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ABSTRACT: By employing a multiscale simulational approach that combines multiparticle-collision
dynamics for the solvent with standard molecular dynamics for the monomers, we examine the behavior
of dendritic macromolecules under shear. We analyze quantitatively the shape and anisotropy of the
molecules and its dependence on the shear rate, the molecular generation, and the stiffness of the bonds.
The role of hydrodynamics is brought forward by comparing our results with those obtained in the absence of
coupling between monomers and solvent. We finally analyze the effects of charge and counterions in the
system and complement our simulations with numerical results from Poisson-Boltzmann theory.

I. Introduction

The characteristics of rigid and soft mesoscopic particles in
shear flow is of considerable interest fromboth the applied and the
fundamental points of view.Colloidal suspensions under shear are
omnipresent in our everyday life, for example, the flow of blood
cells in our body or the painting of a wall with water-based paint.
From a technological point of view, shear plays an essential role in
a broad spectrum of applications of soft materials, such as drug
delivery systems1 or as motor oil viscosity modifiers.2 The funda-
mental challenge lies therein, that typically soft matter systems
consist ofmesoscopically sized particles dissolved in amicroscopic
solvent, the characteristic time scales of the two being thus
separated by many orders of magnitude. Any feasible computa-
tional approach must therefore be able to handle this vast
discrepancy and manage to take into account the ubiquitous
hydrodynamic coupling between the solvent and the solute.

Polymers and polymer assemblies exhibit a unique behavior in
flow, which is related to their conformational degrees of freedom
and distinguishes them sharply from rigid colloidal particles. Their
flexibility leads to a simultaneous deformation of the coil and the
fluid flow field, which strongly affect each other. Concomitantly, a
rich dynamical behavior has been found for such deformable soft
bodies, such as tumbling, tank-treading, rupture, stretching, and
collapse.3,4 Thereby, many soft matter systems, ranging from rod-
like colloids5 to star polymers,6,7 droplets,8 capsules, and vesicles9

have been already investigated under shear flow conditions.
This work focuses on the conformations of dendritic molecules

under shear. Although the equilibrium properties of dendrimers
have already been analyzed extensively in the past two decades,10,11

the dynamic behavior of single dendrimers has not been studied
thoroughly yet. These branched structures differ distinctively from
other polymers, since the number of monomers grows exponenti-
ally with the generation number, while the volume of successive
shells increases only as a power law of the generation number.
Thus, the endmonomers are folded back into themolecule, leading
to a dense-core structure.12 This characteristic behavior has drawn
someattention to the study of dendrimermelts, where both a defor-
mationof thedendrimers anda shear thinning of the complex fluid
have been observed theoretically13-15 as well as experimentally.16

Simulations of dendrimers or branched polymer under shear
flow that take into account hydrodynamic interactions (HI) have
been performed, employing the approximate Rotne-Prager-
Yamakawa tensor;17-20 a microscopically based approach of the
solvent dynamics and its coupling to the polymer degrees of free-
dom is however still lacking. To investigate the dynamics of flexi-
ble polymers in flow, we employ in this work a hybrid simulation
approach, in which molecular dynamics simulations for the
polymer are combined with a mesoscopic simulation technique
for the solvent. This choice is due to the large length and time
scale separation between the solventmolecules and the embedded
polymer, which makes atomistic simulation studies prohibitively
time-consuming. The employed particle-based simulation tech-
nique is called multiparticle-collision dynamics (MPCD) and has
been introduced in 1999 by Malevanets and Kapral.21,22 Such
simulations are especially valuable when analytical methods fail,
as is the case for complicated molecules such as polymers,
ultrasoft colloids, or semidilute solutions, where hydrodynamic
interactions are screenedonly to a certain degree.Herewe employ
the MPCD technique for the solvent, coupled with molecular
dynamics for the polymer, to examine the conformational prop-
erties of dendrimers under shear flow. We focus on the depen-
dence of shape and anisotropy on the shear rate, the generation,
the stiffness, and the presence of charge, and we critically
compare the obtained results with one another and with pre-
viously found ones for linear chains and star-shaped polymers.

The rest of this paper is organized as follows: In section II we
describe our dendrimermodel. In section III, we briefly introduce
the multiparticle-collision dynamics method. The results are then
presented and discussed in section IV. There, we commence in
section IV.A with the study of the relevance of both the rigidity
and the generation number of the dendritic structures. Subse-
quently, we quantify the impact of hydrodynamic interactions in
section IV.B, while the results for charged dendrimers are pre-
sented and discussed in section IV.C. Finally, we summarize the
findings and draw our conclusions in section V.

II. Dendrimer Model

A commonly used modeling approach for dendrimers is to
treat the monomers (Kuhn segments) as bonded spherical beads,
and to start with a central pair of joined monomers, the so-
called zeroth generation g=0. A successive layer of monomers
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(generation g þ 1) is then formed by connecting two additional
beads to each outer monomer of generation g. Thus, the func-
tionality of the dendritic structure is f = 3, and the number of
monomers n(g) taking part to a given generation g follows a
simple power law, i.e., n(g) = 2gþ1.

In general, there are three different types of interactions
between the individual monomers. The first contribution,
Umm(r), is a short-ranged, purely repulsive interaction given by a
simple, shifted and truncated Lennard-Jones potential, which
models the short-range, excluded-volume interactions between
the monomers:

UmmðrÞ ¼ 4E
σ
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with r=|ri- rj| denoting the separation between themonomers i
and j, whose position vectors are ri and rj, respectively. Equation 1
introduces an energy scale ɛ and a length scale σ, which will be
taken as the units of energy and length, respectively, in what
follows. In addition, the Boltzmann constant kB and the absolute
temperature T will also be set to unity for the sake of simplicity.
The cutoff distance has been chosen as rcut= 21/6σ, rendering the
monomer-monomer interaction purely repulsive and thus sui-
table for an effective description of athermal solvents.

In addition to Umm(r), bonded monomers within the same
trifunctional unit interact via a FENE potential UFENE(r),
simulating the chemical bonds:23
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where the location of divergence r0 determines the maximum
bond length between two monomers and can be used along with
U0 to tune the stiffness of the polymer. To take into consideration
the influence of the bond rigidity upon the dynamical behavior
of dendrimers, we introduce two distinct pairs of values for
UFENE(r). In this regard, we have chosen U0 = 10.0 and r0 = 3.0
for the first and U0 = 5.0 and r0 = 4.0 for the second set of para-
meters, the former representing stiffer and the latter softer bonds.

The last type of interaction to be included in our model is the
Coulomb potential between charged monomers

UCoulomb ¼ TλB
ZiZj

r
ð3Þ

with charge numbers Zi and Zj and Bjerrum length λB given by

λB ¼ e2

εT
ð4Þ

Here, theBjerrum length has been chosen as λB=3.0σ=7.2 Å in
order to mimic the characteristics of water with its relative
permittivity ε ≈ 80. Additionally, to guarantee charge neutrality
of the whole system, the charged dendrimers have to be balanced
by suitable populations of monovalent or multivalent counter-
ions with valencyZc. Apart from the Coulomb interaction, these
counterions also exhibit a short-ranged repulsion with each other
and the monomers, described by eq 1, which guarantees stability
of the system against electrostatic collapse.24

The analysis of the shape and size of isolated dendrimers plays
a key role in understanding not only the properties of the
molecules themselves but also the thermodynamics of concen-
trated dendrimer solutions in a coarse-grained approach.25 A

convenientmeasure for the overall size of polymers is given by the
so-called radius of gyration Rg, which is defined as

Rg
2 ¼ 1

N

XN
i¼1

ðri -rcÞ2
* +

ð5Þ

where rc denotes the center-of-mass position and Æ...æ denotes the
statistical average over all conformations. To quantify the
ordering of the individual monomer layers around the center of
mass, it is convenient to consider the overall or generation-
dependent monomer density F(r), which is defined as

FðjrjÞ ¼
XN
i¼1

δðr-rc -riÞ
* +

ð6Þ

where δ(x) is the Dirac delta function.

III. Simulation Method

Simulationof pure fluids under planar shear has a longhistory.
The so-called SLLOD simulation algorithm, developed in the
mid-1980s, has long been the method of choice for the efficient
simulation of pure solvents inCouette flow and the calculation of
shear viscosities.26 In SLLOD, a velocity gradient tensor for the
fluid is imposed from the outset, and Hamilton equations of
motion of noncanonical form are solved numerically in the
computer.27 When large molecules, such as polymer chains, are
dissolved, the velocity profile of the solvent remains, however,
unaffected,28 which implies that hydrodynamics is not taken
properly into account.

Toaccurately take into account the hydrodynamic interactions
mediated by the solvent, we employ a hybrid simulation ap-
proach, inwhich standardmolecular dynamics (MD) simulations
for the polymer are combined with the multiparticle-collision
dynamics (MPCD) simulation technique.21,22 The latter is a
mesoscopic, particle-based method consisting of alternating
streaming and collision steps. During the streaming step the
solvent particles propagate ballistically, so that the position of
solvent particle i at the next point of time t þ Δt is given by

ri
0ðtþΔtÞ ¼ ri

0ðtÞþΔtvi
0ðtÞ ð7Þ

where ri
0(t) denotes the position and vi

0(t) the velocity of the ith
solvent particle at time t. In the collision step, the Ns solvent
particles are first sorted intoNcells =Nx� Ny �Nz cubic cells of
edge length a= σ, each having a volume Vj = a3. Subsequently,
their velocities vi

0 are transformed via

vi
0ðtþΔtÞ ¼ ujðtÞþΩðRÞ½vi0ðtÞ-ujðtÞ� ð8Þ

with the center-of-mass velocity uj of the corresponding cell and
the norm-conserving rotation matrix Ω around a fixed angle R.

A necessary prerequisite for any nonequilibrium simulation
method is that it should reproduce the equilibrium results when
the external driving fields (in our case, shear) are switched off. We
have performed MPCD simulations with explicit solvent and
dendrimers in equilibrium and calculated generation-resolved
density profiles, comparing themwith those arising from standard,
equilibrium molecular dynamics employing the same dendrimer
model. A typical density distribution is shown in Figure 1, demon-
strating the excellent agreement between the two. It is evident that
consecutive generations of monomers do not occupy concentric
shells of their own as initially proposed by deGennes andHervet.29

Instead, a considerable probability of findingmonomers of third or
fourth generation in the area of the center is observable, support-
ing the validity of the dense-core model.12
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Themean free path of a solvent particle is given by λ=Δt
√
T,

and it has been shown in ref 30 thatGalilean invariance is violated
for λ < a/2. With the purpose of avoiding such a nonphysical
behavior, all lattice cells Vj are shifted by a randomly chosen
vector drawn from the interval [-a/2,þa/2] before each collision
step. However, because of this shifting, partially occupied cells
can emerge when the simulation box and cell boundaries do not
coincide with each other. This procedure is unavoidable for small
mean free paths λ, and it has been demonstrated in ref 31 that the
boundary conditions have to be appropriately modified in such a
case. We have tested the validity of our implementation by
applying a Poiseuille flow as described in ref 32 and found that
the solvent velocity correctly extrapolates to zero at the system
boundaries. Shear flow with shear rate _γ = νwall/Lx is incorpo-
rated into the system by applying modified bounce-back bound-
ary conditions, which involve the inversion of the particles’
relative velocities to the walls instead of the absolute ones. We
have favored this approach over other methods, e.g., Lee-Ed-
wards boundary conditions, since the employed boundary con-
ditions resemble more the actual experiment and lead to a
spontaneous development of the desired linear velocity profile.
Thus, the velocity profile is not externally imposed but is
completely self-emerging. This feature offers corroboration of
the validity of our approach. The geometry of this setup is
schematically illustrated in Figure 2.

For the interaction between the solvent and solute particles,
different strategies have been previously proposed.33,34 In the
work at hand, the monomers are included in theMPCD collision
step as point particles and thereby exchange momentum with the
solvent.35 Moreover, no excluded-volume interactions between
the solvent particles and the monomers are taken into considera-
tion. This simplified approach is justified, since it has been shown
in refs 36 and 37 that the desired long-range hydrodynamic

interactions, which are theoretically described by the Zimm
model for linear polymers, build up correctly.

Additionally, thermostatting is required in any nonequilibrium
MPCD simulation whenever either isothermal conditions are
required or viscous heating can occur. In the latter case, the
viscous friction at thewalls of the simulation box creates heat that
results in a temperature rise. This increase in temperature then
leads to a decrease of the local viscosity, which can have a
tremendous influence on the velocity and density profile of the
liquid. Basic requirements of any thermostat are that the con-
servation of the local momentum is not violated, the local flow
profiles are not smeared out too much, and the global velocity
distribution is not distorted notably.When there is homogeneous
heating, the easiest way to maintain a constant temperature T is
to rescale the relative velocity components by a scale factor,
which adjusts the total kinetic energy to the desired value. In our
implementation of this scheme, we have used a local scale factor
on the cellular level.

The monomer-monomer and (when present) monomer-
counterion dynamics is performed by using a usual MD algo-
rithm (Verlet algorithm,ΔtMD=0.001σ(m/ɛ)1/2). The simulation
is carried out in a box of volumeV= Lx� Ly� Lz=20� 20�
100 with solvent particle density F and at temperature T= 1. In
the case of charged dendrimers, we employ the Ewald summation
algorithm38,39 to properly take into account the long-range
nature of the Coulomb interaction, expanding thereby the system
to dimensionsV=50� 50� 100 in order tominimize the impact
of the charged periodic images. Furthermore, we have applied the
aforementioned bounce-back boundary conditions in x-direction
and periodic boundary conditions in the y- and z-directions and
employed the parameters R = 130, λ = 0.1, and F = 5 for the
solvent dynamics. An important quantity of the solvent that can,
among others, be calculated in this model is the dynamical
viscosity η, which takes the form21

η ¼ kBTΔtF
a3

5F
ð4-2 cos R-2 cosð2RÞÞðF-1Þ-

1

2

� �

þ 1-cos R
18aΔt

ðF-1Þ ð9Þ

The numerical value of η in our simulations is η= 3.955(ɛm)1/2/
σ2 (≈ 1/3 mPa 3 s).

IV. Results

A. Neutral Dendrimers. The physical properties of poly-
mers change considerably when an external flow field is
applied. For small shear rates _γ, the conformation remains
essentially unchanged compared to the equilibrium state.
Only when _γ exceeds a characteristic value, which corre-
sponds to the longest relaxation time τ of the dissolved
polymer in equilibrium, a structural anisotropy as well as
an alignment is induced by the flow. For linear polymers40 as
well as for the blob model of star polymers,6 analytic
expressions for τ have already been derived in the Zimm
model. However, since dendrimers are not fractal objects, an
approach involving the blob model is not applicable, and
hence a different solution is required. In this work, the
dendrimers are treated in a similar fashion to linear polymers
with an effective end-to-end length Leff = (2G þ 1)b. This
assumption ignores the multitude of relaxation modes asso-
ciated with the branching points, on the basis that they
should be much faster and clearly separated by an overall,
end-to-end relaxation mode that characterizes the dynamics
of the molecule as a whole. As such, this approach is only
justified in the case of very flexible dendrimers and low
generation numbers. For higher generations or stiffer bonds,

Figure 1. Generation-resolved monomer density distribution F(r) of a
trifunctional G4-dendrimer withU0= 5.0 and r0= 4.0. For the overall
density profile, we showboth the result from theMPCD (solid line) and
that from a conventional MD without solvent (points).

Figure 2. Schematic illustration of the simulation setup, demonstrating
the shear (z), gradient (x), and vorticity (y) directions.
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dendrimers cannot be treated in this fashion anymore since
their dense branching pattern induces more complex relaxa-
tion spectra, and there the molecule resembles a densely
packed colloidal suspension in its interior.10

Figure 3 shows a schematic illustration of this approach,
using the example of a trifunctionalG2-dendrimerwith bond
length b, where the red path indicates the effective end-to-end
length. Accordingly, the relaxation time τ reads as

τ ¼ ηb3ð2Gþ1Þ3μf
T

ð10Þ

with the dynamic solvent viscosity η and the Flory exponent
μf = 0.588.

Furthermore, to facilitate a comparison between dendri-
mers of different sizes, the so-called Weissenberg number
Wi � _γτ is introduced as a dimensionless measure of the
shear rate. Evidently, the region Wi g 1.0 is the most
interesting, as we enter the nonlinear rheology regime of
the dissolved macromolecule.

A convenientmeasure to quantify the structural properties
and the alignment of polymers in flow is the average gyration
tensor, GRβ, defined as

GRβð _γÞ ¼ 1

N

XN
i¼1

Æri,Rri, βæ ð11Þ

where ri,R is the position of the ith monomer relative to the
center of mass and R, β ∈ {x, y, z} denote Cartesian
components. This quantity is directly accessible in scattering
experiments, and its diagonal components, GRR, are the
squared radii of gyration in R direction.

These diagonal components are shown in Figure 4 as
functions of the Weissenberg number Wi for dendrimers of
various stiffness and generations. First, it can be seen that
despite the crude assumptions, the relaxation time τ of
dendrimers defined in eq 10 is a surprisingly good description
of the internal relaxation scale of dendrimers, since the
individual curves show very similar behavior for molecules
with different generationsG. This fact holds especially true in
the case of softer dendrimers with U0 = 5.0 and r0 = 4.0.
Second, it is evident that, as expected, the extension of these
dendritic structures increases with rising shear rate in the
shear direction (z), decreases in the gradient direction (x),
and is almost independent of _γ in the vorticity direction (y).
A similar behavior has been also observed by Lyulin et al.17

and Bosko et al.,19 who analyzed dilute dendrimer solutions
under shear by means of Brownian dynamics simulations
with a Rotne-Prager-Yamakawa interaction tensor for the
hydrodynamic interactions. Moreover, the latter group has
shown that this behavior is also visible for dendrimers in the
melt under shear.13However, these simulations lack amicro-
scopically based approach of the solvent dynamics and its
coupling to the polymer’s degrees of freedom.

With the purpose of analyzing the deviations from sphe-
rical symmetry in terms of the elongation in the shear
direction, the normalized component Gzz is plotted against
Wi in Figure 5. A power law dependence is discerned in the
regime Wi J 1.0. For rodlike colloids and linear polymers,
such a behavior has already been observed and thoroughly
analyzed,40 resulting in the establishment of a Wi2 power
law. For small shear rates, star polymers exhibit a similar
behavior, while a new scaling regime appears at higher shear
rates, where the deformation scales linearly with the Weis-
senberg number.6 Dendrimers, on the other hand, show a
completely different behavior, since neither a Wi2 depen-
dence is visible for lower shear rates nor a proper linear
growth is observable for larger values of Wi. This is espe-
cially noticeable in the case of softer dendrimers with U0 =
5.0 and r0 = 4.0, where the exponent reads μ = 0.861 (
0.022. However, the finding of μ=0.921( 0.120 in the case
of stiffer polymer bonds indicates that with increasing
rigidity dendrimers resemble star polymers in this aspect of
their behavior.

In Figure 6, the asphericity of dendrimers, characterized
by the ratio G1/G3 - 1 g 0 between the largest and smallest
eigenvalues of the average gyration tensor, is shown as a
function of the Weissenberg number Wi for various genera-
tions G. In this regard, note that G1/G3 = 1 holds true for a
rigid sphere, while this expression diverges in the limit of a
long rod. In our case, both the rigidity and the size of the
dendrimer play an important role. Referring to Figure 6a
and comparing to the corresponding results in Figure 6b, we

Figure 3. Schematic illustrationof a trifunctionalG2-dendrimer. The red
path indicates the effective end-to-end length employed in this work to
determine the Weissenberg number corresponding to a given shear rate.

Figure 4. Normalized diagonal components GRR of the average gyra-
tion tensor as a function of the Weissenberg number Wi for G2-, G3-,
and G4-dendrimers. (a)U0 = 10.0 and r0= 3.0. (b)U0 = 5.0 and r0 =
4.0. Here and in subsequent figures we only show error bars in selected
cases that represent also the rest, to avoid overcrowding of the plots.
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see that the anisotropy is stronger for the soft dendrimers in
absolute terms, an intuitive result since these are more easily
deformable than the stiff ones. Comparing among dendri-
mers of the same stiffness but different generations, we notice
that the asphericity grows with the generation number. This
appears counterintuitive at first, since it is known that, in
equilibrium, sphericity is restored as the maximum genera-
tion number grows.10 However, proper understanding of the
trends reported here requires consideration of the fact that
dendrimers of larger generation are also more extended in
space than their low-generation counterparts. As such, they
are also exposed to a stronger influence from the streaming
solvent, whose (undistorted) velocity profile grows linearly
with the distance from the center of the box in the hereby
simulated Couette flow. Concomitantly, large generation
dendrimers are influenced more strongly, and a net larger
asphericity results.

The resistance of a macromolecule against alignment with
the flowdirection in the presence of shear can be described by
the orientational resistance parametermG(Wi). This quantity
is related to the angle χG, which lies between the eigenvector
with the largest eigenvalue of the gyration tensorGRβ and the
flow direction. For the chosen geometry, symmetry con-
siderations imply that all off-diagonal elements of the sym-
metric tensorGRβ forwhich one index is given by the vorticity
direction y vanish. Accordingly, the eigenvectors associated
with the largest and smallest eigenvalues lie in the (x,z)-plane,
and a straightforward calculation yields for the orientational

resistance:

mG

Wi
� tanð2χGÞ ¼ 2Gxz

Gzz -Gxx
ð12Þ

For several systems, including rodlike colloids and linear
polymers, it has been shown that at low Weissenberg num-
bers the scaling relations Gxz ∼ _γ and (Gzz - Gxx) ∼ _γ2 hold
true,40,41 implying that mG is independent of Wi. Results
from this work for various trifunctional dendrimers are
depicted in Figure 7. Unlike the aforementioned cases, the
results do not approach a plateau for small shear rates.
However, it is well visible that the data for different genera-
tionsG collapse onto an universal curve for larger shear rates
and that the orientational resistance can be described by a
power law mG ∼ Wiμ, with μ = 0.488 ( 0.037. This value is
slightly smaller than the exponent for self-avoiding linear
polymers, which was determined as μ = 0.54 ( 0.03 in refs
42 and 43. For star polymers, an even larger exponent μ =
0.65( 0.05 has been found in ref 6. Thus, dendrimers exhibit
the smallest orientational resistance, in comparison with the
aforementioned common polymeric systems.

B. Impact of Hydrodynamics. Hydrodynamic interactions
play a key role in many physical systems and processes.
Hence, it is very important to study and quantify their
relevance. To analyze the impact of hydrodynamics qualita-
tively, it is pertinent to study the deviations of the fluid flow
from the linear profile due to the presence of a dendrimer.
Figure 8 shows the fluid streamlines in the flow-gradient
plane in the presence of a G4-dendrimer, which is placed at
the center of the box. Evidently, the fluid flow in the vicinity
of a dendrimer differs distinctively from that of a rigid,
spherical body, since the solvent penetrates into the area

Figure 5. Normalized component Gzz of the average gyration tensor
as a function of the Weissenberg number Wi for G2-, G3-, and
G4-dendrimers. (a)U0 = 10.0 and r0 = 3.0. (b)U0 = 5.0 and r0 = 4.0.

Figure 6. Ratio of the largest (G1) and smallest (G3) eigenvalues of the
average gyration tensor as a function of theWeissenberg numberWi for
G2-, G3-, andG4-dendrimers. (a)U0= 10.0 and r0= 3.0. (b)U0= 5.0
and r0 = 4.0.
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occupied by the polymer. Here it is well visible that in the
region where the fluid coexists with the dendrimer the
externally imposed flow field is strongly screened and the
fluid velocity is no longer aligned with the shear flow direc-
tion, but rather rotates around the polymer’s center of mass.
Outside the region covered by the dendritic structure, the
fluid adapts to the central rotation by generating both a
counter-rotating vortex and consequently two hyperbolic
stagnation points of vanishing fluid velocity. However, the
fluid in the corona of the dendrimer follows the externally
imposed flow to a considerable extent.

More quantitative results are presented in Figure 9, where
the deviation of the average fluid velocity from the undis-
turbed linear profile is shown for different shear rates _γ and

generations G, indicating that the deviation distinctively
increases for larger _γ and G. It is also apparent that the
results are distributed point-symmetrically around the den-
drimer’s center of mass and do not converge to zero at the
boundaries due to the long-ranged nature of hydrodynamic
interactions. Furthermore, these plots show clearly that the
dendrimers counteract the imposed flow field, since the
deviations have an opposite sign to the velocity profile.

The hydrodynamic interactions manifest themselves also
on the conformations of the flexible, dissolved objects. To
quantify these, the conformational characteristics of a G4-
dendrimer with U0 = 5.0 and r0 = 4.0 have been analyzed
in a separate simulation without hydrodynamics. Such con-
ditions can easily be achieved via Brownian dynamics, where
the Oseen tensor is set to the identity matrixHij= I, and the
velocity field of the Couette flow is superimposed:

riðtþΔtÞ ¼ riðtÞþ c1ΔtviðtÞþ 2Δt _γ ri, x -
Lx

2

� �
ẑ

þ c2Δt
2aiðtÞþ rG ð13Þ

In eq 13, ri,x is the position of the ith bead in gradient
direction and ẑ denotes the unit vector in shear direction.
The coefficients read c1 = (1 - exp(-ξΔt))/(ξΔt) and c2 =
(1- c1)/(ξΔt) with friction coefficient ξ, while ai denotes the
acceleration and rG a random variable drawn from a bivari-
ate Gaussian distribution with zero mean value and variance

Figure 7. Orientational resistancemG as a function of the Weissenberg
numberWi for G2-, G3-, and G4-dendrimers. (a) U0 = 10.0 and r0 =
3.0. (b) U0 = 5.0 and r0 = 4.0.

Figure 8. Fluid stream in the flow-gradient plane for a G4-dendrimer
sheared with Wi= 10.

Figure 9. Deviation of the fluid flow from the linear profile due to the
presence of a dendrimer. The simulation was carried out for a system of
sizeV=20� 20� 100, λ=0.1 and F=5. Furthermore, the presented
velocity profiles have been recorded at the center of the simulation box.
(a) Impact of G2-, G3-, and G4-dendrimers on the velocity flow field at
a shear rate _γ=1.0. (b) Influence of different shear rates on the degree
of hydrodynamic interactions with a G3-dendrimer.
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given by

σr
2 ¼ Δt

kBT

mξ
2-

3-4e-ξΔt þ e-2ξΔt

ξΔt

 !
ð14Þ

Figure 10 shows the diagonal components of the gyration
tensor for simulations both with and without hydrodynamic
interactions. It canbe seen that in the latter case the dendrimer
is considerably more elongated in both the shear and the
vorticity directions. This is due to the absence of couplingwith
the solvent particles, which creates a certain backflow driving
the outer monomers toward the dendrimer’s center of mass.
However, this is not the case in the gradient direction, where
both simulations yield almost identical results. Thus, it ap-
pears that the results do not differ qualitatively but only by a
constant offset. On closer examination, however, it is visible
that this is not exactly the case. This is especially evident in
Figure 11, since the two curves are not parallel. This finding
is also supported by the value of the determined exponentμ=
0.690 ( 0.038, which is substantially smaller than the one
found in the case with incorporated hydrodynamics. This
discrepancy is caused by the upper size limit, namely the
maximum extension of a dendrimerLmax= (2Gþ 1)r0, which
forbids constant growth. Thus, without hydrodynamics, the
relative growth of the dendrimer has to be slower.

In Figure 12 we present the asphericity G3/G1 - 1 of a
G4-dendrimer against the Weissenberg number Wi. Not
unexpectedly, this quantity is larger in the absence of hydro-
dynamics but only to a small extent.

The orientational resistance mG however (Figure 13)
shows more marked differences, depending on the lack of
or presence of hydrodynamic interactions. First, unlike the
results from the MPCD simulation, the values from the
Brownian dynamics simulation approach a plateau for small
shear rates, as expected. Second, the dendrimer exhibits a
weaker orientational resistance in the absence of hydrody-
namics, while, on the other hand, the slope of the fitted curve
μ= 0.500 ( 0.020 is somewhat larger than in the case of an
explicitly modeled solvent. This behavior becomes immedi-
ately clear when Figure 8 is considered: the dendrimer does
not counteract on the solvent, and thus it can be more easily
brought to alignment along the shear direction.

C. Charged Dendrimers. Since the pioneering work of
Welch and Muthukumar,44 charged dendrimers have at-
tracted a lot of attention because charge can be regulated
by pH and salinity and offers a possibility to control the
dendrimer’s shape externally; for recent work, see ref 45 and
citations therein. Charged dendrimers under shear flow are
of a special practical interest, since the possibility to induce
conformational changes by the addition of salt makes them
suitable candidate carrier molecules for drug delivery in the
bloodstream. In this work, G4-dendrimers with monova-
lently (Zm= 1) and divalently (Zm= 2) charged end groups

Figure 10. Normalized diagonal components GRR of the average gyra-
tion tensor as a function of Wi, comparing between a simulation
without (BD) and with (MPCD) hydrodynamic interactions.

Figure 11. Same as Figure 10 but for the normalized componentGzz of
the average gyration tensor.

Figure 12. Same as Figure 10 but for the ratio of the largest (G1) and
smallest (G3) eigenvalues of the average gyration tensor.

Figure 13. Same as Figure 10 but for the orientational resistance mG.
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have been studied in shear flow. Charge neutrality is restored
by addition of monovalent counterions (Zc = 1). The initial
configurations was equilibrated over times long enough for
the counterions to diffuse into the core of the dendrimer and
to reach a steady state for an in- and out-flux.

Table 1 shows the measured radii of gyration Rg for
neutral and charged dendrimers. In agreement with recent
work,45 we find that the size of a dendrimer increases by
charging it. This swelling of the dendrimers can be under-
stood as an osmotic effect, stemming from the electrostatic
attraction between the outermost dendrimer layer and the
counterions, which leads to a significant transport of coun-
terions into the deeper regions of the dendrimer. Concomi-
tantly, the dendrimer swells to create the necessary space
for the counterions, in full analogy with the case of charged
star polymers and brushes.46 This behavior is even more
pronounced in the caseZm = 2, sincemore counterions are re-
quired to restore charge neutrality. These effects are clearly
visible in Figure 14, where the radial density profiles of the
monomers and counterions, both measured with respect to

the dendrimer’s center of mass, are shown. It is evident that
the presence of charge results in a much more structured
density profile because, to a certain degree, the counterions
can fit in-between the individual monomer layers. Also, this
effect is slightly more pronounced in the divalent case, since
twice as many counterions are present.

The normalized components GRR of the average gyration
tensor against theWeissenberg numberWi, for bothZm=1
and Zm = 2, are shown in Figure 15. It can be seen that the
presence of charge leads to a slightly different behavior
compared to the neutral case. Here, the deformation of the
charged dendrimers is notably more pronounced in both the
shear and vorticity directions. Furthermore, it is apparent
that this behavior is closely related to the valency of the
charged monomer layer. At larger shear rates, however,
these differences disappear and the relative growths coincide
with one another. These effects are even more apparent in
Figure 16, where the relative extension in shear direction is
plotted. The quantitative results from the curve fitting are
Gzz/Gzz(0)≈Wi0.74þ 1 forZm=1 andGzz/Gzz(0)= 2Wi0.58

þ 1 in the case of Zm = 2. It is thereby easier to deform a
G4-dendrimer with divalently charged end groups than its
neutral or monovalent counterparts. Here, the smaller ex-
ponent is again due to the limiting length of a completely
extended dendrimer. This effect becomes more clear when

Table 1. Radii of Gyration for Neutral and Terminally Charged
G4-Dendrimers, Depending on the Valency of Monomers, Zm,

and Counterions, Zc

(Zm, Zc) Rg/σ

(0, 0) 2.78( 0.03
(1, 1) 3.04( 0.04
(2, 1) 3.18( 0.04

Figure 14. Equilibrium radial density distributions of two G4-dendri-
merswith f=3andP=0and charged terminal groups: (a)monovalent
end groups; (b) divalent end groups.

Figure 15. Normalized diagonal components GRR of the average gyra-
tion tensor as a function ofWi, comparing between neutral and charged
dendrimers.

Figure 16. Same as Figure 15 but for the normalized componentGzz of
the average gyration tensor.
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the fraction of counterions within the dendrimer is consid-
ered (see Figure 17). The number of trapped counterions in
equilibrium or in low shear rates is considerably higher for
the case of divalent end groups, a manifestation of the
stronger Coulomb attraction between monomers and coun-
terions.45 This portion then remains constant until the shear
rate exceeds a critical value, which seems to be slightly higher
in the case ofZm= 2 (see also below). With increasing shear
rates, the counterions are rinsed out of the dendrimer, since
the gain in speed they acquire through collisions with the
applied sheared solvent outweighs the restoring Coulomb
forces. These free counterions then attract the outer shell of
the dendrimer, resulting in a slightly bigger deformation in
both the shear and vorticity directions. At a shear rate
corresponding to Wi J 30, the solvent flow is sufficiently
strong to fully deplete the charged dendrimers from the
counterions in their interior, irrespective of the valency of
the terminal monomers. Figure 18 shows the asphericity of
neutral, monovalent, and divalentG4-dendrimers, and small
differences between them can be observed. The reason for
this lies in the loose bonding of the counterions, which first
become detached from the dendrimer and flow freely along
the imposed velocity field profile. These newly released, free
counterions form an asymmetric cloud in the exterior of the
dendrimer and attract the oppositely charged external layer

of monomers, increasing the dendrimer’s anisotropy. The
orientational resistance of charged dendrimers is presented
in Figure 19, and surprisingly, no remarkable differences in
comparison with neutral dendrimers are visible. Moreover,
the values of the exponents do not differ notably, with μ =
0.444( 0.021 for Zm = 1 and μ= 0.472( 0.024 in the case
of Zm = 2. Though this seems surprising at first, since one
would expect a higher resistance for a charged dendrimer,
this behavior can again be explained by considering Fig-
ure 17; at high shear rates almost no counterions are present
within the dendrimer, which exert additional forces that try
to align the polymer with the flow, while the intramonomer
repulsions are dominated by the strong external flow. As a
result, the polymer behaves like its neutral counterpart.

A theoretical description of the counterion distribution at
equilibrium and low shear rates as well as of the physics
behind the escape of the counterions from the dendrimer’s
interior can be reached within Poisson-Boltzmann (PB)
theory. To this goal, we have solved the PB nonlinear
differential equation in a spherical shell of radius LB:

r2ΦðrÞ ¼ -4πλB½ZmnmðrÞþZcn
¥
c e

-βZcΦðrÞ� ð15Þ
where nm(r) denotes the number density profile of the
positive monomers, nc

¥ the average number density of the
negative counterions, β = T-1, and LB is determined
through the relation 4πLB

3/3 = V. Moreover, the boundary
conditions rΦ(0) = 0 and rΦ(LB) = 0 have been applied,
where the former stems from symmetry reasons and the latter
is an expression of the overall charge neutrality. We empha-
size that the quantity nm(r) is not calculated within the
present, Poisson-Boltzmann approach but it is rather an
input to it, taken directly from the simulation results.

The nonlinear Poisson-Boltzmann differential equation
(15) presents only an approximation, since it does not take
any spatial accessibility into account and thus disregards
excluded volume effects, and even as far as the charge
response is concerned, it is at the level of a mean-field appro-
ximation. Nonetheless, the solutions of this equation are
surprisingly accurate. Figure 20 shows the resulting counter-
ion density, and a good agreement between the simulation
and the approximation can be observed. This holds especi-
ally true in the case ofZm=2, since, with increasing valency,
the Coulomb forces play a bigger role and more counterions
are trapped inside the dendrimer. The fact that excluded
volume effects have been disregarded is well visible, since the
calculated counterion density at the dendrimer’s center of

Figure 17. Fraction of counterions within the charged dendrimer as a
function of theWeissenberg numberWi. The dashed lines are guides to
the eye.

Figure 18. Same as Figure 15 but for the ratio of the largest (G1) and
smallest (G3) eigenvalues of the average gyration tensor.

Figure 19. Same as Figure 15 but for the orientational resistance mG.
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mass does not converge to zero. The resulting electrostatic
potentials and energies are shown in Figure 21. Here, the
relevant energy Eesc, which has to be gained by a trapped
counterion in order to overcome the barrier and escape from
the interior of the polymer, is given by the difference between
the minimum energy and the value at the edge of the system.
This required energy, expressed in thermal units, reads as
Eesc ≈ 8.4 for Zm = 1 and Eesc ≈ 8.6 for Zm = 2.

An estimate of the criticalWeissenberg numberWic= τ _γc,
which leads to the rinsing of the counterions, can be made as
follows. The values above have to be compared to the local
increase in kinetic energy due to the shear flow. First, the
velocity in shear direction at the position x is given by

vzðxÞ ¼ 2 _γ x-
Lx

2

� �
ð16Þ

Since the kinetic energy due to the Couette flow has to equal
the escape energy Eesc, the expression for the critical shear
rate reads as

Wic ¼ τ

����� Eesc

2m
Rg -

Lx

2

� �-1
�����

s
ð17Þ

After inserting the simulation parameters m = 5, τ = 47.2
and the corresponding values forRg andEesc, eq 17 yields the

criticalWeissenberg numbersWic= 1.2 for bothmonovalent
and divalent dendrimers. The simulation result for this
quantity can be read off from Figure 17, where it can be
identified with the point of crossover from a constant value
for the fraction of trapped counterions to a monotonically
decreasing quantity; this occurs roughly at Wi = 0.5. The
overestimation from theory originates from various assump-
tions. Among these is, for example, the fact that the majority
of counterions has been assumed to be located at r ≈ Rg.
However, on closer inspection it is apparent that the simu-
lated counterion cloud lies slightly further away from the
dendrimer’s center of mass than the calculated one. Conse-
quently, the counterions are exposed to a stronger current,
and hence smaller Weissenberg numbers are needed to
release them. Nonetheless, these results reproduce the find-
ings of the simulation quite accurately and predict the
qualitative behavior of the counterions correctly.

V. Conclusions

Wehave carried out hybrid simulations at the particle-resolved
level to analyze the shape and response of regularly branched
polymers under shear flow. We have shown that dendrimers
under shear exhibit a very rich structural and dynamical beha-
vior, which distinctively differs from that of linear and star
polymers. Moreover, we have demonstrated in this contribution
that hydrodynamic interactions play an important role for the
conformational properties of dendritic structures, since their
strong influence on the fluid leads to an unique flow profile in
their interior and vicinity. This behavior is strongly related to the

Figure 20. Radial density distribution of the counterions of the two
terminally charged dendrimers considered in this work. The black
curves represent the solution of the Poisson-Boltzmann equation
(15), while the red curves are the simulation results. (a) Charged
dendrimer with monovalent end groups. (b) Charged dendrimer with
divalent end groups.

Figure 21. (a) Electrostatic potentials and (b) energies per counterion
of G4-dendrimers with monovalent and divalent end groups.
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dendrimers’ many conformational degrees of freedom. A
considerable screening of the externally imposed flow field has
been observed in the area in which the fluid coexists with the
polymer. Outside this region, the fluid adapts to the central
rotation by generating a counter-rotating vortex, which leads to a
substantial backfolding of the dendrimer’s outer monomer
layers. Hence, the incorporation of hydrodynamic interactions
leads to a notably smaller elongation of the polymer. This
behavior has been quantified in this work by means of Brownian
dynamics simulations, in which the hydrodynamics have been
omitted.

The characteristics of dendritic structures with charged end
groups have been analyzed under shear conditions, and it has
been shown that the majority of counterions remains inside the
polymer until the shear rate exceeds a certain critical value.
Beyond this rate, however, the counterions get rinsed out of the
macromolecule rather quickly, and the dendrimer starts to
resemble more and more its neutral counterpart. These findings
have also been verified analytically, by first solving the Pois-
son-Boltzmann equation for the counterion number density and
then calculating the necessary critical shear rates approximately.
This behavior opens up an additional possibility to employ
charged dendrimers as candidate carrier molecules for drug
delivery, since the absorbed substances become released at a
well-defined shear rate. From the fundamental point of view, the
next challenge is to simulate concentrated dendrimer solutions
under full hydrodynamic coupling and todevelop suitable coarse-
graining strategies for suchmolecules out of equilibrium, possibly
along the lines of the recently proposed transient-force approach
by Briels.47
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