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Abstract
We investigate the stable crystalline configurations of a nematic liquid crystal made of soft
parallel ellipsoidal particles interacting via a repulsive, anisotropic Gaussian potential. For this
purpose, we use genetic algorithms (GA) in order to predict all relevant and possible solid
phase candidates into which this fluid can freeze. Subsequently we present and discuss the
emerging novel structures and the resulting zero-temperature phase diagram of this system. The
latter features a variety of crystalline arrangements, in which the elongated Gaussian particles in
general do not align with any one of the high-symmetry crystallographic directions, a
compromise arising from the interplay and competition between anisotropic repulsions and
crystal ordering. Only at very strong degrees of elongation does a tendency of the Gaussian
nematics to align with the longest axis of the elementary unit cell emerge.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Theoretical physics (not unlike mathematics) thrives on the
existence of questions that can be formulated in a very simple
way, yet where either the answers or the ways to reach
them are complex. One such celebrated example of a yet
unsolved problem is the following: given a collection of
N identical particles enclosed in a macroscopic volume V
that are experiencing pairwise additive interactions among
themselves, what is the periodic configuration that minimizes
the free energy per particle at the thermodynamic limit,
N, V → ∞ whilst ρ ≡ N/V remains constant? The
question can be simplified by reformulating it at zero absolute
temperature T , so that the free energy reduces to the internal
energy per particle. Even in that case, a sure-fire procedure
that predicts the stable configuration at T = 0 is lacking;
even proofs that this so-called ground-state configuration is a
periodic crystal are rare, so one usually makes the assumption
that, on symmetry grounds, the energy-minimizing structures
will be (complex) crystals, as opposed to, e.g., disordered
arrangements.

Two distinct but related realms of condensed matter
science in which this question arises are quantum/atomic hard
matter physics and colloidal/polymeric soft matter physics. In
the former case, the effective interparticle potentials are the
result of a quantum-mechanical trace over the complicated

electronic degrees of freedom and are usually derived by
means of techniques from electronic structure/quantum density
functional theory calculations [1]; in the latter, they emerge as
constrained free energies between suitably chosen mesoscopic
degrees of freedom, once a classical trace over the microscopic
ones has been taken [2, 3]. In either case, the problem of the
prediction of the optimal structure can be formulated both for
a finite number of particles, in which case one speaks of the
optimal geometry of clusters, or for infinite, extended systems.
In hard matter, a tremendous amount of work has been carried
out over the past 10–15 years for finite clusters, employing
a variety of techniques, such as simulated annealing, basin
hopping, and genetic algorithms (GA), see [4] and [5] for
typical examples. GAs are the tools we focus on in the present
work. Extended structures have also been recently looked at by
applying GAs as well as a variety of other techniques [6–11].

In this paper, we concentrate on soft matter. Here,
an enormous variety of interparticle effective potentials
arise, the characteristics of which (range and strength of
attractions and repulsions, anisotropy, softness etc) can be
tuned in ways unknown in hard matter. Concomitantly, the
question of predicting the ground-state crystal structures is a
nontrivial one, because conventional methods of trial and error
already show that soft interactions stabilize unusual crystal
structures [12–15].

Mathematical proofs on the existence and uniqueness of
crystalline ground-state arrangements are rare but they carry
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enormous value. Here, soft matter has given new impetus
to the subject, since unconventional pair potentials, which
are considered unphysical in atomic physics, can be quite
realistic in soft matter science. Accordingly, a powerful and
elegant proof on the ground-state structures of certain classes
of bounded pair interactions has been established in the work
of Sütő [16–18]. Further, Torquato and Stillinger have recently
derived generalized duality relations, which act as guides in
the search for ground states [19], and they also analyzed
the phase behavior of the Gaussian model in high spatial
dimensions [20], for which Cohn and Kumar subsequently
showed that its ground states are non-Bravais lattices at spatial
dimension 5 and 7 [21]. For diverging potentials, Theil
has given a rigorous proof of the crystallization of Lennard-
Jones particles in two dimensions in a triangular lattice [22].
Similarly, in two dimensions, the phase diagram of mixtures
of two different species of hard discs has been worked out
by means of geometrical arguments in the work of Likos and
Henley [23]. However, the latter work is based on a pre-
selection of classes of structures and thus does not provide
a rigorous proof of optimal packing for any of the structures
considered.

An alternative philosophy is to obtain guidance from
the structures observed experimentally, model the interactions
in physically reasonable ways, and obtain the full phase
diagram by using a combination of computational techniques,
including simulated annealing and calculation of the crystal
free energies via the Frenkel–Ladd method [24]. This approach
has led to the discovery of novel crystalline phases in binary
mixtures of oppositely charged colloids [25, 26], as well as
hard spheres [27]. Also, related in spirit is the recently
developed strategy of inverse design, spearheaded by the
work of Torquato and collaborators [28, 29]. Here, one
starts from certain target structures and seeks for a simple,
spherically symmetric pair potential that stabilizes them. A
large variety of important results has been obtained in this
way, including pair potentials that lead to self-assembly of the
simple cubic [30], the diamond and wurtzite [31], as well as the
honeycomb lattices [32, 33]. Cohn and Kumar recently derived
some very useful mathematical relationships that allow for the
design of simple potentials with the goal of stabilizing finite
arrangements of interacting particles [34].

Less is known about the ordered arrangements stabilized
by particles that interact by means of anisotropic interactions,
the anisotropy arising from shape [35–38], molecular
architecture [39] or through the influence of external
fields [40]. In this contribution, we pursue the goal of
identifying the ground states of systems consisting of particles
whose interaction combines softness with anisotropy. In
particular, we consider axial particles that interact by means
of an anisotropic Gaussian interaction, a system recently
introduced by Prestipino and Saija [41]. To simplify
things, we follow [41] in assuming that all particles have
the same orientation, forming thereby a Gaussian nematic
crystal. We then draw the ground-state phase diagram by
employing genetic algorithms [42]. We find a variety of
phases and we discuss the interplay between the orientational
and crystallographic degrees of freedom as functions of the
concentration and the degree of anisotropy.

Figure 1. Schematic illustration of the setup of two parallel,
anisotropic Gaussian ellipsoids. The center-to-center vector Ri j

spans an angle θi j with the long axis of the ellipsoids, which sets the
nematic director vector n̂. Related to equation (2), r ≡ |Ri j | and
θ ≡ θi j .

The rest of the paper is organized as follows. In section 2
we present the model and define the interaction parameters
as well as the relevant variables that describe the lattices and
the orientation of the nematics in the same. In section 3, we
present the numerical procedure applied for the determination
of the solid structures. The results are presented and discussed
in section 4, while in section 5 we summarize and draw our
conclusions.

2. The model

In this paper, we investigate a nematic fluid of N parallel,
prolate ellipsoids of revolution in three dimensions, the
interaction of which is governed by a smooth pair interaction
potential U(r, θ), with r = |Ri j | being the center-to-center
distance. The potential involves an orientation-dependent
length scale σ , which is a function of the angle θ subtended
between the vector Ri j and the direction of the axis of
revolution, and its closed-form expression can be cast in the
form [41]:

σ(θ) = σ0√
1 + (λ−2 − 1) cos2 θ

, (1)

with σ0 denoting the spatial extent of the shorter of the two
ellipsoid axes, which sets the unit of length in what follows.
The parameter λ describes the aspect ratio between the major
and minor axis of the ellipse, and can thus be varied to tune
the eccentricity of the ellipsoids. Evidently, λ = 1 represents
the isotropic and λ > 1 the anisotropic case, which will
be considered in the following. Following Prestipino and
Saija [41], we consider an anisotropic Gaussian interaction
potential between the ellipsoids, given by:

U(r) ≡ U(r, θ) = ε exp

{
− r 2

σ 2(θ)

}
, (2)

with an arbitrary energy scale ε that sets the unit of energy
in what follows. A sketch of the geometry of two interacting
anisotropic Gaussian particles is shown in figure 1. The
anisotropy of the interaction is illustrated in figure 2.

In this work, we restrict ourselves to T = 0, thus
no fluctuations of the ellipsoids from their fixed, parallel
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Figure 2. The dependence of the interaction potential between two particles on the interparticle orientation θ : (a) for fixed anisotropy
parameter λ = 2.0 and different separation distances r as indicated in the legend; (b) for fixed separation r = 2σ0 between the centers and
varying the anisotropy, as indicated in the legend.

orientations exist. We do so because we wish to examine
the ground states and also to consider the simplest case in
which genetic algorithms can be applied to this anisotropic,
soft model, providing also a comparison with the results of [41]
that have been obtained via conventional techniques. The
parallel aligned Gaussian ellipsoids constitute an extension
of the Gaussian-core model, which is obtained for λ = 1.
The latter physically describes solutions of polymer coils or
dendrimers, and its equilibrium properties are worked out
extensively in [43–45]. The study of its anisotropic extension
is of considerable interest, since asphericity is expected to give
rise to new types of behavior such as liquid-crystalline order.
Consequently, systems consisting of hard ellipsoids [46] and
hard spherocylinders [47–50] have already been analyzed in
detail in the past.

The nematic character of the system is reflected in the
fact that the long axes of the particles are always parallel
to one another. Thereby, the assembly is characterized by a
director vector n̂; the relative orientation of n̂ with respect
to the crystallographic axes of periodic ground states for
given density and anisotropy is one of the questions to be
investigated. We consider here exclusively Bravais lattices,
i.e., we ignore the possibility that the lattice might have a basis
of b � 2 particles, and we sketch in figure 3 an elementary
unit cell of the lattice, together with the Gaussian ellipsoids,
denoted as rods, at two of the vertices. A complete description
of the periodic arrangement entails not only the specification
of the three primitive lattice vectors ai , i = 1, 2, 3 but of
the relative orientation of the ellipsoids with respect to the
axes. As we discuss in section 3, one can, without loss of
generality, orient the lattice vector a1 along the x-Cartesian
axis and identify the plane spanned by a1 and a2 with the
(x, y)-plane. Consequently, to describe the orientation of
the nematic director n̂, it is sufficient to give the polar and
azimuthal angles, α and β , defined as:

cos α = n̂ · ẑ sin α cos β = n̂ · x̂. (3)

The Helmholtz free energy at T = 0 is given by the lattice
sum, i.e., the sum over all pair interactions among the particles

Figure 3. Schematic illustration of the setup of anisotropic Gaussian
ellipsoids within a Bravais lattice spanned by the primitive vectors
a1, a2 and a3. Two prolate ellipsoids at two arbitrarily chosen lattice
points are indicated as well by straight line segments, which lie
parallel to the nematic director n̂.

on the lattice sites. Of interest is the lattice sum per particle,
f̃ (X, n̂; ρ, λ). This quantity depends on the Bravais lattice X
spanned by the vectors {Ri } and the nematic director n̂ for any
given density ρ and anisotropy parameter λ, and it is given by
the expression:

f̃ (X, n̂; ρ, λ) = 1
2

∑

Ri �=0

U(Ri ). (4)

The equilibrium energy per particle, f (ρ, λ), at any given
density ρ for fixed anisotropy λ is given by the minimum of
equation (4) over all lattices and orientations of the nematic
director:

f (ρ, λ) = min
{X,n̂}

f̃ (X, n̂; ρ, λ). (5)

The minimization of f̃ is carried out in this work by means
of the genetic algorithm approach, as outlined in section 3.
Afterward, one can draw the stable phases on the density–
anisotropy, i.e., the (ρ, λ)-plane. Phase diagrams based
on such a procedure are commonly referred to in literature
as zero-temperature- or ground-state phase diagrams, since
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the particles are considered to be immobile in their lattice
positions.

3. Genetic algorithms in freezing problems

In trying to guess what the T = 0 crystals of Gaussian
nematics would look like, it is at first glance reasonable to
seek for guidance from the case of zero anisotropy (λ = 1),
for which the phase diagram is known [43]: the fcc lattice
has the lowest energy for ρ < π−3/2 and the bcc lattice for
ρ > π−3/2. On these grounds, Prestipino and Saija suggested
freezing transitions into modified face-centered-cubic (fcc) and
body-centered-cubic (bcc) structures, which are stretched and
distorted along the elongation axis of the ellipsoids [41]. Even
though this is a reasonable assumption, it still forms a biased
approach, in which counterintuitive solutions and more general
ways in which the nematic Gaussians could orient along the
crystallographic axes of more general structures are ignored
from the outset.

An efficient search of the whole lattice- and orientation
parameter space is therefore called for. A convenient and
foremost effective tool for this purpose are genetic algorithms
(GA), as will be shown later in this contribution. GAs were
originally developed by Holland and co-workers [51] and
have been extended to various scientific fields over the past
years. This method also achieved a high popularity in the
realm of soft matter physics, and it has been demonstrated
in the work of Gottwald et al [42] that the instrument of
genetic algorithms is highly suitable for the prediction of
equilibrium structures in freezing processes. Since then, GAs
have been applied in a variety of problems of freezing in
the bulk [52–65] and, more recently, also in geometrical
confinement [66, 67]. From the methodological point of view,
GAs are challenging to implement in the case for which the
interaction potential contains a hard, diverging core. In this
situation, the vast majority of configurations that are generated
through the recombination process lead to particle overlaps and
are therefore rejected. Consequently, this leads to very poor
genetic diversity. This problem has been recently solved in
the works of Fornleitner and Kahl [53] and of Pauschenwein
and Kahl [54, 55] in two and three dimensions, respectively,
by analytically calculating the allowed regions of configuration
space and restricting the search space of the GA within those.
As we are dealing with soft interactions, the issue does not arise
for the problem at hand.

As the basic principles of GAs have already been
presented elsewhere [42], we will not cover this subject in
this contribution, but rather the adaption of the GA-scheme
on freezing problems. First of all, a representation for the
primitive vectors of the Bravais lattice {ai} = {a1, a2, a3} has
to be chosen. It is convenient to orient the longest primitive
vector, chosen to be a1, along the x-axis of the coordinate
system. The second longest vector, a2 spans together with a1

the (x, y)-plane of the same, and the angle between the vectors
a1 and a2 is γ1, see figure 3. The direction of the remaining
vector, a3, is determined by the polar and azimuthal angles �

and �. Accordingly, the vectors are parametrized as:

a1 = a(1, 0, 0) a2 = a(x cos γ1, x sin γ1, 0)

a3 = a(xy cos � cos �, xy sin � cos �, xy sin �).
(6)

In equations (6) above, the length of the longest vector, a =
|a1|, appears as an additional quantity but its value is fixed by
the density ρ, since

ρ−1 = |a1 · (a2 × a3)|, (7)

and therefore it is not a parameter that explicitly enters the
minimization problem of the GA. Evidently, x = |a2|/|a1| and
xy = |a3|/|a1| are size ratios.

The five parameters (x, y, γ1,�,�) characterize the
Bravais lattice and are limited by the following constraints:
x, y ∈ [0, 1],�,� ∈ [0, π/2], γ1 ∈ [0, π]. At this point, it
has to be noted that the representation (6) is not unique, as each
given lattice can be incorporated by a different but equivalent
set of basis vectors {āi}. Hence, the introduction of a further
constraint becomes mandatory. Here the linear combinations
of the primitive vectors {ai} are formed iteratively, until the
spanned surface of the unit cell  is minimized, where the
latter is given by the following equation:

 = |a1 × a2| + |a1 × a3| + |a2 × a3|. (8)

However, the consequence of this procedure is that the
vectors {ai} no longer form an upper triangular matrix and
thus equivalent lattices become hard to identify. To resolve
this problem, a QR decomposition, e.g., a Householder
transformation is applied [68]. In addition to the lattice
parameters, the characterization of the crystal structure is
completed by the values of the two angles α and β of the
nematic director, equations (3).

The crystal structure has next to be translated into an
individual I (genotype), which represents a point in search
space and hence one candidate solution (phenotype). Here, we
have chosen the following conversion:

{ai} ≡ {x, y, γ1,�,�, α, β} → bxbybγ b�b�bαbβ = I (9)

with bx . . . bβ representing seven strings of genes from a binary
alphabet A = {0, 1}. The bi s are all binary representations
of positive numbers smaller than unity, i.e., every variational
parameter p lying in the interval [0, pmax] is first divided by
pmax to create its normalized counterpart p̄ ∈ [0, 1]; the bi s are
then just binary representations of the decimal values of the p̄s.
Each bi is encoded each as a 32 bit fixed-point variable, with
values ranging from 0 to 1. This results in a relative accuracy of
2−32 ≈ 2 × 10−10 per parameter. However, this precision also
leads to an extremely high dimensional search space, due to
|I| = 224, and thus an efficient decimal-to-binary conversion
is crucial for the simulation’s performance. Therefore, we
mainly use bit-wise operations in our implementation, as
these are still carried out much faster than divisions and even
multiplications on today’s computer architecture.

Our GA itself is implemented as follows: the individuals
I of the initial generation G0 are chosen randomly, where
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the typical number of individuals comprising a generation is
NI = 250. In order to determine each individual’s fitness, we
introduce the following function fi (I), where the subscript i
denotes the generation Gi :

fi (I) = exp

⎧
⎨

⎩
1 −

[
f̃ (I)

f̃ (Ifcc
λ=1)

]ε(i)
⎫
⎬

⎭
. (10)

In equation (10) above, f̃ (I) has the same meaning as the
function f̃ (X, n̂; ρ, λ) of equation (4) and f̃ (Ifcc

λ=1) is the
lattice sum per particle for the fcc structure at the same density
and in the absence of anisotropy. The generation-dependent
exponent, ε(i) = 1 + i

20 , is introduced in order to speed up the
convergence, as it depends on the generation index i and thus
the choice of the fittest individual in a generation Gi becomes
more selective as i increases [42].

After all NI individuals of one generation Gi are
examined, the subsequent generation Gi+1 is populated by
new individuals, which are created by performing one-point
crossovers on the genetic material of the two parents. The
latter are chosen with probabilities proportional to their fitness
values, namely:

p(I) = fi (I)
∑

I∈Gi
fi (I)

, (11)

and each crossover point is chosen randomly in the interval
I = [1, 223]. Hence, this recombination step is completely
blind to the cell geometry, as it can dissect a bi , and it therefore
does not correspond to simple geometric moves of particles.
This clearly distinguishes our GA approach from applications
of evolutionary algorithms to describe cluster formation [69],
which operate in real space and invoke ‘cutting and gluing’ of
parts of different clusters.

In the next step, point mutations are performed on
these newly-formed individuals with a probability pmutate

lying typically in the range 0.01–0.05. This means that
on average |I| · pmutate ≈ 2–11 arbitrary bits are flipped
from one to zero or vice versa per individual. This
procedure is of utmost importance, as it increases the genetic
diversity by reintroducing new or lost information into the
system. Furthermore, the fittest individual of the preceding
population I∗

i is transferred unaltered into the new generation
Gi+1 (elitism), in order to guarantee the monotonicity of
max{ fi(I∗

i )|i � NG}. This whole sequence of selection,
recombination and mutation is then repeated NG times. A
total number of generations NG = 100–200 is sufficient to
achieve convergence of the best fitness value, in agreement
with previous results [42], and this convergence was checked
by running the GA up to one order of magnitude longer than
the value quoted above. After the termination of the GA, the
final solution is reached by relaxing the fittest individual I∗
by employing a deterministic, steepest-descent optimization
algorithm.

The whole cycle described above initially takes place at
some starting density ρ0. Then, the GA is sequentially run for
an array of increased densities ρ j = ρ0 + j�ρ, as we want to
analyze the phases of our simplified liquid crystal not only for

one particular density ρ but rather in an extended range, which
in this case reads ρ ∈ [0.01, 0.30]. To locate transitions and
regions of phase coexistence as accurately as computationally
feasible, we have chosen a step size of �ρ = 0.005 in this
contribution. The anisotropy parameter was varied in the
interval λ ∈ [1.0, 3.0] using a grid of thickness �λ varying
between 0.005 and 0.1, depending on the resolution necessary
to resolve phase transitions.

An additional issue is that of the roughness of the obtained
results. The energy landscape associated with the minimization
problem at hand is very rough, a property that prohibits usage
of conventional search algorithms and brings forward the
power of the GA approach. At the same time, however, this
property results in structures that can differ markedly from
one another, despite very small changes in the density, i.e.,
the obtained lattice parameters can ‘jump’ between different
values. It is intuitive that the information gathered from the
completed GA-run at some density ρ j−1 should be of some
use when starting the procedure for a new density ρ j and that
taking this information into account could result in smoothing
of the final outcome. It appears therefore beneficial to populate
a substantial fraction of the initial generation G0 at ρ = ρ j

with the fittest individual I∗ for ρ = ρ j−1, instead of using
randomly chosen individuals. This strategy can, on the one
hand actually dramatically accelerate convergence, but on the
other it can also introduce hysteresis into the system, as has
been demonstrated in [52, 70]. A strategy that strikes a
balance between the advantages (smoothing of results, biasing
of the algorithm) and the disadvantages (possible hysteresis
effects, loss of genetic information) of the non-random initial
population is thus called for. Accordingly, we applied a
more elaborate version of this scheme: first, we independently
calculated the fittest individuals {I∗

j } in an unbiased way for
each density ρ ∈ [0.01, 0.3] and stored these in a list. Then the
free energy of an appropriately scaled version of each I∗

j from
this list is recalculated for every given density ρ0 and compared
with the originally obtained lattice sum I∗

j0
, keeping the one

that wins as the final choice. This simple post-processing does
not only decrease f noticeably but it also reduces the noise of
the characteristic lattice parameters dramatically.

4. Results and discussion

We have calculated the optimal Helmholtz free energy per
particle f for various λ in the interval between 1.0 and 3.0 at
zero temperature. The region near λ = 1.0 has been analyzed
particularly thoroughly, as the transition from the spherical
case is of considerable interest. One prominent feature of this
Gaussian-core model is the phase coexistence of the fcc and
the bcc lattice structures at ρc = π−3/2, which is established
as an exact result [43]. Accordingly, we know a priori that
there must be at least one line of phase transitions, which
commences at the point (ρ, λ) = (π−3/2, 1) and extends
into the region of nonvanishing anisotropy, λ > 1, in some
yet undetermined fashion. The presence of the fcc and bcc
phases for zero anisotropy suggests that one plausible solution
of the minimization problem for λ > 1 could be the stretching
of the corresponding cubic unit cell along some direction of
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Figure 4. The lattice sum per particle, f , of the
orientation-optimized fcc, fcc [001], bcc and bcc [001] crystal
structures, compared to the fully optimized lattice sum obtained by
the GA, fGA, against the density ρ and for anisotropy λ = 1.08.

high crystallographic symmetry by a factor λ in a volume-
preserving fashion, and the orientation of the nematics along
the stretched axis, as conjectured recently by Prestipino and
Saija [41]. Some special structures that have been considered
in [41] are the fcc [100], bcc [100], fcc [111] and bcc [111],
where the brackets denote the direction of stretching. As a first
test of this assumption, we compare in figure 4 the lattice sums
of various intuitive structures with the result of the GA for low
anisotropy, λ = 1.08 and increasing density. In particular, we
take fixed fcc and bcc lattices and optimize the structures only
with respect to the orientation (α, β) of the nematic director
n̂ and, in addition, we also consider the fcc [001] and the bcc
[001] lattices. As can be seen in figure 4, all of those have a
higher f -value than the optimal structure, which demonstrates
the fact that the particles arrange themselves on the lattice in
some nontrivial way.

As can be seen in figure 4, all four curves show a kink
at ρ = 0.17; since the free energy of each structure develops
smoothly with ρ; this arises from a transition in the optimal

phase, whose free energy is determined by the GA. There
is, therefore, a phase transition at (ρc, λ) = (0.17, 1.08),
which occurs at a lower density than the aforementioned value
ρc(λ = 1) = π−3/2 ∼= 0.18. Indeed, the line ρc(λ) moves
monotonically to lower densities as the anisotropy grows. This
behavior is shown in the full zero-temperature phase diagram,
which is presented in figure 5(a), and will be discussed in detail
in what follows. The ρc(λ)-curve can be fitted quite accurately
by a power-law, figure 5(b), which is given by:

ρc(λ) = (π3/2λ)−1. (12)

The phase diagram of figure 5 is organized in two distinct
regions on either side of line ρc(λ) of equation (12). On the left
side, the fcc structure exists only for λ = 1 and immediately
gives its place to the new phase I as λ increases, whereas
at higher values of anisotropy a new phase, called phase III
appears. The sequence of phases is similar on the right-hand
side of the line ρc(λ) but here the bcc phase retains its stability
for a small region of anisotropy before transforming to phase
II, which in turn changes into phase IV for λ � 2. From
the crystallographic point of view, phases I–IV all belong to
the triclinic group, with the additional property that two of
the primitive lattice vectors are equally long, as will be seen
below. Therefore, we just name them using successive Roman
numerals and characterize them in detail in what follows.

To characterize these phases in detail, we have plotted, in
figures 6 and 7, the size ratios |ai |/|a1|, i = 2, 3, characterizing
the lattice structures, and, in figure 8, the angles α, β of
the Gaussian ellipsoids, which describe the orientation of the
nematic director n̂. The evolution of these quantities on the
(ρ, λ)-plane is plotted along the lines denoted L and R on the
phase diagram of figure 5(a), which run immediately to the
left and right, respectively of the ρc(λ)-line and intersect the
horizontal phase boundaries at the points A, B, and C.

Referring first to figure 6(a), we see that the length of
the vectors a2 and a3 remain equal at all anisotropies and
densities, a feature that is also true on the right line, R, see
figure 6(b). Moreover, the general trend is that the size ratios

Figure 5. (a) The zero-temperature phase diagram of the Gaussian nematic on the (ρ, λ)-plane. The solid lines denote boundaries between
coexisting phases. The red line is highlighted because it marks the evolution of the exact fcc–bcc transition threshold, ρc(λ = 1) = π−3/2,
with anisotropy λ. The two dashed lines L and R are running parallel to it immediately on its left, low-density side (L) and on its right,
high-density side (R). Boldface roman numerals mark the regions of stability of the various phases. (b) Double-logarithmic plot of the red line
of panel (a), demonstrating the power-law nature of the function ρc(λ).
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Figure 6. Aspect ratios of the primitive vectors of the various phases shown in figure 5(a), following a path: (a) along the L-line and (b) along
the R-line there.

Figure 7. Same as figure 6 but for the angles γi .

Figure 8. Same as figure 6 but for the orientation angles α and β of the nematic ellipsoids.

decrease with increasing anisotropy, a first indication of the
fact that the crystal expands in the direction of the vector a1

(chosen as the x-axis of the coordinate system) and shrinks in
the other two, as a strategy to accommodate the even longer
and thinner ellipsoids. The transition point A from phase I to

phase III is only weakly visible in figure 6(a) along the L-line,
meaning that along this horizontal line in figure 5(a) the lattice
itself does not undergo a drastic transformation in terms of the
lengths of its elementary vectors; however, the transition to a
new lattice becomes evident when one considers the angles γi ,
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Figure 9. Snapshots of phase I at ρ = 0.11, λ = 1.3 (see figure 5(a)) from three different perspectives. The elementary lattice vectors ai ,
i = 1, 2, 3 are marked on every perspective of the cell.

Figure 10. Same as figure 9 but for phase II, at ρ = 0.11, λ = 2.0.

Figure 11. Same as figure 9 but for phase III, at ρ = 0.11, λ = 1.5.

i = 1, 2, 3, and the orientation of the ellipsoids α, β , to be
discussed below. Along the R-line, figure 6(b), two transitions,
at points B and C are clearly visible. Whereas for sufficiently
small anisotropies the lattice maintains the characteristics of
the λ = 1 bcc lattice, for anisotropy parameters λ � 2.0
a sudden transformation to a new lattice occurs. This is
characterized by the fact that, immediately after the transition,
all lattice lengths are roughly equal and monotonically drop
thereafter (phase II). At point C, the transition to phase IV
takes place, signaled by a sudden increase in the size ratios
and a monotonic drop of the same afterward.

Further information can be gained by looking at the
development of the three angles γi , i = 1, 2, 3, which are
defined as: γ1 = � (a1, a2), γ2 = � (a1, a3) and γ3 = � (a2, a3).
Here, referring to figure 7(a), we see that the transition point
A on the L-line becomes evident via a sudden jump of all
three values of γi . To be more specific, there is a monotonic
decrease of all three angles within phase I as λ grows, and,
within numerical accuracies, they are all equal to one another
in this phase. To accommodate the increasingly anisotropic
ellipsoids, the three angles shrink, i.e., the lattice becomes less
and less cubic. In addition, the angles of phase I also shrink
at constant λ as the density grows (not shown). Upon the
transition I → III at point A, all three angles attain different
values, which remain roughly constant along the λ-axis. The
angle γ3 subtended between the two smallest lattice vectors

also attains the smallest value, γ3
∼= 60◦, whereas the largest

one lies close to a right angle. Along the R-line, figure 7(b),
the transition from bcc to phase II and the transition II → IV
are again clearly visible by jumps in the values of the γi s. A
characteristic feature of phase IV, similar to that of phase II,
is that the largest angle is close to 90◦, whereas the smallest is
close to 60◦. However, phases II and IV are clearly distinct in
terms of their size ratios, see figures 6(a) and (b).

Let us now turn our attention to the orientation of
the ellipsoids within the above-mentioned crystal structures,
shown in figure 8. Along the L-line, figure 8(a) the I → III
transition is accompanied by a slight increase of the angle β

from practically β = 0 (full alignment of the projection of
the ellipsoid long axis with the longest vector a1) to a nonzero
value, meaning that the particles’ projection on the (x, y)-
plane turns away from the x-axis upon transition. Within phase
III, the alignment increases again as λ grows. Notice, however,
that the nematic director n̂ remains well off the (x, y)-plane
throughout, as witnessed by the fact that α �= 90◦ throughout.
A slow decreasing tendency of the angle α as λ grows can
even be discerned. Along the R-line, figure 8(b), a similar
trend along the II → IV transition can be seen, where, in
the high anisotropy case, the angle β is essentially zero, i.e.,
the long axis of the ellipsoids has a projection on the (x, y)-
plane that fully aligns with the longest lattice vector, a3. To
offer an impression of the typical elementary crystal cells and
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Figure 12. Same as figure 9 but for phase IV, at ρ = 0.11, λ = 2.6.

Figure 13. The aspect ratios from figure 6, compared with those resulting for the fcc [001] and the bcc [001] Bravais lattices.

the ellipsoids’ orientation there, figures 9–12 show typical
snapshots of phases I–IV.

The general trend with increasing λ is that the ellipsoids’
projection on the (x, y)-plane aligns with the longest axis.
However, the ellipsoids themselves remain off-plane, since
in this way they minimize overlaps. The strategy chosen
by the system to minimize its lattice sum is not intuitive
and a comparison with one intuitive strategy, namely the fcc
[001] and the bcc [001] on the L- and R-lines, respectively,
is informative. For this purpose, we show in figure 13 a
comparison between the size ratios obtained by the GA and
those corresponding to fcc [001] and bcc [001] lattices for
arbitrary anisotropies λ. At first sight, the differences appear
minimal and, indeed, the scenario of a simple stretching of the
fcc or bcc lattice along the long ellipsoidal direction is not too
far from the truth. However, as can be seen in figure 14 the
lattice sums of the structures generated by the GA lie clearly
below those of the stretched lattices, so that these are truly new
structures.

5. Conclusions

We have applied genetic algorithms to study the equilibrium
configuration of a liquid crystal model of soft repulsive parallel
ellipsoids, named the Gaussian-core nematic model, aiming at
a characterization of its phase behavior at zero temperature. In
our implementation the individuals are binary representations
of the primitive vectors of the Bravais lattice, and the typical
GA cycle ‘selection–recombination–mutation–evaluation’ has
led after a reasonably small number of iterations to an

Figure 14. Same as figure 4 but for λ = 2.0.

intermediate result, which has then been refined through a final
hill-climbing search.

Although genetic algorithms have been recently employed
for anisotropic interactions in two spatial dimensions [40],
this is, to the best of our knowledge, the first application
of this technique to anisotropic interactions in three spatial
dimensions. The GAs are capable of capturing the interplay
between lattice type and ellipsoidal orientation and give rise
to an interesting zero-temperature phase diagram. It would
be very interesting to extend this to finite temperature and
to compare the resulting phase diagram (including the fluid
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phases) with the one obtained in the recent pioneering work
of Prestipino and Saija [41].
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