Diplomarbeit

Self-Consistent Ornstein-Zernike
Approximation for
Simple Fluids and Their Mixtures

Ausgefiihrt am Institut fir
Analysis und Scientific Computing

der Technischen Universitat Wien

unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Dr.rer.nat.
Frank Rattay
durch

Dipl.-Ing. Dr.techn. Elisabeth Scholl-Paschinger
Biirgerspitalgasse 29/24, 1060 Wien

Wien, am 29. Marz 2004







Zusammenfassung

Phaseniiberginge in Fliissigkeiten sind vertraute Vorginge aus unserem Alltagsleben, und
ihre theoretische Beschreibung triagt wesentlich zu einem tieferen Verstandnis dieser kom-
plexen Phianomene bei. In dieser Arbeit haben wir, um die Abhingigkeit des Phasenver-
haltens einer Substanz von ihren mikroskopischen Eigenschaften zu untersuchen, zur Wei-
terentwicklung klassischer Fliissigkeitstheorien beigetragen und diese auf einfache Fliissig-
keiten sowie deren Mischungen angewandt. Der von uns verwendete theoretische Zugang
ist die Self-Consistent Ornstein-Zernike Approxzimation (SCOZA), eine mikroskopische
Fliissigkeitstheorie, die sehr genaue Resultate fiir die Koexistenzkurve liefert und deren
Vorhersagen sogar im kritischen Bereich des Phasendiagramms prazise bleiben. Diese
Theorie wurde von uns fiir eine Fliissigkeit von spharischen Teilchen erweitert, deren Paar-
wechselwirkung sich aus einem Hartkugelanteil und einer Linearkombination von Sogami-
Ise Potentialen zusammensetzt. Die Vorhersagen fiir thermodynamische Groflen, das
Phasenverhalten und den kritischen Punkt wurden mit Resultaten der Optimized Random
Phase Approzimation (ORPA) - einer inkonsistenten mikroskopischen Fliissigkeitstheorie -
verglichen, um den Einflul der thermodynamischen Konsistenzbeziehung zu untersuchen.
Weiters haben wir uns mit zweikomponentigen Fliissigkeitsmischungen beschéftigt, die
im Vergleich zu Einkomponentenfliissigkeiten ein wesentlich reicheres Phasenverhalten
aufweisen. Wir haben die SCOZA fiir eine sogenannte symmetrische binare Fliissigkeit
erweitert. Drei Typen von Phasendiagrammen, die durch den Ort charakterisiert wer-
den, wo die A-Linie (die kritische Linie von Entmischungiibergéingen) die Fliissig-Gas
Koexistenzkurve schneidet, konnten identifiziert werden, und lieferten eine quantitative
Erganzung zu Untersuchungen mit einer Mean Field Theorie. Insbesondere haben wir
den Einflul der Reichweite der Wechselwirkungen auf das Phasenverhalten untersucht
und Phasendiagramme von Systemen mit langreichweitigen Wechselwirkungspotentialen
berechnet.






Abstract

Phase transitions in fluids are practically ubiquitous in our everyday lives and their the-
oretical description is essential for a deeper understanding of these complex phenomena.
In an effort to gain more insight into the relationship between the microscopic proper-
ties of a fluid and its phase behavior we have contributed to a further development of
classical liquid-state theories and have applied them to simple fluids and their mixtures.
In particular, we have focused on the Self-Consistent Ornstein-Zernike Approximation
(SCOZA), a microscopic liquid-state theory that is known to give highly accurate results
for the coexistence curves and that remains successful even in the critical region. We have
generalized the SCOZA to a fluid of spherical particles with a pair potential given by a
hard-core repulsion and a linear combination of Sogami-Ise tails, i.e. a sum of a Coulomb
and constant potential that are both exponentially damped. The predictions for the ther-
modynamics, the phase behavior and the critical point are compared with results from
the Optimized Random Phase Approximation (ORPA) and the effect of thermodynamic
consistency is investigated. Further work is dedicated to binary fluid mixtures: their
phase behavior shows, compared to simple one-component fluids, a much richer variety of
phenomena. We have extended the SCOZA to the case of a symmetric binary mixture:
here the like-particle interactions are equal, while the interactions between the unlike fluid
particles differ from the like ones. Three archetypes of phase diagrams, characterized by
the location where the A-line (i.e. the critical line of demixing transitions) intersects the
vapor-liquid coexistence curve were identified, supplementing thus previous mean-field
type studies in a quantitative way. In addition, we study the influence of the interaction
range on the phase behavior and present phase diagrams of binary symmetric systems
with very long-ranged interactions that are close to Coulomb interactions.
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Chapter 1
Introduction

Phase transitions are practically ubiquitous in our everyday lives, ranging from very sim-
ple, commonplace events to rather complicated and sophisticated production processes in
industry where special knowledge of the phase diagrams of substances is required. There-
fore, the technological aspect of investigations in phase diagrams is of importance and

industrial developments and processes often rely on accurate and reliable phase diagrams.

Phase transitions belong to the most challenging and fascinating problems in physics.
The complexity of these phenomena, their large diversity (such as transitions from liquid
to gas, from the conducting to the superconducting phase, from a paramagnet to a ferro-
magnet, demixing separations in mixtures and others), and the discovery of new phases
(such as quasi-crystals or superfluids) has attracted the interest of condensed matter sci-
entists in this research field. One of the central challenging questions is: How do the
microscopic properties of a system influence its phase behavior and its critical phenom-
ena? During the past decades significant contributions to describe phase transitions have
been proposed in theoretical and computational physics. Meanwhile, theoretical concepts
in combinations with computational tools can be considered as complements to experi-
mental techniques: on the one side they are able to reproduce experimental results with
high accuracy and contribute thus to a deeper insight into these phenomena; on the other
side they might be more economical than experiments and are able to indicate, whether it
is worthwhile to push experiments in a direction where difficult experimental conditions
are to be expected. They can sometimes even predict results which are barely accessible

in experiment (such as matter under extreme conditions).

The discontinuities in physical behavior, which occur when a system undergoes a
phase transition, have claimed the attention of scientists for many years. It was rec-
ognized already in the 19th century that the discontinuities are associated with the in-
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teractions between the microscopic particles of the system. Thus it became necessary
to develop a statistical mechanical treatment of phase transitions [1]. The first steps in
this direction were done in the fundamental works of van der Waals and Weiss who ex-
plained phase transitions in fluid and magnetic systems with mean field theories. Further
progress was achieved by Landau in his phenomenological explanations which provide
insight into the detailed character of the discontinuities. In 1944 the modern era in phase
transitions started when Onsager found an exact statistical mechanical solution for the
two-dimensional Ising model. His solution showed that previous ‘classical’ theories were
unreliable in their quantitative predictions and stimulated a closer investigation of the

true behavior near discontinuities.

Particular interest has been focused on phenomena associated with critical points such
as that of gas-liquid equilibrium, or the Curie point in ferromagnetic materials. In the
critical region, anomalies in thermodynamic functions are observed which result in the
divergence of such thermodynamic quantities as specific heat, compressibility, etc. These
critical fluctuations are very difficult to handle theoretically and much effort has gone
into this. Starting in the 1960’s considerable progress towards a greater understanding of

critical phenomena was made by introducing the ideas of renormalization group theory [2].

In the present work we intend to contribute to a deeper understanding of phase transi-
tions. Various concepts were proposed over the last decades to describe these phenomena
from a theoretical point of view: One of them is the above mentioned renormalization
group theory which is the most successful tool to study cooperative phenomena in statis-
tical mechanics and has lead to a deeper understanding of phase transitions and critical
phenomena. However, it it not able to predict non-universal quantities (such as the
location of the critical point). Computer simulations represent another access to the
problem [3]. For a given interparticle potential they provide ‘quasi’ exact results — apart
from finite size effects induced by the finite size of the simulation cell. These effects be-
come obviously more severe in the critical regions where long-range fluctuations occur.
Sophisticated techniques are meanwhile available to cope with this problem. In this work
we have chosen another theoretical approach, namely microscopic liquid-state theories
that are based on statistical mechanics [4]. The aim of these theories is to predict the
thermodynamic and structural properties of a fluid from the presumed knowledge of the
forces between the fluid particles. So once the interparticle forces are fixed, the theory

should be able to determine the phase behavior (including criticality) of the system.

In this work we have focused on the phase behavior of fluids. Over the past decade
much evidence was found that the fluid states, gas and liquid, possess many structural

similarities and that both are quite distinct from the solid state. Hence, it is not surprising




that the same theoretical approach can be used to describe both the liquid, the gas and the
supercritical fluid. In this work we will be exclusively concerned with the phase behavior
of fluids and their mixtures, i.e. we restrict our investigations to that part of the entire
phase diagram that includes liquid-gas transitions and liquid-liquid demixing transitions
in mixtures omitting the determination of the melting line that would require in addition

other theoretical approaches like e.g. classical density functional theory.

Apart from the one-component fluid we also study the properties of fluid mixtures; here
new phenomena are encountered that are not present in pure substances. According to
the Gibbs rule now up to four phases can be observed simultaneously and the way these
phases can coexist often leads to rather complex phase diagrams. The phase behavior
is mainly triggered by two mechanisms (and their interrelation): first, there is the size
difference of the particles of the two components and their (partial) penetrability; second,
there is the chemical influence, expressed via the set of the three interatomic potentials.
Depending on the relative sizes of the particle species and the properties of the interaction

forces a large variety of different types of phase behavior can be observed [5].

We shall exclusively consider simple classical liquids with interparticle potentials, that
can be considered as realistic models of a fairly large number of real fluids. ‘Quasi-
experimental’ data for these systems are available from computer simulations (either
Monte Carlo or Molecular Dynamics simulations). Comparison of these data with those
from sophisticated microscopic liquid-state theories has shown that these theories produce
results for systems well inside the liquid-state region that are practically indistinguishable
from the simulation data. However, the accuracy of these approaches begins to decrease as
one leaves the liquid-state region and approaches the liquid-gas coexistence curve and/or
the critical region. In particular, the shape of the coexistence curve and the location of
the critical point is not reproduced correctly and the critical exponents are not the exact
ones. Some theoretical approaches even fail to converge in the critical region, so that the
liquid and vapor branches of the coexistence curve remain unconnected. To overcome
this highly unsatisfactory situation two microscopic liquid-state theories have been de-
veloped in the past years that cope with the problems encountered in the critical region
and near the phase boundaries: one is the self-consistent Ornstein Zernike approximation
(SCOZA) [6], the other one is the hierarchical reference theory (HRT) [7] that merges

concepts of renormalization group theory with liquid-state theories.

This work is dedicated to the SCOZA which was proposed by Stell and Hgye already
in the 1970s; the OZ relation is supplemented with a generalized mean spherical ansatz
(GMSA), introducing in the MSA relation a density- and temperature-dependent function
which is determined by enforcing consistency between the different thermodynamic routes.




4 Introduction

Although introduced nearly thirty years ago its first numerical implementation was - due
to substantial numerical problems - successfully realized only a few years ago in 1996 [8]:
a reformulation of the SCOZA partial differential equation made an access to subcritical
temperatures possible. Ever since, the SCOZA has been applied only to a few discrete and
continuum systems restricted in the latter case to hard-core Yukawa systems. However,
these results showed in an impressive way that this theory remains successful even in the
critical region: it is able to predict critical temperatures within 0.6% (or even less) and

to reproduce the exact value for the critical exponent § very accurately.

The obvious success of the SCOZA has motivated us to contribute to its extension:
further development of the SCOZA and its application to a larger variety of systems are
summarized in this work. In the case of continuum fluids the SCOZA has been solved
up to now only for hard-core Yukawa systems. This restriction can be traced back to
the fact that the SCOZA is based on the semi-analytic MSA solution which is available
for multi-component hard-core multi-Yukawa systems. In this work we have generalized
the SCOZA to one-component fluids with hard-core multi-Sogami-Ise interactions. This
modification increases the variety of systems that can now be studied: any smooth realistic

interaction can be modeled by a suitable linear combination of Sogami-Ise tails.

Furthermore, we have generalized the SCOZA to a binary symmetric hard-core Yukawa
mixture: here the interaction between like particles is equal, only the interaction between
the different particle species is different; phase diagrams were calculated for various system
parameters. Despite its simplicity this model system shows a very rich variety of phase
behavior and interesting phenomena can be observed such as a critical end point or a
tricritical point that is not present in a general binary mixture. Three different types
of phase diagrams can be distinguished, classified by the location where the A-line (the
critical line of the demixing transitions) intersects the first order vapor-liquid coexistence
curve. As already shown in a qualitative mean field study [9] the sequence of these types
of phase diagrams is triggered by a microscopic parameter, i.e., the interaction ratio of
the unlike to the like interactions. In contrast to conventional liquid-state theories we
are able to obtain results even in the critical regions. In addition, we have studied the
influence of the interaction range on the phase behavior; results have also been obtained
for the case of very long-ranged Yukawa interactions, i.e. interactions that are close to

Coulomb interactions.

This work is organized as follows: in the first part we summarize in sect. 2.1 briefly
the statistical mechanics foundations of microscopic liquid-state theories, we define the
structure functions and their relationships with thermodynamic quantities. In sect. 2.2

we give a brief overview over two classes of microscopic liquid-state theories: integral




equation theories and perturbation theories and discuss especially those approximations
that are related to this work: the MSA and the Lowest-Order y-ordered Approximation
(LOGA) or the equivalent Optimized Random Phase Approximation (ORPA). In chap-
ter 3 basic thermodynamic concepts and quantities necessary to describe phase equilibria
and stability conditions are introduced and the different types of phase diagrams that

occur in a binary symmetric fluid are schematically illustrated.

The second part is dedicated to the SCOZA: in sect. 4.1 we first give an overview over
thermodynamically self-consistent liquid-state theories putting emphasize on the presenta-
tion of the SCOZA; In sect. 4.2 we then formulate the SCOZA for a one-component hard-
core multi-Sogami-Ise fluid and present results for various model systems. The SCOZA

for a binary symmetric fluid is formulated in sect. 4.5 where also results are presented.







Chapter 2
Theoretical Concepts

The aim of statistical mechanics is to provide a macroscopic description of a system based
on its microscopic properties. Starting with a given interparticle law of force of a certain
fluid model one should be able to derive its structural and thermodynamic properties and

to determine the type of phase equilibria that will be encountered in the system.

The central quantity in liquid-state theory that provides the link between the micro-
physics and macrophysics of a fluid is the so called pair distribution function g(r). It
measures the degree of correlation between the particles separated by a distance r and
thus describes the structure of a fluid. In fact, basic thermodynamic quantities as the
pressure or the internal energy from which all other thermodynamic quantities, relevant
for the determination of phase coexistence, can be determined, are expressible in terms
of this function. On the other hand, the pair distribution function itself is a functional of
the interparticle potential. However, to calculate g(r) for a given interaction potential is
a complex and unsolvable problem and some simplifying assumption must be made for an
approximate determination of the pair distribution function and hence of the structure.
These approximation schemes include on the one hand integral equation theories (IETS)
where an integral equation, in which ¢(r) is the unknown function, has to be solved.
Another group of approximation schemes are the perturbation theories, which represent
generalizations of the theory of van der Waals and calculate thermodynamic and structural

properties as perturbation to those of the well known hard-sphere reference system.

In the following chapter we will first briefly introduce some basic definitions of the
structural functions and their relationships with thermodynamic quantities; then some
approximation schemes of liquid-state theory will be presented. Emphasis will be put

on those concepts that are used in the present work: the mean spherical approxima-
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tion (MSA) and the Lowest-Order y-ordered Approximation (LOGA) or the equivalent
Optimized Random Phase Approximation (ORPA).

2.1 Structure functions

2.1.1 Radial distribution function

We define the structure functions in the canonical ensemble. So we consider a macroscopic
system of N identical particles, enclosed in a volume V' at a given temperature 7. The
potential energy of the system is assumed to be given by Vy(r"), where we use the
notation r’¥ = {r;,ry,..., vy} for the positions of the N particles.

Then the one-particle density, that is defined as the ensemble average over the local
particle density

p(r) = Z d(r —r;) (2.1)
v r) = <g(5(r - rz)> = 7QN3[/’ T / : ./e‘ﬂVN(r’”"“’rN)d?’TQ o dPry, (2.2)

where 8 = 1/kgT is the inverse temperature, kg the Boltzmann constant, and
An(V.T) = /efﬂVN(rN)d?’rl Py (2.3)

the configurational integral. For a homogenous system it follows that p(*)(r) = % .

Similarly, the probability of finding any two particles in the volume elements d®r; and

d®ry at T; and ry, irrespective of the positions of the other particles, is given by [10, 4]
) Prd® [ / / BV (r Brol &r & 9.4
pN(I'l,I'Q) ra Tr9 = QNVT N r1a To, ( )

where p{ (ry,15) is called the two-particle density. The factor N(N — 1) takes account
of the indistinguishability of the particles. For an ideal gas, Vy(r"V) = 0, the two particle

density reduces to

o) = 221 = 1), 2:5)

The (dimensionless) pair distribution function g (r1,ry) is defined in terms of the two-

particle density as

@)
N (rl’ r2) 2.6
- (2.6)

NP (x3)°

95\?) (r1,r2) = ([;
N
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If the system is both homogeneous and isotropic then g](?) (ry,r5) is a function only of
the distance r = |r; — ry| - called the radial distribution function and simply written
as ¢g(r). A more illustrative interpretation of the definition (2.6) is the following: given
a reference particle at the origin then g¢(r) is the factor by which the mean number of
particles, 4wr?drpg(r), in a spherical shell of radius 7 and thickness dr centered around the
reference particle deviates from the ideal gas value, 47r2drp, due to interactions between
the particles. If the repulsion between two particles is large at small distances, ¢ — 0
as r — 0. For distances » much larger than the range of the interaction potential, the
particles become uncorrelated and the pair distribution function approaches the ideal gas
limit (2.5)

g(r) = 1— % for r — oo, (2.7)

or, in the thermodynamic limit g(r) — 1. In a typical simple liquid g(r) is for large
distances an oscillating function around 1 and shows for short and intermediate distances
a series of peaks (see fig. (2.1)) which correspond to first neighbors, second neighbor shells,

etc. and express the short range order that exists in a liquid.

5

a(r

rlo

Figure 2.1: Typical pair distribution function of a hard-core system.

Let us assume in the following that the particles interact through central pair forces,
thus

VN(I'N) :Zq{)(r”), Tij = |I‘Z'—I'j‘, Z,] € {]_,N}, (28)

i<j
where ¢(r) is the pair potential. Then thermodynamic properties can be expressed as

integrals over ¢(r) via three different routes [4].
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One of them is the internal energy route according to which the excess (over ideal)

part of the internal energy U®* can be written as

(5:;‘ = %<VN(1‘N)> = 27rp/g(7‘)¢(7“)7“2dr. (2.9)

In the second route the equation of state is obtained as an average over the virial
ppP B N
— = 1-== ViV
0 3N ;1’ v(r™)
2
= 1- gwﬁp/g(r)r?’qﬁ'(r)dr (2.10)

and therefore it is known as the virial route. The third possibility can be derived in the
grand canonical ensemble and reads

1
N

@ EES e

is the isothermal compressibility of the system. Eq. (2.11) is known as the compressibility

L+ [ (9(r) = 1) d'r = = (N = (N))?) = pkaToxr, (2.11)

where

equation.

Now three routes are available to determine the equation of state 3P/p starting from
the pair distribution function. One of them leads to the pressure directly via the virial
equation (2.10). We will use the notation Py for the pressure obtained in this way. The
second possibility is given via the compressibility equation (2.11). Integrating PXLT with
respect to the density along an isothermal path yields the pressure. In the following,
we will denote the pressure obtained in this way by Pc. The third route is based on the
excess internal energy U®® as given by the energy route (4.24). U®” is related to the excess
(over ideal) Helmholtz free energy F'** by the equation

r aﬁFez‘
U _< 3 )V. (2.13)

Thus BF can be obtained by integrating U®* with respect to the inverse temperature

along an isochore. By differentiating F*" one obtains the excess (over ideal) pressure via

er oOF** i OF /N
() (5, e

We will use the notation Py for the pressure obtained via the energy route.
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If the exact g(r) were known from some liquid-state theory, then the value of the pres-
sure obtained via the virial, the compressibility and the energy equation should be the
same, i.e. Py = P = Pg. The theory is then called thermodynamically self-consistent.
However, integral equation or perturbation theories only yield, as a consequence of the
approximations in their concepts, an approximate g(r) and thus are, more or less, ther-
modynamically inconsistent. So the liquid-vapor coexistence curves obtained from the
different routes will not coincide, with different values of the critical point parameters.
E. g., the MSA is known to be highly inconsistent [11]: the curve of diverging com-
pressibility falls well inside the liquid-vapor coexistence curve obtained from the energy
route. Liquid-state theories that enforce thermodynamic consistency will be presented in
chapter 4.1.

2.1.2 Total correlation function

We introduce the so called total correlation function h(r) by subtracting from the pair

distribution function its ideal gas value
h(r) =g(r) - 1. (2.15)
Thus h(r) — 0 for r — oo.

In order to describe the correlation between density fluctuations dp(r) = p(r) — {p(r))

at r and r’ we introduce the density-density correlation function

L(r,x') = (0p(r)dp(r')) . (2.16)
By inserting the local particle density (2.1) it follows that
D(r,x') = oy () + oy (1)3(r = ) = piy () (') (2.17)

in the homogeneous isotropic case we obtain I'(r) = p?h(r)+pd(r). The Fourier transform

of I'(r) is known as the static structure factor
'k ~
S(k) = % =1+ ph(k), (2.18)
where the Fourier transform is defined as
h(k) = / h(r)e~ir dr. (2.19)
The k = 0 limit of S(k) is thus related to the isothermal compressibility (2.11)
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2.1.3 Ornstein-Zernike relation

The Ornstein Zernike (OZ) relation [12] defines the direct correlation function ¢ (ry, ry)

in terms of the total correlation function A (r;, 1)
R (ry,1y) = P (ry,rs) + /drgp(l)(rg)c(2) (r1,r3)h® (13, 15). (2.21)

The name direct correlation function for ¢® (ry,ry) can be motivated as follows: solving
the OZ equation (2.21) iteratively, leads to

R (r,rs) = ¢@(ry, 1)) +/drg’p(l)(rg)c(Q)(rl,r3)c(2)(r3,r2) (2.22)
b [ [ o e2) o e0) (11, m2)® (1, m) e 4, 12) + .

Thus the total correlation between two particles is given by the direct correlation plus an

indirect correlation mediated via an increasing number of intermediate particles.

For a homogeneous isotropic fluid the OZ relation takes the form
hr) = c(r) + p [ dre(r")h(x - ), (2.23)
which has a simpler form in Fourier space
~ - -1
1+ ph(k) = (1 pé(k)) . (2.24)

So from the compressibility equation (2.11) it follows that

1

_ 9.2
pksTxT (2.25)

pc(0) =1-—
Thus ¢&(0) is finite and hence ¢(r) is a short ranged function even at the critical point
where the correlation length of density fluctuations and the isothermal compressibility

diverges.

2.1.4 Extension to mixtures

The definitions and relations presented in the previous subsection for a one-component
fluid can be generalized in a straightforward way to multi-component fluids. Since we will
also be concerned with the thermodynamics and the phase behavior of binary mixtures

we will briefly summarize these basic relations.

We consider a homogeneous isotropic fluid consisting of m components and particle

numbers N;, i =1,...,m. p; = JEVL denotes the partial number density of the i** species,
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p = >; pi the total number density and z; = % is the mole fraction (or number concen-
tration) of the i component in the mixture. Thus }°; 7; = 1 The structure of the fluid is
described by the set of 2m(m — 1) radial distribution functions {g;;(r)}, which satisfy the
symmetry relations g;;(r) = g;;(r). These functions have the following meaning: given a
particle of species 7 at the origin then 47r?drg;;(r)p; is the mean number of particles of
species j found in a distance r apart. The radial distribution functions satisfy the sym-
metry relations g;;(r) = g;i(r). Similarly to eq. (2.18) one can define the partial structure

factors as
SZ](k) = 3\ /iEiiEjéij + .szjpljsz(k), (226)

where h;;(r) = ¢;;(r) — 1. The multicomponent OZ equations read
h,ij(T‘) = Cij(T) + Z Pk / d3T,Cik(|I‘ - I"thj(r'), (227)
k=1

where the ¢;;(r) are the direct correlation functions between particles of species ¢ and j.
Hence,

VZiTi0i; — priz;Cij(k) = (S_l)ij, (2.28)
where the matrix notation S = (.S;;) was introduced.

The generalization to mixtures of the internal energy route reads

U;:E =27 ; ;pipj/gij(r)@j(r)rzdr (229)

and of the compressibility route

1 1
—_—=1—- - iPiCii(0). 2.30

Equivalent results for the partial direct correlation functions are

OB N
—\/PiP;j <8—N> = 0ij — pCi;(0), (2.31)
pj VyTapl#]

where p; is the chemical potential of species .

Appropriate linear combinations of the structure factors S;; that correspond to the
correlations between fluctuations in the density and concentration have been introduced
in [13] and will be presented in the following. We will restrict the considerations to
the simpler binary mixture where the number concentrations of the two components are

zi=xzand 29 =1 —z.
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We define the fluctuations of the total density as
dp(r) = opi(r) + Spa(r), (2.32)

where dp;(r) = p;(r) — p; is the fluctuation of the local density of particle species i around

its average value p;. Similarly, we define the concentration fluctuation

be(r) = x20p1(r) — x15p2(r)'

; (2.33)

Then the following structure factors express the correlations between total density fluc-
tuations, concentration fluctuations and the cross correlations between density and con-

centration fluctuations:

Scc(k) = pFT[{6c-dc) (v —1'|)] = 22511 (k) + 23S20(k) — 22125512(k)
Snc(k) = FT[(6c-dp) (Ir —1'|)] = 22S11(k) — 21522(k) + (22 — 1) S12(k),

where FT -] denotes the Fourier transform of the expression in the brackets. The gener-
alization of eq. (2.20) to the binary mixture case are the following relationships between
the long-wavelength limits of the structure factors defined in (2.34) and thermodynamic
properties [13]

Scc(0) = NET/ (‘Z%J) (2.35)
Snn(0) = PkBTXT+5ZSc:C,ZU) (2.36)
Snc(0) = —0Scc(0), (2.37)

where G is the Gibbs free energy, and § = p(v; — vs). v; = ( g}\;)PTN is the partial
4 s L9V jF£g

molar volume of species i.

2.2 Liquid-State Techniques

We have shown in the preceeding subsection that the pair distribution function g(r)
plays a central role in liquid-state theories since once this function is known thermo-
dynamic quantities can be calculated. In order to determine g(r) for a system with a
given interatomic pair potential some approximation must be made. In this section we
will present those liquid-state approximations that are relevant for our work, the MSA

and the LOGA/ORPA. They represent examples of two different approximate schemes,
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namely integral equation theories (IETs) and perturbation theories (PTs). In the follow-
ing we will briefly introduce the basic ideas of these two groups of liquid-state theories, a
more detailed description (including the derivation of those relations) can, f. i., be found
in [4].

2.2.1 Integral Equation Theories

From a cluster expansion of g(r) [4] it follows that

g(r) = e P TR~ +EG) (2.38)

introducing the so-called brigde function E(r). Eq. (2.38) can be considered as an exact
closure relation to the OZ equation if the exact F(r) were known. Then we have a set
of two equations in the two unknowns c¢(r) and h(r) for a given pair potential ¢(r). An
approximate closure relation is obtained by introducing either an approximation for E(r)
or, instead of assuming an approximation for E(r), one could also derive an approximate
closure relation to the OZ equation from exact relations of statistical mechanics, intro-
ducing simplifying assumptions; this leads to a functional relation between h(r) and ¢(r),

including the pair potential ¢(r), i.e.

F(c(r),h(r),é(r)) = 0. (2.39)

So h(r) and ¢(r) are then determined by solving the OZ integral equation (2.23) supple-

mented by some closure relation (2.39).

Various closure relations have been derived by using diagrammatic expansions or func-
tional Taylor expansions [4], like e.g. the well known Percus-Yevick (PY) closure relation

which assumes that
o(r) = (1 _ 6/345(1")) g(r). (2.40)

For a hard-sphere (HS) fluid with interaction potential

x r<o

o(r) = { , (2.41)

0 r>0o

where o is the HS diameter it follows from (2.40), (2.41) and (2.38) that

cr) = 0 r>0o
gir) = 0 r<o. (2.42)
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The second relation, the so called core condition is exact and expresses the fact that the
HSs are not allowed to overlap. The OZ equation (2.23) with the closure relation (2.42)
is analytically solvable (see e.g. [4]).

Another approximation, that is very frequently used due to its semi-analytic solubility
for pair potentials like the HS Yukawa potential [14], charged HSs [15], dipolar HSs [16],
sticky HSs [17] and a generalized HS Yukawa potential [18] is the mean spherical ap-
proximation (MSA). The conventional MSA is only applicable to systems where the pair
potential consists of a hard-core (HC). So, let us assume in the following a HC potential

with HC diameter o and some tail

o(r) = { R (2.43)

From cluster expansion [4] it follows that the asymptotic behavior of the direct corre-

lation function is given by
c(r) = —po(r) for r — oc. (2.44)

Thus ¢(r) behaves at long range as the interparticle potential. The approximation in the
MSA scheme is the assumption that the relation (2.44) is valid also for short distances.
So the MSA reads

c(r) = —pw(r) r>o
gr) = 0 r<o. (2.45)

In the case of a pure HS interaction the MSA reduces to the PY approximation.

2.2.2 Perturbation Theories, LOGA /ORPA

The basic idea of PTs is a separation of the pair potential into a harsh, short-ranged
repulsion and a smoothly varying long-ranged attraction. It is known that the repulsive
part mainly determines the structure of a fluid while the attractive part plays a minor role
and can therefore be treated as a perturbation of the repulsive reference system leading
to (small) corrections of the thermodynamic and structural properties [19]. Furthermore,
it is rather convenient to approximate the repulsion by the infinitely steep repulsion of
the HS potential, since the HS fluid represents a reference system whose structural and

thermodynamic properties are known with great accuracy.
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Thus in the spirit of a perturbation theory one can regard - in the simplest approx-
imation - a fluid as a system of HSs that move in a uniform attractive background. In
this approximation one arrives at the famous van der Waals equation. Higher order ap-
proximations can be obtained by expanding the Helmholtz free energy either in powers
of the strength of the perturbation (A-expansion) or in powers of the interaction range

(v-expansion) [4].

The perturbation theory which is used in the present work, the LOGA/ORPA [20, 21,
22], is applicable to fluids (and their mixtures) where the interactions between particles
are pairwise additive. It assumes that the pair potential ¢ between particles is split up
into

¢(r) = o (r) + dp(r), (2.46)

where ¢,(r) is the pair potential of the reference system and ¢,(r) is the attractive per-
turbation. Since in the present work we consider exclusively HC interactions it is most
obvious that the ¢,(r) are represented by HS potentials characterized by the HS diameter
o. This defines the ¢,(r) apart from finite variations inside the core. In the case where
¢-(r) is not a HS potential, the softness of the potential can be taken into account via

the Weeks-Chandler-Andersen ‘blip’-function expansion [23].

The separation of the potential leads naturally to the decomposition of all the corre-
lation functions
h(r) = hy(r) + hy(7) (2.47)

and
c(r) = ¢ (r) + cp(r), (2.48)

where h,(r) and c,(r) are the correlation functions of the reference fluid and h,(r) and
¢p(r) are the corrections to the correlation functions of the reference system due to the

attractive interaction.

In the random phase approximation (RPA) one assumes that

cp(r) = —Boy(r). (2.49)

However, this approximation does not guarantee that g(r) vanishes inside the HC as it
should in an exact theory. This means that geometrical exclusion effects are not treated
correctly. On the other hand, in this framework, there is a flexibility in the choice of ¢,(r)
that can usefully be exploited: It is clear that eq. (2.46) does not define the perturbation
uniquely for r < o. For this physically inaccessible region, the perturbation can be chosen

to have any finite functional form. Thus the perturbing potential ¢,(r) inside the hard




18 Theoretical Concepts

core (r < o) can be varied to obtain the so called optimized potential. We thus obtain
the LOGA/ORPA which is formulated via the two relations:

cp(r) = =B¢p(r) for r>0o (2.50)
and the perturbation potential inside the core is chosen so that

gp(r) =hy(r)=0 for r<o. (2.51)

The LOGA/ORPA is therefore similar to the MSA, the only difference is the exact
treatment of the hard-sphere reference system in the LOGA/ORPA.




Chapter 3

Phase Coexistence

3.1 Phase Behavior and Stability Conditions

3.1.1 Omne-component System

A typical phase diagram of a one-component substance in the P-T" and T-p plane is shown
in fig. (3.1). The liquid phase exists only in the small part of the entire P-p-T space that
is bounded above by a critical point where coexisting vapor and liquid become identical
and below by a triple point. Above the critical point there exists only a single fluid
phase and there is a continuous path from the gas via the fluid to the liquid phase as
indicated in the figure. This is not the case for the transition from liquid to solid that
does not end at a critical point. Consider moving along the gas-liquid coexistence line
in the direction of increasing temperature, then the difference in density between the gas
and the liquid decreases continously to zero and becomes zero at the critical point. The
density difference Ap = p; — p, between the coexisting liquid and gas phase, which is
nonzero below the critical temperature, is called the order parameter of the gas-liquid

coexistence transition.

In general, the conditions for coexistence of two phases in contact with each other [24,
25] are
T=T, P=P, u=y, (3.1)

where the primed and unprimed quantities 7', P, u are the temperature, pressure and
chemical potential of the two phases. The first condition expresses thermal equilibrium,
the second mechanical equilibrium and the third material equilibrium between two phases.

From the Gibbs rule it follows that a one-component system cannot have more than three

19
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p A T A
melting curve fluid
solid TC |
, gas liquid solid
T
A =
T+
sublimation curve
T, T, T pe Pr P

Figure 3.1: Left: Phase diagram of a one-component system in the P-T plane. The indices
‘t” and ‘c’ indicate the triple and critical point. The gas-liquid coexistence curve ends at a
critical point. So there is a continuous path from the gas to the liquid phase as indicated
by the dashed line. Right: Gas-liquid coexistence curve for a one-component substance
in the T-p plane. The indices ‘t’ and ‘c’ indicate the triple and critical point. The order
parameter of the gas-liquid transition, Ap = p; — p,, vanishes at the critical point.

coexisting phases and that the coexistence of three phases can only appear at a single
point, the triple point.

The coexistence curves in the 7'— p plane can be determined by expressing the chemical
potential and the pressure as functions of the density at fixed temperature 7" and solving
the coupled set of equations

u(p,T) = p(p,7T) (3.2)
P(p,T) = P(),T) (3-3)

for p and p'. This route was chosen in the present work. Equivalent routes are the well-
known Maxwell construction see fig. (3.2) and the common tangent construction for the

Helmbholtz free energy per volume F/V as a function of the density.

The condition of phase stability for a one-component system is

62F> <6P) 1
<8V2 N OV )rn Vxr

meaning that the pressure cannot decrease with increasing density. The points where
xr diverges define the so-called spinodal line that separates the stable from the unstable
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V

Figure 3.2: Van der Waals construction to determine phase equilibria along an isotherm
(ABDEFG). The shaded areas enclosed by the curve linking BDEF and the dashed line
are equal and indicate the Maxwell construction. B and F are points of the liquid-vapor
coexistence curve (binodal) - full line, D and E points of the spinodal line, where x7 = oo
corresponding to a local maximum and minimum of the isotherms - dotted line. The
binodal and spinodal curve touch each other at the critical point C. Along the curves BD
and EF the system is metastable (xr > 0), while it is mechanically unstable along the
curve DE (xr < 0).

region. In the stable region, where yr > 0, the system can exist in a single phase while
inside the other region the free energy can be lowered by phase separation into two phases
with different density. Thus the single phase gets unstable and phase separation occurs.

3.1.2 Binary Mixtures

The phase behavior of binary mixtures is of course much richer than that of a simple one-
component substance. Depending on the relative sizes of the two particle species and the
strength of their interactions one observes a large variety of different phase diagrams [5]. A
systematic study of the different phase diagram topologies was performed by Konynenburg

and Scott by using the van der Waals equation of state [26]. Even for the simple case of
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equally sized particles they identified not less than 12 different types of phase diagrams
distinguished by the presence and absence of three-phase lines and azeotrope lines, by the

number of critical lines and by the way the critical lines terminate.

The conditions for phase equilibrium generalize to the case of a two-component system

with concentrations r; = z and x9 = 1 — x by requiring that
T=T7T, P=P, m=p, p = (3.5)

At an azeotropic point two phases with the same composition are in equilibrium, hence
additionally to the usual coexistence conditions the condition x = z' must be fulfilled.
According to the Gibbs rule up to four phases can coexist in a binary mixture; four phases

coexist in a point and three phases can coexist along a line (triple line).

The conditions of phase coexistence and phase stability are expressible in terms of the
Gibbs free energy (G. Similarly to the common tangent construction for the Helmholtz
free energy F' in the one-component case, the concentrations z and z’ of two coexisting
phases at a given temperature 7" and pressure P can be obtained via a common tangent
construction of the Gibbs free energy as a function of x. The concentration of two coex-
isting phases at fixed pressure P can be reported in a T' — x diagram. Various types of

diagrams are distinguishable depending on the number and loci of the critical points [5].

For a given composition, density and temperature, a fluid mixture can be present in
a single homogeneous phase only if thermodynamic stability is satisfied. In contrast to
a one-component system where only mechanical stability, expressed via xr > 0, must
be satisfied, a fluid mixture must have both mechanical (or liquid-vapor) stability and

material (or liquid-liquid) stability. The latter is expressed via

2
(a_g;) > 0. (3.6)
0x T.Pp

If this condition is not satisfied then the Gibbs free energy can be decreased - while
keeping temperature and pressure constant - by phase separation into two phases of

different compositions: this phase separation is called demixing transition.

While the first kind of instability where yr diverges and which forces the fluid to
phase separate into two phases of different densities is associated with a divergence of
Sy (0) (see (2.36)), the material instability corresponds to a divergence of the correlation
length of concentration fluctuations and thus Scc(0) (see eq. (2.35)). The spinodal line
of a mixture is thus located at those points where either Scc(0) or Syy(0) or both

diverge. In the case in which a mixture is mechanically unstable, but materially stable,
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i.e. at an azeotropic instability, Scc(0) remains finite and Sy (0) diverges leading to
a separation into two phases of different densities but equal compositions. So it follows
from (2.26) and (2.34) that at an azeotropic instability h12(0) = 3 @11(0) + l~z22(0)) and
Scc(0) = z1x9. Furthermore, from eq. (2.37) it follows that v; —vy = % (511(0) — 7L22(0)).
From eqgs. (2.35- 2.37) one sees that a divergence of Scc(0) also causes a divergence of
the other structure factors, so it is not straightforward to distinguish in the general case
of a binary mixture the two kinds of instability. The situation is different in the case of

a so-called binary symmetric mixture (see section 4.5.2).

In the following we will restrict our investigations to this simpler model system.

3.1.3 Binary Symmetric Fluid

In the binary symmetric mixture the like-particle interactions are identical (¢11(r) =
¢92(r) Vr), while the unlike interactions are different from the like ones (¢p12(r) #
¢ii(r),1 = 1,2). We further assume that the functional form of the like and unlike inter-
actions is equal. Only the strength is different, i.e.,

b11(r) = ¢aa(r) (3.7)
b12(r) = apu(r), (3.8)

where « is the relative strength of interactions between particles of dissimilar and similar
species.

Due to the symmetry of the potentials one obtains symmetry relations for the struc-

tural and thermodynamic properties, like for instance

hi(r;Typ,z) = hoo(r; T, p, 1 — )

hio(r; T, p,x) = hio(r;T,p, 1 — 1)
m(T,p,z) = po(T,p,1 — 1) (3.9)
P(T,p,x) = P(T,p,1—1x) etc. (3.10)

Although such a model system seems rather artifical and does not allow the description
of an experimentally observed phase behavior ! it shows already a rather rich variety of
phase behavior and offers insight into the link between the microscopic description of a
system and its phase behavior. The advantage of this simple model is the fact that its

! An example for a realistic system with such a symmetry are mixtures of d,l-optical isomers. However,
liquid-liquid separations in these systems have not been reported so far (see page 524 of [26]).
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interactions are characterized by only a few parameters, namely the interaction strength
ratio o and the parameters of the pair potential ¢;;: they trigger the phase behavior of the
system, so that a systematic investigation of their influence is still within reach. On the
other hand - despite the simplicity of the model - the phase diagrams show nevertheless
a much richer variety than those of a one-component system and interesting phenomena,

like the existence of triple points, critical lines, critical end points and tricritical points.

From the different possibilities to present phase diagrams, we have chosen in this work
presentations in the T — p — x space, their projections onto the T — p plane and their

isothermal slices leading to phase diagrams in the p — z plane.

In the work we restrict ourselves to the determination of those coexisting phases where
the number of species 1 and species 2 particles is equal, i.e. we consider only those phase
equilibria where ' = 1 — z. In that case four different types of phase diagrams can be

observed that belong to two classes.

1. The first class, where the similar species interaction is favorable, i.e. a < 1, is
characterized by the presence of a critical line of demixing transitions (the so called
A-line). For a given density there is a critical point of the demixing transition (critical
consolute point) at some finite temperature 7,.. The symmetry of our system implies
that this critical point is located at x = 1/2. Above this temperature one observes a
homogeneous mixture of 1 and 2 particles (x = 2’ = 1/2) - the so called mixed fluid
(MF) - while below 7, the liquid separates into a 1-rich phase with concentration
and a 2-rich phase whose concentration is ' = 1 — = - the so called demixed fluid
(DF).

2. The second class, where o > 1, is characterized by the absence of a critical line and
the absence of demixing transitions.

A system of the first class exhibits in addition to these demixing transitions also
liquid-vapor transitions as a one-component fluid. Depending on the interplay of these
two types of phase transitions one can distinguish three types of phase diagrams that will
be presented in the following. One of them is shown in fig. (3.3).

In the following we will use a simpler two-dimensional representation of the phase
diagram which is obtained by the projection of the two high-density branches of the
three-phase line along the x direction onto the z = 1/2 plane and omitting the demixing
curves. Only the critical line of the demixing transitions (A-line) will be shown. Owing

to the symmetry of the system, the coexisting phases of the two high density branches of
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Figure 3.3: Phase diagram of type II (see text) of a binary symmetric fluid in the T—p—x
space. The phase diagram is symmetric with respect to the z = 1/2-plane. Red curves:
demixing transitions. Green curve: A-line. Light blue curve: VMF transition. Dark blue
curve: VDF/MFDF transitions.

the three phase line have the same density and thus their projections yield only one line.
Using this representation, fig. (3.4) shows a schematic drawing of the three different types
of phase diagrams of class 1. The three types differ in the way the second order transition
associated with demixing merges into the first order liquid-vapor (LV) transition:

Type I: Fig. (3.4a) shows the situation when the A-line approaches the LV coexistence
curve well below the critical point. In that case the A-line intersects the first order
LV curve at a critical end point (CEP). At the CEP, a critical liquid coexists with a
noncritical vapor. Above the CEP temperature a vapor and a homogeneous liquid of

intermediate density coexist becoming identical at the LV critical point. At higher
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densities, as one crosses the A-line, the fluid demixes. The full line below the CEP

temperature is a triple line where a gas, a 1-rich and a 2-rich liquid coexist.

Type III: In fig. (3.4c) the A-line intersects the LV line at the LV critical point. In that
case the first order transition between the vapor and the mixed liquid is absent
and the A-line ends at a tricritical point where three phases become critical at the
same time: a vapor, a l-rich liquid and a 2-rich liquid. So two order parameters,
namely Ap = p; — p,, where p; and p, are the coexisting liquid and vapor densities,
and Az = x — 2’ = 2z — 1 vanish at the same time. The tricriticality is a specific
feature of the symmetric model. In a general binary fluid tricriticality does not

occur (see [26]).

Type II: The intermediate situation is shown in fig. (3.4b) where the A-line approaches
the LV coexistence curve slightly below the LV critical point. As in type I one finds
a LV critical point and as in type III a tricritical point. Additionally this type is
characterized by a triple point where — to be correct - four phases coexist: a vapor,

a mixed liquid at intermediate density, a 1-rich and a 2-rich liquid at higher density.

In a mean field study [9] it was shown that the transition between the different types of

phase diagrams is triggered by the parameter o.

Another type of phase diagram has been observed in grand canonical Monte Carlo
(GCMC) simulations of a binary symmetric fluid inside a porous matrix [27], in which the
A-line intersects the LV critical line at a CEP on the vapor side (see fig. (3.5)). So above the
CEP temperature one finds a four-phase line, where 1- and 2-rich phases of lower density
coexist with 1- and 2-rich phases of higher densities. In the simulations the constraint
of equal particle numbers was replaced by imposing equal chemical potentials for both
species. So the demixed fluid phase that is observed comprises either a homogeneous
1-rich or 2-rich phase, which are - due to the symmetry - indistinguishable. Thus if the
coexisting 1- and 2-rich phases are regarded as a single liquid phase (the demixed fluid)

the ‘four-phase’ line would not violate the Gibbs rule.

Similar archetypes of phase diagrams (and sequences of these) are encountered in
systems with completely different interatomic potentials: as examples we list here the
Heisenberg fluid [28] (a fluid where the particles interact via hard-core and a Heisenberg-
type interaction of their dipolar moments) and the Stockmayer fluid [29] (a fluid where the

particles carry dipolar moments and interact - in addition - via Lennard-Jones potentials).
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Figure 3.4: Schematic representation of the three types of phase diagrams of class 1

introduced in the text (from [9]).

The phase diagrams are projections of the three-

dimensional 7" — p — x phase diagrams onto the z = 1/2-plane. The full curve is the
liquid-vapor boundary. The dashed curve is the A-line.
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Figure 3.5: Schematic representation of the fourth type of phase diagram of class 1, that
was observed in the GCMC studies of a binary symmetric fluid inside a porous matrix [27].

The full curve is the liquid-vapor boundary. The dashed curve is the A-line.

Both, in the case of a binary mixture in the bulk and confined in a disordered porous
matrix we have calculated the phase diagrams by equating, at a given temperature 7T,
the pressure, P, and the chemical potentials, p;, of the coexisting phases. The general
equilibrium conditions read

wilp,z, T) = p(p,z',T) i1=1,2 (3.11)
P(p,z,T) = P(p,2',T), (3.12)

where the thermodynamic states of the coexisting phases are given by (p,z) and (o', z').

In the following we use the symmetry relations expressed in egs. (3.9) and (3.10).

First the azeotrope line 2 is obtained by solving the set of equations

pi(p,x =1/2,T) = p(p,x =1/2,T) = p(p',z =1/2,T)
P(p,x=1/2,T) = P(p,x =1/2,T). (3.13)

For the V-MF and the MF-DF transitions we proceed in two steps. First we determine
the phase diagram of the demixing transition, i.e. we search for two coexisting states
with concentrations z and 2’ = 1 — z. Due to the symmetry eq. (3.10) p' = p and due to
eq. (3.9) equations (3.11) reduce to solving at a given temperature 7" and density p the
equation

pi(p 2, T) = pa(p, x,T), (3.14)

2Tt follows from the van der Waals study of [26] (see eq. (21) of this reference) that an azeotropic

behavior in a binary symmetric mixture can only appear at x = %
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which defines the line z(p) of the second order demixing transition - if it exists. Along
this line the chemical potentials of the two species are equal by construction and denoted
by u(p,z(p), T). In a second step the solution of the two equations,

plpx=1/2,T) = plp,z(p),T) (3.15)
P(p,x=1/2,T) = P(p, (o), T) (3.16)

gives the density of the V or MF, p, and that of the DF, p’, with concentrations z(p') and
1 —z(p'), in equilibrium.




Chapter 4

Self Consistent Liquid-State
Methods

4.1 Introduction

As was pointed out already in Chapter 2.1.1 integral equation and perturbation theories
suffer from a lack of thermodynamic consistency: that is, different routes to thermody-
namics yield different results. Thus several integral equation theories have been modified

in such a way that consistency between different routes is enforced.

One of these approaches is the generalized mean spherical approximation (GMSA)
which is an extension of the MSA. It was introduced by Waisman [30] to improve the PY
solution of hard spheres. He modified the PY ansatz c¢(r) = 0 for » > o, by assuming a

form of a Yukawa tail for ¢(r) outside the HC, i.e.

K
c(r) = —e ) for r>o. (4.1)
r

Waisman derived an analytic solution of the OZ equation supplemented by the exact core
condition and the closure relation (4.1). Based on this analytic solution he chose the
parameters K and z in order to fit the thermodynamics of this model to computer simu-
lation data, parameterized in terms of the Carnahan Starling (CS) equation of state [31].
The radial distribution function so obtained considerably improved the PY one. Wais-
man’s analytic solution was extended by Hgye and Stell [32] to the case when the direct
correlation function is a linear combination of two Yukawa tails.

A A
e(r) = Dealr—o) 4 227200 for >0, (4.2)
r r

30
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If one interprets the first Yukawa term as corresponding to the MSA closure relation for
¢(r) outside the core for a system with the pair potential S¢(r) = —%e’zl(’""’) then the
second term can be viewed as a correction term as in the Waisman parameterization of
c¢(r) for hard spheres. Again there are two parameters A, and z, available either to fit
thermodynamically consistent quantities, as given by computer simulation, or to satisfy
the thermodynamic self-consistency relation without any further thermodynamic input.
So this is a possibility to improve the MSA whose main deficiency is the substantial lack
of thermodynamic consistency while retaining its great advantage of analytic solubility
for hard-core Yukawa (HCY) systems.

A similar GMSA scheme was developed by Stell et al. for ionic and dipolar fluids [33]:
There it was called a self-consistent Ornstein Zernike approximation (SCOZA) since self-
consistency among the three thermodynamic routes (i.e. virial, energy and compressibility
route) was enforced. However, in contrast to the SCOZA in its present version that we
will introduce below, thermodynamic consistency was achieved by fitting the available
GMSA parameters to some external set of data either given by a prescribed equation of
state or obtained from computer simulations. In contrast, in the SCOZA with which we
will be concerned below no supplementary thermodynamic or other input is necessary.

Thus this scheme is entirely self-contained.

The thermodynamic consistency relations can be expressed in the form

8Py _ PP w3
p p
phv. _ BPs (4.4)
p p

However, in most applications of liquid-state theories the first consistency relation is

B@PV) 1
= — 4.5
( 5,0 T pkBTXT ( )

where Y7 is the isothermal compressibility obtained from the compressibility route. This

rather expressed as

is done in thermodynamically self-consistent integral equation approaches, like e.g. the
modified hypernetted-chain (MHNC) theory [34]. In this approach the OZ relation is

solved with the closure relation
g(r) = e PHNFTRI)=clr)+Er) (4.6)
where the bridge function E(r) is approximated by that of a suitably chosen HS reference

system assuming the universality hypothesis of the bridge functions [34]. The E(r) are
either obtained from the Verlet-Weis parameterization of the pair distribution function or,
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alternatively, by the PY bridge function. The HS diameter is chosen to enforce equality

of the compressibility via the virial and the compressibility route (4.5).

Other thermodynamic self-consistent closure relations use so called ‘mixed closure’
relations, i.e. they interpolate in a functional form between two different conventional
closure relations. In this interpolation scheme a mixing function f,(r) with an adjustable
parameter « is introduced that is chosen so that consistency is enforced. One of these
approaches is the Rogers Young (RY) approximation [35] that interpolates between the
PY and the HNC approximation. Its closure is given by

pFaDR(E)—c(r)] _ 1)
fa(r)
An appropriate form for f, would be e.g. f,(r) =1—e7%" i.e. for r = 0 the PY solution

g(r) = e P90 (1 + (4.7)

is obtained that is more appropriate for short-ranged forces, while in the limit » — oo
one obtains the HNC closure that is accurate for long-ranged potentials and uses the
approximation that F(r) = 0. The RY approximation yields excellent results for purely
repulsive systems.

Another self-consistent ‘mixed closure’ integral equation theory is the HMSA [36],
that interpolates between the HNC and the SMSA and is more suitable for systems with

attractive potential than the RY approximation. Its closure is given by

fa(r)[h(r)—c(r)—¢a(r)] _
g(r) = ¢ Pon0) (1 R (r; 1) , (48)
where
. (b(?”) - (b(rm) r S Tm
¢R(T) B { 0 T>Tm (4.9)

is the repulsive part of the potential and

$a(r) = { O(rm) T Tm (4.10)

o(r) r>rp

the attractive one; r,, denotes a suitably chosen separation distance, in general it is the
position of the minimum of the potential. For the mixing function f,(r) one can assume
a function as the one used above. In both approaches the parameter « is varied until
eq. (4.5) is satisfied.

The MHNC, GMSA, and HMSA yield accurate thermodynamics and predict accu-
rately the liquid and vapor branches of the coexistence curves [37, 38|, but they fail to
converge close to the critical point, leaving the two branches unconnected [39] and esti-

mates for the critical point parameters can only be obtained by extrapolation.
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The two probably most promising approaches at the moment that circumvent these
problems are the hierarchical reference theory (HRT) [7] and the thermodynamically self-
consistent Ornstein Zernike approach (SCOZA) both of them providing very accurate
predictions for the thermodynamics, the phase diagrams and the critical behavior. Espe-
cially in the critical region, where the accuracy of integral equation theories and pertur-
bation theories decreases dramatically (they do not succeed in reproducing the shape of
the coexistence curve and the location of the critical points correctly) or their solution

fails, both theories remain highly accurate and successful.

The SCOZA was proposed already some time ago by Hgye and Stell [40, 41], but it
was only recently that it could be solved numerically for a model system and results of

remarkable accuracy were obtained [8].

The theory has been formulated in different versions, all of them building directly upon
the MSA closure and combining it with the requirement of thermodynamic consistency [6]
thus removing the main deficiency of the MSA. In the different versions one or more
state dependent functions are introduced in the MSA relation between c(r) and —B¢(r);
and this (or these) function(s) is (are) determined in such a way that thermodynamic
consistency via different thermodynamic routes is ensured, thus leading to (a) partial
differential equation(s) (PDE) for this (these) parameter(s). The various versions of the
SCOZA differ in the choice of these adjustable parameters.

The most comprehensive concept of this theory proposed in [40, 41] ensures self-
consistency between the virial, the energy as well as the compressibility route. Due to
the complexity its numerical solution was implemented for a hard-core one-Yukawa fluid
(HC1Y) only recently by Caccamo et al. [38]. (In their contribution this version of the
SCOZA is actually called GMSA!, while the designation SCOZA therein refers to another
version of the SCOZA.) In this contribution the closure relation to the OZ equation is

g(r) =0 for r<o
(r) B 21— (4.11)
c(r) = =Bo(r) + K& for r>o,

where o is again the HC diameter and K and z are adjustable state-dependent parameters
to ensure thermodynamic consistency. The numerical solution of this approximation was

not obtained by solving a PDE but through an iterative procedure.

The version of the SCOZA with which we will be concerned in the following con-

tains only one state dependent function K (p, 5) which appears as a proportionality factor

!The term GMSA comprises a family of approximations, all of which have the common feature of
supplementing the —B¢(r) term in the direct correlation function with additional Yukawa terms. The
amplitudes and ranges of these Yukawa terms are adjusted to yield thermodynamic self-consistency.
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between ¢(r) and the direct correlation function c¢(r) outside the core, and enforces con-
sistency only between the compressibility and the energy route. This closure relation
amounts to setting

g(r) =0 for r<o

c(r) = K(p,B)p(r) for r> o,

where K (p,3) is a function of the thermodynamic state (p, ). The condition on g¢(r),

(4.12)

the so-called core condition, is exact, while the expression for ¢(r) is an approximation
and implies that c¢(r) has the same range as the potential - an ansatz that is usually
referred to as the OZ approximation, thus the name self-consistent Ornstein Zernike
approximation. In contrast to the MSA, where K (p, ) = —/3, here K(p, 5) is not fixed a
priori but is instead determined so that thermodynamic consistency is ensured between
the compressibility and the energy route. The advantage of this simple recipe is that the
solution of the OZ equation together with the closure relation (4.12) is the same as for
the MSA problem.

This scheme of the SCOZA was already proposed in [41] where equations for solving
the self-consistency problem were derived. Preliminary results for a three dimensional
lattice gas for supercritical temperatures indicated that SCOZA could produce accurate
results [42]. However, results were limited to supercritical temperatures since the numer-
ical solution of the SCOZA PDE of [41] was found to be unstable when proceeding to
temperatures below the critical point.

The first numerical results below T, were obtained by Dickman and Stell for a three-
dimensional nearest neighbor lattice gas [8]. In contrast to the original (numerically
unstable) PDE used in [41], where the Helmholtz free energy was used as the quantity
to solve for, these authors have used the following PDE as basis for the SCOZA equa-
tion: assuming that the thermodynamics stems from a unique Helmholtz free energy the

consistency condition can be expressed as

0 1 0?
53 =53, (4.13)
aﬁ Xred ap2
where x"*? = pkgTxr is the reduced isothermal compressibility given by the fluctuation
theorem and u = % is the excess (over ideal) internal energy per volume given by the

energy equation. Eq. (4.13) supplemented by the closure relation eq. (4.12) and the OZ
relation yields a PDE for K(p,3). Using the analytic structure of the solution of the
OZ equation with the closure relation (4.12) for the system they investigated, Dickman

red

and Stell were able to express 1/x™* in closed form in terms of u and to derive a PDE

of diffusion type for 1/x"?. The numerical solution procedure of this PDE was refined
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in subsequent work by Pini et al. [43]. Pini developed an unconditionally, accurate and
efficient solution algorithm, using his experience from previous work on the HRT: although
this theory, that is based on renormalization group, is conceptually different from the
SCOZA (for an overview see [7]), it also results in the numerical problem of solving a

non-linear PDE of diffusion type.

In [8] Dickman and Stell considered the lattice gas (or the equivalent Ising model)
in three dimensions with nearest neighbor interactions on various cubic lattices. The
predictions were remarkably accurate, e.g. the values of T, were obtained within 0.2%
of best estimates and other critical properties agreed within 1-2% of the best numerical
estimates. Also the various effective critical exponents, that are defined as the slopes of

curves of logarithmic plots, e.g.

dl -
eff: OgXT ’ (414)
dlogt
where ¢ = T;CTC, were investigated, and it was found that they were close to the esti-

mated exact form unless very close to the critical point. Further numerical results for the
three-dimensional lattice gas by Borge and Hgye [44] and Pini et al. [43] confirmed this
picture: above the critical temperature the theory yields the same critical exponents as
the spherical model but this regime is very narrow, so that thermodynamics and effective
exponents are in good agreement with the true critical behavior until the temperature
differs from its critical value by less than 1%. On the coexistence curve (i.e. below T;),
on the other hand, the exponents are neither spherical nor classical and turn out to be
very accurate: e.g. the curvature of the coexistence curve is described by g = 0.35 which
is near to the exact value of 5 ~ 0.326 [45]. Borge and Hgye [44] also investigated the
influence of the interaction range and they found that the effective critical exponents away
from the critical point vary with this range.

An analytic study of the SCOZA critical exponents and the scaling behavior in three
dimensions was given by Haye et al. [46]. It was seen that standard scaling is not fulfilled,
but rather a generalized form of scaling. In this study the SCOZA subcritical exponents

for a three-dimensional system were determined to be
g ="17/20,y="17/5a=-1/10, (4.15)

which are in remarkable agreement with the exact values 8 ~ 0.326,7y ~ 1.24,a ~
0.11 [45], despite the fact that SCOZA does not incorporate renormalization group ideas.

On the other hand, the supercritical exponents are spherical ones

7=2,0=5a=0, (4.16)
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so the indices above do not fulfill the standard scaling relations. Thus, SCOZA fails in
a very narrow regime of [t| < 1072 in the vicinity of the critical point which is also the
error in 7T, for the Ising model. However, outside this region results turn out to be very

accurate.

After the first applications of the SCOZA to lattice systems, it was extended subse-
quently to continuum systems, too [47, 48, 49, 50]. In particular, in the case when u
in eq. (4.13) can be written in closed form as a function of X" within the closure rela-
tion (4.12) the numerical solution of the SCOZA is substantially simplified leading to a
PDE for u. This is actually the case for the HCY fluid, where one can make use of the
extensive semi-analytic MSA studies available. So it is not surprising that the SCOZA for
continuum fluids has been solved initially only for the hard-core 1-Yukawa (HC1Y) [47, 48]
and hard-core 2-Yukawa (HC2Y) fluid [49, 50]. The general case has to be solved fully

numerically.

In [47] the accuracy of the SCOZA approach remained somewhat unclear due to the
uncertainty of the available simulation results. But it was already seen that the top of
the coexistence curve was flattening, having a shape that is similar to the one of real
fluids. In this paper the closure relation of eq. (4.12) was used, implying that the HS
contribution to ¢(r) vanishes outside the core, so that the treatment of the HS reference
system coincides with the Percus-Yevick approximation. Alternatively, these authors also
incorporated a more accurate HS theory by using a Yukawa tail that is non zero at 5 =0

to reproduce the CS equation of state.

In subsequent work [48] the treatment of the HS reference part was improved by
adding to ¢(r) in (4.12) a non-vanishing contribution cys(r) outside the core. However, the
Verlet-Weis parameterization [51] of cys(r), which is the most popular parameterization
for the HS structure functions reproducing with high accuracy simulation data, is not
convenient for the formulation of the analytic part of the SCOZA. Instead the Waisman
parameterization was used, where the function cus(r) outside the core is assumed to have

a one-Yukawa form

g(r) =0 for r<o
c(r) = K(p, B)o(r) + KHSM for r > o;

T

(4.17)

the amplitude Kyq and range zy¢ are determined in such a way to reproduce CS thermo-
dynamics. The reason why one chooses the Waisman parameterization for the HS part of
the direct correlation function is a purely technical one: the mathematical formulation of
the SCOZA for a ¢(r) of 2-Yukawa form is still convenient since analytic studies for the

case when ¢(r) is a linear combination of two Yukawas [32, 52, 41] are available.
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These two approaches for the HS part - the two Yukawa ¢(r) and the one Yukawa c¢(r)
that reproduces CS behavior at 8 = 0 - were found to make little difference. In [48] also a
new set of simulations was performed to check the SCOZA results and again the accuracy
of the thermodynamics, the critical data and the coexistence curve was remarkable: the
critical temperature and density predicted by SCOZA agreed with simulation results to
about 0.6 %. Another application of the 2-Yukawa version of the SCOZA is to take both
Yukawa terms to represent the interaction. This was actually done in order to parame-
terize a Lennard Jones (LJ) fluid mimicked by a hard-core two Yukawa interaction [49]
and, furthermore, to investigate the effect of competing interactions on the liquid-vapor
transition [50]. In the latter study the 2-Yukawa tail was assumed to be attractive at

short distance and repulsive at long distance.

Since results for the three-dimensional lattice gas and the HC Yukawa fluid have
confirmed that the SCOZA remains highly accurate even in the critical region, it was
of interest to develop the SCOZA for other fluid and lattice gas systems and to test
its general accuracy more precisely in various situations. Work in this direction has
been done: the formulation of the SCOZA has been generalized to D-dimensional and
continuous spins [53] and first numerical results were produced [54]. As a further test of
its accuracy the SCOZA was compared with exact results for the Ising model in one and
two dimension [55, 56]. In the latter case comparison with the exact Onsager solution in
zero magnetic field with nearest neighbor interaction was made. A special feature in this
case is that SCOZA as the MSA does not give a true phase transition in two dimensions,
i.e. the singularities are smeared out. This deficiency of the SCOZA is due to the Ornstein
Zernike ansatz which does not include a long-range part of the direct correlation function
that would be necessary in the critical region. According to this approximation the
critical exponent 7 is found to be 0 instead of the exact value of n ~ 0.006 in three
dimensions; thus the behavior of the total correlation function is distorted which decays
as h(r) ~ f(r/€)/r®=% for r > 1, where d is the dimension and ¢ the correlation
length. However this deficiency is only crucial in the vicinity of the critical point, where
f(r/€) is constant rather than exponentially decaying. Despite this deficiency, also in the
two-dimensional case numerical results were again convincing. The temperature where
the specific heat has a maximum was found almost precisely at the exact critical point
temperature. Since SCOZA treats the infinite system as if it were a finite one, comparison

with finite-sized simulation were done [56].

Good results have also been obtained when generalizing the SCOZA to a disordered
system like the site diluted random field Ising model [57], and it has recently been applied
to the spin-1 model [58] and the g-state Potts model [59]. Furthermore a binary mixture
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model has been studied within the SCOZA by A. Dickman and Stell [60]: the decorated

model, that is isomorphic to the lattice gas model.

Initially, in the case of continuum fluids, applications of the SCOZA were restricted to
the one-component case and to hard-core (HC) interactions with one or two Yukawa tails
(with the possibility of approximating a Lennard-Jones potential rather accurately [49]))
since the initial formulation was based on the semianalytic MSA solution via the Laplace
transform route (see below). In subsequent work when the SCOZA was reformulated
on the bases of the more elegant and more flexible Wertheim-Baxter factorization tech-
nique [61, 62] a broader applicability of the theory came within reach including now all
systems for which the semi-analytic Blum-Hgye MSA solution is available. So it became
possible to extend the SCOZA to HC systems with a formally arbitrary number of Yukawa
tails [63]. As a test system the model fullerenes Cgy — Cyg described via an approximation
of the sphericalized Girifalco potential through a suitable linear combination of Yukawa
tails were investigated [63, 64, 65]. In particular, Cy has become of great interest in the
last years (for an overview see [37]) because the pair potential differs significantly from
the LJ one: the ratio of the width of the attractive well to the equilibrium distance is
much less for the Cgo-Cgp intermolecular potential than for the LJ one, furthermore the
repulsive wall of the Cgy-Cgg interaction is much stiffer. Since the phase behavior depends
in a very sensitive way on the nature of the forces the phase behavior was expected to be
completely different from that of rare gas atoms. It was even speculated that Cgy might
be a substance with no liquid phase at all. The SCOZA, being known to yield reliable and
accurate results for the coexistence curves even in the critical regions, confirmed that Cgg
should possess a liquid phase. Comparison with previous simulation results illustrated
once more that the SCOZA yields reliable predictions even in the critical region. In [63]
also the phase behaviour of a HC system with an explicitly density-dependent attractive
Yukawa tail (introduced via a density-dependent inverse screening length) was studied
and, for a particular form of the density dependence, the phenomenon of double critical-
ity observed, i.e. two first-order phase transitions (liquid-vapour and liquid-liquid) each
with its own critical point. Furthermore the SCOZA was extended to binary symmetric
mixtures of HC Yukawa systems [66, 67].

The purpose of the work presented here is to extend the SCOZA to a larger class
of continuum fluids. First, we have generalized the SCOZA to a one-component fluid
with a hard-core and a linear combination of Sogami-Ise tails [68]. The theoretical for-
mulation is given in section 4.3. The advantage of this generalization is the opportunity
that any smooth realistic interaction can be approximated very accurately by a linear

combination of Sogami-Ise tails. In section 4.4 the theory is applied to study the thermo-
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dynamic properties and the phase behavior of various model systems and a comparison
with LOGA/ORPA results is made. We further use the SCOZA to study binary sym-
metric mixtures with long-ranged Yukawa interactions. Details of the semi-analytic MSA

results on which the SCOZA formulation is based are summarized in Appendices A, B,
and C.

4.2 SCOZA for a One-Component Fluid

In our investigations we have chosen the version of the SCOZA proposed recently by
Pini et al. [48] given by the closure relation eq. (4.17). For the interaction between the
particles these authors have chosen a hard-core Yukawa (HCY) pair potential which has
been of interest in the last years [37, 38] due to several reasons: first, for this simple model
one has available semi-analytic theories [30, 69, 32, 52, 41, 14]. Thus the formulation of
the MSA, the GMSA and the SCOZA is particularly simplified for the HCY fluid. This
is not the case for other pair potentials like the square well fluid where the solution has
to be obtained fully numerically. Second, this simple potential comprises the two key
features that mimic a more realistic potential: a highly repulsive core and an attractive
tail. The latter is required to observe first order liquid-gas phase transitions and liquid-gas
criticality. Third, the potential parameters can be chosen so as to provide more realistic
potentials like a solvent-averaged interaction potential between poly-electric or colloidal
particles. Furthermore, the HCY potential comprises as special limiting cases the adhesive
HS system [17] (when the Yukawa tail is infinitely deep and the screening length infinitely
large) and charged HSs (when the screening length z is set to 0).

However, the HCY potential fails to mimic realistic interactions, the strength of the
attractive tail being largest at the infinitely high hard-core repulsion. The Sogami-Ise
interaction on the other hand represents a smoother, more realistic potential, and retains
the mathematical conveniences of the HCY fluid. However, compared to the HCY fluid
the formalulation of the SCOZA is now more complex and cumbersome.

The OZ equation along with the MSA closure for a HC-Yukawa system (i.e., the
core condition for the pair distribution function and a direct correlation function that
is of Yukawa form outside the core) has been solved semi-analytically via two differ-
ent approaches. Waisman [30] has used the so called Laplace transform technique [61].
His solution for a one-Yukawa form of ¢(r) was simplified in subsequent work [69] and
generalized to the case when ¢(r) is a linear combination of two Yukawas by Hgye and
Stell [32, 52, 41]. The other approach was introduced by Hgye and Blum [14]. It ap-
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plies a method of Baxter [62] which is based on the Wiener-Hopf factorization of the
Fourier transforms of the direct correlation functions by introducing so called factor func-
tions. In this approach the generalization of the solution from a one-Yukawa tail to the
multi-Yukawa form of the direct correlation function and to multi-component systems is
straightforward and considerably easier than for the Laplace transform route. Recently
this semi-analytic approach has also been generalized by Yasutomi and Ginoza [70] to
multi-component fluids with a Sogami-Ise [71] type closure relation and to fluid mixtures

with screened Coulomb plus power series interactions [72, 73, 74, 75].

While the formulation of the SCOZA for a one and two-Yukawa fluid presented in
[47, 48, 49] is based on the first approach, the latter approach brings a larger variety of
model systems, that can be studied with SCOZA, within reach: the one-component multi-
Yukawa fluid, the one-component multi-Sogami-Ise fluid, and the multi-component HC
Yukawa system. In their analysis of the HC Yukawa fluid Hgye and Blum reformulated
the problem as a system of nonlinear equations for the coefficients of the factor functions.
For the more general case of multi-component, multi-Yukawa fluid mixtures Arrieta et
al. [76] have cast these equations into a form suitable and more convenient for numerical
calculations and provided a general, direct solution algorithm. Yasutomi and Ginoza [70]
have extended Blum-Hgye’s work in a straightforward way to systems with Sogami-Ise
pair potentials; we have generalized Arrieta’s work to these systems, i.e. we reformulated
the nonlinear equations in a form that is suitable for the numerical calculations and found
a stable solution algorithm; the set of the nonlinear equations and their coefficients are
summarized in Appendices A, B. At the beginning we briefly summarize the analytic
MSA results relevant for our formulation of the SCOZA.

4.3 Formulation of the Theory

We consider a fluid of particles interacting via a spherically symmetric Sogami-Ise type

pair potential ¢(r) given by
+oo r<o
r)= -, 4.18
o(r) { w(r) r>o (4.18)

where the repulsion is characterized by the hard-sphere diameter o and the attractive tail
w(r) is given by a linear combination of a Coulomb potential plus a constant that are

both screened with an exponential

n KV
w(r) =—es (7 + L,,z,,) e~ (r=o), (4.19)

v=2
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The z, are the screening lengths, the K, and L, are the coefficients of the linear com-
bination and chosen so that the minimum of the function —o }_}_, (% +L, Zu) e #v(r—o)
on the interval [o,00) is —1, and € is the depth of the potential. Greek indices are used
to designate the different Sogami-Ise tails and summations - unless otherwise stated - will
be extended over n tails. Here the summation starts at ¥ = 2 since the first Sogami-Ise

tail is reserved for the description of the HC reference system (see below).

The version of the SCOZA considered here [48] is based on the OZ equation

B(r) = c(r) + p [ dr'e (") b (e~ ') (4.20)
supplemented with the following closure relation

g(r) =0 for r<o

c(r) = cus(r) + K(p, B)w(r) for r>o. (4.21)

h(r) and c(r) are the total and direct correlation functions, g(r) = h(r) — 1 is the pair
distribution function, cus(r) is the direct correlation function of the hard-sphere (HS) refer-
ence system and K (p, ) is a yet undetermined function depending on the thermodynamic
state that is given by the density p and the inverse temperature 8 = 1/kgT, kg being the
Boltzmann constant. The closure resembles to the one used in the LOGA/ORPA) [20, 21]
where K (p,8) = —f is fixed. Here, K(p,3) is not given a priori but is determined so
that thermodynamic self-consistency is guaranteed between the compressibility and the

energy route to the thermodynamic properties.

We recall that, according to the compressibility route the reduced isothermal com-
pressibility via the compressibility route is given by
1 0pP

=77 —1— pi(k = 4.22
=5, =1 pEk=0) (4.22)

where é(k) denotes the Fourier transform of ¢(r)
&(k) = / c(r)e gy, (4.23)

On the other hand the excess (over ideal) internal energy per unit volume calculated via

the internal energy route is
UCE
v

If x"*® and u are consistent with each other, they must stem from a unique Helmholtz

=u = 2mp’ /:O drrw(r)g(r). (4.24)

free energy density % = f = fi4 4 f° where f and f°® are the ideal and excess parts
of the free energy density. Thus

Fu_ 5 0sf 0 ( 0pu\ 0 (1
Por ~Pop 0~ 0B \" ap X))’

=35 (4.25)
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where p* = % is the excess chemical potential. For approximate g(r) as obtained, for
instance, by conventional integral equation and perturbation theories [4], eq. (4.25) where
X" is given by eq. (4.22) and u by eq. (4.24) is not fulfilled. In the SCOZA, however, this
consistency is enforced through an appropriate choice of the yet undetermined function
K(p, B) that is obtained by solving the partial differential equation (PDE) eq. (4.25)
supplemented by eqs. (4.20), (4.21), (4.22), and (4.24). The solution of the SCOZA PDE
is simplified by making use of the semi-analytic solution of the MSA for Sogami-Ise type
potentials [70] that allows one to express x™*? as a function of u thus transforming the
PDE (4.25) into a PDE for u. This will be outlined in the following. So we start by briefly

summarizing the semi-analytic solution of the MSA.

Following Baxter’s factorization method it can be shown that under certain condi-
tions [77] the OZ relation is equivalent to the equations

omre(r) = —Q'(r) + p /0 T QWQ (r + t)dt (4.26)
omrh(r) = —Q'(r) + 27p /O “ e = Oh(lr — t)Q(t)dt,

where the factor function Q(r) has been introduced. From egs. (4.26) and from the closure

relation
h(r) = -1 r<o
- 4.27
o) = 3 (Bt La) et 150 (427
it follows [70] that Q(r) must have the form
1
Q) =Q (N +3X — (D, +Ezr)e ™7, (4.28)
where
sr—o0)+br—o)+x+(C, +F) (e’z"(“") - 1)
Qr) = +>F, (re‘z"(’"_”) — o) 0<r<o,
0 otherwise
(4.29)
with yet undetermined coefficients a,b,C,, D,, E, and F,,.
One further introduces the quantities
G, = 2,0(z,)e”’ = z,,/ re” =) g(r)dr, (4.30)

and
G = 23 (e = 2, [~ rte - g(ryar, (4.31)
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where §(z) and §(V)(z) denote the Laplace transforms of r¢(r) and r2g(r). The use of G,
and GV instead of §(z,) and g (z,) follows the procedure adopted for the HS Yukawa
system [78, 76] and is due to numerical reasons since it allows one to reduce the number
of evaluations of exponentials when calculating the coefficients of equations (A.1)-(A.4).
Especially, expressions with positive exponentials are avoided. Inserting the form of Q(r)
in eqs. (4.26) and using the closure relation (4.27) allows one to express the unknown
variables a, b, C,, and F), as functions of D,, E,, G, and G{!) and to derive a system of 4n
nonlinear equations for the 4n unknowns D,, E,, G, and G{"). This procedure is a direct
extension of Blum and Hgye’s work for HS Yukawa systems [79] and is explained in detail
by Yasutomi and Ginoza [70]. This system of 4n nonlinear equations can be divided into
4 subsets of n equations. We have cast them into a form suitable for numerical integration
and compiled them in Appendix A.

All energy-related quantities € and § enter the egs. (A.1)- (A.4) only via

AT =orL, Vv (4.32)
and
c® = 91K, Wv (4.33)

while the remaining coefficients are temperature independent. Their explicit expressions

are given in Appendix B. They are calculated from the system parameters p, z,, and o.

Equations (A.3) and (A.4) are linear in D, and E, for given G, and G{) and can be

rewritten as
n n
2:()WJ)T+_§E:ILTE%::<QU
T=1 T=1

S RyD,+ 3 S, E, =T, (4.34)
T7=1 T=1
The definitions of the coefficients of egs. (4.34) are compiled in Appendix A. Solution of
this system of 2n linear equations yields D, and E, as functions of p, G, and G{). This
result can then be inserted into eqs. (A.1) and (A.2) which become a set of 2n coupled

nonlinear equations in the G, and G(.

Once the D,, E,,G,, and GV are known, thermodynamic properties can be deter-
mined as follows. The inverse reduced isothermal compressibility calculated via the fluc-

tuation theorem is found to be

x}ed =1—pi(k=0) = (%)2 (4.35)




44 Self Consistent Liquid-State Methods

The expression for a in terms of the quantities G, G,(}), D,, and F, is obtained from
0 4 1o
a:A(1+M)——QBN (4.36)
o

with

T=1 T T
Pl G 1)
T T a 2r0 _ T (a) ,—2-0
+( 2 21p A (2L9e 2) — 27p 2 (MWe 1) | E;
n (a) G
= T _ bl SO
N=rk K T e ”) br
QQTa) GT (a) ,—zr0 G'(rl) (a) ,—zro
+ B QWpE(BOT e 7 —3) — 27rpz—¢(LT e -1)| E;|;

(4.37)

the quantities M, P L@ Q@) 0@ A° and B° are again calculated from p, z,, and

o; the respective expressions are compiled in Appendix B.

The excess internal energy per unit volume calculated via the internal energy route is
found to be

" (K,
u = —2mp’ec Y (—GU + L,,G,(,l)) : (4.38)
v=2 \ Av

Now we have summarized the semi-analytic MSA results relevant for SCOZA and we
proceed with the formulation of the SCOZA. In order to stay within the framework of
the Sogami-Ise type closure we choose the Waisman parameterization for cys(r) [30, 69]
which ensures a highly self-consistent description of the thermodynamic properties of the
HS part. It assumes a Yukawa form for cys(r) outside the hard-core

o—1(p)(r—0)

cus(r) = Kl(p)f for r>o (4.39)

where K1 (p) and z;(p) are known functions of the density (see Appendix A of [48]). These
expressions guarantee that both compressibility and virial route yield the Carnahan Star-
ling (CS) equation of state [31] for the HS reference system. Using egs. (4.19) and (4.39),
relation (4.21) becomes

g(r) =0 for r<o

—21(p)(r—c 4.40
c(r) = K1(p)el([;¢ — K(p,Bec X", (% + L,,z,,) e~ for r> o (4.40)
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We use now the analytic results presented above to derive a relation between x"*? and u,

leading to a PDE for u. Using eq. (4.35), the consistency relation (4.25) reads

a OaOu 0%u

@) 9udB ~ o Ay

a is given by eqs. (4.36), (4.37) as a function of D,, E,, G,,, and G{V; inserting the solutions
D,(p,G,,GWM) and E,(p, G, G(M) of the linear system eq. (4.34) in eqs. (4.36) and (4.37)
yields a(p, G,, GIV) and thus

" Oa 0G, da OGW\ du 0%u
Y — = p— 4.42
2 ,/2::1 <8G ou 8G(V1) ou ) B P op? (4.42)
or 5 52
U u
B — = p— 4.4
(p, ) 95~ "o (4.43)

da da_ 0Gy and BG
A Te R BG,(,I), ou

below). B(p,u) is given by

once that a " have been determined as functions of p and u (see

a N[ Oa 0G, doa 0GM
B“““‘%%VZSmemb+mﬁJau) (44

Thus we now have derived a PDE for u(p, §).

What remains is to determine a

(1 )
9o a_ 9Gy gy % as functions of p and wu.

7 9G, ggM 7 ou
First of all we introduce 2n nonlinear equations Fj(p,u,G,,G)) = 0, i = 1,...,2n;
their solution gives G, (p,u) and GV (p,u). The first equation is linear and is the energy
equation (4.38)

n KV
u+2mpiec Y (—G,, + L,,G,(})> =0 (4.45)
v=2 Ry
or formally written as
Fi(p,u,Gs,...,Gn, G ... . GD) =0, (4.46)

To establish the remaining 2n — 1 nonlinear equations we make use of egs. (A.1) — (A.4)
and eqs. (4.32),(4.33). Expressions for the K, and L, in eqs. (4.32),(4.33) are obtained
by comparison of eq. (4.27) with the closure relation (4.40)

R = Ki(p) (.47
Li=0

K, = —K(p,B)ecK,, for v=2,...,n

L, = —K(p,f)ecL, for v=2....n
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and thus
A =g (4.48)
™ = 2r K, (p) (4.49)
ADL, = AS)LU for v,u=2,...,n (4.50)
C',(,B)Ku = CS?’)K,, for v,u=2,...,n (4.51)
A;(Z)Ku = C£13)LM for p=2,...,n. (4.52)

The second nonlinear equation is eq. (A.1) for v = 1 where the solution D, (p,G,, GIV)
and E,(p, G,,GWV) of eq. (4.34) and the relation (4.48) are inserted

B S ADGWE, + B, S AYG.E, + B, Y AYG, D,

=1 =1 T=1

+B. Y AYE. + B Y ASD + B AP = 0 (4.53)
T7=1 T7=1
or, formally written as
Fy(p,G,,GV) = 0. (4.54)

The third equation is eq. (A.2) for v = 1 where the solution D, (p, G,,GV)) and E, (p, G,,, GIV)
of eq. (4.34) and the relation (4.49) are inserted. The fourth equation corresponds to the
eq. (4.52) for ;1 = 2 using eqgs. (A.1) and (A.2), i.e.

B& <l22§:-A£Q(;9)lﬂ'+'l%!§:'A£?(;TEZ'+'l%2§:<A$?(;TL%

T=1 T=1 =1

+B, Y AYE + B,y AYD, + E2A§6)>

T=1 T=1

—L, <E2 Y CYGVE, + D,y CHYCVE, + B, CYG.E,

T=1 T=1 T7=1

+D, Y. CYG.E + B, Y CYG, D, + D,y ¢9a, D,
=1

T=1 T=1

+E, Y CHE, +D,Y CHE +EY 9D,
=1

=1 =1

+D, YD, + E,C8M + D20§”)> =0. (4.55)
T=1

The remaining 2n —4 equations are obtained from eqgs. (A.1), (A.3) for v > 1, inserting
D,(p,G,,GY) and E,(p, G,, G{"), the solution of eq. (4.34) and eliminating the unknown
function K (p, 3) in the coefficients AT, C('*) via the relations (4.50), (4.51) (for v = 2, u =
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3,...,n), formally written as

F5(,0:G1/)G1(/1)) =0

FZn (,0, Gua Gz(/l)) = 0.
(4.56)

For given p and u the G, and G{!) are determined in the following way: the coupled set
of nonlinear equations (4.46), (4.54)- (4.56) is solved numerically via a Newton-Raphson
technique using explicit expressions for the Jacobian matrix J = (%). In each step of
the iteration the D, and E, are obtained by numerical solution of the linear system (4.34).

The analytic Jacobian matrix J is given by

0 27plect> ... 2mpPeofn 0 2mplecly, ... 2mp’eqL,
OFy OFy OF 31*22) 31‘(‘2) 31*'('2)
G G G, 1 1 :
J=| " " T e ], ()
OFy, OFy, dF5, OF5, OF5, OFy,
oG 0G5 Tt oG, 6G§1) 6Ggl) et 6G7(11)
where
8F2 8Ejl
—(p,G,) = A — A D FE A E E
" 0D, 0F,
A(5) Gr
2::( ) G, 8G
" oF oF
AW 1 APq, + AVGO) ( ZZ2E, + B, 4.58
+ 3 (A AN+ AGY) (G Bt B, | (459

and similar relations for 6‘9}221) and the partial derivatives of the other nonlinear functions
m
F3, ..., Fy,.

The partial derivatives gg;, gg;, aa(?;), and - (1) required in (4.58) are obtained by
M

implicit differentiation of egs. (4.34)

i oD, & oE,  0Q, " 80 " OP,;
ZOUTE’FZPUTa—C;u - Z

T=1 T=1

E,
oG,

G =1
(B<3G +B )D
(B@G +B§ )E

BYG, + BH)) E,
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+> (B®G. +BY) D, + B§“>} S
=1

T=1

e (1 —(BY)G, + BY) E, (4.59)

and similarly for the second linear system (4.34). ¢, denotes the Kronecker delta given

by

1 f =
S = o R=EY (4.60)
0 otherwise

Solution of the nonlinear equations via the procedure described above yields the G, and

G as functions of p and u. We now calculate the derivatives 2¢=(p, u) and 3G( )(p, u)
required in the coefficient B(p,u) in eq. (4.44). They are determlned by 1mphcltly differ-

entiating equations I} = 0,..., Fy, = 0 with respect to u
Gy
ou
3G>
ou
: -1
0l 1 0
o) | =J(0.Gulp,u), G (pw) | . (4.61)
ou :
aé<1>
ou
Finally, the —(,0, u) and (1) (p, u) are obtained from (4.36),
oa oM 4 ON
— AO - _BO
G, oG, o? 0G,
M N
% _ 0 9M —2308—(1), (4.62)
oGy oG o oGy

where

oM u (a) G, oD
(@20 _ r
G, = K —2mp— A T(M%e 1)) aa,

=1
(a) GO OF
T ~MT a) ,—zr0 _ _ T (a) ,—2zr0 __ T
( 27rp (2L( Je 2) —2mp 2 (M Ye 1)) 8(},,]
1 1
+27p —4(M£“)e_z"” —1) + 21p°— (2LWe " — 2) (4.63)
ZU Zl/
- D, 8E, D
and similarly for aac:]\é)’ ;’TN nd 8]2]1) with {Dy, B, 56" 56 ﬂ%’ G(l)} as functions of

(p, Gu(p,u), G (p,u)).




Formulation of the Theory 49

The PDE (4.43) is a quasilinear diffusion equation that has been solved numerically
by an implicit finite-difference algorithm [80] described in detail in [43] in the region
(B, p) €10, B8] % [0, po]. The integration with respect to § starts at 5 = 0 and goes down
to lower temperatures. At each temperature the set of nonlinear equations (4.46), (4.54)-
(4.56) is solved giving G, and G("(p, u): to ensure rapid convergence the values of the G,
and G (p,u) obtained at the previous temperature step in the solution algorithm of the
PDE are taken as initial guess for the solution of the system of nonlinear equations. In

aD, 0E, 4D
the next step {DM’EH}(/)’ U’)a a(p, u), {%I,,i’ 8G,’ w,f_)’ BG(I)}(p’ ) 66?,, 3Gv(1)}(pa ) and

Gy aG(l)
ou ’

}p, u) are determined to calculate the coefficient B(p, u).

The boundary conditions are the same as in [48]: for p = 0 one obtains from eq. (4.38)

u(p=0,8)=0 V3. (4.64)

For the boundary condition at high density p, (we have set p§ = poo® = 1 in the calcula-
tions) we make use of the so-called high temperature approximation
0%u 0%u
a—pg(p()a B) = o
The initial condition u(p, 5 = 0) can be determined by taking into account that for g = 0

(o, 8=0) VB. (4.65)

the direct correlation function ¢(r) coincides with that of the HS gas. Thus K, = 0 for
v=2...,n L,=0forv=1,... n, yielding D,(p,8 = 0) =0 for v = 2,...,n, and
E,(p,8 =0) =0 for v = 1,...,n. Hence, the first system of linear equations (4.34)

reduces to
O.Di=@Q, for v=1,...,n. (4.66)
For v =1 this leads to Q1(G(p, B = 0))
Dy(p, B = 0) = 2ulGip S , 4.67
1(:0 /B ) 011(G1(P, )) ( )
where G1(p, 5 = 0) is obtained from the known quantity v, (p, = 0) that was introduced
in the Laplace transform technique (see Appendix A of [48]) vi
21 A-1
G =0)=———— 4.68
l(paﬂ ) 47TpAO'1—’7'1’ ( )
where
2(2 + Zl)
A= (2-q- =0) ————
2= vi- (5= 0) P
1 (Zl -2 + Zl)
o = — e
T2\ 2
1 Z%+221_4+e*z1
=g |5
YT o 4422 — 22
1+ 2n)?
g = 02 (4.69)

(1 —n)?
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with 7 = % p being the packing fraction. From eq. (4.66), for v > 1, one obtains

G(pﬁ—oy—_DNmﬁzongGﬂmﬁ 0) + BLY) + B2 .
o Di(p, 8 =0) (Bf,) Gi(p, = 0) + B,)) + B

The second linear system (4.34) reduces to
R.D,=T, for v=1,...,n, (4.71)
from which one can eliminate the G{"(p, 8 = 0) once the G, (p, 3 = 0) are known

1
GM(p,=0) =
Dy (DS)G1GV+D§1U°)Gu+D§i3)G1+D§i5)) +0{" G, +D(®

Dy (Dgi)Gl—}—Dii)) +D®

(4.72)

Collecting these results one obtains
u(p, B =0) —271',060’2( B=0)+L,GV(p ﬁzO)). (4.73)

The unphysical region inside the spinodal curve is determined as follows: in the forbidden
region either a eq. (4.36) becomes negative or no longer a solution of the system of the
nonlinear equations (A.1), (A.2) can be found. The boundary conditions on the spinodal
used here are the same as those in [48]

u(ps;, B) = us(ps;) i=1,2, (4.74)

where pg, (i = 1,2) are approximates for the spinodal densities on the discrete density
grid at a given temperature. Their values are determined by locating the change of sign
of a. ug(p) is the value of the excess internal energy per unit volume where ﬁ = 0. This

value is determined by solving the set of equations

Fon(p, G, GY) = 0 (4.75)

with respect to the G, and GV, providing again the analytic Jacobian matrix of this

nonlinear system. Inserting the solutions G, (p) and GM(p) in the energy equation (4.38)
yields ug(p)-
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Once u(p, B) has been determined by solving the PDE (4.43), the pressure P and the

chemical potential i are obtained by integrating ‘%B—BP and %’Bﬁ’ﬁ with respect to § from

08P ou
—— = - — 4.76
95 u+p o (4.76)
0 0
o _ Ou (4.77)
o)) ap
where we have taken as integration constants at § = 0 the CS values for SP and Su
L+n+n*—n’
ﬂP(p, B= 0) = 3
(1—mn)
8n — 9n? — 3n3

Bulp,=0) = Inp+ (4.78)

1-mn)’

Alternatively, P and (i can be obtained by integrating, respectively,

(aﬁp) 1
8,0 - Xred
0B ,u) 1

— = . 4.79
( 6,0 - pxred ( )

Both paths lead to the same thermodynamics due to the thermodynamic consistency

1 1 :
xred and W with

respect to the density from

enforced by eq. (4.25). However, the latter route has a serious drawback: in order to
reach the high density branch of the subcritical isotherms, that is separated from the low-
density branch by the spinodal, one has to circumvent the forbidden region via a path

‘around’ the coexistence curve.

4.4 Results

Using the formalism presented in the previous section we have investigated four systems -
in the following labeled F0, F1, F2, and F3 whose parameters are summarized in table 4.1.
For the interaction potential of FO we have chosen Ky = 0, i.e. we consider a simple expo-
nential potential w(r) = —ee~?2("~%) as shown in figure 4.1. The interaction potentials of
F1-F3 correspond to one Sogami-Ise tail consisting of two competing terms: an attractive
exponential and a repulsive Yukawa tail. Their parameters are listed in table 4.1. Varying
the value of the ratio —Lszo/ K, from 1.1 (F1) to 0.9 (F3) offers a systematic variation
of the characteristic properties of the interaction potentials: the location of the minimum
of ¢(r) is shifted to larger r values and the contact-value of ¢(r) at the HS diameter
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system

Kg/n LQZQ/TL

FO
F1
F2
F3

0

1
1.1
1
0.9

29 n
1.8 1
1.8 5.18787
1.8 7.19039
1.8 10.53148

Table 4.1: Parameters of the 4 SI systems investigated in this work. The normalization

factors n were chosen so that the minimum of the function w(r) of eq. (4.19) on the

interval [0, 00) is -1.

Figure 4.1: Sogami-Ise interaction potential of systems F0O-F3. Parameters of the systems

are given in table 4.1.
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varies from negative to positive values as shown in figure 4.1. So for F3 a soft repulsive

interaction merges into the infinitely steep repulsive HS wall.

For the 4 systems characterized above, we have calculated thermodynamic properties
and the phase diagrams using the SCOZA as presented before; these results have been
compared with results from the LOGA/ORPA approach [20, 21|, according to which in
equation (4.40) K(p,3) = —f is fixed. This enables us to investigate the effect of self-

consistency on the thermodynamic properties and on the phase behavior.

The LOGA/ORPA results have been obtained by solving the 4n equations (A.1)-(A.4)
in the 4n unknowns {D,, E,,G,,G{"} with a Newton-Raphson technique providing a
4n x 4n analytic Jacobian matrix. In the cases studied here, where the number of Sogami-
Ise tails n = 2, the LOGA/ORPA values of A and C{'®) needed in eqs. (A.1) and (A.2)
are given by A" = 0, ¢ = 27K;(p), AV = 27BeoL,, and C¥) = 27Be0K,. Once
the {D,, E,,G,, G,(})} are known the excess internal energy via the internal energy route
is calculated from eq. (4.38), the compressibility from eqs. (4.35)-(4.37), the pressure and
the chemical potential via the energy route, P¥ and p?, from eqs. (4.76) and (4.77), and

the corresponding quantities via the compressibility route, P¢ and p¢, from egs. (4.79).

Due to the inbuilt consistency SCOZA provides only two pressures in the following
denoted as PPC (via energy/compressibility route) and PV (via the virial route). In
SCOZA and LOGA/ORPA the virial pressure, PV, has been obtained as described in
detail in Appendix C.

In the following, fluid densities and temperatures are given in reduced units, i.e.
p* = po®, T* = kT/e. In figure 4.2 the pressure obtained from SCOZA via the en-
ergy /compressiblity route PP¢ for system F2 is compared with the pressure calculated
within LOGA/OPRA via the 3 different routes to thermodynamics. The LOGA/ORPA
values for PV and P¢ bracket PF (via LOGA/ORPA) which coincides - within the line
thickness - with the SCOZA P”:C. In table 4.2 the SCOZA predictions for the pressure
and the chemical potential are compared with the LOGA/ORPA results for various ther-
modynamic states. For the slightly supercritical thermodynamic state of FO at p* = 0.3
and T* = 2 (see figure 4.3) the agreement is less satisfactory than for the other non-critical
states where the SCOZA and the LOGA/ORPA provide via the energy route results that
are very close together. Within SCOZA discrepancies between pressure values PZ¢ and
PV are observed which are due to the fact that SCOZA in its present form enforces con-
sistency only between the compressibility and the energy routes, and not with the virial
route to thermodynamics. As becomes visible from table 4.2 SCOZA yields liquid-state
pressures from the virial route that are very close to the results for the virial pressure
within the LOGA/ORPA approach.
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— SCOZAEC
10F |- ORPA-E I
ORPA-C
- ORPA-V

BP/p

Il ‘ Il ‘ Il ‘ Il ‘ Il
00 0.2 0.4 0.6 0.8 1

Figure 4.2: Pressure of system F2 at temperature §* = 1/7* = 0.15 obtained from SCOZA
via energy/compressibility route and from LOGA/ORPA via energy, compressibility and

virial route.

SCOZA LOGA/ORPA

system | p*  B* | BP"C/p BPY/p | BP"/p BP/p BPY/p
FO |03 0.5 | 0.35744 0.25720 | 0.35492 0.46559 0.25094
FO |0.8 0.5 | 2.8874 2.7729 | 2.8872 3.2168 2.7703
F2 |03 0.15| 0.61502 0.63693 | 0.61500 0.63383 0.63750
F2 (0.8 0.15| 44201 046125 | 4.4214 4.2573  4.6053

system | p*  B* | Bu”C pu” Bu®
FO |03 0.5 | -2.6379 -2.6365 -2.4114
FO |08 0.5 | 0.6155 0.61582  1.2652
F2 |03 0.15 | -2.16945 -2.1690 -2.1124
F2 |08 0.15]| 3.0519 3.0543  2.8984

Table 4.2: Pressure and chemical potential for systems FO and F2 for selected thermody-
namic states obtained from SCOZA and from LOGA/ORPA via the different routes.
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Internal energy per particle via the energy route and reduced isothermal compress-
ibility via the compressiblity route are compared in table 4.3. Again for the supercritical
state at p* = 0.3 and T* = 2 of system FO the results - especially of 1/x" - differ.

U [eN 1/X7‘ed
system | p*  (B* | SCOZA LOGA/ORPA | SCOZA LOGA/ORPA
FO 0.3 0.5 | -3.2785 -3.2297 0.053807 0.27147
FO 0.8 0.5 | -8.9067 -8.9062 17.028 17.611
F2 0.3 0.15 | -9.1495 -9.1486 0.70248 0.71092
F2 0.8 0.15 | -23.658 -23.659 21.332 20.617

Table 4.3: Reduced internal energy per particle and isothermal compressibility for sys-
tems FO and F2 for selected thermodynamic states obtained from SCOZA and from
LOGA/ORPA.

The phase diagram of the system FO is given in figure 4.3. The SCOZA critical point
has been located by the vanishing of 1/x"?. Below T* the spinodal line was determined
as described in section 4.3. The coexistence curve was obtained by numerically solving
the equilibrium conditions

ulpg, T) = wp,T) (4.80)
P(py,T) = P(p,T) (4.81)

for the two coexisting densities p, and p; of the gas and liquid for a given temperature
T. While the coexistence curve of the SCOZA can be determined up to the critical point,
this is not possible for the LOGA/ORPA: near the critical point no solution of egs. (4.80)
and (4.81) can be found so the two branches remain unconnected. Therefore the critical
point parameters p} and T within the LOGA/ORPA, collected in table 4.4, were obtained
by extrapolation under the assumption that the coexistence curve can be described by a
scaling type law and the law of rectilinear diameters, i.e.

pr— pg=B(T — T.)? (p1+pg)/2 = pe + A(T — T¢) (4.82)
Parameters A,B, and (3 in eqs. (4.82) were fitted to the coexistence curves.

In figure 4.3 also the inconsistency of the LOGA/ORPA becomes visible: the curve
of diverging compressibility falls well inside the liquid-vapor coexistence curve obtained
from the energy route yielding two different critical points. The SCOZA value is closer
to the one derived from the energy route which is known to yield the most accurate ther-
modynamic information from the radial distribution function within the LOGA/ORPA
approach.




