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We consider linear and branched polymers driven through narrow and patterned channels by
imposing a Poiseuille flow on the ambient solvent. We establish, by means of scaling arguments,
that the translocation probability of dendrimers through the pore is independent of the number of
monomers and that it takes place above a viscosity-dependent critical external current. When the
channel walls are smooth, the translocation times of linear and branched polymers with the same
monomer number are very similar. However, for walls that are decorated with attractive patches,
dramatic differences show up: whereas a dendrimer successively docks at the patches and “walks”
from one to the next, being carried away by the solvent flow, linear chains spread themselves along
the channel wall without achieving translocation within simulation times. Our findings are relevant
for, e.g., drug delivery through dendritic carrier molecules in capillary arterioles. © 2010 American
Institute of Physics. �doi:10.1063/1.3466918�

I. INTRODUCTION

Translocation of polymers through narrow holes, which
allow for the passage of one monomer at a time and exclude
the formation of hairpins, is a problem of high relevance in
biology and industry, posing at the same time a challenge for
theory and simulations. Accordingly, a great deal of experi-
mental, theoretical, and simulational effort has been devoted
to it, and we refer to Ref. 1 for a list of relevant references.
In most cases, a flat membrane with a single opening is con-
sidered, with a linear chain of N monomers translocating
from one side of it to the other. The driving forces behind
this phenomenon can have a multitude of physical origins,
including a chemical potential gradient across the
partition,2–4 external fields, such as voltage,5 or preferential
adsorption of the chain on one side of the membrane.1,6 Di
Marzio and Mandell showed,7 within the framework of a
simplified model, that a first-order translocation phase tran-
sition occurs for chains when N→�. An issue that has been
discussed at great lengths within the context of translocation
is the scaling of the passage time through the hole and its
dependence on N and the external fields imposed on the
setup. Different theories and approaches have been put for-
ward. Computer simulations by Milchev et al.1 confirm the
prediction of Chuang et al.8 that the translocation dynamics
of self-avoiding chains is anomalous, with the passage time
scaling as �N2�+1 ���0.59 is the Flory exponent for self-
avoiding chains� below the adsorption threshold and as
�N1.65 above it. The case of unbiased translocation has also
been recently studied by simulation.9

A closely related problem is the escape of a polymer
chain through a long channel, for which the driving force can

be either a chemical potential imbalance4,5 or, as in the
present work, solvent flow. Indeed, the flow behavior of mac-
romolecules through narrow channels has recently attracted
considerable attention due to its relevance concerning, for
example, biological applications of microfluidics,10 sequenc-
ing DNA by passing it through nanopores,11,12 and the pas-
sage of biomolecules through membrane channels.13 Here,
the issue of interest is whether the external current J is strong
enough to cause insertion, and then suction, of the polymer
inside the narrow channel. Both for linear and for randomly
branched polymers, de Gennes et al.14 have established that
the critical suction current is independent of the degree of
polymerization, correcting thereby the originally wrong pre-
diction of N-dependence for the latter.15

The process by which a polymer moves through a nar-
row channel can be divided into three stages. First of all, the
polymer must find the opening, second it must squeeze into
the constriction, and only then can it move through the mi-
crochannel. In this work, we focus on the latter two steps for
the case of dendrimers, which are regularly branched poly-
mers, in contrast to the aforementioned randomly branched
objects. Our approach is similar to the recent work of
Markesteijn et al.,16 but we focus on dendritic instead of
linear polymers and we consider different aspects of the
problem, focusing on translocation times and wall pattern-
ing; further, our simulation technique is a different one from
that in Ref. 16 above. This subject has not only theoretical
interest, but it is relevant to applications as well since den-
drimers are used as drug carrier molecules, which have to
travel downstream along arteries or capillary-sized arterioles
driven by the bloodstream. We put forward a theoretical ap-
proach to predict that the critical current for narrow channel
openings is independent of N also for low-generation den-
drimers, while, evidently, it vanishes for channels whose
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width exceeds the molecular size. We further perform hybrid
simulations that couple hydrodynamic flow with molecular
motion to analyze the dependence of passage times on the
width and patterning of the channel walls, finding that the
molecule “docks” on attractive patches on the wall and has
finite residence times there until it is further carried away by
the incipient solvent flow. A comparison between dendrimers
and linear chains of the same molecular weight reveals no
significant differences between the two for the case of
smooth walls but yields drastically different behavior for pat-
terned ones.

The rest of this work is organized as follows. First, in
Sec. II, we derive an analytic expression for the threshold
flux needed to push a dendrimer into a narrowing. Then, we
describe the employed polymer model in Sec. III A and in-
troduce our simulation method briefly in Sec. III B. The re-
sults are then presented and discussed in Sec. IV. Finally, we
summarize the findings and draw our conclusions in Sec. V.

II. THEORY OF INJECTION THRESHOLDS

This work is mainly concerned with injection of den-
drimers in narrow channels, whereby we will be making sys-
tematic comparisons with linear polymers as well, to estab-
lish the salient similarities and differences between the two.
The lateral opening �width D� of the channel will be thereby
of the order of the dendrimer size, the latter being typically
quantified via the radius of gyration RG. Whereas for widths
considerably larger than the dendrimer size, its transport
through the channel is guaranteed, the same is not true if
D�RG. Here, we anticipate the existence of a threshold for
the current, below which no translocation takes place. In the
following, we estimate this value and we establish that it is
independent of the dendrimer’s degree of polymerization. We
limit ourselves to low-generation dendrimers �G=2–4�,
which can be described as “compact objects.”

We commence with a short summary of known results
about the flow injection of fractal and deformable objects,
such as polymers, into narrow channels. A flexible linear
polymer in a dilute solution enters a pore of diameter
D�RG only when it is pushed into the narrowing by a sol-
vent flux J that exceeds a certain threshold value Jc. Here,
the flux J is the total current, defined as the volume of sol-
vent passing through a cross-section of the channel in the
unit of time. The value of the threshold flux, Jc, has been
derived in Ref. 15 by using Flory-type scaling arguments,
based on the blob model for polymers,17 with the result

Jc �
kBT

�
, �1�

where kB is the Boltzmann’s constant, T is the absolute tem-
perature, and � is the dynamic viscosity of the solvent. This
finding is quite surprising since it is completely independent
of the number of monomers N and the internal polymer
structure.

In the following, we employ a similar approach in order
to determine the injection threshold in the case of regularly
branched polymers, i.e., dendrimers, where, because of their
peculiar architecture and the ways their monomers order, no

simple blob model is applicable. A simulation snapshot of a
dendrimer is shown in Fig. 1. In particular, it has been found
by extensive simulations18 that for low-generation dendrim-
ers, G=2–4, the size RG scales with the number of mono-
mers N as RG�N1/3. This is reminiscent of a compact object
akin, e.g., to linear chains in a poor solvent, but the situation
is more subtle because low-generation dendrimers are never-
theless soft and deformable.19–21 At the same time, since
there are clear steric limitations in an object for which the
number of monomers grows exponentially with the genera-
tion number, there is no formal N→�-limit for dendrimers,
at least not for a spacer length of unity between successive
generations. As a result, the gyration radius of low-
generation dendrimers is of the same order as the monomer
length; see, e.g., Table I of this work and Ref. 18.

We aim at employing a Flory-type theory for dendrimers
under flow, akin to that put forward in Ref. 14 for randomly
branched polymers, and which modified the original, slightly
flawed arguments presented in Refs. 15 and 22. The first task
thereby is to formulate the form of the theory for dendrimers
in the bulk. Here, the problem already arises that if one fol-
lows the standard way and writes down an elastic term of the
form �kBTR2 /R0

2, R0� ln N being the ideal dendrimer size,
the aforementioned correct scaling RG�N1/3 for low-
generation dendrimers does not come out. Therefore, we fol-
low a heuristic modification. Instead of using the ideal den-
drimer size, R0, in the denominator of the elastic
contribution, we introduce an arbitrary length scale Rx,
which scales as Rx�Nx, with an as of yet undetermined ex-
ponent x. Accordingly, we write a Flory-type reduced free
energy as the sum of the elastic and excluded-volume terms
as

�FFl�R� =
NR2

Rx
2 +

N2a3

R3 , �2�

with �= �kBT�−1 and a denoting the monomer size. Notice the
additional factor N in the elastic energy, which arises from
the peculiar dendritic architecture and reflects the fact that a
typical number of N chains are deformed when a dendrimer
has linear size R. This N-factor plays a role analogous to the
functionality f of f-armed star polymers. Minimization with
respect to R yields RG�N�1+2x�/5 and requiring that this re-
produces the correct simulation result,18 RG�N1/3, yields
x=1 /3. Alternatively, one could have argued that the first
and second terms on the right-hand side must have the same
N-exponent when R�N1/3, namely, they must be a linear
function of the degree of polymerization.

TABLE I. The radii of gyration for linear and dendritic polymers.

Polymer architecture N RG

Linear 32 3.85�0.65
Linear 62 5.63�0.94
Linear 92 7.19�1.24
Dendritic �G2� 14 1.62�0.03
Dendritic �G3� 30 2.18�0.04
Dendritic �G4� 62 2.78�0.04
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We now turn to the situation in which a dendrimer is
pushed by a current J in front of the opening of a narrow
channel of width D, schematically depicted in Fig. 2. Note
that since dendrimers are small objects, a hierarchy of length
scales a�D�RG is not possible, and we rather have a�D
�RG. However, we will keep the discussion general in what
follows and maintain both length scales, a and D, as inde-
pendent parameters in the scaling argument to follow. Under
the conditions depicted in Fig. 2, it can happen that the den-
drimer only partially penetrates the channel, having a pen-
etration length y and P�N of its monomers inside. Similar
to the approach in Ref. 14, we first estimate the dependence
of y on P by writing down an expression for the free energy
of the confined part in analogy with Eq. �2�, i.e.,

�F�y� =
y2

Rx
2�P�

+
P2a3

yD2 , �3�

where Rx�P�� P1/3. In comparing Eq. �3� with Eq. �2�, note
the absence of an additional factor P in the elastic energy of
the former since we anticipate that only a few monomers are
confined in the partially injected state and thus there is no
reason to believe that P chains are compressed. Minimizing
Eq. �3� with respect to y, we obtain the scaling relation

y

D
� 	 a

D

5/3

P8/9. �4�

The specific volume 	3�y� available to each of the P
confined monomers is given by the space-filling condition,

a3

	3�y�
=

Pa3

yD2 . �5�

Using Eqs. �4� and �5�, we readily obtain

	�y� = y1/3D2/3P−1/3 = a	D

a

3/8	D

y

1/24

. �6�

It follows that 	�y� has a slow decrease as y grows.
Within the confined part, there evidently exist yD2 /	3�y�

monomer blobs, each of which can be assigned a free energy
cost kBT. Counteracting to it, there is a hydrodynamic con-
tribution from the drag of the flowing solvent, resulting in
the total free energy F�y� that has the form

F�y� = Fconf�y� + Fhyd�y� = kBT
yD2

	3�y�
− �

0

y

fhyd�y��dy�,

�7�

with the hydrodynamic force fhyd being expressed as a
Stokes drag per monomer, yielding

fhyd�y� � �	�y�v�D�
yD2

	3�y�
, �8�

where v�D�=J / �
D2� is the local solvent velocity. Introduc-
ing expression �6� above and carrying out the algebra, we
obtain the scaling laws,

Fconf�y� � kBTa−15/8D3/4y9/8 �9�

and

Fhyd�y� � − �Ja−5/4D−5/6y25/12. �10�

Evidently, the sum of Eqs. �9� and �10�, seen as a func-
tion of the confinement length y, initially grows with y since
Fconf dominates for small y-values and eventually drops be-
cause Fhyd takes over for large y values. The total curve has
a maximum at the position y�, and the value F�y�� corre-
sponds thereby to a “suction free energy barrier” that must be
overcome before the whole of the molecule is inserted into
the channel. From Eqs. �9� and �10�, the value y� is easily
calculated as

y� � 	 kBT

�J

24/23

D	D

a

15/23

. �11�

The resulting free energy barrier height reads as

�F�y�� � 	 kBT

�J

27/23	D

a

60/23

. �12�

Suction occurs when the barrier height is of the order of the
thermal energy kBT; thus setting �F�y���1 in Eq. �12�
above, we obtain the critical suction current Jc as

Jc �
kBT

�
	D

a

20/9

�
kBT

�
, �13�

the last equality following from the aforementioned fact that
D�a. Thus, similar to linear and randomly branched poly-
mers, we find that also for dendrimers the critical current is
independent of the degree of polymerization, a result that has
been confirmed in our simulations �see Sec. IV below�. How-

FIG. 1. Simulation snapshot of a G4-dendrimer.

FIG. 2. A partly injected dendrimer inside a narrow channel with width D.
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ever, in contrast to those two other polymer classes, the pen-
etration length y� at J=Jc is of the order of a, and, according
to Eq. �4�, the number of sucked monomers there is of the
order of unity. Due to the dendrimer architecture, a state in
which a subcritical current causes a significant part of the
molecule to be within the channel, whereas the rest remains
outside, is not feasible for dendrimers: the suction of a few
monomers is sufficient to deform the whole molecule ac-
cordingly and to bring about injection of the same in the
channel.

The small value of the critical penetration length y� is a
peculiarity of the dendritic architecture and the compact
character of the molecule. Indeed, squeezing a few �terminal�
monomers of the dendrimers within the channel has the ef-
fect of “flattening” a part of the dendrimer lying outside the
channel as well, so that most of the molecule is already de-
formed and can be pushed into the channel. The same prop-
erty lies in the heart of the apparent paradox that Jc grows
with D �see Eq. �13� above�. To understand this, it must be
noted that, according to Eq. �11�, the critical penetration
length y� grows with D as well so that the same penetration
for a wider channel causes less deformation of the molecule
and thus its shape is not suited to suction. A stronger current
is thus needed to push part of the molecule in the channel
and cause significant deformation to the remaining part out-
side the channel so that the latter can get squeezed into the
pore as well. However, these findings are only valid for low-
generation dendrimers with spacer lengths P=1. For den-
drimers with high G and/or P values, we do not expect these
arguments to hold anymore, and it is possible that Jc will
then depend on details of the molecular architecture.

III. SIMULATION

A. Polymer model

A common approach for physically modeling the con-
figuration of polymers is to treat the individual monomers
�Kuhn segments� as spherical beads interacting by potentials
that depend on their mutual separation. Accordingly, we con-
sider two different types of pair interactions between the in-
dividual monomers. The first contribution is a short-ranged,
purely repulsive interaction given by a simple, shifted, and

truncated Lennard-Jones potential, which models the short-
range, excluded-volume interactions between the monomers,

Umm�r� = �4�
	�

r

12

− 	�

r

6� + � , r 
 rcut

0, r � rcut,
� �14�

with r= �ri−r j� denoting the separation between the mono-
mers i and j, whose position vectors are ri and r j, respec-
tively. Equation �14� introduces an energy scale � and a
length scale �, which will be taken as the units of energy and
length in what follows. Note that � is the same as a, the
monomer size introduced in Sec. II above. The cutoff dis-
tance in Eq. �14� above has been chosen as rcut=21/6�, ren-
dering the monomer-monomer interaction purely repulsive
and thus suitable for an effective description of athermal sol-
vents. Boltzmann’s constant kB is set to unity as well, and we
choose for the temperature T=�=1.

To model the chemical links, bonded monomers interact
via a finite extendible nonlinear elastic �FENE� potential
UFENE�r�, which is given by23

UFENE�r� = �− U0	 r0

�

2

ln
1 − 	 r

r0

2� , r 
 r0

� , r � r0,
� �15�

where the location of divergence r0 determines the maximum
bond length between two monomers and can be used along
with U0 to tune the stiffness of the polymer. In our simula-
tions, we have chosen U0=5.0 and r0=4.0, leading to rather
soft and elastic connections. This is the same model used for
dendrimers under shear in Ref. 24. Although the choice of
r0=4.0 makes bond crossing technically possible, such un-
physical moves hardly take place: at subcritical currents, the
amount of sucked monomers is very small and only terminal;
at supercritical currents, the dendrimer is “carried along”
with the current, and internal fluctuations are essentially de-
coupled from the transport process since the current acts on
dragging individual monomers. Effects on docking should
also be essentially irrelevant because it is the outer genera-
tions that dock, and these make a “walk” along the walls,
which does not involve crossing of bonds.

In addition to these intramolecular forces, the polymer
interacts with the system boundaries �i.e., the channel walls�
via the potential Uwall, which is given by

Uwall�x� = �
2

3

�
 2

15
	�

x

9

− 	�

x

3

+ �1 − �w�
�10

3
� , 0 
 x 
 �2/5�1/6�

2

3

��w
 2

15
	�

x

9

− 	�

x

3� , x � �2/5�1/6� , � �16�

for a wall lying parallel to the �y ,z�-plane at x=0. The total
external potential caused by both walls separated by D is
thus given by Uext�x�=Uwall�x�+Uwall�D−x�. The attractive-

ness of the potential can be adjusted by the parameter �w. In
Fig. 3, we show plots for the extreme cases �w=0.0 �purely
repulsive� and �w=1.0 �attractive wall� for a slitlike channel
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of width D=4.0.
The linear polymers are then created by a three-

dimensional self-avoiding random walk. For dendrimers, we
use the same approach but start with a central pair of joined
monomers, the so-called zeroth generation G=0. A succes-
sive layer of monomers is then formed by connecting two
additional beads to each outer monomer of generation G.
Thus, the functionality of the dendritic structure is f =3, and
the number of monomers N�G� taking part to a given gen-
eration G follows a simple power law, i.e., N�G�=2G+1.

The analysis of the shape and size of isolated dendrimers
plays a key role in understanding not only the properties of
the molecules themselves but also the thermodynamics of
concentrated dendrimer solutions in a coarse-grained
approach.25 A convenient measure for the overall size of
polymers is given by the so-called radius of gyration RG,
defined as

RG
2 =

1

N��
i=1

N

�ri − rc�2� , �17�

where rc denotes the center of mass position and �¯ � de-
notes the statistical average over all conformations. In order
to quantify the structural properties and the alignment of
polymers in flow, we consider the average gyration tensor of
the molecule, G��, defined as

G�� =
1

N
�
i=1

N

�ri,�ri,�� , �18�

where ri,� is the �-component of the position vector of the
ith monomer relative to the center of mass and � ,�
� �x ,y ,z� denote Cartesian coordinates. This quantity is
called the average gyration tensor G�� and is directly acces-
sible in scattering experiments. Furthermore, it is obvious
that its diagonal components, G��, are the squared radii of
gyration in � direction. The bulk values of the gyration radii
for the systems simulated in this work are summarized in
Table I.

B. Simulation method

In this work, we model the hydrodynamic interactions
mediated by the solvent as faithfully as computationally fea-
sible by employing a hybrid simulation approach, in which
standard molecular dynamics �MD� algorithms for the poly-
mer are combined with the multi-particle-collision dynamics
�MPCD� simulation technique.26,27 MPCD is a mesoscopic,
particle-based method consisting of alternating streaming
and collision steps and offers an alternative to Lattice–
Boltzmann approach. The latter has been employed in the
recent work of Markesteijn et al.,16 which deals with injec-
tion of linear chains into nanopores.

In MPCD, solvent particles are noninteracting, but they
undergo stochastic collisions among themselves and the dis-
solved monomers according to well-defined rules. During the
streaming step, the solvent particles propagate ballistically so
that the position of a solvent particle i at the next time step
t+�t is given by

ri��t + �t� = ri��t� + �tvi��t� , �19�

where ri��t� denotes the position and vi��t� denotes the veloc-
ity of the ith solvent particle at time t. In the collision
step, the Ns solvent particles are first sorted into
Ncells=Nx�Ny �Nz cubic cells V j of edge length a=�. Then,
their velocities vi� are transformed via

vi��t + �t� = u j�t� + �����vi��t� − u j�t�� , �20�

with the center of mass velocity u j of the corresponding cell
and the norm-conserving rotation matrix � around a fixed
angle �. The mean free path of a solvent particle is hence
given by �=�t�T, and it has been shown in Ref. 28 that
Galilean invariance is violated for ��a /2. With the purpose
of avoiding such a nonphysical behavior, all lattice cells V j

are shifted by a randomly chosen vector drawn from the
interval �−a /2,+a /2� before each collision step.

Whereas the above-described rules governing MPCD
solvent dynamics are general, the simulation of specific flow
patterns for the solvent requires special care. In Ref. 24, the
rules to generate steady shear with shear rate �̇ have been
laid out; here, we are interested in flow generated by a con-
stant pressure gradient along the channel. Such a flow is
driven by the pressure gradient parallel to the flow direction
and is slowed down by viscous drag along both plates so that
these forces are in balance. A fluid stream of this kind
through a pipe of uniform cross-section is known as Hagen–
Poiseuille flow, and it has been simulated according to the
rules set out in what follows.

Several methods exist for creating such a flow, for in-
stance, forced, gravitational, and surface-induced ap-
proaches. The forced flow has been considered in Refs. 26,
29, and 30, where the pressure gradient is mimicked by
hanging a virtual pump to the inlet of the channel. However,
it has been shown in Ref. 31 that this approach has several
drawbacks. First of all, a considerable deformation of the
velocity-field and density profiles can occur at the inlet and
outlet of the channel. In addition, a gradual density drop of

FIG. 3. The external wall potential acting on a monomer for a channel with
width D=4.0; see Eq. �16�. The choice �w=0.0 mimics purely repulsive
walls, while �w=1.0 adds a long-ranged attractive tail to the potential.
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particles along the channel length can be noticed; hence,
these perturbations lead to a severe decrease of usable space
in the simulation box.

The use of gravitationally driven flow, which is adopted
in this contribution, does not distort the velocity-field and
density profiles, and hence no artificial tricks are needed to
suppress the inhomogeneities. The external force is given by
F=�g, where g=gẑ, and can easily be incorporated into the
streaming step as follows:

ri��t + �t� = ri��t� + �tvi��t� +
�t2

2
gẑ , �21�

vi��t + �t� = vi��t� + �tgẑ , �22�

with ẑ denoting the unit vector in flow direction. Further-
more, the strength of the gravitational field can be varied by
tuning the acceleration constant g, and a steady Poiseuille
flow builds up self-consistently after a short time. Periodic
boundary conditions are applied for the walls in the y- and
z-directions and no-slip boundary conditions in the
x-direction. For planar walls coinciding with the boundaries,
such conditions are conveniently simulated by employing a
bounce-back rule, i.e., the velocities of particles that hit the
walls are inverted after the collision. However, the walls will
generally not coincide with or even be parallel to the cell
boundaries. Furthermore, partially occupied cells can also
emerge from the cell-shifting, which is unavoidable for small
mean free paths �. Lamura et al.30 have demonstrated that
the bounce-back rule has to be modified in such a case. In-
deed, as can be seen in Fig. 4, the velocity profile arising
from simple bounce-back conditions does not extrapolate to
zero at the walls. One possible solution is to refill all those
cells that are cut by the walls and therefore have a number of
particles nj smaller than the average number navg of the bulk
cells. The velocities of these virtual particles are then drawn
from a Maxwell–Boltzmann distribution of zero average ve-
locity and the same temperature T as the fluid. However,
since the sum of random vectors drawn from a Gaussian
distribution is again Gaussian-distributed, the individual ve-

locities never have to be determined explicitly. Instead, the
average velocity u j of Eq. �20� can be modified as follows:

u j =
�i�Vj

vi� + vG

navg
, �23�

where the components of vG are normally distributed with
variance �navg−nj�kBT and zero average. The so-obtained ve-
locity profile is shown in Fig. 4 along with a parabolic curve
fit and shows very good agreement between the theoretical
predictions and the simulation results. This approach can be
easily applied in order to properly incorporate narrowings
into the system. In Fig. 5, we show the color-coded velocity-
field in the flow-gradient plane, where the no-slip boundary
conditions along the channel walls as well as the parabolic
shape of the profile in the center of the channel are clearly
visible.

Furthermore, thermostatting has been applied, as it is
necessary in any nonequilibrium simulation, to avoid viscous
heating. The thermostat employed was based on rescaling the
random part of the velocities to maintain constant T and has
been described in Ref. 24. The MPCD parameters employed
were �=130, �=0.1, and �=5. An important quantity of the
solvent that can, among others, be calculated in this
model24,26 is the dynamical viscosity �. In our simulations,
its numerical value reads �=3.955��m /�2��1 /3 mPa s�.

Coupling of the solvent dynamics with the dissolved
dendrimer is achieved by including any monomer that hap-
pens to be in a cell �due to the choice for the cell size, there
is at most one monomer there� in the collision step �Eq.
�20��. In this way, the nonrandom part of the monomer ve-
locity is equal to that of the center of mass in the correspond-
ing cell, and the molecule gets transported along the local
flow. This coupling is part of the MPCD-scheme. On top of
this, usual MD is performed with the intermolecular forces
arising from the potentials of Eqs. �14� and �15� between the
monomers, completing the hybrid simulation scheme. For
the usual MD-step, we use a Verlet algorithm with �tMD

=0.001��m /�. At the beginning of the simulation, the poly-
mer’s center of mass was pinned directly ahead of the chan-
nel entrance, at a distance of 5.0�. After an equilibration
period of 2�105 MD steps, the polymer was released from
its pinning position and allowed to flow with the streaming
solvent.

FIG. 4. Velocity-field profile in z-direction along the x-axis for a channel of
volume V= �15�15�25� and solvent density �=5. The open circles repre-
sent the results for simple bounce-back boundary conditions, while the full
circles show the modified boundary conditions; see the text and Eq. �23�.

FIG. 5. Color-coded velocity-field profile in the flow-gradient plane in a
system with L=50.0, D=6.0, and g=0.05. The length of the arrows is pro-
portional to the local speed of the solvent particles.
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A necessary prerequisite for any nonequilibrium simula-
tion method is that it should reproduce the equilibrium re-
sults when the external driving fields �in our case, Poiseuille
flow� are switched off. Therefore, as a preliminary check, we
have performed MPCD simulations with explicit solvent and
dendrimers in equilibrium and calculated generation-
resolved density profiles, comparing them with those arising
from standard, equilibrium MD employing the same den-
drimer model. Figure 6 shows a typical density distribution,
and an excellent agreement between the results can be ob-
served, confirming the soundness of the approach.

IV. RESULTS

We begin with the question regarding the critical current
Jc, with the purpose of checking the main finding of the
theoretical approach �Sec. II�, stating that Jc is independent
of the molecular weight. For this purpose, we have con-
ducted a series of simulations for a given total time and
counted the fraction of instances for which the molecules
went through. In Fig. 7 we plot the translocation probability
p��g� through a slit of width D=2.0, as a function of the
gravitational force g, for linear polymers and dendrimers of
various sizes. For each parameter set, we have performed 50
simulations of �=107 time steps. The results in Fig. 7�a�
pertain to linear polymers and provide an independent con-
firmation of similar findings by Markesteijn et al.,16 obtained
by means of Lattice–Boltzmann techniques, whereas results
in Fig. 7�b� refer to dendrimers. We see a smooth transition
from p��g�=0 to p��g�=1 as g increases. At this point, we
would like to emphasize that the continuous nature of p��g�
is only due to the finite number of time steps in our simula-
tion. Furthermore, we see that in both cases the probability is
completely independent of N, which is in full agreement with
previous results14,16 as well as our own theoretical prediction.
When the results for linear polymers and dendrimers are
compared, it is visible that the threshold flux is slightly
higher for dendrimers, which is due to their more compact
structure. Furthermore, we suspect that Jc would become

larger if the dendrimer’s degrees of freedom were constricted
by internal bond and torsion angles. However, once the mol-
ecule is sucked into the channel, the increased rigidity of the
polymer should accelerate its motion through the channel,
thereby shortening the translocation times.

We now generalize the discussion to consider channel
widths D that are both smaller and slightly larger than the
dendrimer size. Once the macromolecule has entered the
channel, the main quantity of interest is the translocation
time �. In Fig. 8, we show � as a function of the channel
width D for both linear and regularly branched polymers; the
simulation has been performed for g=0.05 and averaged
over 50 runs. When the translocation time of the whole mol-
ecule is considered, i.e., the time span between the entry of
the first bead and the exit of the last bead, dendrimers have a
slightly smaller passage time. This is again due to their rather
compact structure, whereas linear polymers get elongated
rather easily in the flow direction, and hence more time is
needed until all monomers have passed through the narrow-
ing. However, these differences vanish completely when the
center of mass is considered instead of the whole polymer.

To better analyze the differences between linear poly-
mers and dendritic structures, it is useful to have a look at
their individual flow behavior through the narrowing. In Fig.
9, we show the position of the polymer’s center of mass in

FIG. 6. The generation-resolved monomer density distribution ��r� of a
trifunctional G4-dendrimer. For the overall density profile, we show both the
result from the MPCD �solid line� and that from a conventional MD without
solvent �points�.

FIG. 7. Translocation probability p through a slit of width D=2.0 for poly-
mer chains of different lengths �a� and dendrimers of different generation
numbers �b�.
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flow direction z as a function of time t for channels of length
L=30 and various widths D. Since we are mainly interested
in the impact of the confinement, we only plot the regime
between channel start �z=40� and channel end �z=70�. The

simulations have been performed for g=0.05, and each curve
has been averaged over 25 measurements. Here, it is well-
visible that though the translocation times � of linear and
regularly branched polymers are almost identical, their de-
tailed flow behavior is nevertheless quite different. Dendritic
structures exhibit a much broader regime of ballistic propa-
gation �translocation with constant speed� than chain poly-
mers with the same monomer number N. The reason for this
behavior is that, although the linear polymer’s center of mass
has already entered the channel, a significant part of the
polymer is still outside the capillary and needs to be sucked
in. This leads to an overall hindrance, which manifests itself
in the lack of linear part in the curves t�z� for linear chains.

Turning our attention to the molecular deformations in-
side the channel, we have measured the diagonal components
G�� of the average gyration tensor, Eq. �18�, as a function of
the channel width D. In this way, we can quantify the impact
of the constriction on the polymer shape. Results of the
simulation, which referring to conditions g=0.05 and chan-
nel length L=80.0, are shown in Fig. 10. Surprisingly, even
for large channel widths, D�2RG, neither Gzz nor Gxx

approach the equilibrium �bulk� radius of gyration
�Rg=2.78�0.04�. Instead, the dendrimer becomes elongated
along the z-axis by a factor of approximately 1.5 and subse-
quently shrinks in x-direction by about the same factor. This
deformation is due to the two-dimensional parabolic flow
profile of the solvent, and as a first approximation, the sol-
vent flow can be considered as a superposition of two oppo-
site shear flows, which act on the polymer. In such systems,
deformation has been observed both for dendrimers24 and
other soft macromolecules.32,33 For linear polymers, such an
analysis is less interesting since they get elongated rather
easily along the flow direction and almost reach their maxi-
mum extension.

Consistent with the above discussion, we have observed
in our simulations that the polymer swims equidistant to both
channel walls, where it is also exposed to the strongest fluid
current. This centering is due to the hydrodynamic interac-
tions mediated by the solvent and has been already observed

FIG. 8. Translocation time � of a linear polymer and a G4-dendrimer with
each N=62 beads as a function of the channel width D. The simulation has
been carried out at g=0.05 for a channel of length L=30.0.

FIG. 9. The z-position of the center of mass inside a channel of length L
=30.0 at g=0.05 for a polymer chain with 62 beads �a� and a dendrimer of
fourth generation �b�.

FIG. 10. Diagonal components G�� of the average gyration tensor as a
function of the channel width D for a G4-dendrimer with N=62 beads. The
simulation has been carried out at g=0.05 for a channel of length L=80.0.
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in previous simulations.34 By adding an attractive part to the
wall potential, i.e., turning into the case �w=1.0, one could
expect that it is possible to “push” the polymers toward the
channel walls and thereby slow down their motion �translo-
cation� inside the channel since the fluid velocity is much
smaller in the vicinity of the channel walls. In Fig. 11, we
show the translocation time � of a polymer chain in the case
of purely repulsive and partly attractive walls. Although a
small retardation is measurable, the impact is far from being
significant in the case of linear polymers and almost nonex-
istent for dendrimers. Details of the wall-monomer interac-
tions seem to be immaterial, at least as long as the walls are
smooth.

Real walls on the other hand are rarely smooth, and at
the nanoscale, atomic details become relevant. Of particular
interest in this work is the possibility to decorate the walls
with attractive patches. This can be achieved either with
chemical patterning on the walls or, more importantly,
through insertions of suitable entities, such as peptides in-
truding rigid bilayer membranes, as demonstrated in the re-
cent work of Smith et al.35 Accordingly, instead of a homo-
geneous attraction, we cover the channel walls with Np

linelike, highly attractive patches. In Fig. 12, we show the
color-coded potential landscape both in the simple, purely

repulsive case and in the case of repulsive walls covered with
the line shaped patches. The patches could model “docking
sites” at which a dendrimer should temporarily reside, with
the purpose of delivering an encapsulated cargo at the appro-
priate place, whereas the solvent �blood� flow should carry
away the remaining molecule at longer times.

Due to the noncontinuous shape of the potential, its gra-
dient leads to a nonzero contribution in the flow direction,
which results in a severe sticking of the polymers. This is
especially evident in the case of linear polymers, where the
polymer almost completely aligns against one channel wall
and thus only experiences a very weak solvent flow �see Fig.
13�a��. Dendrimers on the other hand cannot flatten entirely
against one channel wall; instead, the extremities gravitate
toward the patches, while the core of the polymer remains in

FIG. 11. Translocation time of a linear polymer �a� and a G4-dendrimer �b�
with each N=62 beads as a function of g. The simulation has been carried
out for a channel of width D=4.0 and length L=30.0.

FIG. 12. Color-coded potential landscape in the flow-gradient plane close
by the channel entrance. Purely repulsive walls �a� and repulsive walls cov-
ered with highly attractive patches �b�. The extension of the line shaped
patches is along the y-axis.
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the channel center. Eventually one arm detaches from its
patch, hence releasing the whole polymer. Then, the whole
macromolecule moves a bit further inside the channel until it
approaches the next patch and the whole process repeats it-
self. This procedure is well-visible on the basis of the pla-
teaus in Fig. 13�b�, where the position of the dendrimer’s
center of mass is plotted against the time. These findings are
remarkable since now, in contrast to the case of homoge-
neously attractive walls, the retardation is highly dependent
on the shape of the polymers. Hence, such a setup can be
used to separate dilute linear/dendritic polymer mixtures. We
also note that, although the results presented here pertain to
both walls being decorated with the same patches that face
each other, they remain essentially unchanged also in the
case of a single patterned wall.

Finally, to quantify this retardation effect more thor-
oughly, we measured the translocation time �p in the pres-
ence of patches for two channels of different widths
�D=4.0�2RG and D=6.0�2RG� and derived the slowdown
compared to the case of purely repulsive walls. The results
are plotted as a function of Np and are shown in Fig. 14. A
quite remarkable slowdown is evident in both cases, where

in the narrower channel, a slowdown by two orders of mag-
nitude can be achieved for the case of Np=20 patches. The
relevance of the channel width D is due to the rather short-
ranged nature of the patch potential; therefore, the broader
the channel, the less important the presence of patches on the
channel walls. Concerning the interpatch spacing, we have
shown that the impact of the sticky patches vanishes for the
both extreme cases L /Np→0 �smooth walls� and L /Np→�
�no patches�. We therefore expect that the translocation time
is maximal when the interpatch spacing is of the order of the
dendrimer size since this configuration allows the dendrimer
to dock on one patch, while at the same time, a few mono-
mer can dock on neighboring patches. Three videos showing
the progression of linear and dendritic polymers through
patchy channels, compared with a dendrimer flowing in a
smooth channel, are provided as supplementary material in
the online version of this paper.36

V. CONCLUSIONS

We have employed a theoretical scaling analysis to es-
tablish the independence of the current injection threshold
into narrow channels for low-generation dendrimers, which
has been confirmed by hybrid computer simulations. The lat-
ter allows for an efficient coupling between hydrodynamic
effects and polymer dynamics and offer an excellent compu-
tational tool to study the transport of polymers through nar-
row channels. We have established that the translocation
times of dendrimers and linear polymers of the same molecu-
lar weight along such channels are quite similar to one an-
other as long as the channel walls are smooth. However, wall
granularity has dramatic effects both on the translocation
times as such and on the relative duration of transport be-
tween dendrimers and polymers. In particular, localized at-
tractive linear patches bring forward for the dendrimers a
kind of motion akin to “walking along the wall,” with long
plateaus of residence times on the attractive patches, whereas
linear polymers do not escape the patchy channel within
simulation times.

Our findings establish that dendritic molecules are pecu-
liar in their transport properties along narrow channels, and

FIG. 13. Spatiotemporal evolution of a linear polymer’s �a� and a G4-
dendrimer’s �b� center of mass in a channel with L=40.0 and D=6.0 with
Np=10 attractive patches at g=0.015.

FIG. 14. Slowdown factor of a G4-dendrimer in a channel of length
L=40.0 at g=0.05, plotted against the number of attractive patches Np.
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they express, also under flow, their unusual character as hy-
brids between compact colloids and flexible polymeric ob-
jects, already known from their equilibrium behavior.18,20,21

The long residence times of the dendrimers on the wall traps
open up the interesting possibility that when the former are
loaded with some chemical cargo �e.g., a drug molecule�, the
latter could be delivered on the patch and be absorbed there
during the carrier’s residence time, while the blood flow
“washes away” the empty dendrimer afterward. This topic,
along with investigations on the effects of more complex
channel geometries and charge, will be the subject of future
investigations.
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