a8 appears, it now represents 01, 02, 11,
12, 22, 13, 14 and 24.

2. The F,p in operation (10) are replaced by the algebraic expressions of
Appendix C.

3. The Jacobian is now a 8 M x 8 M-matrix.

3.4 Model system

The model systems investigated in this work consist of a fluid with spherically

symmetric pair potentials which is confined in a matrix of particles formed
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either by equilibrium hard-sphere (o¢y > 0) or randomly centred sphere con-
figurations (ogo = 0). The following matrix-fluid and fluid-fluid interactions

were considered:

1. pure hard-sphere interactions

¢z’j(7") _ { +oo 1 < 0j

0 T > 0

2. hard-sphere interactions with square-well attraction

+00 T < 0y
¢ij(7“) =4 —€j 055 <71 <7504

0 YijCij < T

3. hard-sphere interactions with Lennard-Jones tail

+00 r < 0y
—€;5 oy <1< \6/50'1']'
ii\T) = o\ 12 .\ 6
P =Y ey ()7 - (2)) 2oy < <250,
0 2.50@' <r

The parameters are explained in figure 3.2.

The last two models comprise already many features of a realistic intermolec-
ular potential: the harsh, short range repulsion is modelled by the infinitely
repulsion of the hard-sphere potential and the smoothly varying, long-range
attraction is modelled either by an attractive potential well or by a Lennard-
Jones tail which is truncated at r = 2.50;;. In principle this truncation is
not required for integral equation approaches. It is done in order to facilitate
direct comparisons to computer simulations where the Lennard-Jones tail is

(usually) truncated at 2.5 ;.

The first model of the hard-sphere (HS) fluid plays a central role in liquid
state theory. This is because the structure of a simple liquid, at least at
high density, is largely determined by geometric factors, associated with the

packing of the hard cores. So the structure of the HS fluid can be used as
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Figure 3.2: Hard-sphere potential with attractive square-well and Lennard-

Jones tail

a zeroth order approximation to that of real liquids. This observation is the
starting point of the successful perturbation theories presented in chapter 5
where the properties of a given liquid can be related to those of a HS reference

system, the attractive part of the potential being treated as a perturbation.

The case of a one-component system in a matrix is described through the

following parameters:

P8 = pooiy, pf = pi1o?, matrix and fluid density

000, 001, 011 hard-sphere diameters

T* — kT
€11

y = % interaction ratio

For these pair potentials the ROZ equations were solved with the LMV-

reduced temperature

algorithm in the HNC and PY-approximation which take in the case of pure
hard-sphere systems the form (see [10])

cylr) = { Lot 1<
i) — 1 —y(r)  if 7> o0y
(r) = 40— 1= 24(r).
and

_1_71"(7') if r < 0;;
cij(r) = ’ . ’
0 if T > 05
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cp(r) = 0.

For the initial estimate of the y,4 a PY solution for two noninteracting fluids
with pure hard-sphere interactions is sufficient in a large region of the system
parameters. However, at higher densities py and p;, in systems with quite
different hard-sphere diameters and at low temperatures a more accurate
initial estimate is necessary. Solutions at higher densities can be obtained
by switching on the densities and convergence at lower temperatures can be
achieved by switching on the attraction parameter. However the method
still remains divergent at lower temperatures and higher densities which are
required in the calculation of the phase diagrams. This problem can be
overcome by treating the attractive potential as a perturbation and using
the ORPA (see chapter 5).

The two-component fluid in the matrix is described through the following

parameters:

00, P1, P2 matrix and fluid densities

000, 0015 002, 011, 012, 022 hard—sphere diameters

KT KT kT KT kT

Y ey ey s reduced temperatures
€01 €02 €11 €12 €22

For the two-component fluid the initial estimate of a PY solution for non
interacting fluids is not sufficient except in the case, where the hard-sphere
diameters 0g;, 0g2 and 011, 019, 092 are equal. By exploiting the limiting case
of the ROZ equations presented in subsection 2.7.3 a more accurate initial
estimate can be obtained in the following way:

1. Choose the fluid component with the higher density (let us assume the

first one).

2. Set the hard-sphere diameter of the other component equal to the cho-

sen one, i.e. Op2 = Op1 and 012 = 099 = 011-

3. Solve the one-component ROZ equations for a system with fluid density
p1 + po and hard-sphere diameters og; and o;; for pure hard-sphere

interactions.
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4. Take this solution as initial estimate and switch on the differing hard-
sphere diameters and afterwards the attractive tail of the potential (if

one is existing).

In most of the calculations we used a grid size of Ar = 0.0161; and N = 1024
points. The efficiency of the LMV algorithm depends on the number of
equations 3M and 8M involved in the NR iterations. When M is chosen
to be too small, the convergence is slow because too much is left to direct
iterations. For large M, inverting the Jacobian requires a large amount of
computer time. A reasonable compromise is to choose M = 20 in the one-

component case and M = 10 in the two-component case.



Chapter 4

Thermodynamic properties of
fluids in quenched disordered

matrices

Using the replica method we derive thermodynamic relations for a binary
fluid that is in equilibrium with a quenched porous matrix: The Gibbs-
Duhem equation, the virial equation and the expression of the configurational
free energy are obtained as straightforward generalisations of the results de-
rived by Rosinberg et al. [17] for a one-component fluid. Further we present
an alternative derivation of the compressibility equation which was derived
by Rosinberg et al. [17] using the replica trick and, independently, by Ford
and Glandt from a graphical analysis [34]. The derivation presented here
is based on density functional formalism and has the advantage that it can

easily be generalised to a two-component fluid in a matrix.

4.1 Gibbs-Duhem relation

In order to derive the Gibbs-Duhem relation we return to subsection 2.7.1.
There it was proven that the partly quenched system is a limiting case of the
replicated system, a fully equilibrated system in which the fluid particles have

48
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been replicated in s identical copies. In these derivations we used a canonical
ensemble to describe both the replicas and the matrix. Equivalently, we
could have considered a grand canonical ensemble for the replicas and a
canonical ensemble for the matrix; we will use this formalism to derive the

thermodynamic relations of a binary fluid in a matrix.

In this ensemble the corresponding expression to eq. 2.33 is

— d
— 13 rep
Qg = £1n3 _dsQ (s). (4.1)

The change in QP (s) associated with any infinitesimal change in a thermo-
dynamic state is given by
dQ"P(s) = —P™(s)dV — S (s)dT
— sNT?(s)dp1 — sNy ™ (s)dpz + po™ (s)dNo
= [=P"7(s) + popg™ (5)] AV — 57 (s)dT
— sN{P(s)dus — sN3 ™ (s)dpz + po™ (s)V dpo,
where we have explicitly indicated that the pressure P™P, the entropy S"¢,

the number of particles N{” and N, in the respective replica, and the

rep

chemical potential p,™" of the matrix depend on the number of replicas.

Using eq. 4.1, we obtain the corresponding equation for the original quenched-

annealed mixture

d. y dST(s
0y = — Ty L IP7P(s) - pops (v — lig
— lim N7’ (s)dpy — lim Ny (s)dps + lim diip (s )Vd
s—0 1 ! s—0 2 2 s> ds
= —Plng — Slng — Nld,ul — NQd,U,Q =+ X12Vd,00 (42)

from which we get

8@ . d TE
Py = _< 12) = lim —[P"(s) — popgy " ()] (4.3)
T, 41 ,142,00

s—0 (s
8912 T dST‘ep(S)
Sm-<w> =l (44)
Viu1,u2,p0

Q1o

<8 ) = lim N{?%(s) (4.5)
o Vi .00 5—0
Q1o

<(9 ) = lim N;?(s) (4.6)
8”2 VT, ,p0 s—0
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and

X, = L (% _ i H () (4.7)
12 5—0 ds )
VT, 1,12

Note that the thermodynamic quantities P, Sia, N1, and Ny for a fluid
inside a matrix are defined at constant density of the matrix. Indeed, this is
the correct definition: for instance, in order to calculate the pressure of the
fluid by changing the volume, one is not allowed to modify the density of the

matrix.
From the Gibbs-Duhem equation for the (2s + 1)-component mixture
0 = —VdP™(s) + 5™ (s)dT + sN{ " (s)dp1 + sN3 7 (s)dpz + Nodpg™ (s)
= —Vd[P™(s) — popo " (s)] + S (s)dT
NI (s)dgn + sNJP(3)das — Vi ()

we get with eqs. 4.3 - 4.7 the Gibbs-Duhem equation for a fluid inside a
matrix
0= —Vde + Slsz + Nldﬂl =+ Ngdﬂg — VXlzdp() (48)

and thus by using eq. 4.2
dQy = —PyodV — VdPyy
and, after integrating dQ:s,
Qup = — PV, (4.9)

which shows that this standard thermodynamic relation is also valid for a

fluid inside a matrix.

Furthermore, we find that X5, defined by eq. 4.7, is

P,
X12 = —<a 12) . (410)
(9,00 V\T,p1,p2

The Helmholtz free energy of the replicated system is

Fr2(s) = —P™(s)V + i (s)No + s N (s) + spa N5 (s)
= —[P"(s) = i ()polV + s N{? (5) + sp2N; 7 (s)
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from which we obtain the Helmholtz free energy of the binary fluid in the
matrix p
Flg = lim —FTep(S) = —P12V —+ /.1,1N1 + /J,QNQ.

s—0 ds
Taking the limiting case N, — 0 we obtain the corresponding quantity for a
one-component fluid (see [17])

Fl = —P1V + ,U,lNl. (411)

4.2 Compressibility equation

The isothermal compressibility of a one-component fluid inside a matrix is

__i<3_V)
X1="v\op, .

The Gibbs-Duhem relation eq. 4.8 for a one-component fluid in a matrix
(N2=0)

defined via

0= —VdP1 + SldT + Nld,ul - Vdep()

for an infinitesimal isothermal (d7° = 0) change at constant matrix density
(dpo = 0) takes the form
VdP1 = Nld,ul.

If the change also takes place at constant volume, both dP; and du, are
proportional to dNy:

dP1 - <%> le
2 V,T'po

O
duy = | —— dN-
H (8N 1 ) VT, po 1

and therefore

i) = o), =V (aw)
P1 <— = Ni| 37 =V
901 ) v,1,po N1 ) v g0 N1 v g0

() or(emy
apl V,T\po P1 ov N1,T,po Ple.
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Using eq. 4.9 we obtain the partial derivative of the pressure of the fluid with
respect to the one-particle density

vy (o)
kT 8,01 ViT,p0 kT 8p1 V,T,po‘

Using the replica trick (eq. 4.1) we find

Q _
apl V,T,po V,T,po

. d | [0QP(s)
= lim — dp;?
530 ds Kapm)( ))V,T,po & (8)]
d 89””(5)) (89””(8)) d
p dpy + hm p —dpi?(s)| -
(57), ., 97) )yt
We will see below that
Q)rep
11m<an(8)> =0 (412)
s—0\ dp (s) ViT\p0
(a_@) ) (amep(s))
op1 vrpe o0 ds \ 0p1%(s) ViTp0

1(%) _nmd( ! 89%))
kT \ 0p; Vg 0 ds\ kT 0pi?(s) VT

—Tep
= 1 1m — (alnTp(S)> . (413)
() ) v,

—lim L ldmep(s)

ViT,po  s—0ds

_l—% ds

and therefore

Thus

s—0 s

Now we introduce an external potential u; (r) which is acting only on the fluid
particles. Thus Z™"(s) becomes a functional of the non-uniform one-particle
density pgl) (r) and we have to replace eq. 4.13 through the corresponding

density-functional formulation

1(@) _hmi/dr [M]
KT\Op1 ) yp,e 0ds S [5p07 (xg: ) | o

. d dInZ"P(s)  §(B [us — u1(r1)])
= hm—;// drldrzl(s(ﬂ [ — (@) (5/)?)’1"6”(1‘2;3) LIZO.




Compressibility equation 53

We now use the functional relation (see [28])

dInZ"P(s) (1),rep (1),rep '
=p;, 7 (r1;8) =p;” (r;s) fori=1,....s.
Sl () )= AT )

Due to the symmetry relations of the replica system, we can write

(8 [1 ~ / ar, B [uz un(r1)]) 9p;7 (rs; 5)
51051) rep( rep I‘3; S) (5p§1),rep (1‘2; S)
~—_—————
d(ra—r3)
_ i 6(B [ps — ua(r1)])
= 00T (ras )
5 51 5 I, Io re
= Z(JT)— ci;” p(rhr2;3)>-
J=1"Pj (r275)
Gathering these results we obtain from eq. 4.13
Al <%) = (4.14)
kT 6,01 ViT,p0
> 0; 5 I 1‘2) 2)
“ 'rep J ) _ 2)rep .
_lg% SZ/ dr dr, [pz (ri;s Fl (—(1 rep(rg,s) Cij (r1,ro9;8) .

—IE()% —s/ dr,dr, [(5(r1, ry) — P P(ry; s)cﬁ)’mp(rl,rg; s)
50 ds
—(s = D))" (x1; 8)elF " (v, 25 )|

Due to the factor s in front of the integral the limit s — 0 of this expression

1=0"

tends towards 0 and thus the validity of eq. 4.12 is explicitly checked.

If we set the external potential equal to zero we obtain a homogeneous system;
dropping the index (2) in the direct correlation functions and integrating over

the particle coordinates, eq. 4.14 becomes

K(%) _
kT 8,01 ViT,p0

= hmdi {V(s = spi ()& (k=0;5) — s(s — 1) i ()15 (k=05 5)) }

s—0 ds

= V(l — p1é1 (k=0) + pléu(k:@))

and therefore

(%Pl

=1—pié.(k=0 4.15
) =1-peik=0 (415
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or,

n (aﬁﬂl

=1— pié.(k=0), (4.16)
apl )VT,po

which is the compressibility equation derived by Ford and Glandt [34] and
independently by Rosinberg et al. [17].

We now proceed to a binary fluid inside a matrix and also use the density
functional formalism to derive the partial derivatives of the pressure with

respect to the partial densities.

If we proceed as above we find

1% <aP12) 1 <a§12> i ( 1 89””(s))
v [ = 1m — e
kT \ O0p, VT No po KT\ 0p; VT Nopo s—0 ds kT 0p P(s) VT, No.po

A SIE(s)  S(Blu — wmary))
_llmd_ig//drlerlé(B[Mz’_UIQ(rI)D 5p/;1),rep(r2;s) ]

7
u12=0

(4.17)

where u15 is an external potential acting only on the fluid particles; the

functional derivatives are now

dInE"P(s) (1)’”p(r ) p§””"e”(r1; s) fori=1,3,...,2s—1
= i ;8 = re .
6(B [pi — ua2(r1)]) P PSP (ry;s)  fori=2,4,...,2s

and

5(8 1 — wa(r)]) 2821'5(5 )

re B Te (4-18)
5" (x93 5) = 0pT P (g s)
25—1 ! 51 '5(1‘1, 1‘2) re
= X (it = ),
=1y (3 s)

where the prime denotes that the sum runs only over odd j-values.

Thus
kT 8p1 VT, Na,po

251"
- < 0ij0(r1,T3)  @)rep .
—llﬂ%_sZ//drldrz [ Flrs) 2 (W cij (1,723 8)
u12=0

j=1 pJ o] S)
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: d TE€; ~T€ 7€ ~T€:
=lim 7 {V(s —sp1P(s)e17(k=0;5) — s(s — 1)piP(s)& 5 (k=0; s)
—sps® ()81 (k=03 8) — s(s = 1) (s)EF (k=0:5) ) }

which yields

0B Py ~c ~c
< 9 =1— p1]1(k=0) — p2€i,(k=0).
! V,T',N2,po0
In a similar way, starting from kLT (%)VTN in eq. 4.17 we obtain
»L 5 IV1,00
0B Py e o
< 5 =1— p18fy(k=0) — p283,(k=0).
P2/ vr,Na,po

In order to obtain the partial derivatives of the chemical potentials with
respect to the fluid densities, we first have to establish the correct relation
between the chemical potential of the partly quenched system and that of
the replica system. For this purpose we consider a replicated system in which
both the fluid particles and the matrix particles are treated in a canonical
ensemble. The change in the thermodynamic potential due to an infinitesimal

change of the thermodynamic state is therefore

dF™P(s) = —P"P(s)dV — S™(s)dT — sui?*(s)dN;
sy P (s)dNy + g™ (s)d Ny
= [=P"7(5) + pos” (s )] — 87P(s)dT — s (5)dN,
=5ty (5)dNy + g™ (s)V dpo,

and thus
8?12) . d (EiFre”(s)) re
,u1:—< =—lim —|(———+ = lim p1?(s).
aNl V7T5N2ap0 50 ds aNl V:T=N2=P0 =0
(4.19)
Therefore

85#1 - re; 85/*6"31)( )
1 8p1 - lg% lpl p(s) aprep( ) ‘|
_ ll_rf% dr, lpgn,rep(m; 5)5(5 (1117 (s) = Uu(“)])]

o7 e

u12=0
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with eq. 4.18 this yields

P (1= AP =0:5) — (s~ AT (=05}

= 1—pcf(k=0).

In a similar way one obtains (the double prime denotes a sum over even

numbers only)

8B 9B (s)
— lim rep
P o AT gy
— Iim dr2 5(6 [711) ;p’lﬂ? (1'1)]) pgl),rep(r% 8)]
s—0 L 5[02 ’ (I‘ ] S) u12=0

n

[ 2s -
_ ]1m dI‘2 Z (5 /14 U12(r1)])pgl),rep(r2;s)]

R =7 AT -

~ liny (=i (5) ) - DTG )
= —p16§2(/§20).

Similarly, one finds

8p2 =1- 2622(1€ 0)
and 95
o
2 8;)1 —p2tis(k=0).

It can be explicitly checked that these expressions fulfill the thermodynamic

relations

08Py _ 0B 0B
9 =l TP
pl ‘/,T’N27p0 pl T,V:NLPO pl T’V7N27p0

<85P12> _ <3,3,U1> + 0 (85M2)
02 ) vr 00 902 ) 1,v,Ny.00 902 ) 1,v,Ny.po

which follow from the Gibbs-Duhem relation eq. 4.8.

and
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4.3 Virial equation

We apply the virial equation of a mixture [35]

pP = sz' - éﬁZPz’Pj/drTgij(TW;j(T),
% %,]

where ¢ (r) = difi'r(i), to the replicated system and obtain
BP™(s) = po+spi” (s) +5p27 (s) — = / drr (5 (s)) g6 (1 ) oo (r)

+5(p17(5)) 911" (r; 8) 1 (r )+S(p§e”( ))7955" (1 5)dhs (1)

+25p001 " (5)gor" (75 8) P01 (1) + 2500957 (5)go3" (15 8) Poa(T)
+ 25077 (5) 57 () 9757 (3 5) Bla (7).

The pressure of the fluid inside a matrix (eq. 4.3) is, using eq. 4.7 and eq.

4.10 P 94P
. rep (g
5p12:511mﬂ+p0< d )
570 dS apo V7T7“1 sH2

and therefore

rep
BPoy — PO(aBPm) =p1+p2— —/dr [ 2 oo ( )¢00( )
VT, p1, 12

dpo
+ 1911 (1)1 (1) + pogaa(r) By (r) + 2p0p1901 (7“)(1501(7“)

+ 2p0p2goz () Ppg (1) + 2,0102912(7')(15/12(7")] :

In particular, for hard-sphere interactions characterised by the diameters oy,

Oo1, 002, 011, 012 and 099 this equation reduces to

9P 27 . dgof(og0; s
P — Po( g 12) =ptpt o lpgago Jim 990" (9003 9)
Po VT, p1,p2 3 5—0 ds

+ 9%0?1911(011) + ,03032922(022) + 2/)0/)1031901(001)

+ 2p0p200902(002) + 2,01,020?2912(012)] .

Taking one of the limiting cases introduced in subsection 2.7.3 to recover the

one-component case we obtain the virial equation for a one-component fluid
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in a matrix (see [17, 18])

0B P,
BPl—p()(g 1)
p() VTyul

=p—= /drr [ dgTep( )(}500( ) + pigu(r) e, () + 20001901 (7) 01 (1)

4.4 Energy equation

The excess energy of a fluid inside a matrix is obtained from the quenched av-
erage of the potential energy (in the following we use the notation introduced
in section 2.2)

" = (Hon + H11) = (Hp) + (H11).

To simplify the derivation we consider a canonical ensemble both for the
fluid (at temperature (31) and the matrix (at temperature (3y). Furthermore,
we restrict ourselves to a system where particles interact through pairwise-
additive forces. Thus the total potential energy can be written as a sum of

pair terms.

No N

Hoy = YY" doi(qs, ;)

i=1j=1

Ny
Hy, = 2(1511(1‘1‘,1'7')-
i<j
We then obtain expressions for the particle densities in terms of averages

over delta functions of the particle positions (see [29])

pi (a,1) = <§§5(q — q;)d(r — rj)>

i=1j=1

1 / No _—BoHoo(qNo al
— dq™e BoHoo(a™0) N~ 5 q-q;) X
ZyNy! Z:ZI ( )

1 / Ni — Ng Np Ny M
drVie ﬁ1[H01(q 0,r™1)+Hi(r )] S(r —1.).
ACORA ]Zl ( i)
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The sum over all particle coordinates can be written as Ny/N; times the

contribution from any two particles; therefore

No—1
p81)(q, ) ZONO /quo 1o—BoHoo(a,a™0 ™) o (4_20)
( ]xl ) /derfle—/J’l|:H01((],QN071,T,PN171)+H11(!‘,1‘N171)]
Z1(q, Mo~ 1) N, ! ’

where g™~ = {qs,q3,-..,qn,}, etc.

The first contribution to U°" can be written as

(Ho1) = 7 N /qu" —BoHoo(a0) o
04V0-
1 /d N1 ,—B1 [H01( N1;qNo)+Hyp (rV1) ]%%Cﬁ
— r e qz,r
Zl(qNO)Nl i=1 j=1 o ’

The double sum on % and j contains Ny/N; terms, each yielding the same

result after integration,

(Ho1) = Z ]{)7 ! /qu"e’ﬂoH"O(qNo) X
0Vo!

Ny

Z ( No)Nl /dI‘Nle ﬁl[H01(1‘N1,qNO)+H11 (r1) ]¢01(q1,r1)

with the expression of the two particle density eq. 4.20 we obtain

<H01> = /d(h/drlp(()%)(%,1‘1)¢01(Q1,1‘1)
= Pop1/dq1/drlgg)(%,1'1)</501(Q1,1‘1)

which for a homogeneous system becomes

(Hy) = POP1V/dI'901(7")¢01(7°)-

The fluid-fluid two particle density can also be expressed as a quenched

average over delta functions, i.e.,

oD (r,v) = <z 5(r — 1)o(x' — r,.)> PR

i£]
1 Nl (Nl — 1) / der _Qefﬁl [HOI (qNO7r7r’5rN1_2)+H11(r)r,)er_z)]
Z1(q™°)
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and hence, following a similar line,

N-
! 1 — rvi rl
) = 3 vy [ e HIe e g,
1 1:

1<J

1

- §/dr1/dr?Pﬁ)(rl,T%qN°)¢11(r1ar2)
1

= 5/dr1/drwﬁ)(rhh)(ﬁu(rla1’2)
1

= §Vp%/drgll(r)¢>11(r).

Collecting these results we obtain

U 1
Vv = ,00,01/d1'901(T)¢01(7“) + 5/0%/(11'911(7“)%1(7")- (4.21)
With this result we are now able to present an alternative derivation of the
energy equation 4.21. Applying the formula of the excess internal energy for

mixtures e 1
=3 ZZpiﬂj /drgij(r)@j(’")
1 J

to the replicated system (where we must omit the matrix configurational

internal energy) yields

Uezrep( g 1 re re
T 2 Josposie(s) [ degig?(r: ) ()

V 2
+5(i ()" [ drgiP(rs)ou(r)| . (4.22)

If we compare the expressions 4.21 and 4.22 we can check explicitly that the
corresponding quantity for the quenched system is obtained by the limiting
case

U = lim iU@W?(s). (4.23)

s—0 ds
Now we are able to prove that the configurational internal energy satisfies
the Gibbs-Helmholtz equation

_ 0pF,

U 95

since B
. rep
er — lim iUez,rep(S) — lim iaﬂF (8) _ aﬁFl

-0 ds s50ds  0f 08
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Finally, to derive the corresponding expression for a binary fluid inside a
matrix we write down the energy equation of the replicated system

er,rep s 1 re re
T() =3 [28,00,0 P(s /drg()lp 3 8) o1 (r)

+ 2590957 (5) [ drgis?(rs $)6ua(r) + 25917 (5)p5 () [ drgis?(r: 8)na(r)
1 ( /drgrep r; 8)p11(r) P ( /drgrep T3 8)paa(r )]
Taking the limiting case as in eq. 4.23 we obtain
e
Vv - popl/drgm(?“)d’m(?“) +pop2/drg02(r)¢02(7“)
45 [drgu()on(r) + 5 [ drgar)én(r)

+ %Plpz/dTQU(T)ﬁbu(T)-



Chapter 5

Optimised random phase

approximation

The solution of the ROZ equations within the PY and HNC approximation
gives a good prediction for the pair distribution functions at high tempera-
ture, but the predictions deteriorate at lower temperatures and it becomes
increasingly difficult to obtain a solution of the ROZ equations at low tem-
perature. Thus there are regions of state space where integral equation ap-
proaches to calculate the correlation functions fail either due to numerical or
physical reasons. This motivates to develop a complementary method, such
as, for example, perturbation theories. In this chapter we will present the
perturbation theory which was used in this work, i.e. the optimised random
phase approximation (ORPA): we first present the ORPA for homogeneous
liquids, then specialise it to the case of the replicated equilibrium system
and take a limiting case in order to obtain the ORPA for a fluid in a porous
matrix. Finally, we present the ORPA for a two-component mixture in a

matrix.

5.1 ORPA for a homogeneous liquid

The ORPA [36, 37| is applicable to fluid mixtures at equilibrium in which

the interactions between particles are pairwise additive. The pair potential

62
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¢i; between particles of species ¢ and j is separated into

$i;(r) = ¢i(r) + Aoy (r), (5.1)

where ¢[(r) is the pair potential of the reference system which is in general
chosen to be a hard-sphere mixture and Ag¢;;(r) is the attractive perturba-
tion. In the case where qﬁf}(r) is not a hard-sphere potential, the softness of
the potential can be taken into account via the Weeks-Chandler-Andersen
‘blip’-function expansion. The choice of the hard-sphere equilibrium mix-
ture as a reference system is obvious since its thermodynamic and structural
properties are well known. The division of the potential leads naturally to

the decomposition of all the correlation functions
hij (7’) = hg(r) + AhZJ(T)

and
cij(r) = cﬁ(r) + Acij(r),
where A} (r) and cf}(r) are the correlation functions of the reference fluid and

Ah;j(r) and Ac;;(r) the corrections to the reference correlation functions due

to the attractive interaction.

We write down the OZ equations for the fluid mixture and the reference
system, using the matrix formalism introduced in Appendix A (eq. A.6),

ie.,
HE+ AH = CH+ AC+ (CF + AC)(H" + AH)
HE = CR 4+ CR*HE
and calculate the difference of these equations to obtain the so called residual

OZ-equations
AH = AC + CEAH + ACH® + ACAH. (5.2)

It is known that the direct correlation function asymptotically approaches the
negative (dimensionless) potential. Thus, in the random phase approximation
(RPA) one assumes that

Ac;j(r) = —BA¢;(r) (5.3)
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for all r values.

In an exact theory g;;(r) necessarily vanishes for r < 0;;, where o;; is the
distance of closest approach between particle ¢+ and j. However, in the ap-
proximation presented by eq. 5.3, there is no guarantee that this requirement
will be fulfilled. This means that geometrical exclusion effects are not treated
correctly. On the other hand, in this framework, there is a flexibility in the
choice of Ag;;(r) that can usefully be exploited. It is clear that eq. 5.1 does
not define the perturbation uniquely for » < o;;. For this physically inac-
cessible region, the perturbation can be chosen to have any finite functional
form. Thus the perturbing potential A¢;;(r) inside the hard core (r < 0;;)
can be varied without changing the properties of the fluid to obtain the
so called optimised potential. We thus obtain the optimised random phase

approximation (ORPA) which takes the following form:
Acij(r) = —=BA@;(r) for r >0y
and the perturbation potentials inside the cores are chosen so that
gij(r) = hij(r) +1=0 for r <oy
or equivalently
hij(r) = hf;(r) +Ah;;(r) =—1 for r <oy
——

-1
so that
Ahij(r) =0 for r< 045
In the following we give a proof that the second condition is equivalent to the

stationarity of a functional of the direct correlation functions with respect to

variations of the perturbative potential inside the core region:

The functional is given as

1
2(2m)3

Flad] = - [ ax (tr (ACS®) +Indet (T — ACSF) ) (5.4)

where tr and det denote the matrix trace and determinant and the matrix

S® consists of the partial structure factors of the reference system defined
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in Appendix A (eq. A.7). We claim that the functional derivative of F with
respect to Aé;;(k) is proportional to Ah;(k)

5F { sy 20iPi Ahij (k) for i # j (55)

082,(8) | skpmnibh) fori=j

Taking the inverse Fourier transform of eq. 5.5 we find that

ﬁ‘:—_(” o Ahi;(r)
and thus the hard core conditions Ah;;(r) = 0 for r < o;; are satisfied if
the functional derivatives with respect to Ac;;(r) vanish for » < o;; which
is a necessary condition for the existence of an extremum with respect to
variations of the perturbing potentials inside the hard cores. Andersen and
Chandler [36] argue that F is positive definite and therefore it has some

minimum value. Thus, all that remains is to prove eq. 5.5.

Proof:

5F 9 _ .
TR ) (tr(ACSR) +Indet(Z — ACSR))

Using the OZ equations for the reference system, the structure factors become

2(27)?

St=T+H"=(T-C%) "
and thus we find
T ACS® =T AC(T-C%)
= (T-C"-a¢)(z-¢®)"
- (z-0)(z-e)’
and therefore
Indet(Z — ACS™) = Indet(Z - C) — Indet(Z — C®). (5.6)

Taking the partial derivatives yields

d 5oR\ _ , R
SR, k)tr(ACS ) = Vpip; Sk
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and

N 1 ddet(Z-C)
Indet(Z — ACS®) = <
ndet( ) det(Z —C) 0AG;(k)
1 O det (0 — \/Prpi i)

det(Z — C) OAG; (k)

_9
ONG; (k)

We evaluate the determinant by expansion by cofactors' with respect to the

ith row

1 0

((5’ V/P1Pi €i1) (815 — v/p1pi €1

1l T
+ (51'2 — VP2pi Ci2 (52z' v P2Pi C2;
+++ %+ (0in — v/Pupi Cin) (Oni — \/Pnpi Em-)A),

M
/\+

~—— S
~—— =

where (...)" denotes the cofactor.

Since the cofactors appearing in this formula are obtained by deleting the
i row of the matrix, Aé; does not occur in these factors, we only have to

perform the differentiation in the preceding factor and obtain

’ ) =L (o s — Vi)’
DG, (k) Indet( — ACS )_det(I—CN)( pits (05 = /i )"

If we use the fact that the inverse of a matrix can be calculated via

_ a
(4 l)lk - deltkA

this yields

9 . .
mlndet(I—ACS ) =—vam (-7,

I Laplace expansion formula with respect to the i** row: The determinant of an n x n

matrix A = (a;;) is
detA = aj@1; + ai2da; + - + Qinlni-
The cofactor ay; is defined as

A = (—1)"*det Sy,

where for each pair (I,k), [,k = 1,...,n the matrix Sy denotes a (n —1) x (n — 1) matrix
which is obtained from A by deleting the I** row and k** column.
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Collecting these results and using the OZ equations we obtain

5F -
s~ (=t + -0
—I-HE T+H

= /Pip; AMyj = pip; Ahij.

The factor 2 in the case i # j of formula 5.5 can be understood from the

following argument: Due to the symmetry relation C = CT

0F §F i 1 i
52y (F) 0By (k) T 9Bk~ 20w 2Ptk (k)

q.e.d.

Thermodynamic properties of the system can be obtained from the approxi-

mation of the excess Helmholtz free energy density which is given by

F.
Foron s B o pry b F,

where F% is the excess free energy density of the reference system, and fyra
g

is the high-temperature approximation correction,
1 R
fura =5 S pips [ drglir)Acis ().
ij

We can rewrite the ORPA free energy in terms of the direct correlation
functions only by using eq. 5.6 in the second term of F, eq. 5.4, and by
collecting the HTA term and the first term of F

3 X [ arnnalcr) - 555 3 [ akymmiae ) (b + vminh)

1 ~ 1
= 5 Z pzijCz](k) ‘k:O - 5 ; pZACZZ (T) ‘7":0

j

1 0 R y _1 PiPj ~R .
+2 ;jpzpj/drhij(T)AC”(T) 9 Z (271_)3 /dkhlj(k)AcZ](k)

1,

1 _ 1
=3 ZJ PinACij(/f)‘k:O ~3 ; PiACii(T)‘TZO,
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where we have used the Parseval theorem? to see that the last two integrals

cancel.

We finally obtain

1 ~ 1
JFORPA _ fR + 5 Z Pzp]ACu(k)‘k:O o 5 ;’OiAcii(r)"rZO

Y]

_ﬁ [ i (ndet (T~ C(k)) — ndet(Z — C*(k))).
(5.7)

5.2 ORPA for the replicated system

We now apply these equations to the replicated system (see [25]). The ORPA
free energy of the replicated system, which is an equilibrium mixture of (s+1)-

components with the symmetry relations 2.16 is obtained from 5.7 to be

:FORPA,rep (s)
1
= F(s) + 5 |05 A& (K; ) + 2spopr AT (ks )
+ 52 AE P (ks s) + s(s — 1) p2 AEF (k; 8)]k

1
— 5 [AGT ;) + sp1 AT (13 5)]

(5.8)

r=0
1
2(2m)3

/dk [ln det(Z — C™P(k; 5)) — Indet(Z — CeP (k; 8))]

where the symmetric matrix (I —Crer(k; 5)) has the following special form
(for notational simplicity we omit the s and k& dependence and the index ‘rep’

indicating that quantities belong to the replicated system)

2The Parseval theorem states that, if for a function f(t) and |f(¢)|? the integral over
the interval (—oo,+00) exists then

+oo +oo
[ isopa= g [ iR

for a function g(t) which satisfies the same conditions as f(t) we therefore obtain

+oo +oo
/_ f(t)g*(t) dt 1/_ f(k)g* (k) dk.

"o
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1 — poCoo —+/Pop1 Co1 —+/PopP1 Cor =+ —+/PopP1 Cor

l—=pici1 —pi€ia -+ —pico2
1—picn
—p1C12
L —picn

By exploiting the symmetry properties of this matrix, computation of the

determinant gives

ndet (T — €™ (k;5)) = (s — 1) In [1 — o (@(s) - a’;gp(s))]

+1n [1 = poioit ()| [1 = mEP(s) = pr(s = DEF(5) = spopr (&) ()]

5.3 ORPA for the quenched system

We now have to find the correct limiting case to obtain the ORPA free energy
for the quenched system (see [25]). Since we study only the case of hard-

sphere or randomly centred matrix particles where A¢gy = 0 we obtain

coo(r) = cgy(r)

cor(r) = &t (r) + Acoy(r)

c1(r) = e (r) + Acyy(r)

cia(r) = egy(r), (5.9)

where we have used the fact that particles belonging to different replicas do
not interact (¢12(r) = 0) to obtain the last equation. From eq. 5.9 it follows
that

ce(r) = cB(r) + Acyy (7).

The core conditions are

Ah(n (’f’) =

0
Ahn(’f‘) 0.
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Using
_Eﬁm§ﬂﬂﬁ

s—0 ds

the ORPA free energy is obtained from

d
ORPA __ 1: ORPA,T€p
F = ll_I)I(l) —dS.T- (s). (5.10)

This result can also be obtained from the following considerations. General-
ising eq. 5.5 to the replicated system and using its symmetry properties we
obtain 5 Frep o0 _4
=2 W50 sARP(k; s), ij =01,11.
5Aé/zrjep(k’ 8) 2(27r)3pz,0]5 1) ( ’ )a J

With eqs. 2.14 and 2.15 we find

2_6ij 7 . 2_51']' . d rep/1..
mﬂiﬂjAhzj(k) = mpzﬂj ll_{% ESA’%’ (k; s)
— LT
— s50ds SAET (ks )
)

d
= ————lim — F"° i = 01,11
5Aéw(k‘) SI—E% dSP (S)’ Y ’

and in order to obtain the relation

5F 2 — 6 - .

we have to set

d
:ﬁ — 135 :prep
o ll—r)% ds (8)

Taking the limiting case 5.10 of eq. 5.8 yields

FORPATAE] = FR L % [p%Aén (k) + 2pop1Aéo (k‘)]k:() — %plAcn(r)‘r:O
1 ; P R =2
_ 2(27r)3 /dk lln (1 - plCc(k)) — m(cb (/{) —+ pocm(k)x(k))

0 (1= g (9) + s (A6 + o (09) ()
(5.11)

where x(k) = (1 + Poiloo(k))-
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As it can be shown, this functional satisfies

5?ORPA

m = Pop1 (g(ﬁ(r) + Ahg (7‘)) (5.12)
%HR(P:) = %Pf (98t (r) + Abi(r)) (5.13)

Note that FO*"* also contains the HTA-approximation which yields the terms
g8 (r) and g% (r). Since g{t (r) and gE (r) are equal to zero in the core region

one can equivalently minimise F°®*" instead of F.

5.4 ORPA for the binary fluid in a porous

medium

The generalisation of the ORPA presented in the previous sections to the
case of a binary fluid is straightforward. We start with the calculation of the
free energy for the replicated system within the ORPA, and then we take the

correct limiting case to obtain the free energy of the quenched system.

5.4.1 ORPA for the replicated system

We apply eq. 5.7 to a (2s + 1)-component equilibrium mixture with the
symmetry relations 2.35 and obtain

j:'ORPA,Tep(S)
]. ~re ~Te ~T€e
= FRIP(s) + 9 [PgAcoop(kQ 5) + spi AT (k; 5) + sp3 Achy (k; 5)
+5(s = 1) (AT (ks 5) + p1 AT (ks 5) + p2AGE (k; 5) )

+28p0p AT (K 5) + 28p0pa MG (K 5) + 25 pupo AT (k3 8)]
1

-3 [P GG (13 5) + 5p1 AL (3 5) + spaAcs (13 5)]

1
2(2m)3

=0

r=0

/ dk [Indet (T — C(k; 5)) — Indet (T — 7 (k; 5))]



ORPA for the binary fluid in a porous medium 72

where the symmetric matrix Z — C™(k; s) has the following special form (for
notational simplicity we omit the £ and s dependence and the index ‘rep’

indicating that quantities belong to the replicated system)



T —Cr?(k;s) =

1 —poCoo —+/PoP1Co1 —+/PopP2Co2 —+/Popr Cot

1- ,01511 —+/P1P2 C12 —,01513
1 — pacay —+/p1p2Cis
1—picn

—/Pop2 Co2
—/P1p2 C14

—paCas
—/P1P2 C12

1—- 02522

—+/Pop1 Cot

—pi1Ci3

—+/P1p2 C14
—piCi3

—VP1P2 Ca

—+/Pop1 Co1

—piCi3

—\/P1P2 C14
—piCi3

—+/P1P2 Ci4

1 — pacey —+/p1p2 Cia

1- ,01511

—v/Pop2 Coz
—\/P1p2 C1a

—paCaa
—\/P1P2 C14

—pP2C24

—paCos
—v/P1P2 Ci2

1- ,02522

wnpauws snosod v ur pinyf fiuouiq 9y} 4of V40

€L
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By using the symmetry properties of the matrix, we obtain for the determi-

nant
Indet (T — C"(k; 5))
= =D |(1- (@76 -a76)) (1 - n(@76) - 576))
S GHORLAON

i (1w ()| (1= ML) — prls — DEF(6) %

(1= 0285 (5) — pa(s = VEP(3)) — p12 (FF () + (s = DEP(s ))2]
— SPop1 (001 )2(1 — palay’(8) — (s — (?;Zp (s) )2
— 25p0p1 P2 ()85 () (61 (5) + (s — DT (s))
— sp0pn(857(5))" (1 = ;& (s) — (s — DED(s )2}

5.4.2 ORPA for the quenched system

Also in the case of a binary fluid we restrict our considerations to systems
with hard-sphere or randomly centred matrix particles, which brings along
that Acgo(r) = 0. Most importantly, since the particles belonging to different

replicas do not interact, one has ¢13 = ¢14 = ¢o4 = 0 and therefore

coo(r) =& (r)
cij(r) = cl(r) + Acy;(r)  for 4,5 =01,02,11,12,22
cij(r) = cfi(r) for i,j = 13,14,24 .

Using eq. 5.10, one finally obtains
ORPA [ A = R, 1[ 24 2 A =
F [AC] =F"+ 5 [plAcn(k) + pQACQZ(k)

+ 2p0p1 A1 (k) + 2popa Aoz (k) + 29102A512(/€)]

1

— 5 [plAcll(r) + pzACQQ(T)]TZO —

ﬁ /dk{ln[(l — p1(en — 513)) (1 — p1(Ca2 — 524)) — P2 (612 B 614))2]

k=0
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1
(1 — P1 (511 - 513)) (1 - :02(522 - 524)) — P1P2 (512 - 614))2

l,01513(1 — pa(Ca2 — 524)) + p2Cay (1 — p1(é11 — 513)) + 2p1p2€14(C12 — €14)

l—pifgoéoo <P15§1(1 — 2B = 1)) + oy (1= p1 (E11 — E3))
+ 2p1paCo1o2(Cr2 — 514))] } +

2

2(217T)3 /dk{ln[(l —P1 (6{%1 - 6{%3)) (1 — P (552 — 551)) — P1P2 (5{%2 — Eﬁ))
1
(1— (@ — ) (1 — ol — e8) — prpu(ely — &)

lpléﬁ(l — pa(&5 — 554)) + p2lyy (1 — (G — 5?3)) + 20102813 (C15 — 1)

Po - ~ ~ . i )
= (6 (1= palelh = ) + (el (1= (el — o)
00

+ 21 P2y Con (15 — 5?4))] }

It can be checked explicitly that this functional reduces to the one of the
one-component case by using the two limiting cases introduced in subsection
2.7.3. Further it can be shown that

SFORA 2, ®
- 05 (95(r) + Ahy(r)) .
= 2%y () + B0

5.5 Numerical method

We present the numerical method to solve the ORPA for the one-component
fluid in a matrix. The generalisation to the two-component fluid should be

clear.
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5.5.1 Deepest descent method

In order to solve the ORPA, we have to find the minimum of F (or FO®"4)
with respect to variations of the perturbative potentials Acgi(r) and Acy (r)
inside the core regions. This can be done for instance with the deepest de-
scent method (see [33]). We start the iteration at a point (Acé? (r), AcY (r))
In the 7" step of the iteration we move from point (Ac((fl) (r), Act) (r)) to

(Ac((f'frl) (r), Acgifrl)(r)) in the negative direction of the local gradient, which

OF OF
dAco1 (T‘) ? §Ac11 ('I‘)

a certain accuracy. Thus in each iteration we correct the perturbative po-

is given by — ( ), until we have reached the minimum within

tentials Acoi(r) and Acyy(r) inside the hard cores according to

A (r) = A (r) = MnAhoy(r) for T < op
AdT(r) = A (r) = AnAhu(r) for 1 <o,

where the parameters A\g; and \;; have to be chosen in such a way that the
numerical method is both stable and rapid. This can be achieved by changing

the parameters according to the error

1/2
¢ = ( [ arrare)+ [ drr2Ah%1(r)> .
<001 r<o11

We start with a small value of (Ag1, A1) to be on the safe side. As the error

decreases we increase the parameters (A1, A11) to speed up convergence.

Note that the deepest descent method does not require the calculation of
the functional itself but only of its derivatives Ahg;(r) and Ahy;(r) (see
eqs. 5.12 and 5.13) which can be obtained directly from the residual ROZ
equations 5.2. The explicit calculation of the functional is only necessary

when determining thermodynamic properties.

5.5.2 Numerical algorithm

1. The reference correlation functions are obtained by solving the ROZ
integral equations in the HNC or PY approximation using the LMV

algorithm. For a chosen number of grid points N and a grid size Ar
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we calculate the reference functions and its Fourier transforms on a set

of equally spaced discrete points r; and k;.

2. We choose first estimates AC’S(I)) and AC&D inside the cores and set
ACup(r:i) = AC(%) (r;) fori:r < o.p, af=01,11

while the ORPA fixes the corrections of the direct correlations outside

the core region

ACup(ri) = —Brigap(r;) fori:r; > o043, «of =01,11.

3. We insert the Fourier transforms of the direct correlation functions
ACy (kj) and ACy, (k;) in the residual ROZ equations 5.2, i.e.

ASo (k;) = AHg (k) — ACy (K;)

= Hou(k;) — Hg (kj) — ACo1 (k)

_ C?m(kj)x(kj) )

ki — p1Cui(kj) + p1Cra(k;)

ASy(k;) = AHy (k) — ACy (k)

= Hu(k;) — Hft(k;) — ACu(k;)

_ B3Cu(ky) + poCor (k5)*x(ky) = kgpr (Cui (k) = Cralky))”

(k= piCui (k) + :01(712(’%))2
—H{l (k) — ACw (ky).

— HE (k) — ACo (k)

4. We take the inverse Fourier transforms of ASy;(k;) and AS);(k;) to

calculate the local gradient of the functional via

AHOI(Ti) = AS()l(?"i) + AC(H(TZ')
AHy(ri) = AS11(ri) + ACq (14)-

5. A new estimate for AC,p4(r;) is obtained by means of the deepest de-
scent method

ACup(ri)—AapAHup(ri) = ACus(r;) for i:r; <oa.s, «af =01,11.
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6. If the error

9 1/2
(AHH (r:) ) > Ar) > 107°

€= ((20 (& Hou(r) ) + Y

2:r;<011

we return to operation 3.

7. The result is combined with the reference functions to give the direct

correlation functions of the perturbed system

Co1 = Cgi(ri) + ACou (r3)
011 :Cﬁ(T,)+A011(T,) ’izl,...,N—l
Cia = Cfi(rs)

and the ROZ equations 3.17 - 3.19 finally yield the pair correlation
functions

hOl(Ti)a hu(ri) and th(Ti), 7,:1,,N—]_
Note that both in the LMV algorithm and in the deepest method we only

calculate the inverse Fourier transform of the functions S,s(k) which are

continuous functions since they can be written as convolution integrals.

5.6 Thermodynamic properties within the
ORPA

5.6.1 Chemical potential

From eq. 4.11 we obtain the chemical potential for the fluid inside the matrix

0 (BF
B = (%ﬁ) .
V.T.po

If we separate the free energy into an ideal and an exess part — where the

via

excess part contains all contributions to F'; which arise from interactions
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between the particles — we obtain the corresponding division for the chemical

potential
B = Bt + Bus®.
The ideal part is (see e.g. [29])

Butd =1np; + 3In Ay,

where

is the de Broglie thermal wavelength of the fluid without any restriction. We
choose the mass my of the fluid particles so that the ideal contribution to the

chemical potential of the fluid reduces to

Bt =1n py.

The excess part can be obtained via integration of the compressibility equa-
tion 4.16 ,

Bui®(p1) = Bui®(p1=0) — /0 &(k=0; p)dp. (5.14)
The knowledge of the integration constant is irrelevant for the phase diagram.
However, if we want to compare the prediction for the chemical potential for
a given theory with results from simulations an expression for Su$*(p; =0),
i.e. the chemical potential of the fluid at infinite dilution in the matrix, is

required.
Due to

a ﬂfiw TET TET
u(p) = ( (8—N )) = F(Ni + 1,7V, po) = FS (N, TV, o)
1
V;T,PO

p§*(p1 = 0) is just the change in the excess part of the free energy if we

introduce a single fluid particle into a matrix of density py [34].

If we consider a system with pure hard-sphere interactions, and the fluid
and matrix particles are of equal size (0g9 = 091 = 011), u(p; =0) is thus
equal to the excess part of the chemical potential of an equilibrium system
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of hard spheres with density p,. We can therefore use the Carnahan-Starling
expression for the chemical potential:

Integration of the Carnahan-Starling equation of state for a system of hard
spheres [38]
BP _1+n+n* -7’
p (=n
where 7 is the packing fraction

1 3
= —Tpo
n 6/);

yields an expression for the excess Helmholtz free energy

BFew:/W<ﬂ_P_1>d_’r]I:T](4—377)
N 0 P n (1—77)2.

Using the Gibbs-Duhem relation we obtain the excess part of the chemical

potential
ﬁ _— BFeac N ﬁpew _ 877_9772+3773
TN T (1—n)’
and thus o 02 4 375
ex B +
B (pr=0) =~
(I—mn)
where
1 3
n= 671-:00000

is the packing fraction of the matrix particles.

For randomly centred matrix particles (og9 = 0,001 = 011) Kaminsky and

Monson [39] derived

or 47 pyod
B (1 =0) = 7%,

In the ORPA the chemical potential separates into three contributions

Bur = Bt + Bus™" + (Bus” — Bus™™)

where 15" is the excess part of the chemical potential of the reference sys-

tem, which can be calculated via integration of the compressibility equation
of state, and (ﬁ,u? — 5,u‘f$’R) is the correction due to the perturbing poten-
tial.



Thermodynamic properties within the ORPA 81

In the mean spherical approximation (MSA), which is obtained from the
ORPA by replacing the exact reference functions by their Percus Yevick
counterparts, we obtain a closed expression for the excess chemical potential
of the fluid, which can be derived by differentiating the excess free energy

density with respect to p;
o ( JFORPA _ _FR)
8p1

— I:plAéll(k) + pOAéﬂl (k)] k=0 + % [ACH(T‘)] 0"

This expression can also be obtained by applying the general expression
for fully equilibrated fluid mixtures derived by Hgye and Stell [40] to the
replicated system

~Bp AT (5) = [popr AT (K 8) + pAGT (K 8) + (s—1)6f AGS (ks 5)]
N————

=0

(B = Bps™) = - (5.15)

k=0

1 1
+ [51)1 Ahyy(r) —5/)1&111(7“)]

=0

r=0"

Taking the limit s — 0 (see eq. 4.19) of this expression yields eq. 5.15.

In a similar way we obtain the chemical potential for the case of a two-

component fluid in a porous matrix in the MSA
5 A (3) = [popn AT (ks ) + RAGT (K 5) + pupp AT (ks
+(s = 1)p AGS (k; 5) +(s — Dprpe AT (ks 5)|,
=0 =0

1
T3 [pl Ahyy(r) _plACU(T)] =0
r—=

=0
~Bpa 5T () = [popa AGF (: 5) + pRAE (ks ) + p1 po AT (K 5)
+ (s = 1)p5 AGT (ks 5) +(s = 1)pup2 AT (k; )
=0 =0

1
T35 [p1 b (r) —paAens(r)] 0
r=

k=0

=0

Taking the limit s — 0 yields

BAUST? = [ po AT (k) + pAGT (k) + pp AT (K)]
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+ %[mACn(?‘)]T:O

BAUS™™ = — | poAde (k) + po A5 (k) + mAET (k)]

+ %[pQACm(T)]

r=0

5.6.2 Pressure

From eq. 4.11 we obtain the thermodynamic pressure of the fluid via

F
ov T N1.po

Again, we separate the pressure P; into an ideal and excess part
P= Pl P,
where the ideal part is
ﬁ P 1id = P1s

and the excess part can be obtained by integration of the compressibility
equation 4.15

BP(p1) = BP(p1=0) — /Opl préc(k=0; py)dp;. (5.16)

In the ORPA the pressure can be split (similar to the case of the chemical
potential) into three contributions

P4 (AP — BPERT).

The contribution due to the perturbation potential (BPfg” - ﬂme’R) is ob-
tained from the Gibbs-Duhem relation using egs. 5.11 and 5.15

BPeE — ﬁple;v,R — JORPA _ TR 4 1 (ﬁlulelz:c . ﬁﬂliw’R)
2

:_% 611 (k=0) — &} (k=0)]

L ; P <R ~2
~ 3 / dk lln (1= prée(k)) — m(cb (k) + poc (k)x (k)

“tn (1= (0 4 s W+ (W 1) )|



Chapter 6
Numerical Results

In this chapter we present some results obtained from the numerical solution
of the ROZ equations in the various approximations presented in the preced-
ing sections. The correlation functions obtained within the ORPA and those
obtained from integral equation theory for a Lennard-Jones system are com-
pared with results from Monte Carlo (MC) simulations [41]. Furthermore,
we apply the ORPA to a hard-sphere system with square-well interaction to

obtain vapour-liquid coexistence curves.

6.1 Correlation functions

In the following examples we consider a completely repulsive hard-sphere
interaction between the matrix and the fluid particles (y=0). The fluid-fluid
interactions decompose into a hard-sphere part and a Lennard-Jones tail (see
section 3.4) with oo =09; =011 =0. In figure 6.1 we compare the results for
the fluid-fluid pair distribution function obtained from a solution of the ROZ
equations in the HNC approximation with the results from MC simulations
[41] for densities p5=0.05 and p}=0.465 at a temperature 7*=1.5. We see
that the HNC approximation overestimates the correlation functions near the
contact. Results obtained within other approximations are shown in figures
6.2 and 6.3, where the MC simulations are compared with results obtained

83
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within the ORPA. The ROZ equations of the reference system were solved
in the PY (figure 6.2) and in the HNC (figure 6.3) approximation. Figure
6.2 shows that the MSA underestimates the correlation function near the
contact. Furthermore, the oscillations are slightly out of phase compared
with the Monte Carlo results. Better agreement with simulation results are
obtained within the ORPA, where the reference correlation functions are
calculated in the HNC approximation (see figure 6.3).

911(7“)
2.8 T T T T T

MC +

2.6 HNC —— 7|

24F
2.2

2
18
16
14
1.2

1 L e o o e e

0.8
1

Figure 6.1: Fluid-fluid pair distribution function g;1(r) for a hard-sphere fluid
with attractive Lennard-Jones tail in a hard-sphere equilibrium matrix. The
system is characterised by ooy =091 =011 =0, y=0, poo®=0.05, pio>=0.465
and T* = 1.5. The line represents HNC integral equation results and the

crosses the results from MC simulations [41].
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g1 (r)
2.6 T T T T

|
MC +

Figure 6.2: Same as in figure 6.1, but now the MC simulations results are
compared with g;1(r) obtained within the ORPA, the structure of the hard-

sphere reference system is calculated within the PY-approximation.
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g11(r)
2.8 T T T T T

ORPA —

Figure 6.3: Same as in figure 6.1, but now the MC simulations results are
compared with gq1(r) obtained within the ORPA, the structure of the hard-

sphere reference system is calculated within the HNC-approximation.
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6.2 Phase diagrams

At a given temperature 7% = AL the densities p| and p” of two coexisting
P 1 1

phases of a single-component fluid are determined from the solution of the

following system of equations

Pi(p)) = Pi(p) (6.1)

Therefore, if we want to determine the phase diagram we have to calculate
the pressure and chemical potential of the fluid as functions of the density
(see subsections 5.6.1 and 5.6.2). In our calculations, the reference-system
correlation functions were obtained from a PY-solution of the ROZ equa-
tions using the LMV algorithm (see section 3.2). A grid size in r-space of
0.0101; and 1024 points were used in the calculations. Pressure and chemical
potential of the reference system were obtained by integration of the com-
pressibility equation of state (see egs. 5.14 and 5.16). The trapezoidal rule
was used to perform the numerical integration of egs. 5.14 and 5.16 and the
spacing in p; was Ap;o3; = 0.005. Once the correlation functions of the
reference system were obtained, we minimised the free energy with respect
to variations of the perturbative potentials inside the core regions using the
deepest descent method (see subsection 5.5.1) to compute the corrections of
the correlation functions; furthermore we calculate the correction terms due
to the perturbation of the chemical potential and the pressure. To perform
the numerical integration which was required in the calculation of the pres-
sure and to evaluate the correlation functions and their Fourier transforms
at 7 =0 and k£ =0 we used the Simpson rule. Finally, the coupled set of
equations 6.1 was solved with the NR-technique (see Appendix B).

The system which we consider now consists of an equilibrium hard-sphere
matrix. Fluid-matrix and fluid-fluid interactions decompose in a hard-sphere

part and an attractive square-well tail (y=1, 0go =001 =011 =0). A series of

—m
kT

in figure 6.4. Note that the curves have a loop similar to those observed

isotherms, i.e., u} versus p;o°, for a matrix density pyo®=0.2 is shown

in the van der Waals theory of equilibrium fluids, indicating liquid-vapour
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coexistence. This loop is replaced in the instable region by a horizontal
line joining the two values of p% at coexistence [42]. For T* = (.76 no
phase equilibrium could be observed, indicating that we are already above

the critical temperature.

7

-0.5 R

-1 /

-1.5 T

2r N T T =088

-2.50 ,___—<‘—'—‘ii.if_ff_‘_j_‘-— —" T*=06 ]

-3.50%" .
4

-4.5

| | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P1

Figure 6.4: A series of isotherms of uj = {5 versus p} at pj=0.2 and y=1
in an equilibrium hard-sphere matrix (og9 = 091 = 011 = 0). Each curve is
labelled with the corresponding values of T* = % The intersection points of

these curves with the solid lines indicate the loci of the coexistence densities.

Figure 6.5 shows the phase diagram of a square-well fluid with vo; = 711 =
1.25 and y =1 for different matrix densities in the (7%, p5/(1 — 19)) plane.
¢ =1 —ny is the matrix porosity, i.e., the fraction of space not occupied by
the matrix particles. The parameters of this example are exactly those as
the ones used in a mean field theory approach by Ford and Glandt [24] for
a square-well system. The figure shows that the critical point is shifted to



Phase diagrams 89

lower densities and lower temperatures as the matrix density increases. Fur-
thermore, we see that the liquid-vapour coexistence curves become narrower.
From a qualitative point of view these results are in agreement with previ-
ous theoretical studies on square-well [24] and Lennard-Jones systems [25].
However, in a quantitative comparison with the results of Ford and Glandt
we find that the values of the critical point differ substantially between the

two methods.
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Figure 6.5: MSA predictions for the coexistence curves of a fluid in a hard-
sphere matrix. The fluid-fluid and matrix-fluid interactions are assumed to
be hard-sphere interactions with attractive square-well tails (y =1, v1 =
11 = 1.25). Each curve is labelled with the corresponding value of py. The
upper curve (py = 0) represents the bulk fluid.



Chapter 7

Summary and conclusions

In this report we have discussed the physical properties of fluids adsorbed
in porous media. Using the replica trick and the related formalism we have
derived both structural and thermodynamic properties of fluid particles im-
mersed in a disordered rigid matrix. So far, theoretical research has mainly
been restricted to atomic, single-component fluids. In this study we have
generalised the formalism to the case of a two-component fluid in a matrix.
The replica method, combined with standard liquid state theory, allowed the
development of integral equations for the correlation functions — the replica
Ornstein Zernike equations — for a multicomponent fluid in a matrix. Fur-
thermore, we have rewritten these equations in a compact matrix notation
in which we were able to recover the structure of the one-component ROZ
equations. Using the replica trick, we have also developed thermodynamic
relations for a two-component fluid in a matrix: the Gibbs-Duhem relation,
the virial equation, and the energy equation were derived. In addition, we
presented a derivation of the compressibility equation which is based on den-

sity functional formalism.

In the present investigation of the phase behaviour of fluids adsorbed in a
matrix we considered partly quenched systems where matrix-fluid and fluid-
fluid interactions contain a hard-sphere part and an attractive tail which is
treated as a perturbation. For such systems we have generalised a pertur-

bation theory for a two-component fluid in a matrix: the optimised random
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phase approximation (ORPA) was extended to a two-component mixture in
a quenched system. The perturbation theory approach has been applied to
a single-component fluid in a matrix. The interparticle potential between
fluid-fluid and fluid-matrix particles was assumed to consist of a hard-sphere

part and an attractive square-well or a truncated Lennard-Jones tail.

For the Lennard-Jones fluid results for the fluid-fluid pair distribution func-
tions in different approximations were compared with Monte Carlo simula-

tions.

For the square-well fluid confined in a matrix liquid-vapour coexistence curves
were obtained. In qualitative agreement with previous theoretical studies and
experimental results of the phase behaviour of fluids confined in a disordered
matrix it was found that the critical temperature, the critical density and
the width of the coexistence curves decrease with increasing matrix density.

The approaches developed in this contribution allow widespread studies in
this field which will be dealt with in the future: a systematic investigation of
the phase behaviour of a square-well liquid with different ranges in a porous
medium, or the determination of phase diagrams of binary liquids in a matrix

obtained from a perturbative approach.
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Appendix A

Definitions and formulae of
standard fluid theory

The replica trick relates thermodynamic quantities of the quenched system
to those of an equilibrium mixture by taking a special limiting case. The
advantage of this approach is the fact that the equilibrium mixture can be
described with standard liquid state theories. Thus in the following we give
a brief overview over those formulae and definitions of standard liquid state

theory to which we refer in the text.

n-particle distribution function

The n-particle distribution function g](\?) (r™) of a fluid consisting of N parti-

cles is defined in terms of the corresponding n-particle density by

(n) . m
o) = 2 (A1)
B

where ps\?) (r™) is the probability density of finding a set of n particles at posi-

tions r* = {ry,...,r,} regardless of the positions of the remaining particles.
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Pair distribution function and radial distribution function

If we consider formula A.1 for n = 2 we obtain the so called pair distribution
function. Thus pgl) (r1) pgl) (ro) gg\?) (r1,ry)dridr, is the probability of finding
a particle in the infinitesimal volume dr; at r; and another one in dr,; at
ry. If the system is isotropic and homogeneous, the pair distribution function
g](\?) (r1, ry) is a function of the separation ryy = |r; —ry| only - called the radial
distribution function and simply written as g(r). g(r) is the factor by which
the mean density pg(r) at a distance r from a reference particle situated in
the origin deviates from the bulk density due to interactions between the
particles. Since the repulsion between two particles is very large at small
distances, g — 0 as r — 0. Further, at large distances, where particles
are no longer influenced by the reference particle, ¢ — 1 as r — oo. In
a typical simple liquid g(r) is an oscillating function around 1 and shows a
series of peaks (see e.g. fig. 6.1) which correspond to first neighbours, second
neighbours distances, etc. and express the short range order that exists in
a liquid. For two reasons the radial distribution function is of fundamental
importance in fluid theory: Firstly thermodynamic functions of the fluid can
be expressed in terms of it; secondly it is directly measurable by radiation

scattering experiments.

Correlation functions and the OZ equation

The pair correlation or total correlation function is defined as
h® (r1,15) = ¢ (x1,15) — 1 (A.2)

It vanishes in the limit 1 — 0.

The direct correlation function ¢ (r;, ry) is related to the total correlation

function via the OZ relation which has the form
B (1, 10) = D (r1,12) + / drg pU (r3)c® (r1, 1) A (15, 15).  (A.3)

Iterative solution of eq. A.3 shows that the total correlation between par-

ticles 1 and 2 is due in part to the direct correlation between 1 and 2 but
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also to the indirect correlation propagated via increasingly large numbers of
intermediate particles. If the system is homogeneous and isotropic the OZ
equation simplifies to

h(r) = c(r) + p / dr'c(|r — r'|)h(r"). (A.4)

Multicomponent OZ equations
The multicomponent generalisation of A.4 is
hig(r) = cig(r) + 3 pi [ ax'can(lr = 'y (1) (A.5)
k

where the sum on k& runs over all components in the fluid.

In a matrix formulation eq. A.5 can be written as

H=C+CH with C:=(&;) and H:=(hy), (A.6)
where ¢;; := /pip; cij and izij := /pip; hij and the multiplications of the

direct and total correlation functions have to be interpreted as convolution

integrals. The matrices H and C satisfy the symmetry relations
H'=H and CT =¢C

which take into account the fact that the probability of finding a particle of
species ¢ at a distance r, given that a particle of species j is in the origin, is
equal to the probability of observing a particle of species j at a distance r,

given that a particle of species ¢ is in the origin.

Structure factor

The structure factor of a fluid, which is related to the cross-sections for

scattering of radiation, can be written as the Fourier transform of h(r)

S(k) =1+ ph(k).
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The partial structure factors of a system of more than one-component are
defined as

S; (k‘) = 5@' + \/Pip; hU(k‘) (A7)
or, in the simpler matrix formulation, as

S(k) = T +H(k).

Closure relations

In addition to the OZ equation an approximate closure relation, relating
the total and direct correlation function, has to be provided, which can be
derived either using graphical expansion or Taylor expansions of thermody-
namic functionals (see [29]). It can be written in the general form

c(r) = f(y(r),o(r)) with ~y(r) = h(r) —c(r),
where f is the chosen approximate function and ¢ the pair potential.

For instance, in the Percus-Yevick (PY) approximation

f (1) = (770 1) (v(r) + 1) (A-8)

while in the hypernetted-chain (HNC) approximation

f(y(r) = e BT _ v(r) — 1. (A.9)



Appendix B

The NR-method

In order to find a root z* of a single function f(z), we start with an initial
estimate z(!) and thereby can obtain an improved estimate z(®) by linearising
the function f(z) at the point (!

t(@) = f (2) + (%) L (z—20);

we find the point (2} where this tangent has its zero

2@ — ) _ <%>_1 7 (=),

z=z)
We now generalise this algorithm to a set of N functions {f;} of NV variables

x = {x1,...,2n}; we wish to find a value x* at which the {f;} are zero:
£ (x*) = 0.
From the initial estimate x") one finds the improved estimate x(® according

to
x(2) — x(1) _ Jﬁl‘x:x(l)f (X(l))

where J is the Jacobian matrix
ofi
)= (52) (B.1)

One then iterates eq. B.1 to obtain successive approximations x(/) with x(¥) —
x*. It is not necessary that the sequence () tends towards z*. This is only

the case if the initial estimate was chosen in the attractive region of x*.
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Appendix C

ROZ equations for a

two-component fluid

If we define

i i . . ~ N -1
N = [1 —pi(en — Clﬁ))(l — pa(Ca2 — 032)) — p1p2(Cra — 032)2}

and use the convention
i,j€{1,2} and j #
the ROZ equations for the two-component fluid are
Yoi = —Co; + (1 + Pohoo) [(1 - Pj(éjj - E?'j))éoi + p; (5ij - 5%)501'] -N
(C.1)
Yii = —Ci + {51'1' — Py [25iz‘(5jj — &) — 2¢i;(Cij — 5?;‘) + (Gij — é?j)Q]
+0 8@ — ;)7 = 26(&5 — &) (@5 — &) + &5(E — )]
—pi [61'1' — & — pi(Ci — @)(E55 — ;) + pi (@ — 5?9')2]2
+p0(1 + pohoo) [5Oi — piCoi(Cij — &) + pico; (€5 — 5?]')]2} - N?
(C.2)
Yij = —Cij + {po(l + pohoo) [50i + p;Co;(Cij — 5?]') — piCoi(Cj; — 5?7’)]

[50j + picoi(Cig — E3;) — picos (G — 6’?2)]
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Yii

Yij

+0ip; [éij(éij - 5%)2 — 2(G; — 521)3}
+ics; (g — 521) [1 — p;i(G5 — 52&')]

+Eij [1 — P (6” — éi)z)] [1 — p2(6jj — Eg])]} . N2

~ ~ ~ 2~
= _C?i + {[1 - Pj(cjj - C?j)] Ci')z'

+2p;(Cij — 5%)%' [1 — pi(Gj5 — 53’;‘)]

+p;(E; — ;)° [ — 2+ p;j(2¢5; - 52;')]

+p0(1 + pohoo) [50i — picoi(E5 — &) + pco; (G — E?j)r} - N?
(C.4)

=~ + {Po(l + pohoo) [50j + picoi(Cij — ;) — pico; (Cii — 531)]

X [60i + pjco;(Cij — 5%) — piCoi(Cjj — ég'j)]
Vi — &5 (@ — e [1 — (@5 — )]
+p; (@ — &))eg; — (e — )] [1 = pilE — &)
+8; (14 pip; (5 — &) — papy(En — ) (@55 — 529'))} N7,
(C.5)
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