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Meinen Eltern.





Abstract

In an effort to gain more insight into the phase behaviour of binary mixtures in an external

field, we solve the Ornstein-Zernike equation with the mean spherical approximation closure

relation for the symmetrical binary Yukawa mixture in the field ∆µ, i.e. the difference of the

chemical potentials of the two components, and present examples for two different types of

phase diagrams in the space spanned by the temperature, the concentration and the number

density, i.e. a mixed field-density space, and in the (temperature, pressure, ∆µ)-space, i.e.

a field space. Advanced Metropolis Monte Carlo simulation methods, that allow to sample

coexisting phases in a single run, and histogram reweighting techniques are applied to obtain

quantitative results for coexistence lines and critical points for one of the aforementioned

types.
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Chapter 1

Introduction

Nearly all liquids of every day life are mixtures, often of a large number of components, like paint,

blood, drugs, drinks, gas, and oil. It is evident from their omnipresence that the knowledge of

the phase behaviour is important for production processes, technical applications, the design of

liquids with certain properties, and for the developement of new drugs to give a few examples.

Already mixtures of only two components, so called binary mixtures, are very complex and have

too many unknown parameters, so that reasonable models that provide quantitative results are

out of reach. Only by applying simplifications and approximations we can find models that can

be treated in theoretical frameworks and that give results that allow us to predict the phase be-

haviour of more complex mixtures at least at a qualitative level.

The symmetrical binary mixture is considered to be the simplest model for a fluid consisting

of two components. This symmetry is due to the same size of the particles of both species and that

the interaction of like particles is the same in both components. The interaction of dislike particles

is different and is characterised by a single parameter δ which therefore determines the topology

of the phase diagram. The symmetrical mixture can also be used as a model for a one-component

fluid of particles with an additional internal degree of freedom [1], like magnetic [2, 3, 4, 5] and

dipolar [6, 7] fluids, and the Ising-spin fluid [8, 9, 10].

Most studies of the phase behaviour of the symmetrical binary mixure were restricted to the

case that no external field is applied [11, 12, 13]. The types of phase diagrams for systems with-

out an external field can be distinguished by the way the demixing critical line, i.e. the λ-line,

intersects the vapour-liquid coexistence line. Usually they are classified in three types labelled I,

II, and III.

Pini et al. [14] are to our knowledge the first authors that presented isothermal cuts of the phase

diagram of a symmetrical binary mixture in an external field. They applied mean field theory

and hierarchical reference theory to a symmetrical binary mixture of particles that interact via

hard-core Yukawa potentials.

The first aim of this thesis is to extend the inisight into the phase behaviour of these systems

1



2 CHAPTER 1. INTRODUCTION

by applying standard integral equation theory to the symmetrical binary Yukawa mixture, and

present comprehensive phase diagrams in the temperature, concentration, density space and in the

space of temperature, pressure, and the difference of the chemical potentials of the components.

We have chosen the mean spherical approximation (MSA) as closure relation for the Ornstein-

Zernike equation. This method provides semi-quantitive results but has the advantage that we can

solve the Ornstein-Zernike equation for our system to a large extent analytically which reduces

the numerical effort [15, 16, 17, 18]. The phase diagrams that we present for two subtypes of type

II are to our knowledge the first representations of integral equation results for binary mixtures

in a three-dimensional thermodynamic space.

The second aim of this work is to obtain quantitative results for the phase diagram of the system

in an external field by Metropolis Monte Carlo simulation [19, 20, 21]. We used the mulitcanonical

sampling technique [22] in the framwork of the grand canonical ensemble and histrogram reweight-

ing methods [23, 24] for data analysis [25]. We present simulation results for parts of isothermal

cuts and values of critical points in the non-equimolar region which represent to our knowledge

the first Monte Carlo simulation data for a symmetrical binary system in an external field.

The thesis is organised as follows: We present a review of the basic concepts of thermodynamics

and statistical mechanics in chapter 2 and introduce the model for the symmetrical binary Yukawa

mixture in chapter 3. The theoretical foundations of integral equation theory are summarized in

chapter 4 and the Monte Carlo simulation method is explained in chapter 5. The MSA results are

compiled in chapter 6 and Monte Carlo results in chapter 7.



Chapter 2

Basic Concepts

2.1 Introduction

A thermodynamic system is considered to be a substance that is separated from its surround-

ings in a specific way. The systems are classified by the way they can interact with each other, i.e.

by the quantities they can exchange. Isolated systems do not interact with each other at all, on

the contrary to open systems that can exchange energy and particles. Closed systems are not

allowed to exchange any particles but there is the possibility of energy transfer via a diathermic

wall or the exchange of volume.

Let us assumce the substance in consideration consists of N spherically symmetrical, identical

particles and each particle has three translational degrees of freedom. Therefore the microscopic

state of the system is given by 3N configurational coordinates rN = {r1 . . . rN} and 3N mo-

menta pN = {p1 . . .pN}. The enterity of all possible microscopic states of a system defines the

phase-space. The Hamilton function of the system is

H(pN , rN ) = K(pN ) + U(rN ) (2.1)

with the kinetic energy K(pN ) depending only on the momenta and the potential energy U(rN )

depending on the configuration.

Taking only two-body interactions into account the total potential energy U(rN ) can be written

as a sum over the pair potentials φ(ri, rj) and is then called to be pairwise-additive. The value

of φ(ri, rj) is the potential energy of two particles alone at the coordinates ri and rj . Spherically

symmetrical particles are described by spherically symmetrical pair potentials which therefore only

depend on the distance rij = |ri −rj | between the particles. Bringing all these properties together

we can write the total potential energy as

U(rN ) =
N

∑

i=1

N
∑

j=i+1

φ(rij ). (2.2)

3
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2.2 The Ensemble Average

Gibbs introduced the concept of an ensemble which is a collection of a large number of copies of

the system (so called replicas). These replicas have the same macroscopic parameters but they are

in different microscopic states distributed according to the phase-space probability density

f (N)(rN ,pN ; t).

The probability that the system is in a certain microscopic state at a time t can be expressed

as the probability f (N)(rN ,pN ; t)drNdpN that the corresponding point in phase-space is located

in an infinitely small phase-space element drNdpN at the phase-space coordinates (rN ,pN) at the

time t.

For a system in equilibrium the probability density f (N) is time independent and we call it

p(rN ,pN ). The expectation A of an observable A(rN ,pN ) is obtained by the so called ensemble

average, i.e. we measure the quantity of interest in the systems of the ensemble and calculate the

average.

Ensembles are distinguished by their interactions with so called reservoirs and therefore by the

variables that define the macroscopic state of the system. To illustrate that we fix the tempera-

ture of a diathermic system by bringing it in contact with a so called energy reservoir (or heat

bath) which is an infinitely large system at a constant temperature T . This defines the canonical

ensemble consisting of systems with fixed particle number N , volume V , and fixed temperature

T .

2.3 The Canonical and the Grand Canonical Ensemble

2.3.1 The Canonical Ensemble Average

As mentioned in section (2.2) a system in the canonical ensemble has fixed particle number N ,

fixed volume V and is in thermodynamic equilibrium with a heat bath at temperature T . We

define the inverse temperature β = 1
kBT with kB being Boltzmann’s constant.

The canonical equilibrium probability density is given by

p(rN ,pN ) =
1

N !h3N

e−βH(rN ,pN)

QN (V, T )
(2.3)

with the canonical partition function

QN (V, T ) =
1

N !h3N

∫ ∫

drNdpNe−βH(rN ,pN ). (2.4)

h is Planck’s constant and the prefactor h−3N ensures that f (N)(rN ,pN ; t)drNdpN and QN(V, T )

go over to the corresponding quantities of quantum statistics. The factor 1/N ! corrects for the

indistinguishability of the particles.

For the Hamilton function (2.1) the integration over the momenta in equation (2.4) can be per-
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formed analytically. The partition function becomes

QN (V, T ) =
1

N !Λ3N
ZN(V, T ) (2.5)

with the configurational part of the partition function ZN(V, T ) defined as

ZN (V, T ) =

∫

drNe−βU(rN ). (2.6)

Above we have introduced the de Broglie thermal wavelength Λ which is defined as

Λ =

(

2πβ~
2

m

)
1
2

. (2.7)

The ensemble average of an observable A(rN ,pN ) in the canonical ensemble is given by

〈A〉 =

∫ ∫

drNdpNp(rN ,pN)A(rN ,pN)

=
1

N !h3NQN(V, T )

∫ ∫

drNdpNA(rN ,pN )e−βH(rN ,pN )

=
1

∫ ∫

drNdpNe−βH(rN ,pN )

∫ ∫

drNdpNA(rN ,pN )e−βH(rN ,pN). (2.8)

2.3.2 The Grand Canonical Ensemble Average

A system in the grand canonical ensemble has fixed temperature T , fixed volume V , and fixed

chemical potential µ.

The grand canonical partition function is given by

Q(µ, V, T ) =

∞
∑

N=0

1

h3NN !

∫ ∫

drNdpNe−β(H(pN ,rN )−µN) (2.9)

and can be rewritten for the Hamilton function (2.1) as

Q(µ, V, T ) =

∞
∑

N=0

1

Λ3NN !

∫

drNe−β(U(rN)−µN). (2.10)

The ensemble average of an observable A(rN ,pN ) in the grand canonical ensemble is given by

〈A〉 =

∞
∑

N=0

1

N !h3NQ(µ, V, T )

∫ ∫

drNdpNA(rN ,pN )e−β(H(rN ,pN )−µN). (2.11)

2.3.3 Thermodynamic Potentials

The macroscopic quantities that define the thermodynamic state of a system are called state

variables. A thermodynamic potential is a function of the state variables that is capable of

describing the thermodynamic behaviour of a system. All thermodynamic equilibrium properties

can be calculated by derivatives of the potential which give the so called equations of state.

Every thermodynamic potential can be expressed as logarithm of the corresponding partition func-

tion.
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The Helmholtz free energy is the thermodynamic potential of the canonical ensemble and

therefore it is proportional to the logarithm of the canonical partition function

F = − 1

β
ln QN(V, T ). (2.12)

Introducing the partition function of a gas of non interacting particles, i. e. the ideal gas,

Qid
N (V, T ) =

1

N !Λ3N
V N (2.13)

we can rewrite the canonical partition function as

QN (V, T ) =
ZN (V, T )

V N
Qid

N (V, T ). (2.14)

Thus the free energy can be written as a sum of the free energy of the ideal gas F id (ideal part)

and the excess part F ex that contains the contributions to F caused by the interaction of particles

F = F id + F ex. (2.15)

Using Stirling’s approximation for large N the ideal free energy is

βF id = ln ρ + 3 lnΛ − 1 (2.16)

and the excess free energy in the canonical ensemble is given by

F ex = − 1

β
ln

ZN (V, T )

V N
. (2.17)

We also can split up the internal energy U

U = U id + U ex (2.18)

in an ideal part U id = 3
2NkBT and the excess part

U ex =
1

ZN(V, T )

∫

drNU(rN )e−βU(rN). (2.19)

2.4 Structural Functions

2.4.1 n-Particle Density

The n-particle density is defined as

ρ
(n)
N (r1, . . . , rn) ≡ ρ

(n)
N (rn) =

〈

N
∑

i1=1

N
∑

i2=i1+1

. . .
N

∑

in=in−1+1

n
∏

j=1

δ(rj − r′ij
)

〉

. (2.20)

Multiplying ρ
(n)
N (rn) by its normalisation constant (N−n)!

N ! we can write the probability p
(n)
N (rn) of

finding n particles in a volume drn at the coordinates rn as

p
(n)
N (rn) =

(N − n)!

N !
ρ
(n)
N (rn)drn. (2.21)
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In the canonical ensemble the n-particle density is given by

ρ
(n)
N (rn) =

N !

(N − n)!

1

N !h3NQN(V, T )

∫ ∫

dr(N−n)dpNe−βH(rN ,pN ). (2.22)

If the Hamilton function H(rN ,pN ) is of form (2.1) the ensemble average simplifies to

ρ
(n)
N (r) =

N !

(N − n)!

1

ZN

∫

dr(N−n)e−βU(rN). (2.23)

For the 1-particle density of a spatially homogeneous system we get

∫

ρ
(1)
N (r)dr = ρV = N ⇒ ρ =

N

V
. (2.24)

2.4.2 n-Particle Distribution Function

The n-particle distribution function is defined as

g
(n)
N (rn) =

1

ρ
(1)
N (r1) . . . ρ

(1)
n (rn)

ρ
(n)
N (rn), (2.25)

and reduces for a spatially homogeneous system to

g
(n)
N (rn) =

1

ρn
ρ
(n)
N (rn). (2.26)

The pair distribution function g
(2)
N (r1, r2) for a spatially homogeneous and isotropic system

only depends on the distance r = |r1 − r2| and is then called radial distribution function

g(r). For separation distances much larger than the range of the interaction potential the pair

distribution function approaches the ideal-gas limit

lim
r→∞

g(r) = 1 − 1

N
(2.27)

which reads in the thermodynamic limit

lim
r→∞

g(r) = 1. (2.28)

We can use the radial distribution function to calculate the mean number of particles in a spherical

shell around a reference particle. If the shell extends from a distance r to r+dr from the reference

particle, the mean number of particles in this shell is given by

n(r)dr = 4πr2ρg(r)dr. (2.29)

Another useful correlation function is the total correlation function h(r) which is defined as

h(r) = g(r) − 1. (2.30)

For mixtures of n components we introduce the partial pair distribution function gij(r). The

radial distribution function gij(r) is related to the probability that for a particle of component i a

particle of component j can be found in a distance r. The total correlation function between two

particles of species i and j is hij(r) = gij(r) − 1.
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2.4.3 Structure Factor

The static structure factor is an autocorrelation function of special importance because it can

be directly measured through scattering experiments with neutrons or X-rays. The static structure

factor is defined as

S(k) =
1

N
〈ρk ρ−k〉 (2.31)

with ρk being the Fourier transform of the 1-particle density ρ(r)

ρk =

∫

dr ρ(r)e−ik·r. (2.32)

For a spatially homogeneous and isotropic fluid the structure factor can be written as Fourier

transform of the total correlation function h(r) = g(r) − 1

S(k) = 1 + ρ

∫

drh(r)e−ik·r. (2.33)

The above definitions are easily extended to mixtures with n components labelled i and j. The

partial structure factors are defined as

Sij(k) =
1

N
〈ρi

k ρj
−k〉 (2.34)

and can be written as integrals over the partial pair distribution functions gij(r)

Sij(k) = δij + (ρiρj)
1
2

∫

dr e−ik·r[gij(r) − 1]. (2.35)

2.4.4 The Equation of State

As mentioned in section (2.3.3) an equation of state is a relation between the macroscopic prop-

erties that defines the thermodynamic state of a system. Given the equation of state all other

thermodynamic properties can be derived. For a pairwise-additive interaction potential (equation

(2.2)) all thermodynamic properties can be written as integrals over the radial distribution func-

tion. We introduce the pressure p and the isothermal compressibility χT.

The energy equation is given by

U ex

N
= 2πρ

∫ ∞

0

dr φ(r)g(r)r2 . (2.36)

The pressure or virial equation reads

βp

ρ
= 1 − 2

3
πβρ

∫ ∞

0

dr
dφ(r)

dr
g(r)r3. (2.37)

The compressibility equation can only be derived in the grand canonical (TV µ) ensemble. The

result is also valid for interparticle forces which are not pairwise-additive:

ρχT

β
= 1 + ρ

∫

dr [g(r) − 1] (2.38)

If we know the radial distribution function exactly the equations of state yield the same thermo-

dynamic properties. Usually this is not the case. Depending on which equation we use to derive

thermodynamic properties we call it the energy, the pressure, or the compressibility route.
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2.5 Phase Transitions

2.5.1 Equilibrium

Let us assume we have two systems I and II of a n-component fluid. These systems are thermo-

dynamically open, i.e. they can exchange energy and particles. They are in thermodynamic

equilibrium with each other if the temperature, the pressure, and the chemical potentials are

the same in each system.

T (I) = T (II) p(I) = p(II) µ
(I)
i = µ

(II)
i for i = 1 . . . n (2.39)

These conditions are called thermal, mechanic, and material equilibrium.

2.5.2 Phase Stability

A phase can be described as a spatially homogeneous state of matter. Phases can differ in many

respects, such as structure, density, composition, order or symmetry for example. The requirement

of thermal stability is expressed by

−T

(

∂2F

∂T 2

)

V,N

= cV > 0. (2.40)

where cV is the specific heat at constant volume V .

A one-component system can only be in a single phase if it is mechanically stable

V

(

∂2F

∂V 2

)

T,N

= χ−1
T ≥ 0. (2.41)

Using the more familiar expression

χT = − 1

V

(

∂V

∂p

)

T,N

(2.42)

for the isothermal compressibility we can see that the condition of mechanical stability states

that the pressure p cannot decrease with decreasing volume V . The limit of stability is given

by χ−1
T = 0 and defines the so called spinodal line (or surface in general) in the space of state

variables.

A mixture also has to have material stability which is expressed by

(

∂2G

∂x2
i

)

T,p,N

≥ 0 (2.43)

with xi being the mol fraction of species i.

If mechanical stability is violated, that is the isothermal compressibility is negative, the free

energy of the fluid is lowered by splitting in two phases with different densities. The violation of

material stability leads to a separation into phases with different concentrations in order to lower

the Gibbs free energy.
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2.5.3 Phase Coexistence

At the phase transition two (or more) phases are in thermodynamic equilibrium that is in

coexistence. Therefore the system consists of two (or more) regions which are themselves spatially

homogeneous. For a mixture of n components where np phases are in coexistence the variance

or degree of freedom F is given by Gibbs’ phase rule

F = n + 2 − np. (2.44)

The variance is the number of intensive variables of the system that can be changed without de-

stroying phase coexistence. As example we consider a one-component fluid (n = 1). The state is

defined by the two intensive variables temperature T and pressure p. If we have a vapour-liquid

transition two phases are in coexistence (np = 2). Therefore the degree of freedom is F = 1 and

we can vary the pressure for example. Thus the temperature T (p) is a function of the pressure

which defines a one dimensional coexistence line in the T−p plane. This is an example for a phase

diagram, a term that is usually used for any visualisation of the phase behaviour of a system.

At a phase transition the thermodynamic potential has a singularity. If any of the first derivatives

of the thermodynamic potential has a finite discontinuity it is called a first-order phase tran-

sition. At a continuous or critical phase transition the first derivatives are continuous and

at least one of the second derivatives shows a discontinuity or divergence [26].

2.5.4 The Order Parameter

Phase transitions can also be characterised by the behaviour of an order parameter which was

introduced by Landau in the late 1930s. At a first order phase transition the order parameter

changes discontinuously as one crosses the coexistence curve. At a continuous phase transition the

symmetry of the system is always broken and the order parameter becomes non zero. An order

parameter describing the vapour-liquid transition is the difference of the particle number densities

of the vapour and the liquid phase.

2.5.5 Critical Phenomena

At a critical point a continuous phase transition occurs, specified by the critical temperature Tc and

the critical pressure pc. In the following we define a measure for the deviation of the temperature

T from Tc as

t =
T − Tc

Tc
. (2.45)

Some of the second derivatives of the thermodynamic potential which correspond to thermody-

namic properties (like specific heat cV and isothermal compressibility χT) show divergencies at a

critical point. The behaviour of these quantities close to the critical point (t → ±0) is described

via a power-law. Introducing critical exponents some of them are summarised for fluid systems

in table 2.1 [26], where we introduce the correlation length ξ. One possible definition for this

quantity is given by the length scale of the exponential decay e−r/ξ with distance r of the order

parameter correlation function.

The critical exponents depend only on a few fundamental parameters, e.g. for short-range in-

teractions the critical exponents depend on the dimensionality of space d and the symmetry of
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specific heat (at constant volume) cV ∼ |t|−α

liquid-gas density difference (ρliq − ρvap) ∼ (−t)β

isothermal compressibility χT ∼ |t|−γ

critical isotherm (t = 0) p − pc ∼ |ρliq − ρvap|δsgn(ρliq − ρvap)

correlation length ξ ∼ |t|−ν

pair correlation function at Tc g(r) ∼ 1
rd−2+η

Table 2.1: Definitions for critical exponents for fluid systems.

the order parameter. Therefore models can be assigned to so called universality classes which

comprise systems with the same set of critical exponents and therefore show the same critical

behaviour. These classes are named after their most prominent member like the 2d and 3d Ising,

3d X-Y, 3d-Heisenberg, and the 2d Potts universality class.

2.5.6 Field Space

Griffith and Wheeler [27] introduced the concepts of fields and densities in addition to the con-

cept of intensive and extensive quantities. Extensive variables add up if two identical systems

are combined whereas intensive quantities do not change. Temperature, pressure, and number

density are intensive, the particle number and the volume are extensive quantities. Intensive vari-

ables are now further classified in fields and densities. Fields are quantities that have the same

value at first-order phase transitions like temperature and pressure whereas densities have different

values.

A system with q independent thermodynamic quantities can be characterised by q + 1 fields fi.

One of these fields can be regarded as a function of the others and is therefore called potential.

For the coexistence of two phases I and II, (q + 1) field equations have to be fulfilled

f
(I)
i = f

(II)
i i = 0 . . . q (2.46)

which defines a (q − 1) dimensional hypersurface in the q dimensional field space. In a system of

n components we need n + 1 independent quantities (q = n + 1). For a binary mixture (q = 3) we

get 2-dimensional coexistence surfaces in the 3-dimensional field space.

A (q − 1)-dimensional hypersurface can . . .

1. end in a (q − 2)-dimensional hypersurface if the limit of the definition of a field is reached,

e.g. if one of the components is no longer present.

2. cut another (q − 1)-dimensional hypersurface in a (q − 2)-dimensional ”triple-point” hyper-

surface.

3. end in a (q − 2)-dimensional ”critical-point” hypersurface.

At a critical end-point two phases become critical while in coexistence with a third phase (the so

called spectator phase). Therefore in field space a line of triple-points meets a line of critical points.
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At a tricritical point three phases become one critical phase which means that in field space

three lines of critical points meet a line of triple-points.

A phase diagram in field space has less information than a phase diagram in a mixed field-density

space. The advantage is that properties like critical end-points can be easily identified[28].



Chapter 3

The Symmetrical Binary Mixture

3.1 The Binary Yukawa Mixture

The hard-core Yukawa potential consists of a hard-core and an attractive tail (see figure 3.1). The

interaction potential of a binary Yukawa mixture is defined as

φij(r) =

{

∞ r < σij

−σijεij

r e−z(r−σij) r ≥ σij i, j = 1, 2
(3.1)

where the σi are the hard-core diameters of particles of species i,

σij =
σi + σj

2
(3.2)

gives the distance of closest approach between particles of species i and j, and the εij measure

the interaction strength between them. z is the so called inverse range parameter that scales the

range of the potential.

Such a mixture is called symmetrical if the hard-core diameters are equal and if the interaction

strength of like particles is the same for the two components, i.e.

ε ≡ ε11 = ε22, (3.3)

and only the interaction between dislike particles is different. Therefore we introduce the ratio of

the interaction strengths of dislike to like particles, δ, which is defined as

δ ≡ ε12

ε
=

ε21

ε
. (3.4)

We choose for the inverse range parameter

z =
1.8

σ
. (3.5)

To this mixture we apply the field

∆µ = µ1 − µ2 (3.6)

which is the difference of the chemical potentials of the two species.

13
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zσ = 1.8
zσ = 0.5
zσ = 5

Figure 3.1: The hard-core Yukawa potential for different values of the inverse range parameter z.

3.2 General Properties

In mixtures we have in addition to the vapour-liquid transition, transitions between mixed and

demixed fluids and between and an A rich and a B rich phase. The latter two are called mixing-

demixing and demixing transition, respectively.

The phase diagrams of a symmetrical binary mixture can be distinguished by the way the demixing

critical line, i.e. the so called λ-line, intersects the vapour-liquid coexistence line [11] .

• Type I: The λ-line intersects the vapour-liquid curve in a critical end point.

• Type II: The λ-line ends in a tricritical point and we find a triple point.

• Type III: The λ-line ends in a tricritical point we do not have a triple point.

At the triple point mentioned above and denoted in figure 3.2 a vapour coexists with a mixed

liquid and a demixed liquid, which itself consists of an A rich and a B rich phase. Therefore it is

a point where four phases are in coexistence and we call it quadruple point.
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concentration fluctuations are strongest on the l line, one
expects that alterations to the LV coexistence behavior will
be greatest where this line approaches the LV coexistence
curve.

Perhaps not surprisingly, binary fluids mixtures are not
the only fluid systems in which first-order phase coexistence
behavior is influenced by the proximity of a critical line. The
earliest sightings of such effects appears to have been in
analytical studies of various lattice-based fluid models @3–5#.
Some time later, a detailed Landau theory study of a model
for sponge phases in surfactant solution @6# revealed a rich
variety of first-order phase behaviors as the path of the l line
was varied. More recently, similar behavior was uncovered
in extensive mean-field and density-functional theory inves-
tigations of a number of symmetrical continuum fluid mod-
els, namely, the classical Heisenberg spin fluid @7–10#, a
dipolar fluid model @11,12#, and the van der Waals–Potts
fluid @13#.

Despite dealing with ostensibly quite distinct models, the
gross features of the mean-field phase behavior emerging
from these studies appears to be essentially model indepen-
dent. This behavior is illustrated schematically in Fig. 1 and
involves three possible LV phase diagram topologies, de-
pending on the path of the critical line relative to the LV line.
To describe this behavior we shall employ the language of
the symmetrical binary fluid. In so doing, we anticipate the
result of Secs. III and IV, namely, that the same scenario is
played out in this case too. Of course, to obtain the corre-
sponding behavior for other systems, e.g., the magnetic or
dipolar fluids, one need only substitute the appropriate no-
menclature, e.g., ‘‘mixed fluid’’ → ‘‘paramagnetic fluid.’’

Figure 1~a! depicts schematically the mean-field phase
diagram obtained when the model parameters are chosen
such that the l line approaches the first-order phase bound-
ary well below the liquid-vapor critical point. In such a situ-
ation, the l line intersects the LV line at a critical end point
~CEP!. At the CEP, a critical liquid coexists with a noncriti-
cal vapor. Below the CEP temperature one finds a triple line
in which a vapor coexists with an A-rich liquid and a B-rich
liquid. Owing to the symmetry, these two liquids have the
same density.

Alternatively, for different model parameters, the l line
may intersect the LV line at the liquid-vapor critical point
@Fig. 1~c!#. Under such conditions, phase coexistence be-
tween the vapor and the mixed fluid is preempted by the
demixed fluid phase. One then obtains a tricritical point
@14,15# in which three phases ~a vapor, an A-rich liquid, and
a B-rich liquid! simultaneously become critical.

The intermediate situation is shown in Fig. 1~b! and oc-
curs when the l line approaches the LV line at a temperature
somewhat ~but not greatly! below the liquid-vapor critical
temperature. In this case, the phase diagram combines the
features of the previous two cases. One finds a triple point in
which a vapor coexists with a mixed liquid at intermediate
density and a demixed liquid of higher density @16#. Above
the triple-point temperature, a demixed vapor and a demixed
liquid coexist at low and moderate densities, becoming iden-
tical above the liquid-vapor critical point. At higher densi-
ties, a mixed liquid and the demixed liquid coexist, becom-
ing identical at a tricritical point.

That the scenario described above is generic to a range of

apparently distinct fluid models ~e.g., dipolar, magnetic, and
binary fluids! is perhaps slightly surprising at first sight. On
closer examination, however, it becomes clear that the model
differences are only superficial. All the systems in which this
behavior has yet been identified can, in essence, be regarded
as fluids in which each particle carries an internal degree of
freedom, e.g., a spin or dipolar moment. The symmetrical
binary fluid model shares this behavior because the particle
species label is analogous to a two-state ‘‘spin’’ variable.

Notwithstanding the substantial body of analytical evi-
dence supporting the scenario of phase behavior shown in
Fig. 1, it must necessarily be regarded as somewhat tentative

FIG. 1. Schematic representation of the three types of phase
diagram for a symmetrical binary fluid mixture in the density-
temperature plane, as described in the text. The full curve is the
first-order liquid-vapor coexistence envelope, while the dashed
curve is the l line of critical demixing transitions.

2202 PRE 58N. B. WILDING, F. SCHMID, AND P. NIELABA

Figure 3.2: Schematic representations of the phase diagram of the symmetrical binary mixture for

∆µ = 0, labelled I, II, and III from top to bottom [11].
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3.2.1 Reduced Units

Values of variables in tables and figures are presented in reduced units which are given by

T ∗ =
kBT

ε
(3.7)

ρ∗ = ρσ3 (3.8)

p∗ =
pσ3

ε
(3.9)

(3.10)

In the following we omit the star. Chemical potentials are given in units of kBT .
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Integral Equation Theory

4.1 Ornstein-Zernike Equation

The Ornstein-Zernike equation [29, 30, 31] can be considered the defining relation for the direct

correlation function c(2)(r1, r2):

h(2)(r1, r2) = c(2)(r1, r2) +

∫

d3r3ρ
(1)(r3)h

(2)(r1, r3)c
(2)(r3, r2) (4.1)

Inserting this expression for the total correlation function h(2) into the right hand side and iterating

this replacement leads to the infinite sum

h(2)(r1, r2) = c(2)(r1, r2) +

∫

d3r3ρ
(1)(r3)c

(2)(r1, r3)c
(2)(r3, r2) +

+

∫∫

d3r3d
3r4ρ

(1)(r3)ρ
(1)(r4)c

(2)(r1, r3)c
(2)(r3, r4)c

(2)(r4, r2) + . . . . (4.2)

The first term on the right hand side is the direct correlation function of two particles at positions

r1 and r2. The other terms account for the indirect correlation between the two particles which

is caused by the correlation mediated by an increasing number of particles located at (r3, r4 . . .).

For a spatially homogeneous and isotropic system the Ornstein-Zernike equation simplifies to

h(r) = c(r) + ρ

∫

d3r′h(r′)c(|r − r′|). (4.3)

A Fourier transform of both sides of the Ornstein-Zernike equation (4.3) leads to

h̃(q) = c̃(q) + ρc̃(q)h̃(q) (4.4)

=
c̃(q)

1 − ρc̃(q)
, (4.5)

which is a very convenient form because the integral equation reduces to an algebraic equation for

the Fourier transforms of the direct and the total correlation function.

The Ornstein-Zernike equation can be generalised to mixtures of n components:

hij(r) = cij(r) +

n
∑

k=1

ρk

∫

d3r′hik(r′)ckj(|r − r′|) i, j = 1 . . . n (4.6)

17
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Closure Relation

The Ornstein-Zernike equation (4.3) relates two unknown functions h(r) and c(r). A closure

relation is an additional equation which provides a relation between the functions h(r), c(r), and

the pair potential φ(r). The cluster expansion of the radial distribution function leads to

g(r) = e−βφ(r)+h(r)−c(r)+B(r). (4.7)

The bridge function B(r) stands for an infinite sum of terms represented by so called ”bridge

diagrams” [30]. If we knew the bridge function exactly, then equation (4.7) would be the exact

closure. Unfortunately the exact B(r) is not known for any system. Therefore approximations

have to be applied which leads to several different closure relations like Percus-Yevick, hypernetted

chain, and the mean spherical approximation.

Mean Spherical Approximation

The mean spherical approximation (MSA) was introduced by Lebowitz and Percus as gener-

alisation of the mean spherical model of Ising spin systems [32]. It is often used as closure relation

for potentials with a hard core (hard core diameter σ) and a (predominantly attractive) tail φ(r).

The MSA closure relation is given by

φ(r) =

{

∞ r < σ

φ(r) r ≥ σ
(4.8)

g(r) = 0 r < σ

c(r) = −βφ(r) r ≥ σ.
(4.9)

The first expression of equations (4.9) is called core condition. It represents the impenetrability of

the potentials and is an exact expression, whereas the second relation is only true in the limit of

infinite separation (limr→∞ c(r) = −βφ(r)). The Ornstein-Zernike equation in combination with

the mean spherical approximation as closure can be solved analytically for a number of potentials

including hard-core Yukawa.

4.2 The Yukawa Mixture

The hard-core Yukawa potentials for a n-component mixture can be parameterised as

φij(r) =

{

∞ r < σij

−σijεij

r e−z(r−σij) r ≥ σij i, j = 1 . . . n
(4.10)

z is the inverse range parameter and the εij measure the interaction strength. The hard-core

diameter of the particles of component i is σi. The distance of closest approach between particles

of species i and j therefore is σij = (σi+σj)/2. The mean spherical approximation for this mixture

reads
hij(r) = −1 r < σij

cij(r) = Kij
e−z(r−σij )

r r ≥ σij

(4.11)

with

Kij =
σij εij

kBT
. (4.12)
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Blum and Høye [17][18] proposed an analytic solution of Baxter’s factorised version [33] of the

Ornstein-Zernike equation with the mean spherical approximations as closure. We use the expres-

sion introduced by Arrieta et. al. [15][16] and write the Ornstein-Zernike equation as

2πrcij(r) = −Q′
ij(r) +

∑

l

ρl

∫ ∞

λlj

Qjl(t)Q
′
il(r + t)dt

2πrhij(r) = −Q′
ij(r) + 2π

∑

l

ρl

∫ ∞

λjl

(r − t)hil(|r − t|)Qlj(t)dt. (4.13)

The Qij(r) are the so called factor correlation functions and the λij are defined as λij =

(σj − σi)/2.

The two sets of equations (4.13) have 3n2 unknowns {cij}, {hij} and {Qij} but each set only

consists of n2 equations. The mean spherical approximation closure of equation (4.11) provides

the needed n2 additional equations. Considering equations (4.13) under the conditions given by

equations (4.11) the factor correlation functions have to have the following form:

Qij(r) = Q0
ij(r) +

1

z
Dije

−z(r−σij) (4.14)

Q0
ij(r) =

{

aij

2 (r − σij)
2 + bij(r − σij) + 1

z Cij

(

e−z(r−σij) − 1
)

λji ≤ r < σij

0 r ≥ σij

. (4.15)

To determine the factor correlation functions we have to know the coefficients {aij}, {bij}, {Cij},
and {Dij}. It is mathematically more convenient not to use equations (4.13) directly but rewrite

them as

∑

lmk

A
(1)
mkjlGkmDmlDil +

∑

lm

A
(2)
mjlDmlDil +

∑

l

A
(3)
jl Dil + A

(4)
ij = 0

∑

lmk

B
(1)
mkljGkmDmjGil +

∑

mk

B
(2)
mkijGkmDmj+

+
∑

lm

B
(3)
mljDmjGil +

∑

m

B
(4)
mijDmj +

∑

l

B
(5)
lj Gil + B

(6)
ij = 0. (4.16)

These are 2n2 nonlinear algebraic equations with 2n2 unknown coefficients {Dij} and {Gij}. The

coefficients A( )
... and B( )

... only depend on σi, εij , z, ρi and T and can be found in appendix A.

The {Gij} are integrals of the radial distribution function gij(r)

Gij = z

∫ ∞

0

re−z(r−σij)gij(r)dr. (4.17)

Equations (4.16) have to be solved numerically and therefore an initial estimate for the solution

is needed. The A
(4)
ij are the only coefficients that depend on the energy-related quantities εij and

T and we expand them into a Taylor series from the infinite temperature limit up to the first non

zero terms which gives two systems of linear equations

∑

l

A
(3)
jl Dil = −A

(4)
ij

∑

l

B
(5)
lj Gil = −B

(6)
ij . (4.18)
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These equations provide a very good initial estimate.

The coefficients {aij}, {bij}, and {Cij} of the factor correlation functions can be expressed by

the solutions to equations (4.16) (see appendix A).

Physical Solutions

Pastore [34] proved that whenever the Ornstein-Zernike equation with the MSA closure has a

solution, this solution is unique and physical. The uniqueness is only valid within the class of

correlation functions that correspond to positive and finite structure factors. Because of the fact

that we do not solve the Ornstein-Zernike equations directly but use equations (4.16) we have to

demand the invertibility of the matrix of factor correlation functions. This condition requires that

∆(t) = det
(

δij +
√

ρiρjQ̂ij(t)
)

(4.19)

has no zeros in the complex right half-plane of the t variable. The Q̂ij(t) are the Laplace transforms

of the factor correlation functions

Q̂ij(t) =

∫ ∞

λji

e−trQij(r)dr. (4.20)

If t is real then ∆(t) is a real and continuous function and limt→∞ ∆(t) = 1. So if ∆(0) ≤ 0 then

∆(t) has to cross the t-axis at least once. In this case the solution is rejected. We use this as

simplified criterion for a physical solution although accepting the solution for ∆(0) > 0 is only a

practical rule.

4.3 Thermodynamic Properties

With the mean spherical approximation as closure, energy derived properties are usually more

accurate than by any other route [36]. In the following we will present expressions for the excess

(over the hard-sphere reference system) pressure and chemical potential. The corresponding prop-

erties of the reference system are given by the Carnahan-Mansoori-Starling-Leland equation

of state (CMSL). Introducing ξi = π/6
∑

j ρjσ
i
j and η = ξ3, i. e. the packing fraction, the CMSL

expression for the pressure of the hard-sphere mixture is

pCMSL

ρkBT
=

1

1 − η
+

18(ξ1ξ2 + ξ2
2)

πρ(1 − η)2
+

6ηξ3
2

πρ(1 − η)3
(4.21)

and the chemical potential of component i is given by

µCMSL
i

kBT
= ln

(

ρi

1 − η

)

+
π
6 ρσ3

i + 3σiξ2 + 3σ2
i ξ1

1 − η
+

3σ3
i ξ1ξ2 + 3σ3

i ξ2
2

(1 − η)2
+

+
3σ2

i ξ2
2

η(1 − η)2
+

3σ2
i ξ2

2 ln(1 − η)

η2
− (σ3

i ξ3
2)(2 − 5η + η2)

η2(1 − η)3
− 2σ3

i ξ3
2 ln(1 − η)

η3
.

(4.22)

(4.23)

The excess pressure calculated by the energy route is given by

∆pE

ρkBT
=

π

3
ρ

∑

ij

xixjσ
3
ij{[gij(σij)]

2 − [g0
ij(σij)]

2} + J (4.24)
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where

g0
ij(σij) =

1

σij(1 − η)3
[
3

2
σiσjξ2 + σij(1 − η)] (4.25)

gij(σij) =
1

2πσij
(bij − Cij) (4.26)

J =
2π

3
ρ

∑

ij

xixjKij

(

G′
ij −

1

z
Gij

)

(4.27)

G′
ij = −z

∫ ∞

σij

dr r2e−z(r−σij)gij(r). (4.28)

The excess chemical potential for the component i is

∆µi

kBT
= −2π

z

∑

j

ρjKijGij −
1

2

∑

j

ρj [c̃ij(0) − c̃0
ij(0)] (4.29)

with

c̃ij(0) = 4π

∫ ∞

0

r2cij(r)dr. (4.30)

while the c̃0
ij(0) correspond to the hard-sphere case (see appendix A).
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Chapter 5

Monte Carlo Simulations

5.1 Introduction

The Monte Carlo simulation method [19][20][21] is used to obtain estimates for the ensemble av-

erage of observables which only depend on the configurational variables.

To introduce the concepts of Monte Carlo simulation we work in the canonical ensemble which

means that the system has fixed particle number N , volume V and temperature T .

The Hamilton function of the system is H(pN , rN ) = K(pN ) + U(rN ) with the the kinetic en-

ergy K(pN ) and the potential energy U(rN ). Macroscopic properties are calculated as ensemble

averages of observables

〈A〉 =

∫

dpNdrNA(pN , rN ) exp(−βH(pN , rN ))
∫

dpNdrN exp(−βH(pN , rN )
. (5.1)

If the observable of interest only depends on the configurational variables the ensemble average

reduces to

〈A〉 =

∫

drNA(rN ) exp(−βU(rN ))
∫

drN exp(−βU(rN ))
. (5.2)

We can define the configurational part of the partition function as

Z ≡
∫

drN exp(−βU(rN )). (5.3)

5.2 Theoretical Background

5.2.1 The Estimator

The ensemble average of an observable can be estimated by generating configurations rN
µ corre-

sponding to a probability distribution p(rN
µ ) and evaluating the so called estimator

〈A〉 ≈
∑n

µ=1 A(rN
µ )p−1(rN

µ )(exp(−βU(rN
µ ))

∑n
µ=1 p−1(rN

µ ) exp(−βU(rN
µ ))

≡
∑n

µ=1 Aµp−1
µ exp(−βUµ)

∑n
µ=1 p−1

µ exp(−βUµ))
. (5.4)

23
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If all configurations have equal probabilities (i.e. the probability distribution is constant for all

configurations) equation (5.4) reduces to

〈A〉 ≈
∑n

µ=1 Aµ exp(−βUµ)
∑n

µ=1 exp(−βUµ))
. (5.5)

This is the so called simple or direct sampling which is not very efficient for most cases. The

reason is that most of the randomly generated configurations rN
µ will have large energies Uµ. So

the factor e−βUµ is small for these configurations and they do not contribute very much to the

average.

Rewriting equation (5.2) as

〈A〉 =

∫

drNA(rN )
exp(−βU(rN ))

∫

dr′N exp(−βU(r′N ))
=

∫

drNA(rN )
exp(−βU(rN ))

Z
(5.6)

we can see that the Boltzmann distribution

pµ =
exp(−βUµ)

Z
(5.7)

is the probability density of finding the system in the configuration µ. If we are able to generate

configurations that are distributed according to the Boltzmann distribution, then the average

could be simply estimated by

〈A〉 ≈ 1

n

n
∑

µ=1

Aµ. (5.8)

This is achieved by producing the sequence of configurations via a so called Markov process.

5.2.2 Metropolis Monte Carlo Simulation

In a Markov process [37][20] a new state ν is randomly generated out of a state µ with a

probability P (µ → ν). These transition probabilities have to fulfil three conditions to satisfy

the definition of a Markov process. The first is that they have to be time independent. Second,

they do not depend on the previous history of the process but only on the two states µ and ν.

The last condition they have to fulfil is the sum rule

∑

ν

P (µ → ν) = 1 (5.9)

which expresses the fact that the process has to generate a state although the initial state and the

generated state can be identical, i.e. P (µ → µ) need not to be zero.

In a Monte Carlo simulation we use a Markov process repeatedly to generate a so called Markov

chain of states.

The Master Equation

The master equation governs the stochastic dynamics of Markov processes. It is a very impor-

tant and general equation of statistical physics that has been applied to many different problems

in physics, chemistry, and biology like population dynamics, laser physics, Brownian motion, semi-

conductors, to name a few examples.



5.2. THEORETICAL BACKGROUND 25

We define the probability that the system is in a state µ at the time t as weight wµ(t). The

fact that the system has to be in some state at each moment t is expressed by

∑

µ

wµ(t) = 1 ∀t. (5.10)

A macroscopic quantity can be calculated as expectation of an observable at a time t

〈A〉t =
∑

µ

Aµwµ(t). (5.11)

The set of weights {wµ(t)} is the solution of the following set of differential equations which is

called the master equation

dwµ

dt
=

∑

ν

[wν(t)P (ν → µ) − wµ(t)P (µ → ν)] , (5.12)

with the time independent transition probabilities P (µ → ν).

The master equation gives the rate of change
dwµ

dt of the probability of finding the system in

a state µ at a time t, which is given by the weight wµ(t). This rate is built up by transitions into

the state µ from all other states ν which is given by the first term, and due to transitions out of

the state µ into all other states ν which is expressed by the second term on the right-hand side of

equation (5.12).

Equilibrium

If the system is in thermodynamic equilibrium the weights {wµ(t)} are time independent. These

constant weights imply that the terms on the right-hand side of equation (5.12) cancel one another.

Because of the mathematical properties of equation (5.12) and with (5.9) as constraint, the rate
dw(t)

dt will vanish in the limit t → ∞ for all solutions of the master equation. Thus we can define

equilibrium occupation probabilities as

pµ = lim
t→∞

wµ(t). (5.13)

The master equation for a system in equilibrium reduces to

∑

ν

[pνP (ν → µ) − pµP (µ → ν)] = 0 (5.14)

which can be rewritten as
∑

ν

pµP (µ → ν) =
∑

ν

pνP (ν → µ) (5.15)

and which leads in combination with the sum rule (5.9) to

pµ =
∑

ν

pνP (ν → µ). (5.16)

If we use transition probabilities P (µ → ν) satisfying equation 5.16 in a Markov process, pµ will be

a equilibrium distribution of the generated states. To guarantee that, starting from an arbitrary

state, we generate this equilibrium distribution one has to impose the additional conditions of

ergodicity and detailed balance.
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Ergodicity and Detailed Balance

In an ergodic Markov process one is able to reach every state from any other state. To prevent

the system from getting caught in a dynamic equilibrium [20] one imposes detailed balance

pµP (µ → ν) = pνP (ν → µ). (5.17)

This equation expresses that the transition from state µ to state ν occurs as often as the transition

from state µ to state ν. The above equation can be written as

P (µ → ν)

P (ν → µ)
=

pν

pµ
. (5.18)

To guarantee that we generate states according to a given probability distribution the transition

probabilities have to satisfy detailed balance (5.18), the sum rule (5.9), and the condition of

ergodicity.

Acceptance Ratios

Detailed balance only fixes the ratios of the transition probabilities. This means that we are free

to choose the P (µ → ν). We only have to adjust P (ν → µ) so that the equation for detailed

balance (5.18) is satisfied and to tune P (µ → µ) to fulfil the sum rule (5.9).

We take advantage of this freedom of choosing the transition probabilities by introducing the

selection probability s(µ → ν) and the acceptance ratio a(µ → ν), via

P (µ → ν) = s(µ → ν) a(µ → ν). (5.19)

The selection probability s(µ → ν) is the probability that a state ν is generated out of a state µ.

The acceptance ratio a(µ → ν) is the probability that the generated state ν is accepted as the

new state of the system.

If we were able to construct an algorithm that only generates states according to the probability

distribution we could accept every new state, i.e. we would have acceptance ratios a(µ → ν) = 1

for all pairs of states µ and ν. Such algorithms are difficult to find. By introducing acceptance

ratios we are completely free to choose an algorithm for generating states.

Metropolis Algorithm

One possible choice for the selection probabilities s(µ → ν) is to set them all equal which leads to

P (µ → ν)

P (ν → µ)
=

s(µ → ν) a(µ → ν)

s(ν → µ) a(ν → µ)
=

a(µ → ν)

a(ν → µ)
. (5.20)

It is possible to maximise the acceptance ratios by giving the larger one the largest possible value

(which is 1 for a probability) and to adjust the other one to satisfy detailed balance (5.18).

Now we put the pieces together. The probability distribution we want to generate is the Boltzmann

distribution

pµ =
exp(−βUµ)

Z
. (5.21)
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The condition of detailed balance with equal selection probabilities therefore is

P (µ → ν)

P (ν → µ)
=

a(µ → ν)

a(ν → µ)
=

e−βUν

e−βUµ
= e−β(Uν−Uµ). (5.22)

For the acceptance ratios of the Metropolis algorithm in the canonical ensemble follows

a(µ → ν) =

{

e−β(Uν−Uµ) if Uν − Uµ > 0

1 otherwise
(5.23)

and can be written as

a(µ → ν) = min
(

1, e−β∆U
)

(5.24)

with ∆U = Uν − Uµ.

5.2.3 Trial Moves

Starting from a state µ, we generate new states ν by so called trial moves. The only condition

that has to be fulfilled is that every point of the state space can be reached from any other state

in a finite number of Markov processes. This is the condition of ergodicity. The trial moves do

not need to correspond to any physical movement of the particles in real space.

In the canonical ensemble one usually uses displacements of particles as trial moves. If

our cubic box is of length L and ∆ is the maximum of the allowed displacement the rule for the

trial moves is

ri → ri + ∆ξi i = 1 . . .N (5.25)

where ξi is a three dimensional vector of real random numbers between −1 and 1. The upper limit

of ∆ is given by half the box length. (For a discussion of how to choose a value for ∆ see [19].)

5.2.4 Simulation in the Grand Canonical Ensemble

A system in the grand canonical ensemble is thermodynamically open which means that we

allow transfer of particles and energy between the system and a reservoir. Therefore we have

a fixed volume V , fixed inverse temperature β, and a fixed chemical potential µ. The particle

number N and the energy E are allowed to fluctuate. To incorporate fluctuations in the number

of particles we use trial insertions and deletions of particles. The acceptance ratios are

a(N → N − 1) = min

(

1,
N

V
e−β[U(rN−1)−U(rN )−µ]

)

(5.26)

a(N → N + 1) = min

(

1,
V

N + 1
e−β[U(rN+1)−U(rN )+µ]

)

. (5.27)

As a consequence not only the particle number but also the energy fluctuates.

The acceptance probabilities given by equations (5.26) and (5.27) can be easily generalised to

mixtures by using the chemical potentials for each species. In the grand canonical ensemble

these chemical potentials are fixed, and in addition to fluctuations in the total particle number

and in the energy also the concentrations fluctuate. These fluctuations are already incorporated

by the trial insertions and deletions, but for optimisation reasons we introduce a trial flip where



28 CHAPTER 5. MONTE CARLO SIMULATIONS

a particle of one component changes to a particle of another component. For a binary mixture

with components A and B the acceptance ratios for the flip moves are given by

a(A → B) = min
(

1, e−β[U(rNA−1,rNB+1)−U(rNA ,rNB)−(µB−µA)]
)

(5.28)

a(B → A) = min
(

1, e−β[U(rNA+1,rNB−1)−U(rNA ,rNB)−(µA−µB)]
)

. (5.29)

5.2.5 Technical Details

Periodic Boundary Conditions

The smaller the simulation box is, the bigger is the fraction of particles being at the surface of

this box. To minimise surface effects one usually applies periodic boundary conditions. The

volume containing the particles serves as primitive cell of an infinite periodic lattice.

Each particle interacts with all other particles in its own cell and with all particles (including all

images of itself) in the other cells. The total potential energy U for a pairwise additive potential

can be written as

U =
1

2

∑

i,j,n
i6=j for n=0

φ(|rij + nL|), (5.30)

where L is the side length of the cubic box and n a vector of three integer numbers. nL is therefore

a lattice vector.

Truncation of Interactions and Background Corrections

If the total potential energy is dominated by contributions of particles which are closer to each

other than a distance rc the term short-range interaction is used. It is possible to ignore the

interactions of particles separated more than this distance by truncating the potential at rc. To

minimise the resulting error one can apply a background correction. Then the total potential

energy is written as sum of pair potentials φc with a maximum range rc and a background (or

long range) correction

U =
∑

i<j

φc(rij) +
Nρ

2

∫ ∞

rc

dr4πr2φ(r). (5.31)

We have assumed that g(r) = 1 for r > rc. This tail correction is only finite for interaction

potentials that decay faster than r−3. If the cutoff radius rc is less than half the box length we

only have to consider the interactions of a particle with the nearest periodic images of the other

particles. This is called nearest-image convention.

Beside this simple truncation one can additionally shift the potential so that it vanishes at

the cutoff radius. This is mostly used in molecular dynamics simulations [19]. Another method is

the so called minimum image convention where one does not have a spherical cutoff. Instead

each particle interacts with the nearest image of the other particles in the periodic lattice. It

can be visualised by drawing the primitive cell (the original simulation box) with the particle of

interest in the centre. Only the particles in this ”virtual” box are used to calculate the interaction

energy for the particle in the centre.
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Cell List Method

To minimise the computational effort of the energy calculations of a short-range interaction po-

tential we build up the simulation box of equally sized cubic cells with box length rc (or slightly

larger). Therefore each particle only interacts with the particles in its own cell and in the 26

neighbouring cells. The numerical effort of the cell list method, which is also called linked-list

method, scales with the particle number N .

5.3 Histogram Reweighting

5.3.1 Single Histogram Reweighting

Let us assume we want to estimate the excess internal energy U ex(β)

U ex(β) = 〈U〉 ≈
∑n

µ=1 Uµp−1
µ e−βUµ

∑n
µ=1 p−1

µ e−βUµ
. (5.32)

In a simulation at the inverse temperature β1 we generate n configurations corresponding to the

Boltzmann probability distribution pµ = e−β1Uµ

Z . We can get an estimate for the excess internal

energy at another inverse temperature β with

U ex(β) =

∑n
µ=1 Uµe−(β−β1)Uµ

∑n
µ=1 e−(β−β1)Uµ

. (5.33)

This equation is the basis of single histogram reweighting [23].

Histograms

For a system with discrete energy states Ei we can collect the data of our simulation in a his-

togram. Therefore we count how often states with a certain internal energy Ei are sampled which

gives the energy histogram N(Ei). This can be used to write the equation (5.33) as

E(β) ≈
∑

i EiN(Ei)e
−(β−β1)Ei

∑

i N(Ei)e−(β−β1)Ei
. (5.34)

This is where the name histogram reweighting comes from.

The use of histograms for a continuous quantity Q causes an loss of information because one

has to use bins with a certain size dQ and count how often states occur with a value between Q
and Q + dQ.

In a Monte Carlo simulation we are able to sample only a small region of the phase-space and

therefore the temperature range for which single histogram reweighting provides reliable results is

restricted.

Let us assume we perform a simulation at an inverse temperature β1 and that we want to use the

obtained energy histogram to extrapolate to an inverse temperature β. We will only get accurate

estimates for observables if the sampled configurations also sufficiently cover the region of phase-

space that would have been sampled in a simulation at the inverse temperature β. More precisely,
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the energy histogram of the simulation data has to be significantly larger than 1 in the energy

range where the energy distribution at the inverse temperature β would also be significantly larger

than 1. In short, the energy distributions have to overlap sufficiently.

5.3.2 Multi Histogram Reweighting

Let us assume we have data of two simulations at different temperatures with overlapping energy

distributions and that each of the energy histograms has poor statistics in the overlapping region.

Using single histogram reweighting for any of the data sets would give a poor estimate for the

excess internal energy U ex for temperatures corresponding to energy distributions covering the

overlap.

Multi histogram reweighting [24] is a method that makes it possible to combine the data

of arbitrarily many simulations without adding up statistical errors.

If the energy density of states ρ(U) is known the calculation of the excess internal energy

can be written as

U ex(β) =

∫

drNU e−βU

Z
=

∫

dU U ρ(U)
e−βU

Z
. (5.35)

ρ(U)dU is the number of states of the system with energies between U and U+dU . The probability

of generating a state with an energy between U and U + dU is given by

p(U)dU =
e−βU

Z
ρ(U)dU . (5.36)

For the sake of simplicity we concentrate on a system with discrete energy states Ej . This does

not influence the final results and therefore we drop the index j.

The probability distribution p(E) of sampling a state with the energy E is given by

p(E) =
e−βE

Z
ρ(E) (5.37)

and therefore the density of states is

ρ(E) = p(E)
Z

e−βE
. (5.38)

We perform simulations at the inverse temperatures βi producing ni samples in simulation i. The

probability distribution is estimated by

pest
i (E) =

Ni(E)

ni
(5.39)

where Ni(E) is the energy histogram of the ith simulation. This estimate will fluctuate around

the expectation value. We assume that the number of points in a bin (the number of sampled

states with the energy E) is distributed according to a Poisson distribution. Using the fact that

for a Poisson distribution the variance is equal to the expectation value we can obtain the variance

of the estimate for the probability distribution by

pest
i

2
(E) − pest

i (E)
2

=
Ni(E)2 − Ni(E)

2

n2
i

=
Ni(E)

n2
i

=
pest

i (E)

ni
. (5.40)
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The quantities with a bar are averages taken over many simulation runs. The density of states is

estimated by

ρest
i (E) = pest

i (E)
Zi

e−βiE
=

Ni(E)

ni

Zi

e−βiE
. (5.41)

ρest
i (E) is an estimate for ρ(E) in the energy range covered by Ni(E). We want to combine these

estimates for the whole range of energies covered by the histograms Ni(E). We do this by a

weighted sum.

ρest(E) =
∑

i

wi(E)ρest
i (E)

∑

i

wi(E) = 1 (5.42)

To determine the weights wi(E) we demand that the variance of this estimate is minimised. Using

the fact that the fluctuations of estimates in different simulations are uncorrelated the variance

can be written as

ρest2(E) − ρest(E)
2

=
∑

i

w2
i (E)

(

ρest
i (E)2 − ρest

i (E)
2
)

. (5.43)

If we express the density of states by the corresponding probability distributions and if we use

equation (5.40) the equation above becomes

pest2(E) − pest(E)
2

=
∑

i

w2
i (E)

(

Zi

Z

)2

e−2E(β−βi)
pest

i (E)

ni

= p(E)
∑

i

w2
i (E)

(

Zi

Z

)

e−E(β−βi)
1

ni
. (5.44)

To determine the weights we combine this equation with the condition that
∑

i wi(E) = 1. The

right-hand side then is of the form

∑

i

w2
i (E)fi =

∑

i6=k

w2
i (E)fi +



1 −
∑

i6=k

wi(E)





2

fk. (5.45)

Differentiating this equation with respect to wj(E) with j 6= k and setting it equal to zero gives

wj(E)

wk(E)
=

fk

fj
⇒ wj(E) ∝ f−1

j . (5.46)

Therefore we obtain for the weights

wj(E) =
Z
Zi

e(β−βi)Eni
∑

i
Z
Zi

e(β−βi)Eni

(5.47)

and for the probability distribution

pest(E) =

∑

i nip
est
i (E)

∑

i
Z
Zi

e(β−βi)Eni

=

∑

i Ni(E)
∑

i
Z
Zi

e(β−βi)Eni

. (5.48)

We have to determine the Zi by

Zk =

∫

drNe−βkE =
∑

E

ρest(E)e−βkE =
∑

E

p(E)
Z

e−βkE
e−βkE (5.49)

=
∑

E

∑

i Ni(E)
∑

i Z−1
i e(βk−βi)Eni

. (5.50)
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This set of equations for the Zi is solved iteratively. We can obtain an estimate for the partition

function Z at the inverse temperature β by

Z =
∑

E

∑

i Ni(E)
∑

i Z−1
i e(β−βi)Eni

. (5.51)

5.4 Multicanonical Sampling

Multicanonical Sampling [25] is a method to overcome probability barriers in Monte Carlo

simulations. Such barriers appear for example at first order phase transitions and lead to proba-

bility distributions with multiple, widely separated maxima. At vapour-liquid phase coexistence

away from the critical point the probability distribution of the particle number p(N) shows two

strong peaks. If we use a standard Monte Carlo method we will only be able to sample one of

the peaks and we will not cross over to the other peak because of the probability, i.e. free energy,

barrier.

The multicanonical Monte Carlo method belongs to the group of biased sampling techniques

which were first introduced to calculate free energies [38]. Berg and Neuhaus [22] showed that

such techniques can be used to overcome probability barriers at first order phase transitions. In

the case of the vapour-liquid transition this is achieved by enhancing regions of low probability

by the use of a preweighting function η(N) depending on the particle number N . We use an

effective Hamilton function

H̃(rN , N) = H(rN , N) + η(N) (5.52)

with

H(rN , N) = U(rN ) − µN. (5.53)

The particle number distribution for the Hamilton function H(rN , N) is given by

p(N) =
1

Z

∫

drNe−βH(rN ,N) (5.54)

and therefore the particle number distribution for the effective Hamilton function can be obtained

by

p̃(N) =
1

Z̃

∫

drNe−βH̃(rN ,N) (5.55)

=
1

Z̃

∫

drNe−β(H(rN ,N )+η(N)) (5.56)

=
1

Z̃

∫

drN e−βH(rN ,N)

eβη(N)
. (5.57)

If we perform a simulation using the effective Hamilton function (5.52) we will sample the particle

number probability distribution p̃(N). To obtain the desired Boltzmann distribution we have to

unfold the weight function by

p(N) = eβη(N)p̃(N). (5.58)

A Monte Carlo simulation method is efficient if we get good statistics with little numerical effort.

Therefore the most efficient preweighting function is η(N) = ln p(N) because then the simulation

performs a one-dimensional random walk in the density, which leads to a flat histogram.
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5.5 Wang-Landau Algorithm

The Wang-Landau method [39] is an iterative algorithm for finding a preweighting function (for

short: weight function). We start with a flat weight function η(N) which is updated at each Monte

Carlo step by

eβηnew(N) = feβηold(N) ⇔ βηnew(N) = ln f + βηold(N). (5.59)

The iteration factor f has to fulfil f > 1. In parallel to updating the weight function we count how

often states with a certain particle number are visited which gives the histogram H(N). If the

histogram of visited states H(N) is ”flat enough” the iteration factor f is decreased, for example

by

ln(fnew) =
ln(fold)

2
. (5.60)

One possible condition for flatness is that each particle number is sampled at least 80% of the

mean number of visited states per particle number.

Detailed balance is violated so we have a non-equilibrium simulation.

5.6 Critical Phenomena

5.6.1 Finite Size Scaling

A critical point is characterised by singularities in the thermodynamic potential and discontinuities

or divergencies in their second derivatives. These singularities only occur in the thermodynamic

limit. The finite size of the simulation box causes that the divergencies of thermodynamic prop-

erties in the critical region are smeared out. The effects caused by the finite size of the simulation

box are summarised by the term finite size effects [40, 41].

Finite size scaling, a discipline on its own right and therefore beyond the scope of this work, is

a sophisticated technique to extract the values of critical exponents and to locate critical points

from a finite system. Its validity can be proved by renormalisation group theory.

To explain the principles of finite size scaling we have a closer look at the critical behaviour

of the specific heat. We use the expressions of table 2.1

cV ∼ |t|−α ξ ∼ |t|−ν (5.61)

to write for the specific heat at constant volume cV in the critical region

cV ∼ ξ
α
ν . (5.62)

At the critical point the correlation length ξ diverges. In a simulation box of finite size the

correlation length cannot exceed the box length L and is therefore cut off. As a consequence the

singularity of the specific heat at the critical point is smeared out which we express by writing

cV = ξ
α
ν c0

V(L/ξ). (5.63)

ξ denotes the value of the correlation length in the infinite system. The function c0
V(L/ξ) is

constant for ξ << L and it is proportional to (L/ξ)
ν
α for ξ > L. We now introduce the scaling
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variable x

xν =
L

ξ
∝ |t|νL (5.64)

and use the expression for the correlation length ξ of equations (5.61) to rewrite equation (5.63)

as

cV = L
α
ν

(

L

ξ

)−α
ν

c0
V(L/ξ)

= L
α
ν (xν)

−α
ν c0

V(xν)

= L
α
ν x−αc0

V(xν). (5.65)

We define a new function

c̃V(x) = x−αc0
V(xν ) (5.66)

and extend the definition of c̃V(x) to negative values of x to get for the specific heat

cV = L
α
ν c̃V(tL

1
ν ). (5.67)

The scaling function for the specific heat, c̃V(tL
1
ν ), has no hidden L dependencies and should

be the same for all system sizes.

To determine the critical exponent α and the critical temperature Tc we do simulations in the

critical region at different system sizes for a set of different temperatures, calculate cV and use

equation (5.67) to get the scaling function c̃V(tL
1
ν ). Then we vary the critical exponents and the

critical temperature until the scaling functions for the different system sizes coincide on top of

each other. This gives us the correct critical exponent and critical temperature.
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Figure 5.1: The universal fixed point order parameter distribution function [43] for a cubic system

with periodic boundary conditions. The distribution has been shifted and scaled to obtain unit

variance.

5.6.2 Critical Order Parameter Distribution

Not only the behaviour of the expressions in table 2.1 is universal in the critical region but also

the probability density function for the fluctuating order parameter. Once we know it we can

determine the critical point by comparison of the measured distribution functions to the form of

the universal function. Hilfer and Wilding [42] used finite size scaling and Monte Carlo methods to

determine probability density functions for the 2d and 3d Ising model (see figure 5.1). One should

bear in mind that the universal order parameter distribution function depends on the geometry

of the box and the boundary conditions.
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Chapter 6

MSA Phase Diagram

We have calculated the phase diagrams for δ = 0.67 and δ = 0.69 by solving the Ornstein-Zernike

equation with the MSA as closure. The calculations were performed with Mathematica [44]. The

expressions for the pressure and the chemical potentials, which were used to determine phase

coexistence are compiled in section 4.3. The two phase diagrams, which belong to type II, show

different behaviour and therefore we call them type α and type β respectively.

The legend for the coloured plots is as following:

The coexistence lines for ∆µ = 0, which means that no field is applied, are turquoise. Blue

is used for isothermal cuts. The brown lines mark coexistence points which are separated from

each other by a constant distance in the concentration-density plane. To illustrate the behaviour

of the critical lines the mean value of these coexistence points is red for critical lines starting

at the equimolar critical point and orange for critical lines starting at a tricritical point.

Triple lines are thick and aqua coloured. Additionally, in figure 6.1 and 6.2, some coexistence

points of the triple lines are connected by straight, thin, aqua lines in the projection of the phase

diagram on the concentration-density plane as a guide to the eye.

6.1 Mixed Field-Density Space

The phase diagrams in the (T , c, ρ)-space (along with projections) for type α and β are presented

in figure 6.1 and 6.2 respectively.

The phase diagrams for the case that no field is applied and projections of critical and triple

lines are shown in figure 6.3 and 6.4. Additionally dashed lines separate different temperature

regimes, in which the isothermal cuts have the same topology. Examples for these cut are shown

in figure 6.5 and 6.6.

Critical Lines

The most striking difference between the two types is the form of the critical lines (see figure

6.1 and 6.2).

37
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• Type α: The vapour-liquid critical line going through the equimolar critical point ends in

critical end points. The demixing critical line splits at a tricritical point in two mixing-

demixing critical lines.

• Type β: The vapour-liquid critical line extends from concentration c = 0 (pure fluid of

B particles) to the equimolar vapour-liquid critical point at c = 0.5 and further to c = 1

(pure fluid of A particles). The demixing critical line splits at the tricritical point in two

mixing-demixing critical lines that end on the vapour-liquid surface in critical end points.

The critical end point property has been suspected from the form of the tie lines in the (T, c, ρ)-

space (see appendix B) but can more easily be identified by looking at the phase diagram in field

space (see section 6.2).

Triple Lines

The difference in the form of the critical lines is related to the different shapes of the triple lines

(see also section 6.3). In our mixed field-density space a triple line is represented by three lines of

coexistence points. At a certain temperature these coexistence points are given by the coexistence

densities and the coexistence concentrations of the three phases. We point out that the term triple

line is used for the set of the three lines and also for each line belonging to this set. Taking the sym-

metry of the system into account we only consider the diagram for c ≤ 0.5 in the further discussion.

For each value of δ, that corresponds to one of the two types α or β, we have two triple lines

that start at the equimolar plane (c = 0.5) and one triple line that starts at a much lower con-

centration. The two types of phase behaviour have in common that always two of the three triple

lines meet in a critical end point. The phase diagram for a certain value of δ belongs to type α

if the two triple lines starting at the equimolar plane meet, and to type β if the triple line starting

at lower concentration meets the triple line of the remaining two, that starts at the higher density

(see figure 6.1 and 6.2).

Temperature Regimes

In the different temperature regimes denoted in figure 6.3 and 6.4 the isothermal cuts have, for

a certain type, the same topology. The limits of these regimes are given in the following table

ordered from lower to higher temperatures.

Type α Type β

quadruple point quadruple point

equimolar vapour-liquid critical point minimum of the mixing-demixing critical line

critical end point of critical end point of

the vapour-liquid critical line the mixing-demixing critical line

minimum of the mixing-demixing critical line equimolar vapour-liquid critical point

tricritical point tricritical point

Examples for the isothermal cuts corresponding to the different temperature regimes are given in

in figures 6.5 and 6.6.
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Figure 6.1: (T, c, ρ) phase diagram and projections for δ = 0.67 (type α).
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Figure 6.2: (T, c, ρ) phase diagram and projections for δ = 0.69 (type β).
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Figure 6.3: Projection of the coexistence lines for ∆µ = 0 and of critical and triple lines for

δ = 0.67. The gray dashed lines indicate the limits of the different temperature regimes denoted

from (A’) to (F’).
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Figure 6.4: Projection of the coexistence lines for ∆µ = 0 and of critical and triple lines for

δ = 0.69. The gray dashed lines indicate the limits of the different temperature regimes denoted

from (A) to (F).
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Figure 6.5: Isothermal cuts for δ = 0.67 at T = 1.0(A), 1.035(B), 1.041(C), 1.06(D), 1.07(E), 1.115(F).

The gray disks denote critical points and the gray, dashed lines are tie lines.
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Figure 6.6: Isothermal cuts for δ = 0.69 at T = 1.0(A), 1.03(B), 1.036(C), 1.05(D), 1.07(E), 1.15(F).

The gray disks denote critical points and the gray, dashed lines are tie lines.
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6.2 Field Space

The phase diagram in (T, ∆µ, p) field space for the type α is presented in figure 6.7, for type β in

6.8, and figures 6.9 to 6.12 give detailed views. Projections of the complete phase diagrams and of

the interesting regions are shown if figures 6.13 to 6.24. As mentioned above some of the features

of the phase diagrams presented in section 6.1 are more obvious in the field space representation

(see chapter 2.5.6).

For the discussion of the different properties of type α and type β we concentrate on figures

6.11 and 6.12.

The phase diagrams for both types α and β are composed of four surfaces of coexisting phases,

namely of

• a vapour-liquid surface,

• two mixing-demixing surfaces, and a

• demixing surface.

The two types have in common that the vapour-liquid sheet intersects with the two mixing-

demixing surfaces in two triple lines, and that the latter two sheets intersect with the demixing

surface in a line, which also constitutes a triple line. The latter is a special case that emerges

from the symmetry of our system. Generally three surfaces intersect in a single point, i.e. in a

quadruple point, like the vapour-liquid surface and the two mixing-demixing sheets do for both

types.

• Type α: The phase diagram in the low pressure region is dominated by the mixing-demixing

surfaces and the vapour-liquid surface builds a small ”pocket” to low pressure values. The

vapour-liquid critical line meets the triple lines in critical end points.

• Type β: In contrast to type α the phase diagram of type β is dominated at low pressure

by the vapour-liquid surface and the two mixing-demixing sheets build a ”pocket” to higher

pressure values. The mixing-demixing critical lines meet the corresponding triple lines at

the vapour-liquid surface and therefore end in critical end points.

Tuning the value of δ we should be able to find the transition phase diagram between type α

and type β. We suspect that getting closer to the value δαβ that corresponds to the transition

diagram, the critical end points, and therefore also the triple lines, should get closer to the critical

line of the dominating coexistence surface until they merge into a tricritical point.
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Figure 6.7: Phase diagram for δ = 0.67 in (T , ∆µ, p)-space.
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Figure 6.8: Phase diagram for δ = 0.69 in (T , ∆µ, p)-space.
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Figure 6.9: Close-up view of the phase diagram for δ = 0.67.
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Figure 6.10: Close-up view of the phase diagram for δ = 0.69.
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Figure 6.12: The interesting region for δ = 0.69.
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Figure 6.13: Projection of the phase diagram for δ = 0.67 onto the (T, ∆µ)-plane.
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Figure 6.14: Projection of the phase diagram for δ = 0.69 onto the (T, ∆µ)-plane.
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Figure 6.15: Close-up view of the projection of the phase diagram for δ = 0.67 onto the (T, ∆µ)-

plane.
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Figure 6.16: Close-up view of the projection of the phase diagram for δ = 0.69 onto the (T, ∆µ)-

plane.
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Figure 6.17: Projection of the phase diagram for δ = 0.67 onto the (p, ∆µ)-plane.
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Figure 6.18: Projection of the phase diagram for δ = 0.69 onto the (p, ∆µ)-plane.
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Figure 6.19: Close-up view of the projection of the phase diagram for δ = 0.67 onto the (p, ∆µ)-

plane.
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Figure 6.20: Close-up view of the projection of the phase diagram for δ = 0.69 onto the (p, ∆µ)-

plane.
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Figure 6.21: Projection of the phase diagram for δ = 0.67 onto the (T, p)-plane.
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Figure 6.22: Projection of the phase diagram for δ = 0.69 onto the (T, p)-plane.
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Figure 6.23: Close-up view of the projection of the phase diagram for δ = 0.67 onto the (T, p)-

plane.
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Figure 6.24: Close-up view of the projection of the phase diagram for δ = 0.69 onto the (T, p)-

plane.
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Figure 6.25: Triple Lines for different values of δ in the mixed field-density space.

6.3 Triple Lines

As we explained in section 6.1 we can decide if a phase diagram belongs to type α or β by the

behaviour of the triple lines.

In the following plots, which should shed some light onto the transition between type α and

β, we present triple lines for different values of δ (see figure 6.25) in the (T, c, ρ)-space and

in (T, ∆µ, p)-space. At the transition between the two types of phase behaviour in the mixed

density-field space, the triple lines in one of the symmetry halfs have to meet in a single point

which therefore would be a tricritical point. From figure 6.26 we estimate for the value of δ for

the transition diagram δαβ = 0.678(0).

We know from the mixed field-density space representation of the triple lines (figures 6.25 to

6.30) that at the transition between type α and type β the triple lines reach to higher temperature

values than at any other value of δ. Only this knowledge allows it to identify the transition in the

field space diagrams of figures 6.31 to 6.34.
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Figure 6.26: Projections of the triple lines for different values of δ onto the c-ρ plane.
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Figure 6.27: Mixed field-density space representation of triple lines with view from the high density

region.
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Figure 6.28: Mixed field-density space representation of triple lines with view from the equimolar

plane.
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Figure 6.29: Projections of the triple lines for different values of δ onto the T -c plane.
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Figure 6.30: Projections of the triple lines for different values of δ onto the T -ρ plane.
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Figure 6.31: The triple lines of figure 6.25 in field space.
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Figure 6.32: Projection of the triple lines of figure 6.31 onto the (p, ∆µ)-plane.
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Figure 6.33: Projection of the triple lines of figure 6.31 onto the (T, ∆µ)-plane.
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Figure 6.34: Projection of the triple lines of figure 6.31 onto the (T, p)-plane.
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6.4 Conclusions

We have solved the Ornstein-Zernike equation with the mean spherical approximation as closure

relation for the symmetrical binary Yukawa mixture and have obtained comprehensive phase di-

agrams in the (T, c, ρ)-space and the (T, p, ∆µ)-space. The former is a mixed field-density space

whereas the latter is a field space.

We examined the phase behaviour for values of the ratio of the dislike to the like interaction

strength δ = 0.67 and δ = 0.68. Both phase diagrams show type II behaviour but can be fur-

ther classified by the form of the vapour-liquid critical line and the mixing-demixing critical lines.

Therefore we call them type α and type β. For the former the vapour-critical line ends in critical

end points and the mixing-demixng critical lines cover the whole concentration range, whereas for

the latter it is the other way round.

The different behaviour of the two types also becomes manifest in the form of the triple lines,

which themselves can be used to determine the value of δ where the two types go over in one

another. Our estimate is δ = 0.678(0).

We have also identified different temperature regimes, where isothermal cuts have the same topol-

ogy and have presented isothermal sections as examples for each of these regimes.

The field space representations allow to identify very easily properties like critical end points,

tricritical points, triple lines, and quadruple points, whereas the mixed field-density space pro-

vides additional information like the form of tie lines.

The method we have used provides semi-quantitative results but is numerically not very expensive.

Therefore it has been possible to obtain a comprehensive picture of type II phase diagrams which

helps to deepen the understanding of the phase behaviour of the symmetrical binary mixture.



Chapter 7

Monte Carlo Results

We perform Metropolis Monte Carlo simulations for the symmetrical binary Yukawa mixture con-

sisting of components A and B. The multicanonical sampling technique within the grand canonical

ensemble allows to bridge free energy barriers and to sample coexisting phases in one simulation.

To direct the computational effort to density and concentration fluctuations only transfer and flip

moves are performed.

We use two different ways of finding a preweighting function (see figure 7.1) in the first place:

• The order parameter distribution in the critical region has due to finite size effects a double

peak structure which is weak enough to be able to go back and forth between the coexisting

phases in a simulation run. Therefore we need not apply multicanonical sampling which

means that we use a flat weight function within our simulation. Histogram reweighting is

applied to get the order parameter distribution, and therefore a new preweighting function,

deeper in the coexistence region.

• Another possibility is to use the Wang-Landau algorithm which has the advantage that it

is not restricted to the critical region. Again we use histogram reweighting to obtain new

weight functions.

Coexistence points are estimated by applying the equal peak area criterion [45] to the corre-

sponding order parameter probability distribution function. This method only provides reliable

results far enough away from the critical region so that the peaks corresponding to the coexisting

phases do not overlap.

The critical points themselves are obtained by comparison of the order parameter distribution

function with the universal fixed point function corresponding to the 3d Ising class [42][43].

7.1 Simulation Details

The interaction potential is cut off at a distance rc = 3σ and therefore a long range correction is

applied

U =
∑

i<j

φc(rij) + (N2
A + N2

B + 2NANBδ)
2πε

z2
(1 − zrc)e

−z(rc−σ). (7.1)
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Figure 7.1: Examples of used weight functions (l = 4 and T−1 = 0.96; showing every 10th plot

point).

The simulation box, for which periodic boundary conditions are applied, is divided into l3 cubic

cells, each of side rc. The system sizes studied in this work correspond to l = 4 and l = 7.

We perform single and multi histogram reweighting to extra- and interpolate in the temperature

T , in the ratio of dislike to like interaction strength δ, in the chemical potential µA of component

A, and in the field ∆µ.

The number density ρ = N/V is an appropriate choice for the order parameter describing the

vapour-liquid and the mixing-demixing transition. Therefore the preweighting function η(N) only

depends on the total particle number N and is incorporated in the acceptance ratios of the transfer

moves

a(N → N − 1) = min

(

1,
N

V
e−β[U(rN−1)−U(rN )−µ+η(N−1)−η(N)]

)

(7.2)

a(N → N + 1) = min

(

1,
V

N + 1
e−β[U(rN+1)−U(rN )+µ+η(N+1)−η(N)]

)

, (7.3)

with µ = µA for the transfer of a particle of species A and µ = µB for transfer a particle of species B.

The demixing transition between an A rich and a B rich phase is best described by the order

parameter m = (NA − NB)/N = 2c − 1. The corresponding weight function is a function of

the concentration c = N/NA and therefore depends on the total particle number N and on the

number of particles of species A, i.e. NA. The modified expressions for the acceptance ratios for
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the transfer moves are given by

a(NA → NA − 1) = min

(

1,
N

V
e−β∆E−

)

(7.4)

a(NA → NA + 1) = min

(

1,
V

N + 1
e−β∆E+

)

(7.5)

with

∆E− = U(rNA−1, rNB) − U(rNA , rNB) − µA + η

(

NA − 1

N − 1

)

− η

(

NA

N

)

(7.6)

∆E+ = U(rNA+1, rNB) − U(rNA , rNB) + µA + η

(

NA + 1

N + 1

)

− η

(

NA

N

)

(7.7)

and we obtain for the flip moves

a(A → B) = min
(

1, e−β∆EA→B
)

(7.8)

with

∆EA→B = U(rNA−1, rNB+1) − U(rNA , rNB) − (µB − µA) + η

(

NA − 1

N

)

− η

(

NA

N

)

. (7.9)

The corresponding expressions for the acceptance ratios for the transfer and flip moves of particles

of species B can be easily derived.

We perform simulations at different sets of parameters which are compiled in table 7.1, 7.3, and

7.2 and sample the total particle number N , the particle number NA of species A, the energy of

like, and the energy of dislike particles every 500th sweep. In one sweep a flip and a transfer move

are performed l3 times, which means that we sampled the data every 64000 Monte Carlo steps

for the system size corresponding to l = 4, and every 343000 Monte Carlo steps for l = 7. The

number of samples collected in one simulation is of magnitude 106.

Wherever it is possible we make use of the symmetry of the system and obtain values for co-

existence points and critical points for c ≤ 0.5 and mirror the results at the c = 0.5 plane for the

representations.
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T δ µA ∆µ

0.96 0.68 -3.3098 0.

0.96 0.68 -3.36993 0.1

0.96 0.68 -3.417298 0.15

0.96 0.68 -3.51679 0.25

0.96 0.68 -3.71688 0.45

0.96 0.68 -3.91722 0.65

0.96 0.68 -4.26781 1.0

0.96 0.68 -4.6181 1.35

0.96 0.68 -5.21849 1.95

0.96 0.68 -6.06879 2.8

0.976930 0.68 -3.370731 0.

0.98013 0.68 -3.38254 0.

0.98013 0.68 -3.41045 0.

1.0319 0.68 -3.6245 0

0.86 0.68 -5.61284 2.8

Table 7.1: Simulation parameters for the system size l=4.

T δ µA ∆µ

0.975 0.67 -3.38877 0.06

0.97 0.67 -3.29884 0.02

0.97 0.68 -3.36738 0.04

0.981013 0.68 -3.39372 0.015

0.986 0.68 -3.395 0.010823

Table 7.2: Simulation parameters for the system size l=7.

T δ µA ∆µ

0.960 0.68 -2.95 0.

0.991 0.68 -3.31 0.

Table 7.3: Simulation parameters for the demixing transition with system size l=7.
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7.2 Results for δ = 0.68

The isothermal cuts in figure 7.2 are obtained for a box length l = 4.

Figure 7.3 shows part of the isothermal cut for T−1 = 0.98013 and the density and concen-

tration distribution functions corresponding to the specially marked coexistence points are shown

in figure 7.4 and 7.5. The liquid peak of the density distribution function exhibits a weak double

peak structure, which seems to be due to finite size effects close to a critical point at a lower tem-

perature. This indicates that the mixing-demixing line does not cross over to the vapour liquid

surface and that the phase diagram for δ = 0.68 is of type β.

The figures 7.6 and 7.7 show results for coexistence lines (∆µ = 0) and for critical points. The

values of the critical points of figure 7.6 and 7.7 are compiled in the tables 7.4 to 7.7 and the

matching of the corresponding order parameter distribution function and the universal fixed point

function are presented in figures 7.8 to 7.11. Both functions have been shifted and scaled to gain

unit variance which is denoted by m for the order parameter.

The distributions functions for the vapour-liquid transition in figures 7.8,7.9 and 7.10 become

more and more asymmetric the closer they get to field range [0.07, 0.115]. This might be due to

the triple line regimes at lower temperatures.

The matching of the distribution functions for the mixing-demixing transitions in figure 7.11

is only good enough to estimate critical points for ∆µ lying in the interval [0.01, 0.025].

In figure 7.11 we can see that the peak structure of the order parameter distribution for the

demixing transition gets weaker for lower temperatures, which might be due to a tricritical point.

Values for critical points are presented without an error estimation and therefore no rounding

takes place.
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Figure 7.2: Isothermal cuts for δ = 0.68 at T ≈ 0.999(A), 1.014(B), 1.020(D), 1.041(E), 1.064(F).

The thin gray lines are coexistence curves strongly influenced by finite size effects and the dashed

lines connect coexistence points and serve as a guide to the eye.
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Figure 7.3: Isothermal cut for T−1 = 0.98013. The thin gray lines are coexistence curves strongly

influenced by finite size effects and the dashed lines connect coexistence points and serve as a

guide to the eye.
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Figure 7.4: Number density probability distribution for the specially marked coexistence points

of figure 7.3.
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Figure 7.5: Concentration probability distribution for the specially marked coexistence points of

figure 7.3.
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Figure 7.6: Projections of coexistence curves (l=4) and critical points (stars and boxes l = 4,

triangles and diamonds l = 7). The thin gray coexistence curve is strongly influenced by finite size

effects. The triangles and boxes denote vapour-liquid critical points, the stars denote demixing

critical points, and the critical points of the transition between mixed and demixed liquid are

denoted by diamonds.
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Figure 7.7: Same as in 7.6 projected onto the T -ρ plane.

ρ c T−1 δ µA ∆µ

0.315899 0.498720 0.9712 0.68 -3.34974 0.00

0.316248 0.489943 0.9710 0.68 -3.35413 0.01

0.317190 0.480992 0.9708 0.68 -3.35878 0.02

0.318396 0.471979 0.9702 0.68 -3.36221 0.03

0.320229 0.462825 0.9693 0.68 -3.36478 0.04

0.322806 0.453386 0.9682 0.68 -3.36688 0.05

0.326022 0.443595 0.9669 0.68 -3.36846 0.06

0.329967 0.433351 0.9654 0.68 -3.36951 0.07

Table 7.4: Values for the vapour-liquid critical points (l = 7,triangles).
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ρ c T−1 δ µA ∆µ

0.339404 0.129408 0.870 0.68 -3.84502 0.990

0.344668 0.157994 0.880 0.68 -3.69874 0.800

0.344708 0.159023 0.880 0.68 -3.69374 0.795

0.350460 0.185905 0.890 0.68 -3.59203 0.649

0.355740 0.211972 0.900 0.68 -3.51587 0.528

0.360730 0.236829 0.910 0.68 -3.46129 0.428

0.365116 0.261082 0.920 0.68 -3.42332 0.344

0.369125 0.284347 0.930 0.68 -3.39887 0.273

0.371663 0.307657 0.940 0.68 -3.38511 0.212

0.371928 0.330865 0.950 0.68 -3.38071 0.160

0.371245 0.341948 0.955 0.68 -3.38170 0.137

0.366457 0.358047 0.960 0.68 -3.38291 0.114

Table 7.5: Values for the vapour-liquid critical points (l = 4, boxes).

ρ c T−1 δ µA ∆µ

0.556930 0.498572 0.945 0.68 -3.037 -2.70381e-06

0.596229 0.499241 0.870 0.68 -2.307 -1.65290e-05

0.590439 0.499330 0.880 0.68 -2.415 -2.02925e-05

0.584580 0.499263 0.890 0.68 -2.520 -1.08064e-05

0.579040 0.499130 0.900 0.68 -2.621 -9.99252e-07

0.573533 0.498986 0.910 0.68 -2.719 +3.51564e-06

0.568650 0.498876 0.920 0.68 -2.813 +4.33229e-06

0.563505 0.498758 0.930 0.68 -2.905 +2.28111e-06

0.558734 0.498624 0.940 0.68 -2.994 -6.77226e-07

0.554704 0.498518 0.950 0.68 -3.080 -5.46676e-06

Table 7.6: Values for the demixing critical points (l = 4, stars).

ρ c T−1 δ µA ∆µ

0.530875 0.310054 0.9797 0.68 -3.34547 0.010

0.526328 0.305261 0.9812 0.68 -3.36727 0.015

0.521904 0.302706 0.9819 0.68 -3.38227 0.020

0.517376 0.301452 0.9821 0.68 -3.39307 0.025

Table 7.7: Values for the mixing-demixing critical points (l = 4, diamonds).
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Figure 7.8: The scaled and shifted order parameter distribution functions of vapour-liquid critical

points (l = 7, triangles) compared to the universal fixed point function for different values of ∆µ.

m corresponds to the number density ρ.
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Figure 7.9: Same as in figure 7.8.
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Figure 7.10: The scaled and shifted order parameter distribution functions of vapour-liquid critical

points (l = 4, boxes) compared to the universal fixed point function for different values of ∆µ. m

corresponds to the number density ρ.
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Figure 7.11: The scaled and shifted order parameter distribution functions of mixing-demixing

critical points (l = 7, diamonds) compared to the universal fixed point function for different values

of ∆µ. m corresponds to the number density ρ.
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Figure 7.12: The scaled and shifted order parameter distribution functions of demixing critical

points (l = 4, stars) compared to the universal fixed point function for different values of µA. m

corresponds to the order parameter m = 2c − 1.

7.3 Conclusions

The symmetrical binary mixture is due to the rich phase behaviour a challenge for Monte Carlo

simulation methods, which we have faced combining multicanonical sampling within the grand

canonical ensemble and histogram reweighting methods.

We have discussed the complexities of type II phase diagrams in chapter 6, where we have found

vapour-liquid, mixing-demixing, and demixing critical lines, triple lines, a quadruple point, and a

tricritical point. Especially the finite size effects due to the different critical lines strongly affect

the form of the probability distribution functions.

Critical points have been estimated by the comparison of the corresponding order parameter

distribution function and the universal fixed point function appropriate to the 3d Ising univer-

sality class. Strictly speaking, field-mixing [46][47] effects have to be taken into account which is

beyond the scope of this work.
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Nevertheless, we have been able to show that the phase diagram for δ = 0.68 belongs to type β

and presented quantitative results for coexistence points and for vapour-liquid, mixing-demixing,

and demixing critical points.
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Appendix A

Coefficients

ξν =
π

6

∑

i

ρiσ
ν
i (A.1)

Parameters corresponding to the hard-sphere case:

A0
j =

2π

(1 − ξ3)2
(1 − ξ3 + 3σjξ2) (A.2)

B0
j =

2π

(1 − ξ3)2
(−3

2
σ2

j ξ2) (A.3)

b0
ij =

2π

(1 − ξ3)2

[

3

2
σiσjξ2

]

(A.4)

Functions:

θ1(x) = 1 − x − e−x (A.5)

θ2(x) = 1 − x +
1

2
x2 − e−x (A.6)

Coefficients of equations (4.16):

M (a)
m = 1 + zσm (A.7)

L
(a)
mj = 1 + zσmj +

1

2
z2σmσj (A.8)

H
(a)
lj = zb0

ljθ1(zσl) − A0
jθ2(zσl) (A.9)

G
(a)
lj = zA0

l θ1(zσl) −
4

σ2
j

B0
j θ2(zσl) (A.10)

F
(a)
mlj = L

(a)
mjG

(a)
lj − zM (a)

m H
(a)
lj (A.11)

E
(a)
mlj = (1 + zλjm)G

(a)
lj − zH

(a)
lj (A.12)

D
(a)
mjl =

1

z6

[

ρmF
(a)
mjl + δmjz

4(1 − 1

2
e−zσj )

]

(A.13)

C
(a)
kmjl =

2π

z8
ρk

[

ρm(E
(a)
mjl − F

(a)
mjle

−zσm) +
1

2
δmjz

4(1 − e−zσj )2
]

(A.14)

(A.15)
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A
(4)
ij = 2πKij (A.16)

A
(3)
lj =

1

z3
ρlHjl − δlj (A.17)

A
(2)
mjl = ρlD

(a)
mjl (A.18)

A
(2)
kmjl = ρlC

(a)
kmjl (A.19)

H
(b)
ij = zb0

ij + A0
j (A.20)

G
(b)
ij = zA0

i −
4

σ2
j

B0
j (A.21)

F
(b)
mij = L

(a)
mjG

(b)
ij − zM (a)

m H
(b)
ij (A.22)

E
(b)
mij = (1 + zλjm)G

(b)
ij − zH

(b)
ij (A.23)

D
(b)
mlj = 2πρlD

(a)
mlj (A.24)

C
(b)
kmjl =

2π

z6
ρm

[

ρk(E
(b)
kij − F

(b)
kije

−zσk ) − 1

2
δikz4e−zσi

]

(A.25)

B
(5)
ij =

1

z
A0

j + b0
ij (A.26)

B
(4)
lj =

2π

z3
ρlH

(a)
lj − 2πδlj (A.27)

B
(3)
mij =

1

z4
ρmF

(b)
mij +

1

2
δim (A.28)

B
(2)
kmlij = δikD

(b)
mlj + δlmC

(b)
mkij (A.29)

B
(1)
klmj = 2πρlC

(a)
kmlj (A.30)

Coefficients of the factor correlation functions in equations (4.14) and (4.15):

Cij = −
∑

l

(δil −
2π

z2
ρlGile

−zσi)Dlj (A.31)

fij = (Cij + Dij)e
zσi =

2π

z2

∑

l

ρlGilDil (A.32)

Mj = − 1

z2

∑

m

ρmM (a)
m Dmj −

2π

z4

∑

mk

ρkρm(1 − M (a)
m e−zσm)GmkDkj (A.33)

Nj =
1

z3

∑

m

L
(a)
mjDmj +

2π

z5

∑

mk

ρkρm(1 + zλjm − L
(a)
mje

−zσm)GmkDkj (A.34)

Aj = A0
j (1 + Mj) −

4

σ2
j

B0
j Nj (A.35)

aij = Aj (A.36)

bij = b0
ij(1 + Mj) + A0

i Nj (A.37)

Expression needed for the calculation of the chemical potential ∆µi

kBT :

c̃ij(0) − c0
ij(0) = (Qij − Q

0

ij) + (Qji − Q
0

ji) −
∑

ρl

(QilQjl − Q
0

ilQ
0

jl) (A.38)

Qij =

∫ ∞

λji

Qij(r)dr (A.39)

Qij =
1

6
aijσ

3
i − 1

2
bijσ

2
i − 1

z2
CijM

(a)
i +

1

z2
fij (A.40)

Q
0

ij =
1

6
a0

ijσ
3
i − 1

2
b0
ijσ

2
i (A.41)



Appendix B

Tie Lines

Calculation of the tie lines

The system of volume V consists of two components labelled A and B. The total number of

particles is N and NA is the number of particles of species A. The density ρ and the concentration

c are defined as

ρ =
N

V
c =

NA

N
. (B.1)

Two phases α and β which are in coexistence at the concentrations cα and cβ and at the densities

ρα and ρβ are connected by so called tie lines. On a tie line the system consists of two phases α

and β in thermodynamic equilibrium and moving along this line only the relative amounts of the

phases change.

Assuming a point x of the tie line the system has the volume Vx and the total particle number

Nx. The phase α has the volume V α
x and Nα

x particles (with concentration cα and density ρα).

and the phase β has the volume V β
x and Nβ

x particles (with concentration cβ and density ρβ).

Therefore Nx = Nα
x + Nβ

x and Vx = V α
x + V β

x . The number of particles of species A at the point

x of the tie line is called NA
x .

The density ρx of the whole system is given by

ρx =
Nx

Vx
=

Nα
x + Nβ

x

V α
x + V β

x

(B.2)

and the overall concentration cx is obtained by

cx =
NA

x

Nx
=

cαNα
x + cβNβ

x

Nα
x + Nβ

x

. (B.3)

Fixing the volume Vx = V where V is the volume of the system at phase coexistence we introduce

a parameter γ

γ =
V α

x

V
0 ≤ γ ≤ 1 (B.4)
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which parameterises the tie line:

ρx = γρα + (1 − γ)ρβ (B.5)

cx =
γcαρα + (1 − γ)cβρβ

γρα + (1 − γ)ρβ
(B.6)
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