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Abstract

Within the scope of this thesis, we show that a driven-dissipative system with
few ultracold atoms can exhibit dissipatively bound states, even if the atom-atom
interaction is purely repulsive. This bond arises due to the dipole-dipole inter-
action, which is restricted to one of the lower electronic energy states, resulting
in the distance-dependent coherent population trapping. The quality of this al-
ready established method of dissipative binding is improved and the application
is extended to higher dimensions and a larger number of atoms. Here, we simu-
late two- and three-atom systems using an adapted approach to the Monte Carlo
wave-function method and analyse the results. Finally, we examine the possi-
bility of finding a setting allowing trimer states but prohibiting dimer states.
In the context of open quantum systems, such a three-body bound states corre-
sponds to the driven-dissipative analogue of a Borromean state. These states can
be detected in modern experiments with dipolar and Rydberg-dressed ultracold
atomic gases.
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Kurzfassung

Im Rahmen dieser Diplomarbeit wird gezeigt, dass ein getrieben-dissipatives Sy-
stem mit wenigen ultrakalten Atomen zu einem dissipativ gebundenen Zustand
führen kann, auch wenn die interatomare Wechselwirkung rein abstoßend ist. Die-
se Bindung entsteht aufgrund der Dipol-Dipol Wechselwirkung, die auf einen der
elektronischen Grundzustände beschränkt ist. Mittels dieser Beschränkung kann
erreicht werden, dass der kohärente Besetzungseinfang von der interatomaren Di-
stanz abhängt. Die Güte dieser bereits etablierten dissipativen Bindungsmethode
wurde im Laufe dieser Arbeit verbessert und auf eine höhere Anzahl von Ato-
men in höherdimensionalen optischen Fallen angewendet. In dieser Arbeit werden
Zwei- und Drei-Atom Systeme mittels einer adaptierten Version der Monte Carlo
Wave-Function Methode simuliert und die Ergebnisse analysiert. Schließlich wird
die Möglichkeit eines Parameterbereichs, in dem Trimere gebildet werden können
aber Dimere verhindert werden, diskutiert. Solch ein dreiatomiger Bindungszu-
stand entspricht dem getrieben-dissipativen Analogon eines Borromäischen Zu-
stands im Kontext offener Quantensysteme. Diese neuartigen Zustände können in
modernen Quantenoptik-Experimenten mit dipolaren ultrakalten Quantengasen
im Rydbergzustand nachgewiesen werden.
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1. Introduction

”
Begin at the beginning“, the King said, very gravely,

”
and go on till you come to the end: then stop.“

—Lewis Carroll, Alice in Wonderland [2]

In physics, dissipation usually presents an undesirable obstacle in the experi-
mental realisation of coherent quantum systems, which physicists have to over-
come. However, the tremendous progress in designing and controlling quantum
setups during the last decades [3] has marked a change of paradigm by shift-
ing the notion of dissipation from an adverse secondary effect to an important
tool for the preparation of quantum states. This development gave rise to many
novel ideas in form of theoretical proposals for dissipative preparation of quantum
states [4–21]. In these proposals the interplay between dissipative and coherent
dynamics is exploited in order to guide the system to a desired steady state.
There have already been many succesful experimental advances [22–29], defying
the challenging nature of these complex setups.

More recently, dissipative binding mechanisms between atoms have been pre-
dicted in a variety of settings [30–33]. In this thesis the method proposed by
Weimer and Lemeshko, where pairs of atoms in driven-dissipative open quantum
systems can form dissipatively bound metastable states [32, 33], is investigated
and improved. Additionally, the method is extended to three atoms in order
to examine few-body effects in the dissipative setting. Although few- and many-
body effects have been a well researched topic since Isaac Newton [34], even today
most physicists still rely on the same approach: they assume additive pairwise
interactions between the constituent particles and neglect intrinsic higher-order
effects. By doing so, however, they ignore that effective many-particle interac-
tions often play an essential role in the emergence of rich and complex behaviours
in a large range of systems [35]. Notable three-body phenomena can be found
in diverse systems such as ultracold atoms [36], atomic nuclei [37], colloids [38],
and even neutron stars [39]. Condensed matter systems, which constitute a
true playground for many-body physics, exhibit fascinating phases such as frac-
tional quantum Hall states when three-atom interaction terms are included in the
Hamiltonian [40–42]. Some of these novel phases even show promise to further
the field of topological quantum computation [43].

In the context of controllable quantum systems, a wide variety of intrinsic
few-body phenomena have already been studied [44–46], but one of the most in-
triguing manifestations of few-atom physics, the emergence of Borromean states,

1



Chapter 1. Introduction

has so far remained a topic of closed systems in an equilibrium setting [47, 48].
These trimer states appear in settings which do not allow any dimer states to
form. In classical scenarios such as biology [49] and chemistry [50] they can be
observed as Borromean rings [51], while in atomic physics they are known as
Efimov states [52] and have been subject to succesful experimental investiga-
tion [53–59]. The possibility of finding Borromean states in a dissipative setting
using the aforementioned method by Lemeshko and Weimer is treated within the
scope of this thesis.

The examined systems and the underlying theory are introduced in the next
chapter (Chap. 2), whereas computational and numerical methods used in this
thesis are presented in Chap. 3. Two- and three-atom systems are examined
seperately in Chap. 4 and Chap. 5, respectively. Parameter regimes, where trimer
states can emerge, but dimer states can not form, are investigated in Chap. 6.
The final chapter (Chap. 7) gives a short summary of this thesis and an outlook
for further development of this topic. Besides some supplementary results (Ap-
pendix C), the appendix contains important quantum optic theory (Appendix A)
and reference data on caesium (Appendix B).
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2. Model

In One Dimension, did not a moving Point
produce a Line with two terminal points?
In Two Dimensions, did not a moving Line
produce a Square with four terminal points?

—Edwin A. Abbott, Flatland [60]

In the scope of this thesis, several setups are examined and simulated. These
setups vary in the number of their dimensions and in the number of the involved
atoms. While initially a one-dimensional two-atomic system is used as a toy
model, this system is extended to a two-dimensional two-atomic system, before
finally a two-dimensional three-atomic system is investigated. In Sec. 2.1 the
different systems are introduced and explained in detail. Furthermore, a thor-
ough account of the individual atoms’ electronic energy structure is given. The
mechanism giving rise to the dissipative bond is treated in Sec. 2.3. Whereas a
description of some of the theoretical aspects, which are crucial for this mech-
anism, is included in Sec. 2.2 and in Appendix A, the reader is referred to the
literature for a more detailed account of the underlying theory [61–65].

2.1. Setup

Trapping Geometry

All systems considered in this thesis consist of two or three identical atoms,
which are confined to one- or two-dimensional geometries by optical traps at
ultracold temperatures. In order to study few-body phenomena, the densities
of the proposed systems have to be such that only few-body processes play a
significant role. This is realisable using the current experimental methods [66–
72]. The atom species was chosen to be caesium, whose relevant properties can be
seen in Appendix B. The advantage of choosing caesium atoms is their popularity
within the experimental few-body physics community [53, 55–59].

The novel dynamics of the proposed systems emerge due to several different
effects, which are induced by laser excitation of the atoms. The atoms’ electronic
transitions are driven by counterpropagating laser beams resulting in coherent
population trapping (CPT), a similar effect to the well-known electromagneti-
cally induced transparency (EIT [61]), which is the main mechanism exploited in
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Chapter 2. Model

this thesis and which will be explained in detail in Sec. 2.2. Another consequence
of this laser irradiation is that the atoms are provided with an electric dipole
moment d, if the valence electron is in a certain state. Additionally, a weak elec-
tric field aligns the induced electric dipole moments parallel to each other and
perpendicular to the trapping plane guaranteeing that the dipole-dipole interac-
tion between two atoms only depends on the set of interatomic distances {rij}.
Together, these concurring effects yield the dissipative binding mechanism.

Figure 2.1.: Schematics of the one-dimensional two-atom system: two ultracold
atoms (red) are confined by an appropriate one-dimensional optical
trap (light blue) while counterpropagating laser beams (green) drive
the atoms’ electronic transitions. The atomic interaction is caused
by the electric dipole moments (dark blue), which have parallel align-
ment due to a weak electric field.

A quasi-one-dimensional system with two atoms, which was used by Lemeshko
and Weimer [32, 33], is used as a simple model to explain the interatomic binding
mechanism in Sec. 2.3. The setup of this system is shown in Fig. 2.1. Due to
the simplicity of this constellation, the interatomic distance r21 = r is sufficient
to fully determine the relative configuration of the atoms.

Figure 2.2.: (a) Representation of the two-atom system in two dimensions with
interatomic distance r21 = r. (b) Representation of the three-atom
system in two dimensions with indicated opening angle Θ and rela-
tive distances r21, r31, and r32. The two-dimensional optical trap is
indicated in light blue.
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2.1. Setup

This model is expanded in Chap. 4, where the motion of the two atoms is now
restricted to two dimensions as displayed in Fig. 2.2(a). By orienting the weak
electric field, which aligns the dipole moments, perpendicular to the trapping
plane, the atoms’ interaction becomes invariant under rotations in the trapping
plane. Consequently, only the interatomic distance r21 = r is needed to com-
pletely characterise the arrangement of the atoms.

Finally, three identical ultracold atoms confined to a two-dimensional geometry
by an optical dipole trap are considered in Chap. 5. This setup is schematically
illustrated in Fig. 2.2(b). The relative distances between the three atoms are
determined by r21, r31, and r23 or by r21, r31, and Θ. Applying the law of cosines
to r21, r31, and Θ yields r23:

r2
23 = r2

21 + r2
31 − 2 · r21 · r31 · cos Θ . (2.1)

Electronic Level Structure

In this thesis the system’s states will be referred to as follows: |x〉1 for atom 1
being in state |x〉. In case of two atoms, state |x, y〉 = |x〉1 ⊗ |y〉2 denotes atom
1 being in state |x〉 and atom 2 being in state y, whereas in the three-atom case
|x, y, z〉 = |x〉1 ⊗ |y〉2 ⊗ |z〉3 indicates atoms 1, 2, and 3 being in states |x〉, |y〉,
and |z〉, respectively. If an aspect of the level structure is being described which
appears in each atom individually, then the notation |x〉a will be used and it is
assumed that index a runs over all atoms in the system.

A graphical depiction of the level structure of one individual atom is shown
in Fig. 2.3. Here, the two ground states, |1〉a and |3〉a, are chosen as two fine
or hyperfine components of the ground electronic state. State |2〉a is an elec-
tronically excited state. In the examined few-atom systems, which consist of
caesium atoms, two different hyperfine components of the 62S1/2 state are chosen
as states |1〉a and |3〉a, whereas state 62P3/2 is chosen as state |2〉a. For detailed
information on the cesium D2 line (62S1/2 → 62P3/2) see Tab. B.2 in Appendix B.

Due to the driving of the transitions, each atom’s electronic energy level struc-
ture can be reduced to these three relevant states |1〉a, |2〉a, and |3〉a, which
compose a Λ-configuration. Additionally, a highly excited Rydberg state |Ry〉a
is coupled to state |1〉a of the Λ-configuration, providing each atom in state |1〉a
with the electric dipole moment d pointing perpendicular to the trapping plane
in the weak electric field. Coupling to the environment provides the electronically
excited state |2〉a with a decay of rate γ, which is assumed to be equal for both
decays |2〉a → |1〉a and |2〉a → |3〉a. Furthermore, interaction with three external
electric fields gives rise to Rabi oscillations with Rabi frequencies Ω21, Ω23, and
ΩRy. The concept of Rabi oscillations is explained in detail in Appendix A. It
is assumed that the direct transition |3〉a ↔ |1〉a between the ground states is
electric dipole forbidden.
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Chapter 2. Model

Figure 2.3.: The electronic energy structure of one of the atoms arranged in a
Λ-system with all relevant system parameters. The combination
of detuning ∆21 and dipole-dipole interaction U (na)({rij}) yields a
distance-dependent detuning ∆̃21({rij}) = ∆21 + U (na)({rij}).

While the two transitions |1〉a ↔ |2〉a and |3〉a ↔ |2〉a are driven with Rabi
frequencies Ω21 and Ω23 and detunings ∆21 and ∆23, respectively, state |1〉a is
weakly coupled to the Rydberg state |Ry〉a using a two-photon transition in
presence of a far-off-resonant field with Rabi frequency ΩRy [73–75]. For ∆Ry >>
ΩRy state |Ry〉a can be adiabatically eliminated and an effective dipole moment
d is assigned to |1〉a, while states |2〉a and |3〉a do not display any dipole moment.
The strength of this dipole moment d is determined by the dipole moment d0 of
the highly-excited Rydberg state |Ry〉a, ∆Ry, and ΩRy [74]:

d = d0

(
ΩRy

∆Ry

)2

. (2.2)

This dipole moment generates a dipole-dipole interaction U (na)({rij}), where na
stands for the number of involved atoms, if more than one atom is in state |1〉a.
Consequently the detuning of the transition |1〉a ↔ |2〉a is rendered distance-
dependent: ∆̃21({rij}) = ∆21 + U (na)({rij}).

2.2. Coherent Population Trapping

The phenomenon of CPT, which is caused by the coherent superposition of atomic
states, is crucial to the dissipative binding method employed in this thesis. In
the following the causes and the effect of CPT are examined [76].
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2.2. Coherent Population Trapping

A three-level atom interacting with two fields of frequencies ω1 and ω2 coupling
the two lower states to a single excited state, as shown in Fig. 2.4, is considered.
It is assumed that the transition |a〉 ↔ |b〉 is electric dipole forbidden. The
resulting electronic level structure is called Λ-configuration due to its shape.

Figure 2.4.: Three-level atom in a Λ-configuration interacting with two resonant
fields of frequencies ω1 and ω2.

In the rotating-wave approximation the system’s Hamiltonian Ĥ writes as:

Ĥ = Ĥ0 + ĤI ,

with Ĥ0 = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|+ ~ωc |c〉 〈c|

and ĤI =− ~
2

(
Ω∗1e

iω1t |a〉 〈c|+ Ω1e
−iω1t |c〉 〈a|

)
− ~

2

(
Ω∗2e

iω2t |b〉 〈c|+ Ω2e
−iω2t |c〉 〈b|

)
.

(2.3)

Here, the complex Rabi frequencies Ω1 and Ω2 are assumed to change slowly
in time so that they can be treated as constant. These Rabi frequencies are
associated with the coupling of the laser radiation with frequencies ω1 and ω2 to
the atomic transitions |a〉 ↔ |c〉 and |b〉 ↔ |c〉, respectively. The driving of these
transitions is assumed to be in resonance (ω1 = ωc − ωa and ω2 = ωc − ωb). See
Appendix A for a more detailed explanation of Rabi frequencies.

The state of the three-level atom can be written as |ψ(t)〉 = α(t) |a〉+β(t) |b〉+
γ(t) |c〉, where α(t), β(t), and γ(t) are complex coefficients. In order to find a
steady-state solution of the considered system, we insert |ψ(t)〉 in the well-known
Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , (2.4)

where the Planck constant is represented by ~. Doing so results in the following
set of differential equations:
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Chapter 2. Model

iα̇(t) = ωaα(t)− 1

2
Ω∗1e

iω1tγ(t) ,

iβ̇(t) = ωbβ(t)− 1

2
Ω∗2e

iω2tγ(t) ,

iγ̇(t) = ωcβ(t)− 1

2
Ω1e

−iω1tα(t)− 1

2
Ω2e

−iω2tβ(t) .

(2.5)

We introduce new complex coefficients in order to rewrite these equations:

A(t) = α(t)eiωat ,

B(t) = β(t))eiωbt ,

Γ(t) = γ(t)eiωct ,

(2.6)

resulting in the simple set of differential equations seen in Eq. (2.7).

Ȧ(t) =
iΩ∗1
2

Γ(t)

Ḃ(t) =
iΩ∗2
2

Γ(t)

Γ̇(t) =
iΩ1

2
A(t) +

iΩ2

2
B(t)

(2.7)

We set the time-derivatives of all coefficients to zero (Ȧ(t) = Ḃ(t) = Γ̇(t) = 0)
and use the normalisation condition (|α(t)|2 + |β(t)|2 + |γ(t)|2 = 1 and |A(t)|2 +
|B(t)|2 + |Γ(t)|2 = 1) to find the solution to a steady state. The resulting steady-
state coefficents are:

A(t) =
Ω2

Ω
,

B(t) = −Ω1

Ω
,

Γ(t) = 0 .

(2.8)

Here the variable Ω stands for
√
|Ω1|2 + |Ω2|2. Due to Γ(t) = 0 it is already

obvious that the steady-state solution will not contain any population in the
excited level |c〉. Using Eq. (2.6) and inserting the resulting coefficients into the
original state |ψ(t)〉, we obtain the steady state:

|ψdark(t)〉 =
Ω2e

−iωbt

Ω
|a〉 − Ω1e

−iωct

Ω
|b〉 , (2.9)
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2.3. Dissipative Binding Mechanism

where the global phase has been neglected without loss of generality. Because
the lack of population in the excited state |c〉 renders emission and absorption
of photons impossible, state |ψdark(t)〉 is called a dark state. The explanation for
this phenomenon of coherent population trapping in the two lower levels is the
destructive quantum interference of transitions |a〉 ↔ |c〉 and |b〉 ↔ |c〉. This
means that, if the atom is prepared in the initial state:

|ψdark(0)〉 =
Ω2

Ω
|a〉 − Ω1

Ω
|b〉 , (2.10)

the considered atom does not absorb any photons and becomes transparent to
the incident light fields, even though these fields drive the transitions resonantly.

Thus, we have shown that, if an atom is prepared in a certain coherent super-
position of states, it is possible to cancel any absorption even in the presence of
resonant transitions. Once the atom is in the dark state |ψdark(t)〉, it remains in
that state at all times t.

2.3. Dissipative Binding Mechanism

Usually, interatomic binding is caused by conservative interactions acting among
electrons and nuclei. The resulting equilibrium configuration is determined by
the minimum of the interaction potential. In this section we show that bonding
can also occur due to interaction-induced coherent population trapping, which
results from non-conservative forces. This dissipatively bound metastable state
appears as a stationary state at a preordained interatomic distance. Remarkably,
such a dissipatively bound state can arise even when the interactions between the
atoms are purely repulsive.

In order to explain the dissipative binding mechanism, we assume a one-dimen-
sional two-atom system, as shown in Fig. 2.1, with the atoms’ electronic energy
structure outlined in Fig. 2.3 . We simplify the system by assuming equal Rabi
frequencies Ω21 = Ω23 and a resonant transition |3〉a ↔ |2〉a (∆21 = 0). The
interaction-induced coherent population trapping, which is the integral aspect of
the dissipative binding mechanism, emerges due to the combination of regular
CPT in a Λ-system, as described in Sec. 2.2, and the distance-dependent detuning
of transition |1〉a ↔ |2〉a. The condition for the stationary two-atom state |ψ(2)

grey〉
is satisfied at the distance of minimal dissipation rmin. At this distance the two-
atom dipole-dipole interaction U (2)(r21) approximately cancels out the detuning
of transition |1〉a ↔ |2〉a: U (2)(rmin) + ∆21 ≈ 0.

It is noted that due to the restriction of the dipole-dipole interaction to state
|1〉a a true two-atom dark state |ψ(2)

dark〉 corresponding to zero dissipation can not

be achieved. Therefore, the obtained state is a so-called grey state |ψ(2)
grey〉, where

photon absorption is not totally suppressed, but significantly reduced at distance
rmin.

9



Chapter 2. Model

Under this condition the two atoms are almost completely decoupled from
photon absorption-emission thereby strongly increasing the probability of finding
the atoms separated by distance rmin. In the corpuscular approach, this can be
explained by the photon scattering and the corresponding photon recoil due to
which the atoms are randomly kicked around until they are in the two-atom
grey state |ψ(2)

grey〉, where there is almost no photon scattering. When the dipole-
dipole interaction is strong enough to push the atoms apart, they end up in a
brighter state, where they experience more photon kicks and are randomly kicked
around again until they return to the grey state |ψ(2)

grey〉 at distance rmin. This
metastable bond is continuously broken and formed by photon scattering and
the dipole-dipole interaction. On average, however, there will be a clear peak
in the two-body correlation function at distance rmin. When treating the atoms
as a wave-function, the leaking of population in the excited state |2〉a due to
dissipation is minimised at rmin, resulting in the aforementioned peak of the two-
body correlation function. This confinement of the atoms corresponds to the
formation of a dissipatively bound state.

The examined two-dimensional two- and three-atom systems, which have no
restrictions on the parameter values, exhibit similar dynamics, but on a more
complex level. By setting the parameters Ω21, Ω23, ∆21, ∆23, and d to fixed
values the photon absorption rate of our system only depends on the interatomic
distances {rij}. Different sets of parameter values then yield different distance-
dependent behaviours of the photon absorption rate V (na)({rij}), which will be
introduced in the next chapter. In Chaps. 4 and 5 we search for shapes of
V (na)({rij}) that enhance probability of finding the atoms separated by rmin the
most.
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3. Numerical Methods

Physics is mathematical not because we know so much
about the physical world, but because we know so little; it
is only its mathematical properties that we can discover.

—Bertrand Russell, An Outline of Philosophy [77]

Generally, the time evolution of a quantum system is determined by the initial
state of the system and the appropriate quantum master equation, which is a
set of differential equations for every element of the system’s density matrix [78].
Due to the complexity and the high computational cost of numerically calculating
the time evolution of the systems presented in Sec. 2.1, a more efficient numer-
ical method is necessary. The numerical approach taken in this thesis is based
on the Monte Carlo wave-function method (MCWF), which will be treated in
Sec. 3.1. In Sec. 3.2 this stochastic method is developed further into an adapted
MCWF technique, which was ultimately used to calculate time evolution in this
thesis. The novelty of this adapted version is the use of effective dissipative po-
tentials, which will be introduced in Secs. 3.3 and 3.4. The reader is referred to
Appendix A and the established literature for more information on the theoreti-
cal background of quantum optics [61, 62], statistical physics [78], and quantum
mechanics [63–65].

3.1. Monte Carlo Wave-Function Method

Under the assumption of weak coupling between the environment and the system
(Born approximation) and the assumption of an environmental correlation time
much shorter than the timescale of the system’s evolution (Markov approxima-
tion), the time dependence of the system’s reduced density operator ρ̂S can be
calculated by employing the following quantum master equation:

dρ̂s
dt

= − i
~

[
Ĥs, ρ̂s

]
+ L(ρ̂s) , (3.1)

where ~ is the reduced Planck constant and ρ̂s and Ĥs denote the reduced density
operator and the reduced Hamiltonian, which only account for the dissipative
system we want to examine. These operators are derived by tracing over the
reservoir variables. By doing so the Lindblad superoperator L(ρ̂s) is obtained
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Chapter 3. Numerical Methods

simultaneously [79]. This Lindbladian term L(ρ̂s) is responsible for dissipative
processes due to system-environment coupling, while unitary evolution of the sys-
tem is determined by the system’s Hamiltonian Ĥs. Equation (3.1) is also known
as the Kossakowski-Lindblad equation. A very general form of this Lindblad
superoperator L(ρ̂s), which is valid for most quantum optics problems involving
dissipation, writes as:

L(ρ̂s) =
∑
n

γn

(
ĉnρ̂sĉ

†
n −

1

2

{
ĉ†nĉn, ρ̂s

})
. (3.2)

Here, the operators ĉn correspond to the jump operators of the system’s decay
channels and γn are the respective decay rates. In this thesis the jump operators
ĉn represent spontaneous emission of a photon.

Solving this quantum master equation of a system with N states involves cal-
culations with the density matrix ρ, which contains N ×N terms. For example,
the density matrix ρs of the system examined in Chap. 5 contains 27× 27 = 729
elements only considering the electronic energy structure. In order to describe
the time evolution of such a dissipative system more efficiently, the Monte Carlo
wave-dunction method (MCWF) developed by K. Mølmer, Y. Castin, and J. Dal-
ibard [80, 81] is an excellent candidate. The application of the MCWF method,
which is mathematically equivalent to solving the master equation [81], only in-
volves the wave-function, which is described by N instead of N×N terms. There-
fore, the MCWF method is computationally preferable to the density-matrix
treatment for any system with a number of states larger than one (N � N ×N).
Thus, applying the MCWF method is a great way of avoiding costly computation
when calculating the time evolution of the systems considered in this thesis.

The integral steps of the MCWF method are applied to a generic system in
the following. Assuming an initial state of the system |ψ(t)〉 at time t, we want
to evolve this wave-function in time by a time increment δt and obtain the final
state |ψ′(t+ δt)〉. At first we calculate an intermediary state |ψ′(t+ δt)〉, which
is obtained by evolving state |ψ(t)〉 using the non-Hermitian Hamiltonian Ĥ with
quantum jump operators ĉn [81]:

Ĥ = Ĥs −
i~
2

∑
n

γnĉ
†
nĉn . (3.3)

We calculate |ψ′(t+ δt)〉 using the series expansion of the time evolution operator.
By choosing δt sufficiently small, the terms of order O(δt2) and higher can be
dropped:

|ψ′(t+ δt)〉 =

(
1− iĤδt

~
+O(δt2)

)
|ψ(t)〉 . (3.4)

12



3.1. Monte Carlo Wave-Function Method

The second term on the right side of Eq. (3.3) is responsible for the decrease of
population in the excited level. In case of the systems introduced in Sec. 2.1 this
leads to the reduction of the wave-function wherever the condition for CPT is
not satisfied. The square of the time-evolved state |ψ′(t+ δt)〉 is given by:

〈ψ′(t+ δt)|ψ′(t+ δt)〉 = 〈ψ(t)|

(
1 +

iĤ†δt

~

)(
1− iĤδt

~

)
|ψ(t)〉 . (3.5)

The following calulation shows that the wave-function |ψ′(t+ δt)〉 is obviously
not normalised:

〈ψ′(t+ δt)|ψ′(t+ δt)〉 = 1− iδt

~
〈ψ(t)|

(
Ĥ − Ĥ†

)
|ψ(t)〉

= 1− δt
∑
n

〈ψ(t)| γnĉ†nĉn |ψ(t)〉

= 1−
∑
n

δpn = 1− δp

with δpn = δt 〈ψ(t)| γnĉ†nĉn |ψ(t)〉 ≥ 0 .

(3.6)

A consequence of choosing the size of timestep δt so that this first-order calcu-
lation is valid and that the terms of order O(δt2) and higher can be dropped is
that 〈ψ′(t+ δt)|ψ′(t+ δt)〉 will be close to one and δp will be small (δp� 1).

After evolving state |ψ(t)〉 in time by an increment of δt, the possibility of a
quantum jump is examined. Due to the stochastic nature of this step the MCWF
method is considered to be part of the Monte Carlo methods. The probability of
decay and thus of the wave-function collapsing to a final ground state is given by
δp and depends on the amount of population in the excited state. The decision
whether a quantum jump happens is done by generating a quasi-random number
ε, which is uniformly distributed between 0 and 1. Then the generated number
ε is compared to δp leading to two cases:

� ε < δp : In this case a quantum jump happens. The new wave-function is
then chosen among the different final states:

|ψ(t+ δt)〉 = ĉn |ψ(t)〉 · (δpn/δt)−
1
2 . (3.7)

The quantum jump associated with operator ĉn occurs with a probability of
Pn = δpn/δp. Summing all probabilities Pn yields 1, because δp =

∑
n δpn.

13
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� ε > δp : In this case, which will be the majority of the cases since δp� 1,
no quantum jump occurs. The new normalised wave-function at t + δt is
calculated by:

|ψ(t+ δt)〉 = |ψ′(t+ δt)〉 · (1− δp)−
1
2 . (3.8)

After the stochastic step the obtained normalised wave-function |ψ(t+ δt)〉
becomes the new initial wave-function and the procedure is repeated from the
beginning.

The reader is referred to the publication “Monte Carlo wave-function in quan-
tum optics” by K. Mølmer, Y. Castin, and J. Dalibard [81] for a detailed review
of the MCWF method, of its equivalence to the master-equation treatment, and
of its physical interpretation.

3.2. Adapted MCWF Method

The adapted Monte Carlo method, which will be introduced in this section, was
developed in order to simulate the systems in Chaps. 4 and 5. This method is
based on the MCWF method discussed in Sec. 3.1. While the MCWF method
fully considers the inner electronic energy-level structure of the system, this as-
pect is integrated out in our approach. This is done by replacing the inner struc-
ture with the effective dissipative potential, which will be derived in Secs. 3.3
and 3.4 for two- and three-atom systems, respectively.

Replacing the internal level structure of a na-atom system with the effective
dissipative potential V

(na)
d ({rij}) reduces the size of the Hilbert space by a factor

of 3na . Whether the kicks due to photon recoil are accounted for in reference to
the center-of-mass frame or in reference to the laboratory frame is unimportant
due to the stochastic nature of the photon scattering process. Assuming many
photon scattering events the effect on the particle dynamics becomes equivalent
in both frames. This enables a further size reduction of the Hilbert space after
transforming to relative coordinates.

In the following our adapted MCWF method is applied to the quasi-one-dimen-
sional system with two atoms presented in Sec. 2.1 in order to demonstrate the
procedure step by step. The layout of the two-atom system can be seen in
Fig. 2.1. Analogous to the MCWF method, our adapted method consists of two
steps. First, the wave-function |ψ(t)〉 is propagated in time by a time increment
of δt using the non-Hermitian Hamiltonian Ĥ from Eq. 3.3 and replacing the
dissipation term by the effective dissipative potential V

(2)
d ({rij}):

Ĥ = Ĥkin −
i~
2
V

(2)
d (r) |r〉 〈r| . (3.9)
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3.2. Adapted MCWF Method

Here, the Hamiltonian Ĥkin = Ĥs contains the unitary evolution without the
inner energy-level structure, i.e., the kinetic energy of the two atoms. Timestep
δt is chosen sufficiently small in order to drop terms of order O(δt2) and higher.
The time-evolved state |ψ′(t+ δt)〉, which is not normalised, then writes as:

|ψ′(t+ δt)〉 =

[
1− iδt

~

(
Ĥkin −

i~
2
V

(2)
d (r) |r〉 〈r|

)]
|ψ(t)〉 . (3.10)

The leaking of population in the excited level is accounted for by the second term
on the right hand side in Eq. (3.9). The effect of this term is shown schematically
in Fig. 3.1. This step is equivalent to the step in Eq. (3.4). After dropping terms
of order O(δt2) and higher, the calculation for the squared norm of the time-
evolved state |ψ′(t+ δt)〉 can be written as:

〈ψ′(t+ δt)|ψ′(t+ δt)〉 = 1− δt
∫
V

(2)
d (r) | 〈r|ψ(t)〉 |2 dr = 1− δp (3.11)

with δp = δt

∫
V

(2)
d (r) | 〈r|ψ(t)〉 |2 dr ≥ 0 . (3.12)

rrmin

t = t0

rrmin

t = t0 + ∆t

Dissipative potential V (2)
d (r)

Wave-function ψ(r, t)

Figure 3.1.: The schematic outline of a two-atom wave-function in relative co-
ordinates ψ(r, t) = 〈r|ψ(t)〉 is shown before and after some time
∆t. Due to the distance-dependent population trapping discussed in
Secs. 2.3 parts of the wave-function that are close to the dissipative
minimum rmin will experience less decay and therefore less leaking of
population and less photon scattering than parts further away from
rmin. This is accounted for by Eq. (3.9) and accumulates over time,
resulting in dissipative binding.

Because the effective dissipative potential V
(2)
d (r) contains the photon absorption

rate depending on the interatomic distance, integrating the wave-function over
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this potential and multiplying the result by the increment δt yields a measure
for the probability of decay. The dissipative potential, which corresponds to the
dissipation rate at each distance, can not be negative (V

(2)
d (r) ≥ 0).

Analogous to Sec. 3.1, in the second step a pseudo-random number ε distributed
uniformly between 0 and 1 is generated and compared to δp:

� ε < δp : In this case, no decay is happening. The majority of the time this
case will occur, because of δp� 1.

� ε > δp : In this case, decay occurs. A spontaneous photon is emitted.
Because the energy-level structure is integrated out in this approach, the
only consequence in this case is a momentum change of the wave-function
due to the photon recoil. The emitting atom and the direction of the
photon kick are chosen at random. The necessary optical properties of the
transition are viewed in Tab. B.2 of Appendix B.

After this step, the wave-function is normalised according to Eq. (3.13) and
the procedure is repeated from the beginning.

|ψ(t+ δt)〉 = |ψ′(t+ δt)〉 · (1− δp)−
1
2 (3.13)

It is important to note that while the dipole-dipole interaction U (na)(r) has an

effect on the dissipation rate and therefore on the dissipative potential V
(na)
d (r),

it also exerts a force on the atoms by shifting the energy of state |1〉a. This effect
is not considered in the adapted MCWF algorithm, because it has no significant
effect at the observed binding length scales.

The derivations of the dissipative potentials for two- and three-atom systems
necessary for this algorithm are shown in the next sections.

3.3. Effective Dissipative Potentials for Two Atoms

After transforming to a suitable rotating frame and applying the rotating wave
approximation, the unitary two-atom Hamiltonian Ĥ

(2)
0 , which does not account

for decay, reads as:

Ĥ
(2)
0 = Ĥ

(2)
kin + Ĥ

(2)
int , (3.14)

with Ĥ
(2)
kin =

∑
a=1,2

∑
k

~2k̂2
a

2m
|k〉a 〈k|a , (3.15)
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3.3. Effective Dissipative Potentials for Two Atoms

and Ĥ
(2)
int = U (2)(|̂r2 − r̂1|) |1, 1〉 〈1, 1| − ~

∑
a=1,2

[
∆21 |1〉a 〈1|a

+ ∆23 |3〉a 〈3|a +
Ω21

2
(|2〉a 〈1|a + |1〉a 〈2|a)

+
Ω23

2
(|2〉a 〈3|a + |3〉a 〈2|a)

]
,

(3.16)

where ~ is the reduced Planck constant and m is the mass of caesium (see Tab. B.1
in Appendix B for relevant data on caesium). The wave vector operator k̂a and
the position operator r̂a are both two-dimensional vector operators, which only
act on atom a. The summation in Eq. (3.15) runs over all allowed values of wave-

vector k. Hamiltonian Ĥ
(2)
int describes the interactions of the atoms with each

other and with the external laser fields. All these interactions are schematically
shown in Fig. 3.2.

Figure 3.2.: The electronic energy structure of the two-atom system. The com-
bination of detuning ∆21 and dipole-dipole interaction U (2)(r) yields
a distance-dependent detuning ∆̃21(r) = ∆21 + U (2)(r).

Inserting the Hamiltonian Ĥ
(2)
0 as Ĥs in Eq. (3.1) yields the quantum master

equation for our system. In the Lindbladian term (Eq. (3.2)) the decay rates
γn = γ are without loss of generality assumed to be equal for all transitions. Fur-
thermore, the jump operators ĉn =

∑
k |k + ∆kn〉an |in〉an 〈k|an 〈2|an are defined

by the triple (∆kn, in, an), where ∆kn determines energy and direction of the
emitted photon and the indices in = 1, 3 and an = 1, 2 define the final states and
the decaying atom, respectively [33].
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Because solving the Lindblad equation for this system requires too much com-
putational cost, as mentioned before, the time-evolution of the considered system
was calculated using the adapted Monte Carlo method of Sec. 3.2. In the follow-
ing the calculation of the effective dissipative two-atom potential V

(2)
d (r), which

is necessary for the adapted MCWF algorithm, is shown.
As the system is at ultracold temperatures complicating effects such as the

Lamb shift can be ignored. Thus, kinetic part (Eq. 3.15) and interaction part
(Eq. 3.16) of the Hamiltonian can be treated separately. Therefore, the jump
operators ĉn in Eq. (3.1) reduce to |j〉a 〈2|a, where index j = 1, 3 accounts for
the two ground states. Additionally, the term ĉnρ̂ĉ

†
n of the sum in Eq. (3.2), i.e.

the quantum jumps, can be neglected in the regime of weak dissipation, which is
defined by the inequality in Eq. (3.17). By satisfying the inequality in Eq. (3.18)
an EIT window and consequently a dissipation minimum are guaranteed to be
observed when varying distance r.

Ω2
2j

γ2
<< 1 with j = 1, 3 (3.17)

|∆2i| <<
Ω2

2j

γ
with i = 1, 3 and j = 1, 3 (3.18)

Finally, the interatomic dipole-dipole interaction U (2)(r) between a pair of atoms
caused by the effective dipole moment d (see Eq. (2.2)) is given by:

U (2)(r) =
d2

4πε0r3
=

~γ(
r
r0

)3 with r0 =

(
d2

4πε0~γ

) 1
3

, (3.19)

where ε0 denotes the vacuum permittivity.
Now, that the two-body problem is fully formulated, the subsequent step is to

obtain the composition of the two-atom grey state |ψ(2)
grey〉 in order to calculate

the photon absorption rate. Neglecting the quantum jumps allows for the intro-
duction of an effective non-Hermitian Hamiltonian Ĥeff [32, 33], thereby reducing
the problem to the eigenproblem of Heff and avoiding excessive computations:

Ĥ
(2)
eff = Ĥ

(2)
int − iV̂

(2)
dis (3.20)

with V̂
(2)

dis =
~
2

∑
n

γnĉ
†
nĉn . (3.21)

It is advantageous to construct a basis comprised of states |i, i〉 and sym-
metric and antisymmetric combinations of states |i, j〉 with i 6= j, where in-
dices i and j run over the electronic energy levels 1, 2, 3. As the Hamilto-
nian Ĥeff only connects states symmetric against particle exchange, states of
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3.3. Effective Dissipative Potentials for Two Atoms

form (|i, j〉 − |j, i〉)/
√

2 are decoupled from any possible excitation and therefore
do not have to be considered. Therefore, a basis consisting of the six states
{|1, 1〉 , (|1, 2〉+ |2, 1〉)/

√
2, (|1, 3〉+ |3, 1〉)/

√
2, |2, 2〉 , (|2, 3〉+ |3, 2〉)/

√
2, |3, 3〉}

suffices to express the system’s Hamiltonian in the matrix form of Heff:

H
(2)
eff

~
=



U(2)

~ − 2∆21
Ω21√

2
0 0 0 0

Ω21√
2

− iγ
2
−∆21

Ω23

2
Ω21√

2
0 0

0 Ω23

2
−∆21 −∆23 0 Ω21

2
0

0 Ω21√
2

0 −iγ Ω23√
2

0

0 0 Ω21

2
Ω23√

2
− iγ

2
−∆23

Ω23√
2

0 0 0 0 Ω23√
2

−2∆23


(3.22)

By solving the eigenproblem ofH
(2)
eff in Eq. (3.22) one can calculate the distance-

dependent behaviour of the photon absorption rate, which can be interpreted as a
dissipative potential V

(2)
d (r). This is done by obtaining the ground state of Ĥ

(2)
eff ,

which corresponds to the grey state |ψ(2)
grey〉 and computing the coherences corre-

sponding to transitions |1〉a ↔ |2〉a and |3〉a ↔ |2〉a in both particles from the

density operator ρ̂grey = |ψ(2)
grey〉 〈ψ(2)

grey|. Summing up these matrix elements after
multiplying them with ~ and the according photon scattering rate Ω2

2j/γ, with
j = 1, 3, yields the photon absorption rate. In our chosen basis the calculation
writes as:

V
(2)
d =V

(2)
|3〉a←|2〉a

+ V
(2)
|1〉a←|2〉a

,

with V
(2)
|1〉a←|2〉a

=
~Ω2

21

γ

(
ρ{12}

grey

√
2 + ρ{24}

grey

√
2 + ρ{35}

grey

)
and V

(2)
|3〉a←|2〉a

=
~Ω2

23

γ

(
ρ{65}

grey

√
2 + ρ{54}

grey

√
2 + ρ{32}

grey

)
.

(3.23)

Here, ρ
{mn}
grey represents the density matrix element 〈m| ρ̂grey |n〉, where |m〉 and

|n〉 are basis states of our chosen basis. The factor
√

2 in Eq. (3.23) is a result of
including symmetric combinations of states in our basis. A derivation of factor
Ω2

2j/γ can be seen in Appendix A. Due to the distance-dependent interaction

U (2)(r) this calculation yields a different photon absorption rate for each distance

r, resulting in the distance-dependent dissipative potential for two atoms V
(2)
d =

V
(2)
d (r).

For a simplified system, where Ω21 = Ω23 = Ω, ∆23 = 0, and U (2)(r) and ∆21 =
∆ are assumed to be perturbative, this dissipative potential can be approximated
by the function given in Eq. (3.24) with C0, C3, and C6 being real, dimensionless
constants:
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V
(2)
d (r)

~γ
= C0 −

C3(
r
r0

)3 +
C6(
r
r0

)6 , (3.24)

(3.25)

where C0 = ∆2
√

2Ωγ
, C3 = ∆√

2Ω
, and C6 = 4+9

√
2

64
γ
Ω

+ 8+6
√

2
64

Ω
γ

[32, 33]. For a positive

detuning ∆ > 0 the obvious minimum of this function legitimises the supposition
that an EIT window can be observed at some distance r = rmin. The similarity
of Eq. (3.24) to the Lennard-Jones potential [82] encourages the assumption that

a bound state will be formed, bearing in mind, however, that V
(2)
d (r) does not

describe potential energy, but quantifies the rate of dissipation of the two atoms
to the environment.

The shapes of the effective dissipative two-atom potential V
(2)
d (r) for various

sets of parameter values can be seen in Chap. 4.

3.4. Effective Dissipative Potentials for Three
Atoms

The application of the approximations and transformations used in Sec. 3.3 yields
the unitary three-atom Hamiltonian Ĥ

(3)
0 :

Ĥ
(3)
0 = Ĥ

(3)
kin + Ĥ

(3)
int , (3.26)

with Ĥ
(3)
kin =

∑
a=1,2,3

∑
k

~2k̂2
a

2m
|k〉a 〈k|a (3.27)

and Ĥ
(3)
int =

∑
a

[∑
b<a

[
U (2)(|̂ra − r̂b|) |1〉a |1〉b 〈1|a 〈1|b

]
− ~
[

Ω21

2
(|2〉a 〈1|a + |1〉a 〈2|a) +

Ω23

2
(|2〉a 〈3|a + |3〉a 〈2|a)

+ ∆21 |1〉a 〈1|a + ∆23 |3〉a 〈3|a
]]

.

(3.28)

Here, ~ denotes the reduced Planck constant ~, whereas m denotes the caesium
mass (see Tab. B.1 in Appendix B for relevant data on caesium). While Ĥ

(3)
kin con-

tains the kinetic energy of the three-atom system, Ĥ
(3)
int describes the interactions,

which are outlined in Fig. 2.3 for one of the trhee atoms.
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The summation in Eq. (3.27) runs over all allowed values of wave-vector k.
Wave vector operator k̂a in Eq. (3.27) and position operator r̂a in Eq. (3.28) are
both two-dimensional vector operators, which only act on atom a.

Calculating the system’s dynamics could be done using Eqs. (3.1) and (3.2),
where the three-atom jump operators ĉn =

∑
k |k + ∆kn〉an |in〉an 〈k|an 〈2|an are

defined by the triple (∆kn, in, an), ∆kn determines energy and direction of the
emitted photon, and the indices in = 1, 3 and an = 1, 2, 3 account for the final
states and the decaying atoms, respectively. Again, the effort of solving these
equations can be avoided by introducing an effective non-Hermitian Hamiltonian
Ĥ

(3)
eff analogously to Sec. 3.3, which we are allowed to do if the inequalities in

Eqs. (3.17) and (3.18) are satisifed:

Ĥ
(3)
eff = Ĥ

(3)
int − iV̂

(3)
dis , (3.29)

with V̂
(3)

dis =
~
2

∑
n

γnĉ
†
nĉn . (3.30)

For the three-atom case it is not possible to construct a basis, where cer-
tain basis states are decoupled from any possible excitation like in Sec. 3.3.
Therefore, a basis consisting of all possible state and atom permutations is used:
{|1, 1, 1〉 , |1, 1, 2〉 , |1, 2, 1〉 , |2, 1, 1〉 , |1, 1, 3〉 , |1, 3, 1〉 , |3, 1, 1〉 , |2, 2, 2〉 , |2, 2, 1〉 ,
|2, 1, 2〉 , |1, 2, 2〉 , |2, 2, 3〉 , |2, 3, 2〉 , |3, 2, 2〉 , |3, 3, 3〉 , |3, 3, 1〉 , |3, 1, 3〉 , |1, 3, 3〉 ,
|3, 3, 2〉 , |3, 2, 3〉 , |2, 3, 3〉 , |1, 2, 3〉 , |1, 3, 2〉 , |2, 1, 3〉 , |3, 1, 2〉 , |2, 3, 1〉 , |3, 2, 1〉}.
In this basis the matrix form of the system’s Hamiltonian Heff reads as:

H
(3)
eff = H

′(3)
eff +H

′′(3)
eff , (3.31)

with H
′(3)
eff and H

′′(2)
eff given in Eqs. (3.33) and (3.34), respectively. In Eq. (3.34)

Uij represents the two-atom dipole-dipole interaction U (2)(rij) between atoms i
and j.

Analogous to Sec. 3.3, solving the eigenproblem of the three-atom Hamiltonian
matrix H

(3)
eff in Eq. (3.31) yields the three-atom state |ψ(3)

grey〉. The next step is to

compute the density operator ρ̂grey = |ψ(3)
grey〉 〈ψ(3)

grey| and its coherences. Similarly
to Eq. (3.23), these coherences are summed up and multiplied by the photon
scattering rate Ω2

2j/γ and ~:

V
(3)

d =
~Ω2

21

γ

∑
x

ρ{x}grey +
~Ω2

23

γ

∑
y

ρ{y}grey , (3.32)

where indices x and y are chosen so that ρ
{x}
grey and ρ

{y}
grey only denote coherences

corresponding to transitions |1〉a ↔ |2〉a and |3〉a ↔ |2〉a, respectively.
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H
′(3

)
e
ff~
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Ω

2
1

2
Ω
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1
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0
0
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0
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−
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0
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Ω
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3.4. Effective Dissipative Potentials for Three Atoms

Note that the summation in Eq. (3.32) contains 6 terms in the two-atom case,
but consists of 54 terms in the three-atom case. This calculation is executed for
all possible sets of interatomic distances r21, r23, and r13 and their corresponding
eigenstates. The distance-dependent interaction U (3)({rij}) then results in a

distance-dependent dissipative potential V
(3)
d = V

(3)
d ({rij}).

The resulting shapes of the dissipative potential for various sets of parameter
values are shown in Chap. 5.
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4. Dissipative Two-Atom Systems

Smilet er den korteste afstand mellem to mennesker.
(The smile is the shortest distance between two persons.)

—Victor Borge [83]

In recent papers by Lemeshko and Weimer [32, 33], a dissipatively bound state
between pairs of ultracold atoms in an appropriate one-dimensional optical trap
was predicted. This chapter presents the corresponding dissipatively bound dimer
state in two dimensions. By using the dissipative binding method presented in
Sec. 2.3 and implementing it in a two-dimensional two-atom system, which is
schematically shown in Fig. 2.2(a), the existence of such a bound metastable
state in two dimensions is proved. Varying the system parameter values and
probing the properties of the resulting dissipative potential, as done in Sec. 4.1,
gives rise to an improved two-atom grey state |ψ(2)

grey〉 and therefore improved
dissipative binding. Finally, in Sec. 4.2, the results of a simulation of a two-
dimensional two-atom system using the adapted MCWF method introduced in
Sec. 3.2 are presented.

4.1. Choosing the Parameter Values

In contrast to previous work [32, 33], the two electronic transitions |1〉a ↔ |2〉a
and |3〉a ↔ |2〉a are not assumed to be driven with the same Rabi frequen-
cies (Ω21 6= Ω23) and transition |1〉a ↔ |2〉a is not assumed to be driven reso-
nantly (∆23 6= 0). The reader is referred to Fig. 3.2 for a full account of the
electronic structure.

This section examines the influence of parameters Ω21, Ω23, ∆21, and ∆23 on
the shape of V

(2)
d (r) and its figures of merit. By considering the effects of these

parameters on the distance of the dissipation minimum rmin, the value V
(2)
d (rmin),

the asymptotic values V
(2)
d (∞) = limr→∞ V

(2)
d (r) and V

(2)
d (0) = limr→0 V

(2)
d (r),

and the depth of the dissipative potential well ∆V
(2)
d = V

(2)
d (∞)− V (2)

d (rmin), it
was possible to determine a set of parameter values promising a strong dissipative
bond between the atoms. The examined parameter values always satisfied the
conditions of Eqs. (3.17) and (3.18). In experiment the parameter values can
be tuned by modifying amplitudes and frequencies of the corresponding laser
beams. Furthermore, dipole moment d and therefore the strength of U (2)(r) can
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Chapter 4. Dissipative Two-Atom Systems

also be altered. This, however, only changes the characteristic length scale of the
dipole-dipole interaction r0 and and therefore the overall shape of V

(2)
d (r) stays

the same when lengths are expressed in units of r0.

Varying detunings ∆21 and ∆23:

0 5 10
r
r0

0.0

8.5

17.0

V
(2

)
d

(r
)·1

0
2

h̄
γ

Figure 4.1.: The curve of V
(2)
d (r) is shown for different sets of parameter values

with varying detunings ∆21 and ∆23. Parameter values for each
graph are listed in Tab. 4.1.

Parameters ∆21 and ∆23, which denote the detunings of the laser beams cou-
pling state |2〉a to state |1〉a and state |3〉a, respectively, have an essential effect

on the qualitative appearence of V
(2)
d (r). This can be explained by the aforemen-

tioned phenomenon of CPT, which was introduced in Sec. 2.2 and which only
yields the desired two-atom grey state |ψ(2)

grey〉 and the subsequent suppression of
photon absorption if transitions |2〉a ↔ |1〉a and |2〉a ↔ |3〉a are being driven
resonantly. This effect is demonstrated by the green graph viewed in Fig. 4.1:
Because detunings ∆21 and ∆23 are equal to zero and detuning ∆̃21 decreases
with increasing distance r, the transitions are being driven resonantly zero at
asymptotically large distances.

Ω21 Ω23 ∆21 ∆23 d

0.5 · γ 0.5 · γ 0.2 · γ 0. 5.9 D
0.5 · γ 0.5 · γ −0.2 · γ 0. 5.9 D
0.5 · γ 0.5 · γ 0. 0.2 · γ 5.9 D
0.5 · γ 0.5 · γ 0. −0.2 · γ 5.9 D
0.5 · γ 0.5 · γ 0. 0. 5.9 D

Table 4.1.: Parameter values for the different graphs of V
(2)
d (r) shown in Fig. 4.1

and of V
(3)
d (r) shown in Fig. 5.1.
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4.1. Choosing the Parameter Values

A minimum of the effective dissipative potential V
(2)
d (r) can only be observed

when the system’s lasers are detuned in such a way that the detuning due to
the dipole-dipole interaction U (2)(r) in state |1, 1〉 renders the driving of transi-
tions |2〉a ↔ |1〉a and |2〉a ↔ |3〉a more resonant at some distance r. This is the
case for positive detuning ∆21 and/or negative detuning ∆23, as can be inferred
from Fig. 4.1. The opposite case, where detuning ∆21 is less than zero and/or
detuning ∆23 is larger than zero, gives rise to a peak in dissipation at a certain
distance r, where transitions |2〉a ↔ |1〉a and |2〉a ↔ |3〉a are being driven even
less resonantly. For our purposes, the latter situation is disadvantageous.

Varying Rabi frequencies Ω21 and Ω23:

0 5 10
r
r0

0.0

11.5

23.0

V
(2

)
d

(r
)·1

0
2

h̄
γ

Figure 4.2.: The curve of V
(2)
d (r) is shown for different sets of parameter values

with varying Rabi frequencies Ω21 and Ω23. Parameter values for
each graph are listed in Tab. 4.2.

Previously, we have concluded that assigning a positive value to detuning ∆21

and a negative value to detuning ∆23 guarantees the existence of a minimum in
the dissipative potential V

(2)
d (r). Now, we show that manipulating Rabi frequen-

cies Ω21 and Ω23, which are a measure of population transport from state |2〉a to
states |1〉a and |3〉a, respectively, allows us to tune the qualitative properties of
this dissipation minimum. It can be inferred from Fig. 4.2 and Tab. 4.2 that the
ratio of these two parameters influences the skewness of the graph: reducing the
ratio Ω21/Ω23 decreases V

(2)
d (∞) while increasing V

(2)
d (0) and vice versa.

The quantitative properties of the dissipative potential V
(2)
d (r) are also affected

by adjusting the Rabi frequencies Ω21 and Ω21. The level of dissipation is reduced
at most distances by raising frequency Ω21. But the value of V

(2)
d (∞) falls more

strongly than the value of V
(2)
d (rmin) leading to a smaller quantity ∆V

(2)
d , which

is an important measure for the quality of the dissipative bond. Manipulating
frequency Ω23 affects the value of ∆V

(2)
d in the same manner, but to a lesser

extent.
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Chapter 4. Dissipative Two-Atom Systems

Ω21 Ω23 ∆21 ∆23 d

0.35 · γ 0.50 · γ 0.1 · γ −0.1 · γ 5.9 D
0.65 · γ 0.50 · γ 0.1 · γ −0.1 · γ 5.9 D
0.50 · γ 0.35 · γ 0.1 · γ −0.1 · γ 5.9 D
0.50 · γ 0.65 · γ 0.1 · γ −0.1 · γ 5.9 D
0.50 · γ 0.50 · γ 0.1 · γ −0.1 · γ 5.9 D

Table 4.2.: Parameter values for the different graphs of V
(2)
d (r) shown in Fig. 4.2

and of V
(3)
d (r) shown in Fig. 5.2.

Generally, detunings ∆21 and ∆23 primarily determine the qualitative shape of
V

(2)
d (r), whereas Rabi frequencies Ω21 and Ω21 mainly affect quantitative param-

eters, such as the overall level of dissipation.

Optimised Parameter Values:

0 5 10
r
r0

0.0

5.5

11.0

rmin

Dissipative potential Vd(r) · 102

Conservative dipole-dipole interaction U(r)

Figure 4.3.: The effective dissipative two-atom potential V
(2)
d (r) with optimised

parameter values and the conservative dipole-dipole interaction
U (2)(r) are shown. Parameter values used for V

(2)
d (r) are listed in

Tab. 4.3.

By tuning the values of Rabi frequencies Ω21 and Ω23 and detunings ∆21 and
∆23 in order to reach a satisfying trade-off between maximising ∆V

(2)
d and min-

imising V
(2)
d (rmin), a set of optimised parameter values was found.

Ω21 ∆21 Ω23 ∆23 d

0.375 · γ 0.1 · γ 0.475 · γ −0.075 ·γ 8.85 D

Table 4.3.: Optimised parameter values for the dimer state.
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4.1. Choosing the Parameter Values

These parameter values are listed in Tab. 4.3, while the corresponding dissipa-
tion curve V

(2)
d (r) is displayed in Fig. 4.3. The conditions of Eqs. (3.17) and (3.18)

were taken into account when searching for this set of parameter values.

rmin

r0
V

(2)
d (rmin)

~γ ·102 V
(2)
d (0)

~γ · 102 V
(2)
d (∞)

~γ · 102 ∆V
(2)
d

~γ · 102

1.69 1.07 10.18 6.70 5.64

Table 4.4.: Important quantities of V
(2)
d (r) with optimised parameter values.

In Tab. 4.4 the calculated figures of merit introduced at the beginning of this
chapter are listed. These quantities allow for a quantitative judgement of the
dissipative bond. The calculated values indicate that the dissipative curve with
optimised parameter values has almost no dissipation at the minimum V

(2)
d (rmin)

while still maintaining a large depth of the potential well ∆V
(2)
d . Due to the

beneficial shape of the graph V
(2)
d (r) in Fig. 4.3 to forming bound states, this

optimised dissipative potential was used to simulate a two-dimensional two-atom
system in Sec. 4.2.

0 5 10
r
r0

-12.0

0.0

12.0

ε(
2
)

gr
ey
·1

0
2

h̄
γ

rmin

Re(ε
(2)
grey)

Im(ε
(2)
grey)

Figure 4.4.: Real and imaginary part of the two-atom grey states’ eigenvalue ε
(2)
grey

are shown.

In order to further examine the calculated dissipative potential, the distance-
dependent behaviour of the two-atom grey states’ eigenvalue ε

(2)
grey was examined.

Figure 4.4 shows that the imaginary part and thus the population leaking out
of the system is minimised at distance rmin. The real part, on the other hand,
converges to zero at rmin, indicating that the system’s two-atom grey state |ψ(2)

grey〉
approaches a true dark state. A true dark state’s eigenvalue must vanish, as it
corresponds to a linear combination of ground states, whose eigenvalues are equal
to zero after applying the rotating frame approximation.

Additionally, the difference between the distance-dependent behaviour of the
population of excited states ((|1, 2〉 + |2, 1〉)/

√
2, |2, 2〉, and (|2, 3〉 + |3, 2〉)/

√
2)
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0 5 10
r
r0

0.0

0.5

1.0

rmin

Population of conservative states
Population of dissipative states

Figure 4.5.: Dissipative and conservative populations of the two-atom grey state
|ψ(2)

grey〉 are shown.

and the distance-dependent behaviour of the ground states’ population (|1, 1〉,
(|1, 3〉 + |3, 1〉)/

√
2, and |3, 3〉) was investigated. The plot in Fig. 4.5 clearly

shows that the dissipative states’ population decreases, whereas the conservative
states’ population increases in the vicinity of rmin, almost reaching a true dark
state. As only population in the excited states is able to decay, this indicates
that dissipation is reduced at rmin.

4.2. Simulation of the Two-Atom System
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Figure 4.6.: The averaged two-atom probability distribution in relative x- and
y-coordinates at time tinit = 0 · γ−1 is shown. The distribution is
given in arbitrary units with the largest colour value corresponding
to the largest peak of the atom distribution at time tinit in subpanel
(a) and at time tfin in subpanel (b).
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4.2. Simulation of the Two-Atom System

In this section the results of a simulation of a two-dimensional two-atom system
with optimised parameters listed in Tab. 4.3 are presented. The following plots
were obtained by generating 1000 realisations of this two-atom system using the
adapted MCWF simulation method described in Sec. 3.2. Each realisation was
run for a total time of tfin = 200 · γ−1 = 6.10 µs with 400 timesteps and a
time increment of δt = 0.5 · γ−1 = 15.25 ns. The relative x- and y-coordinates
of the simulation box, which were discretised by 201 gridpoints, ranged from
−10.82 · r0 = −2.65 µm to +10.82 · r0 = +2.65 µm. Therefore, the resulting
grid stepsize calculates as δr = 0.11 · r0 = 26.5 nm. The initial space and
momentum distribution of the atoms in relative coordinates was chosen according
to the Boltzmann distribution at the selected temperature of 20 nK, while the
centers of the spatial distribution were distributed randomly within a range from
−8.65 · r0 = −2.12 µm to +8.65 · r0 = +2.21 µm in both dimensions. State |1〉a
was provided with a dipole moment d = 8.85 D = 2.95 · 10−29 C ·m to enable the
distance-dependent population trapping. This value of the electric dipole moment
d yields a characteristic interaction length r0 = 0.25 µm (see Eq. (3.19)).
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Figure 4.7.: The averaged two-atom probability distribution in relative x- and
y-coordinates at time titm = 100 · γ−1 is shown. The distribution is
given in arbitrary units with the largest colour value corresponding
to the largest peak of the atom distribution at time titm in subpanel
(a) and at time tfin in subpanel (b).

Averaging over all 1000 realisations of the simulation yielded the distributions
viewed in Figs. 4.6 to 4.8. Initally, the distribition is quasi-homogenous and does
not exhibit any distinctive characteristics, as shown in Figs. 4.6(a) and 4.6(b).
By comparing Figs. 4.6(a) and 4.6(b), it can be seen that the maximum of the
distribution at time tfin is many times larger than the maximum at time tinit.
In Figs. 4.7(a) and 4.7(b) the averaged two-particle distribution at intermediate
time titm = 100 ·γ−1 is visualised. There, a definite trend in the time evolution of
the two-atom system can be observed: a hole emerges in the center of the plot,
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Chapter 4. Dissipative Two-Atom Systems

which corresponds to both atoms being at the same location. This indicates that
the two-atoms avoid getting too close to each other, a consequence of the dipole-
dipole interaction and the distance-dependent CPT. Around this hole the pop-
ulation accumulates over time, whereas the rest of the plot undergoes relatively
little change, except for a general decrease in population. The observed trend
continues and results in the final distribution at time tfin = 200 ·γ−1, which is dis-
played in Fig. 4.8(b). Comparing the initial distribution in Fig. 4.8(a) to the final
distribution in Fig. 4.8(b) shows that the system evolves from a quasi-uniform
distribution, where all interatomic distances are equally likely, to a distribution,
where interatomic distance r = (1.70± 0.11) · r0 is many times more likely than
any other distance. The reader is referred to Fig. C.1 in Appendix C for a more
detailed account of the two-atom distribution’s time evolution.
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Figure 4.8.: The averaged two-atom probability distributions in relative x- and
y-coordinates (a) at time tinit = 0 ·γ−1 and (b) at time tfin = 200 ·γ−1

are shown. The distributions are given in arbitrary units with the
largest colour value corresponding to the largest peak of the atom
distribution at time tfin in both subpanels.

Furthermore, the two-atom pair correlation function g(2)(r), which contains
the probability of finding the two atoms at an interatomic distance r, was calcu-
lated. The time evolution of g(2)(r) is displayed in Fig. 4.9, where the emergence
of a maximum is clearly visible. The graphs in Fig. 4.9 were obtained using in-
terpolation of the originally calculated data over distance r in order to achieve
additional smoothness. The maximum of g(2)(r) at time tfin = 200 · γ−1 is situ-
ated at r = (1.73± 0.11) · r0, which is consistent with the position of the ringlike
peak in the final distribution at time tfin and and with distance rmin in Tab. 4.4.
The distinct ringlike peak in Fig. 4.8(b) and the maximum of g(2)(r) at tfin in
Fig. 4.9 are clear evidence for a dissipative two-atom bound state in the examined
two-dimensional two-atom system with optimised parameters.

Analogous to conservatively bound particles, where the amount of energy re-
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Figure 4.9.: The two-atom pair correlation function g(2)(r) of the simulated two-
atom system is shown with optimised parameters at increasing times.
The dotted black line indicates the most probable interatomic dis-
tance.

quired for dissociation defines the strength of the bond, the strength of the dis-
sipative bond can be characterised by an imaginary binding energy E

(2)
b . This

energy is a measure for the amount of dissipation that has to be added to the sys-
tem for dissociation to occur. It is defined as the depth of the dissipative potential
well ∆V

(2)
d = V

(2)
d (∞)−V (2)

d (rmin) and amounts to E
(2)
b = ∆V

(2)
d = 5.64 ·10−2 ·~γ

for the two-atom bond with optimised parameters.
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5. Dissipative Three-Atom Systems

Ich sei, gewährt mir die Bitte,
In eurem Bunde der Dritte!
(Tis mine your suppliant now to be,
Ah, let the band of love - be three!))

—Friedrich Schiller, Die Bürgschaft [84]

Now, after examining the metastable dimer state in one- and two-dimensional
systems, we extend the dissipative binding method of Sec. 2.3 in order to find an
equivalent trimer state in two dimensions. In this chapter the three-atom system
of Sec. 2.1, which is shown in Fig. 2.2(b), is used. The existence of such a dissipa-
tively bound three-body state is proved in Sec. 5.1 and its properties are probed
by varying the system parameter values analogously to Sec. 4.1. Additionally, the
results of a simulation of a two-dimensional three-atom system with optimised
parameter values using the adapted MCWF method introduced in Sec. 3.2 are
presented in Sec. 5.2.

5.1. Choosing the Parameter Values

Similarly to Sec. 4.1, the effect of parameters Ω21, Ω23, ∆21, and ∆23 on the shape
of the effective dissipative three-atom potential V

(3)
d (r21, r23,Θ) is examined in

this section. Each of the parameters can be seen in the representative electronic
energy structure of one individual atom shown in Fig. 2.3. The examined param-
eter values always satisfied the conditions of Eqs. (3.17) and (3.18).

We also introduce the following quantities of the dissipative three-atom bond:
the distance of the dissipation minimum rmin, the value V

(3)
d (rmin), the asymptotic

values V
(3)
d (∞) = limr→∞ V

(3)
d (r) and V

(3)
d (0) = limr→0 V

(3)
d (r), and the depth of

the dissipative potential well ∆V
(3)
d = V

(3)
d (∞) − V

(3)
d (rmin). The interatomic

distances used to search for a set of optimised parameter values are all measured
in the equilateral triangle configuration (r21 = r31 = r23 = r and Θ = 60◦). Once
such a set of optimised parameter values was found, other constellations were
investigated.
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Varying detunings ∆21, ∆23 and Rabi frequencies Ω21, Ω23:
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r
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32.0

V
(3

)
d

(r
)·1

0
2

h̄
γ

Figure 5.1.: The curve of V
(3)
d (r) is shown for different sets of parameter values

with varying detunings ∆21 and ∆23. Parameter values for each
graph are listed in Tab. 4.1.
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Figure 5.2.: The curve of V
(3)
d (r) is shown for different sets of parameter values

with varying Rabi frequencies Ω21 and Ω23. Parameter values for
each graph are listed in Tab. 4.2.

Manipulation of detunings ∆21 and ∆23 and of Rabi frequencies Ω21 and Ω23

yields qualitatively the same results as in Sec. 4.1, indicating that the dissipa-
tive three-atom potential V

(3)
d (r) in the equilateral triangle configuration behaves

qualitatively the same as the dissipative two-atom potential V
(2)
d (r). Therefore,

the conclusions of Sec. 4.1 are also applicable here. The resulting graphs are
viewed in Figs. 5.1 and 5.2.
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5.1. Choosing the Parameter Values

Optimised Parameter Values:
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r
r0
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21.0
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Dissipative potential V (3)
d (r) · 102

h̄γ

Conservative dipole-dipole interaction U (3)(r) · 1
h̄γ

Figure 5.3.: The effective dissipative potential V
(3)
d (r) for the optimised parame-

ter values and the conservative dipole-dipole interaction U (3)(r) are
shown. We asssume an equilateral triangle configuration (r21 = r31 =

r23 = r and Θ = 60◦). Parameter values used for V
(3)
d (r) are listed

in Tab. 5.1.

Ω21 Ω23 ∆21 ∆23 d

0.4 · γ 0.1 · γ 0.5 · γ −0.05 · γ 8.85 D

Table 5.1.: Optimised parameter values for the trimer state.

The optimised parameters values, which guarantee optimal trade-off between
maximising ∆V

(3)
d and minimising V

(3)
d (rmin), are listed in Tab. 5.1. The parame-

ter values satisfy the conditions of Eqs. (3.17) and (3.18). In Fig. 5.3 the resulting

dissipation curve V
(3)
d (r) for the equilateral triangle configuration compared to

the total dipole-dipole interaction U (3)(r) is displayed. The dipole-dipole interac-
tion U (3)(r) is calculated by summing up all pairwise interactions U (2)(r), which,
in the equilateral triangle configuration, corresponds to multiplying U (2)(r) by a
factor of 3.

rmin

r0
V

(3)
d (rmin)

~γ ·102 V
(3)
d (0)

~γ · 102 V
(3)
d (∞)

~γ · 102 ∆V
(3)
d

~γ · 102

2.13 0.71 20.21 6.96 6.25

Table 5.2.: Important quantities of V
(3)
d (r) with optimised parameter values.

In order to measure the capability of the system with optimised parameter val-
ues to give rise to a dissipative bond, we calculate the aforementioned quantities,
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Chapter 5. Dissipative Three-Atom Systems

which are listed in Tab. 5.2. The low dissipation at rmin and the large depth
of the dissipative potential well ∆V

(3)
d indicate that these parameter values are

highly suitable for a trimer state. When comparing the quantities of Tab. 5.2
to the ones of Tab. 4.4, one has to bear in mind that this comparison is done
between systems with different numbers of atoms. A more correct comparison
can be done by using per-atom properties, which will be done in Chap. 6.
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Figure 5.4.: Real and imaginary part of the three-atom grey states’ eigenvalue
ε

(3)
grey are shown.
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Population of conservative states
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Figure 5.5.: Dissipative and conservative population of the three-atom grey state
|ψ(3)

grey〉 are shown.

Furthermore, the distance-dependent behaviour of the eigenvalue ε
(3)
grey and of

the populations in dissipative and conservative states of the three-atom grey state
|ψ(3)

grey〉 in the equilateral triangle configuration are shown Figs. 5.4(a) and 5.4(b).
Again, there are strong qualitative similarities to Figs. 4.4 and 4.5 and the same
conclusions apply.
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5.1. Choosing the Parameter Values

Because the atoms are not confined to an equilateral triangle constellation,
other configurations also have to be taken into account. In the following examples
configurations with different opening angles Θ, which are assumed to be fixed,
are considered. The resulting geometry is outlined in Fig. 2.2(b). It is assumed
that symmetric constellations yield the lowest dissipation minima. An obvious
consequence of this assumption is that the minimum will always be at an isosceles
triangle configuration (r21 = r31 and Θ 6= 60◦) or at an equilateral triangle
configuration (r21 = r31 and Θ = 60◦). To prove this supposition plots of the

dissipative potential V
(3)
d (r21, r31,Θ) for a range of fixed opening angles Θ are

viewed in Figs. 5.6 and 5.7.
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Figure 5.6.: The effective dissipative three-atom potential V
(3)
d (r21, r31,Θ): sub-

panel (a) corresponds to a fixed value of opening angle Θ = 15◦,
whereas subpanel (b) corresponds to a fixed value of opening angle
Θ = 30◦.

The acute-angled triangle configurations with Θ = 15◦ and Θ = 30◦ in Figs. 5.6(a)
and 5.6(b) both display minimums which do not satisfy the isosceles condition
r21 = r31. Furthermore, these plots not only display one minimum, but two min-
ima, which are symmetric with respect to the r21 = r31 diagonal. The seeming
disagreement of these graphs with the assumption of an isosceles triangle config-
uration can be solved when considering the other angles of the triangle: The two
minima in Fig. 5.6(a) are at positions corresponding to isosceles triangles with
r21 = r23, r31 = r23, and a vertex angle of 150◦. Similarly, the minima positions in
Fig. 5.6(b) characterise isosceles triangles with r21 = r23, r31 = r23, and a vertex
angle of 120◦. The contour plots depicted Figs. 5.7(a) and 5.7(b) exhibit only
one minimum at r21 = r31 due to the opening angle Θ being equal or larger than
60◦. The overall minimum of dissipation of all possible geometries is found at the
equilateral triangle configuration with r21 = r31 = r23 = 2.13 · r0 and Θ = 60◦,
which is supported by the data of Tab. 5.2.

Generally, the minimum of dissipation is at an isosceles triangle geometry
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Chapter 5. Dissipative Three-Atom Systems

with Θ ≥ 60◦. If the opening angle Θ is fixed to a value smaller than 60◦, the
resulting minima are at positions corresponding to isosceles triangles, where one
of the remaining angles is as large as Θ, while the other remaining angle has the
value 180◦ − 2Θ.
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Figure 5.7.: The effective dissipative three-atom potential V
(3)
d (r21, r31,Θ): sub-

panel (a) corresponds to a fixed value of opening angle Θ = 60◦,
whereas subpanel (b) corresponds to a fixed value of opening angle
Θ = 120◦.

Therefore, we have found the geometry resulting in the total minimum of dissi-
pation for the three-atom system with optimised parameters and expect that the
dissipatively bound trimer state has the highest probability to occur at this equi-
lateral triangle configuration. In the next section the results of a two-dimensional
three-atom system with optimised parameters will be presented and examined.

5.2. Simulation of the Three-Atom System

After obtaining a set of optimised parameters (see Tab. 5.1), a corresponding
two-dimensional three-atom system was simulated using the adapted MCWF
method introduced in Sec. 3.2. The results were obtained by averaging over
1000 realisations of the system at a temperature of 20 nK. Each realisation
started at time tinit = 0 · γ−1 = 0 µs and was simulated to its final state at
time tfin = 200 · γ−1 = 6.10 µs in 200 timesteps of length δt = γ−1 = 30.5 ns.
The probability distributions at selected simulation times are depicted in Figs. 5.8
to 5.10. Figures C.2 to C.6 in Appendix C show the results of the same simulation
with higher time resolution.
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Figure 5.8.: The averaged three-atom probability distribution at time tinit is
shown. The coordinates of the axes represent interatomic distances
r21 and r31. The distribution is given in arbitrary units with the
largest value corresponding to the largest peak of the atom distribu-
tion at time tinit in subpanel (a) and at time tfin in subpanel (b).
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Figure 5.9.: The averaged three-atom probability distribution at time titm is
shown. The coordinates of the axes represent interatomic distances
r21 and r31. The distribution is given in arbitrary units with the
largest value corresponding to the largest peak of the atom distribu-
tion at time titm in subpanel (a) and at time tfin in subpanel (b).
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In order to render the problem numerically tractable, the relative coordinates
were discretised by 75 gridpoints in both spatial dimensions. The relative x-
and y-coordinates of the simulation box ranged from −10.82 · r0 = −2.65 µm
to +10.82 · r0 = +2.65 µm with a grid stepsize δr = 0.29 · r0. The inital
momentum distribution and the extent of the initial space distribution were
chosen according to the Boltzmann distribution at the selected system tem-
perature of 20 nK. Moreover, the position in relative x- and y-coordinates of
the initial spatial distribution’s center was randomly placed in a range from
−8.65 ·r0 = −2.12 µm to +8.65 ·r0 = +2.21 µm. Distance-dependent population
trapping was enabled by providing state |1〉a with an electric dipole moment of
d = 8.85 D = 2.95 · 10−29 C m. Assigning a value to the dipole moment d also
determines the characteristic interaction length r0, as defined in Eq. (3.19), which
has the value r0 = 0.25 µm for our system.
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Figure 5.10.: The averaged three-atom probability distributions (a) at time tinit =
0 ·γ−1 and (b) at time tfin = 200 ·γ−1 are shown. The coordinates of
the axes represent interatomic distances r21 and r31. The distribu-
tions are given in arbitrary units with the largest value correspond-
ing to the largest peak of the atom distribution at time tfin.

The averaged three-atom probability distributions with selected opening angles
Θ at the initial simulation time tinit are shown in Figs. 5.8(a) and 5.8(b). As it can
be observed in Fig. 5.8, the distribution appears to be of quasi-uniform shape and
it is centered around r21 = r31 = 0, where initial placement is most likely. Due to
the strong localisation of the distribution at time tfin, its maximum is much larger
than any value of the distribution time tinit. Therefore, all values of the initial
distribution in Fig. 5.8(b) are close to zero when the distribution’s largest peak
at time tfin is taken as a benchmark. As shown in Figs. 5.9(a) and 5.9(b) peaks
corresponding to bound states have already started to develop at intermediate
time titm = tfin/2. The form of the probability distribution agrees with the
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5.2. Simulation of the Three-Atom System

dissipative potentials of Figs. 5.6 and 5.7. Comparing the different benchmarked
plots in Figs. 5.9(a) and 5.9(b) reveals once again how strongly localised the
distribution at time tfin is. This trend of emerging peaks in the distribution
continues and results in the final distribution at time tfin, which is shown in
Fig. 5.10(b). Again, the development of the probability distribution agrees with
the dissipative potentials of Figs. 5.6 and 5.7. Like the two-atom distributions in
Fig. 4.8, the three-atom distributions at times tinit and tfin in Fig. 5.10 show that
the system starts as quasi-uniform distribution, where all atomic configurations
are equally likely, and arrives at a distribution, where the equilateral triangle
constellation with r21 = r31 = (2.34± 0.29) · r0 and Θ = 60◦ is most probable.
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Figure 5.11.: The function g(3)(r) of the simulated three-atom system with opti-
mised parameters at increasing times is shown. The dotted black
line indicates the most probable interatomic distance at an equilat-
eral triangle configuration with r21 = r31 = r23 = r and Θ = 60◦.

The function g(3)(r) yields the probability of finding the three-atom system
at interatomic distance r, when the three-atoms are confined to an equilateral
triangle configuration with r21 = r31 = r23 = r and Θ = 60◦. While, in a
certain sense, it is the extension of the two-atom pair correlation function g(3)(r),
which defines the probability of finding two atoms at an interatomic distance
r, to three atoms, it must not be confused with the three-atom pair correlation
function. In Fig. 5.11 the evolution of funtion g(3)(r) in time is depicted. The
graphs in Fig. 5.11 were plotted using interpolation of the originally calculated
data over distance r. Similarly to Fig. 4.9 a distinct maximum emerges during
the course of the simulation. The location of the maximum of function g(3)(r)
at r = (2.10 ± 0.29) · r0 agrees with the position of the peaks in Fig. 5.10(b) at
opening angle Θ = 60◦.

Additionally, in order to prove that the atomic configuration with the highest
probability actually is at Θ = 60◦, the three-atom probability distribution of the
isosceles triangle constellation with r = r21 = r31 and variable Θ was calculated.
The resulting plots at times tinit, titm, and tfin are displayed in Fig. 5.12. These
plots indicate a time evolution of the three-atom system from a quasi-uniform
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Figure 5.12.: The plots of the averaged three-atom probability distribution with
optimised parameter values are shown in the isosceles configuration
at times tinit, titm, and tfin. The radial axis represents interatomic
distances r21 = r31 = r divided by r0, whereas the polar axis in-
dicates opening angle Θ. The distributions are given in arbitrary
units with the largest value corresponding to the largest peak of the
atom distribution at the respective time.

distribution, where all opening angles Θ are equally likely, to a distribution,
where only a certain range of r is probable and the total maxima of the probability
distribution are situated at Θ = ±60◦. While the probability of finding the atoms
at interatomic distance r21 = r31 = r is only significant in a confined range,
opening angle Θ of the distribution at time tfin has non-negligible probability
in a range between 45◦ and 90◦, with 60◦ being the aforementioned maximum.
The broadness of this distribution in comparison to the two-atom distribution in
Sec. 4.2 is a consequence of more geometric configurations being available due to
the additional third atom.

The peak of the distribution at Θ = 60◦ in Fig. 5.10, the emerging maxi-
mum of function g(3)(r) in Fig. 5.11, and the final state at time tfin in Fig. 5.12
all clearly prove that the examined two-dimensional three-atom system exhibits
dissipatively bound trimer states. Again, we can define an imaginary binding
energy E

(3)
b = ∆V

(3)
d = 6.25 · 10−2 · ~γ, which determines the amount of dissi-

pation required in order to dissociate the three-atom bond. Whereas the total
three-atom binding energy E

(3)
b for optimised parameter values is larger than

in the two-atom case, the two-atom binding energy per atom e
(2)
b = E

(2)
b /2 is

larger than the three-atom binding energy per-atom e
(3)
b = E

(3)
b /3 by a factor of

e
(2)
b /e

(3)
b = 1.35.
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6. Dissipative Borromean States

But I always say,
one’s company,
two’s a crowd,
and three’s a party.

—Andy Warhol

Now, after finding metastable dissipatively bound states for two atoms (see
Chap. 4) and three atoms (see Chap. 5), the goal of this chapter is to find
a Borromean state, which is also a trimer state. This state, however, whose
name derives from the aristocratic Borromeo family in Northern Italy [51], is
characterised by the fact that the bound state only forms for three atoms, whereas
removing one of them leads to an unbound state. A famous example of such a
Borromean state is the Efimov state, which is caused by the effect of the same
name [52]. While the concept of Borromean states is introduced in Sec. 6.1, our
efforts of finding a dissipative analogon of such a state are discussed in Secs. 6.2
and 6.3.

6.1. Borromean States

The concept of Borromean states derives from a special kind of topological link
in mathematics. This link connects three rings, known as Borromean rings,
together in such a way that removing any ring results in two unlinked rings. Put
differently, although all three rings are linked together, no two of the three rings
are linked. An exemplary depiction of Borromean rings is shown in Fig. 6.1(a).
It is important to note that the perception of three flat rings in this image is an
optical illusion, it is actually impossible to connect three flat rings in such a way.
The name of Borromean rings and therefore of Borromean states stems from the
aristocratic Borromeo family in Northern Italy [51], who used the three rings as
a symbol to express their strength through unity.

In physics, Borromean states are the physical analogon of Borromean rings,
i.e., bound trimer states of atoms or molecules that do not exhibit any dimer
state, when one of the binding partners is removed. This few-body phenomenon
has been studied in a wide variety of classical scientific disciplines. In chemistry,
it is possible to interlock three cyclic macromolecules in order to form molecular
Borromean rings. One example, which can be seen in Fig. 6.1(b), is the so-called
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Chapter 6. Dissipative Borromean States

Borromeate, which consists of three interpenetrated macrocycles formed from the
reaction between 2,6-diformylpyridine and diamine compounds, complexed with
zinc. It was first synthesised in 2004 by Sir James Fraser Stoddart [50], who,
among others, was awarded the Nobel Prize in Chemistry 2016 for the design
and synthesis of molecular machines.

Figure 6.1.: Subpanel (a) depicts a set of Borromean rings. It is important to
note that three flat circles can actually not be constructed in this
way. Subpanel (b) shows the crystal structure of a set of molecular
Borromean rings, known as Borromeate, which was taken from [85].

In quantum physics, Borromean states appear as well, but in contrast to the
classical regime, they are based on quantum few-body effects, as opposed to
physical or topological restriction. A well-known example in atomic physics is
the Efimov state, a novel and exotic state of matter, which was theoretically
proposed by Vitaly N. Efimov in 1970 [52]. Not only does this state constitute a
Borromean state of three identical bosons, but it also exhibits an infinite series of
excited states, whose energy levels converge towards the dissociation threshold.
These states are completely identical except that their binding lengths and energy
levels scale by a universal factor, which, in the case of three identical bosons, is
approximately 22.7.

Due to the efforts of experimentalists in the field, it was possible to experi-
mentally prove the existence of the Efimov state and find its first excited state
in a cloud of caesium atoms [53]. Furthermore, the observation of Efimov states
in an ultracold mixture of lithium and caesium atoms extended Efimov’s original
picture of three identical bosons [55].

While many few-body phenomena, which were originally found in closed sys-
tems in equilibrium settings, have been studied and discovered in the context
of open quantum systems [44–46], a dissipative analogon of the Borromean state
remains to be found. In the next section, we will discuss the search for parameter
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values, which potentially could give rise to a Borromean state using the binding
method proposed by Lemeshko and Weimer.

6.2. Finding Borromean Parameter Values
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Figure 6.2.: The effective dissipative n-atom potentials V
(n)
d (r) with Borromean

parameter values are displayed for n = 2 and n = 3. V
(3)
d (r) was

calulated assuming an equilateral triangle configuration. Parameter
values used are listed in Tab. 6.1.

In order to prove that a dissipative Borromean state exists, we need to find a
set of values for parameters Ω21, Ω23, ∆21, and ∆23 that, when applied to a two-
dimensional three-atom system leads to a dissipatively bound trimer state, but
yields no bound state when applied to a two-dimensional two-atom system. In
this section a potential set of such parameter values, which was achieved in a sim-
ilar fashion to Secs. 4.1 and 5.1, is presented and the resulting effective dissipative
potentials V

(n)
d (r) are analysed. V

(3)
d (r) was calulated assuming an equilateral

triangle configuration. By continuously removing one atom, the equivalence of
V

(3)
d (r) and V

(2)
d (r) is shown in Fig. C.14 of Appendix C.

Ω21 Ω23 ∆21 ∆23 d

0.375 · γ 0.05 · γ 0.475 · γ −0.08 · γ 8.85 D

Table 6.1.: Parameter values optimised for the Borromean state.

The Borromean parameter values should yield a dissipative two-atom potential
V

(2)
d (r), which does not exhibit any minimum, such as the green graph in Fig. 4.1,

but still maintain a minimum for the dissipative three-atom potential V
(3)
d (r).

This proved to be impossible, as the only way to achieve such a dissipative
two-atom potential is to drive the transitions resonantly. This, however, always
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results in both dissipative potentials, V
(2)
d (r) and V

(3)
d (r), being without any

minimum. Furthermore, as discussed in Sec. 5.2, the two-atom bond seems to be
at least as strong as the three-atom bond, complicating our endeavour of finding
a dissipative Borromean state.

n rmin

r0
V

(n)
d (rmin)

~γ ·102 V
(n)
d (0)

~γ · 102 V
(n)
d (∞)

~γ · 102 ∆V
(n)
d

~γ · 102

2 1.85 0.62 8.94 3.54 2.92
3 2.25 0.50 16.87 5.26 4.75

Table 6.2.: Important quantities of V
(2)
d (r) and V

(3)
d (r) for Borromean parameter

values.

Therefore, the Borromean parameter values were achieved by finding the best
trade-off between minimising the potential depth ∆V

(2)
d and still maintaining

some minimum in V
(3)
d (r). The most suitable parameter values for these condi-

tions are shown in Tab. 6.1 and the corresponding dissipative potentials V
(n)
d (r)

are shown in Fig. 6.2. While both V
(3)
d (r) and V

(2)
d (r) in Fig. 6.2 exhibit a

minimum that could lead to binding, the small depth ∆V
(2)
d leaves room for

the supposition, that kicks due to photon scattering might prevent a metastable
dimer state. The difference between V

(3)
d (rmin) and V

(3)
d (∞), on the other hand,

is noticeably larger as can be seen in Tab. 6.2. However, if one considers the
quantitites calculated per atom, which are listed in Tab. 6.3, both systems have
fairly similar properties, weakening the validity of our assumption that a Bor-
romean state will form. The effective dissipative potentials per atom 1

n
V

(n)
d (r),

whose properties differ only marginally, are viewed in Fig. C.13 in Appendix C.

n 1
n

V
(n)
d (rmin)

~γ ·102 1
n

V
(n)
d (0)

~γ · 102 1
n

V
(n)
d (∞)

~γ · 102 1
n

∆V
(n)
d

~γ · 102

2 0.31 4.47 1.77 1.46
3 0.17 5.62 1.75 1.58

Table 6.3.: Important quantities of V
(2)
d (r) and V

(3)
d (r) calculated per atom for

Borromean parameter values.

In the next section the simulations of two- and three-atom systems are pre-
sented in order to examine the obtained parameter values’ ability to give rise to
a Borromean state.

6.3. Simulation

In this section the results of a simulation of a two-dimensional two-atom system
and of a two-dimensional three-atom system are presented. Both systems were
simulated using the parameter values from Tab. 6.1 in order to prove that these

48



6.3. Simulation

parameters lead to binding in the three-atom case, while not exhibiting any bound
state in the two-atom case. The following plots were obtained by generating
1000 realisations of each system using the adapted MCWF simulation method
described in Sec. 3.2. The reader is referred to Fig. C.12 in Appendix C for a
more thorough account of the two-atom simulation’s results. Likewise, the three-
atom simulation is displayed with a higher time-resolution in Figs. C.7 to C.11
of Appendix C.
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Figure 6.3.: The averaged three-atom probability distributions (a) at time tinit =
0 · γ−1 and (b) at time tfin = 200 · γ−1 are shown. The coordinates of
the axes represent interatomic distances r21 and r31. The distribu-
tions are given in arbitrary units with the largest value corresponding
to the largest peak of the atom distribution at time tfin.

The simulation for the two-atom system was performed under the identical con-
ditions and with the same discretisations as the simulation in Sec. 4.2, whereas the
simulation for the three-atom system was done using the conditions of Sec. 5.2.
Figures 6.3(a) and 6.3(b) show the averaged three-atom probability distribution
at time tinit = 0 · γ−1 and at time tfin = 200 · γ−1, respectively. The distri-
bition evolves from a quasi-uniform distribution to a distribution exhibiting a
pronounced peak at an equilateral triangle configuration with Θ = 60◦. While it
is obvious that a three-atom bound state has formed at time tfin, comparing it to
the distribution in Fig. 5.10(b) reveals that the peak is less pronounced, which

can be explained by the less favourable dissipative three-atom potential V
(3)
d in

Fig. 6.2. This can also be seen by examining the plots of three-atom distribu-
tions with optimised parameters in the isosceles configuration in Fig. 5.12 and
the analogous plots with Borromean parameters in Fig. C.15 of Appendix C.

The averaged probability distribution of the two-atom system with Borromean
parameter values is displayed at time tinit in Fig. 6.4(a) and at time tfin in
Fig. 6.4(b). Again, the evolution from a quasi-uniform distribution to a ring-
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Chapter 6. Dissipative Borromean States

like peak can be observed. Although the ringlike peak is less pronounced than
the peak in Fig. 4.8(b), a dimer state still has formed at time tfin.

Therefore, our efforts of finding parameter values that yield a dissipative Bor-
romean state were not successful. This leads to the conclusion that the dissipative
binding method used in this thesis is not able to form Borromean states.
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Figure 6.4.: The averaged two-atom probability distributions in relative x- and
y-coordinates (a) at time tinit = 0 ·γ−1 and (b) at time tfin = 200 ·γ−1

are shown. The distributions are given in arbitrary units with the
largest colour value corresponding to the largest peak of the atom
distribution at time tfin in both subpanels.
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7. Conclusion

Ende und Ziel: Nicht jedes Ende ist das Ziel. Das Ende der Melodie
ist nicht deren Ziel; aber trotzdem: hat die Melodie ihr Ende nicht
erreicht, so hat sie auch ihr Ziel nicht erreicht. Ein Gleichnis.
(End and Goal: Not every end is a goal. The end of a melody is
not its goal; but nonetheless, if the melody had not reached its end
it would not have reached its goal either. A parable.)

—Friedrich Nietzsche, Der Wanderer und sein Schatten[86]

Within the scope of this thesis, the dissipative binding method proposed by
Lemeshko and Weimer [32, 33] was extended and improved. Furthermore, a
novel simulation technique, which is based on the MCWF method, was developed
specifically for the examined systems. This adapted MCWF method reduces
the size of the Hilbert space and therefore the necessary computing power by
integrating out the internal electronic energy structure and replacing the relevant
details by the effective dissipative n-atom potential V

(n)
d ({rij}).

Using this new technique, we successfully extended the dissipative binding
method to dimer and trimer states in two dimensions. The system parameter
values were optimised in order to maximise the strength of the dissipatively bound
metastable states. These dissipative bonds arise even though only repulsive forces
are present in our setup. One of the initial goals, finding a dissipatively bound
Borromean state, could not be achieved via the presented approach. A more
complicated setup, which lends more importance to inherent three-body effects,
might show more promise in achieving this goal.

The experimental implementation of the proposed systems can be done using
techniques well-established in the area of ultracold quantum gases. The diffi-
culty of realising the setups lies in correctly tuning the dipole-dipole interaction
to avoid undesired mixing of state |1〉a with the highly excited Rydberg state
|Ry〉a. One appropriate setup would be a many-body system with initially un-
correlated atoms. By choosing the correct atom density, an average interatomic
distance larger than the binding distance is guaranteed and few-body interactions
higher than the three-body interaction can be ignored. The usual densities of
ultracold Rydberg gases created with current experimental methods [66–72] are
exactly such that only few-body processes play a significant role. Thus, these
techniques supply us with perfectly suitable Rydberg samples. The resulting
dissipative bonds are not fragile, since they are prepared as an attractor of the
driven-dissipative dynamics. They emerge irrespectively of the initial conditions.
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Chapter 7. Conclusion

These bound states can be detected by measuring the pair correlation function
using present-day spectroscopic methods. Finally, a significant advantage of our
method, in contrast to other proposals, is that preservation of coherence is not
needed.

As in closed systems, the potential extension to four [87] or more [88] parti-
cles is an intriguing venue. This way, the transition from few- to many-body
systems can be explored, similarly to closed systems [89–91]. The shape of the
dissipatively bound three-atom state indicates that an appropriate many-body
state can form a triangular lattice, which would correspond to a dissipatively
bound crystal [31]. This type of binding mechanism enables cooling to a strongly
interacting phase without the use of an optical lattice and therefore preserving
translational symmetry.
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A. Supplementary Theory

A.1. Rabi Oscillations

Figure A.1.: Two-level system driven with frequency ω and detuning δ.

When considering the interaction of a two-level atom with an incident light field
of frequency ω, it is intuitive to split the Hamiltonian into an unperturbed part
Ĥ0 and an interaction part ĤI . A depiction of an exemplary two-level system
is displayed in Fig. A.1. The free Hamiltonian Ĥ0 consists of the respective
eigenstates and energy eigenvalues:

Ĥ0 =~ωa |a〉 〈a|+ ~ωb |b〉 〈b| . (A.1)

Assuming that the light field is linearly polarised along the x-axis and using
the dipole approximation, we can write the operator for the interaction energy
between the atom and the field as:

ĤI = −d̂E = −ex̂E =− eE
∑
i=a,b

∑
j=a,b

|i〉 〈i| x̂ |j〉 〈j|

=− dxE (|a〉 〈b|+ |b〉 〈a|) ,

(A.2)

where e denotes the elementary charge and dx = xab = xba is the matrix element
of the atomic dipole moment, which is assumed to be real in this case. By
introducing the electric component of the light field E(t) = E0 (eiwt + e−iwt) /2,
we can write:
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Appendix A. Supplementary Theory

ĤI =− Ω~
2

(
eiwt + e−iwt

)
(|a〉 〈b|+ |b〉 〈a|)

=− Ω~
2

(
|a〉 〈b| e−iwt + |b〉 〈a| eiwt

)
,

with Ω =
dxE0

~
.

(A.3)

Here, we applied the so-called rotating-wave approximation and neglected terms,
which rotate fast with frequency ω + ωab in the expectation value, while leaving
terms that vary slowly with frequency ω − ωab. Frequency ωab is defined by the
energy difference of states |a〉 and |b〉: ωab = ωa − ωb.

Therefore, we have derived the full Hamiltonian Ĥ = Ĥ0 + ĤI in the dipole
approximation and the rotating-wave approximation. Assuming an arbitrary
wave-function |ψ(t)〉 = α(t) |a〉 + β(t) |b〉, we now want to solve the Schrödinger
equation:

i~
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 . (A.4)

By applying the substitutions A(t) = α(t)eiωat and B(t) = β(t)eiωbt, we find
the following differential equations:

Ȧ(t) =
iΩ

2
e−iδtB(t) ,

Ḃ(t) =
iΩ

2
eiδtA(t) ,

(A.5)

with detuning δ = ωab − ω. In the resonant case (δ = 0), the general solutions
with initial conditions A(0) and B(0) can be written as:

A(t) =A(0) cos

(
Ωt

2

)
+ iB(0) sin

(
Ωt

2

)
,

B(t) =B(0) cos

(
Ωt

2

)
+ iA(0) sin

(
Ωt

2

)
.

(A.6)

The populations of states |a〉 and |b〉, which are described by pa(t) = |α(t)|2 =
|A(t)|2 and pb(t) = |β(t)|2 = |B(t)|2 , respectively, oscillate in time with Rabi
frequency Ω:

pa(t) = |α(0)|2 cos

(
Ωt

2

)
+ |β(0)|2 sin

(
Ωt

2

)
,

pb(t) = |β(0)|2 cos

(
Ωt

2

)
+ |α(0)|2 sin

(
Ωt

2

)
,

with pa(t) + pb(t) = 1 .

(A.7)
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A.1. Rabi Oscillations

These so-called Rabi oscillations are caused by the driving light field and their
frequency Ω is proportional to the electric field amplitude E0. As pa(t) and pb(t)
describe the probability of finding the atom in state |a〉 or state |b〉, respectively,
the oscillations mean that atom jumps back and forth between the ground state
and the excited state. These oscillations are not to be confused with the optical
oscillations occuring with frequency ω.

The reader is referred to the literature [62, 76] for a derivation of the general
solution including non-zero detuning δ.
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B. Caesium Data

Atomic Number Z 55

Total Nucleons Z +N 133

Relative Natural Abundance η(133Cs) 100%

Atomic Mass m
132.905451931(27) u

2.20694650(17) · 10−25 kg

Nuclear Lifetime τn (stable)

Density at 25◦C ρm 1.93 g/cm3

Melting Point TM 28.44◦C

Boiling Point TB 671◦C

Nuclear Spin I 7/2

Table B.1.: Essential caesium properties taken from [92].

Frequency ω0 2π · 351.72571850(11) THz

Transition Energy ~ω0 1.454620542(53) eV

Wavelength (Vacuum) λ 852.34727582(27) nm

Lifetime τ 30.473(39) ns

Decay Rate/
Natural Line Width (FWHM)

Γ
32.815(41) · 106 s−1

2π · 5.2227(66) MHz

Recoil Velocity vr 3.5225 mm/s

Recoil Energy ωr 2π · 2.0663 kHz

Recoil Temperature Tr 198.34 nK

Table B.2.: Optical properties of the caesium D2 transition (62S1/2 → 62P3/2)
taken from [92].
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C. Supplementary Results

This part of the appendix contains supplementary results for two- and three-atom
systems with optimised parameter values (see Tabs. 4.3 and 5.1) and Borromean
parameter values (see Tab. 6.1). The axes of plots in Figs. C.1 to C.12 indicate
relative distances and are given in units of the characteristic dipole-dipole in-
teraction length r0 from Eq. (3.19). The three-atom distributions in Figs. C.2
to C.11 are displayed at various opening angles Θ, whose geometric position is
shown in Fig. 2.2(b).

A detailed account of the averaged two-atom distribution’s change in time
from initial time tinit = 0 · γ−1 to time t9 = 180 · γ−1 is shown in Figs. C.1
and C.12 for optimised parameter values and for Borromean parameter values,
respectively. Similarly, the evolution of the averaged three-atom distribitions with
optimised parameter values from initial time tinit = 0 · γ−1 to time t9 = 180 · γ−1

can be seen in detail in Figs. C.2 to C.6, while the same time evolution of the
averaged three-atom distributions with Borromean parameter values is displayed
in Figs. C.7 to C.11. The averaged few-atom probability distributions at final
time tfin = 200 · γ−1 are not included in this part of the appendix. For the
final two-atom distributions with optimised and Borromean parameter values
the reader is referred to Figs. 4.8 and 6.4, respectively, whereas the final three-
atom distributions with optimised and Borromean parameter values are given in
Figs. 5.10 and 6.3, respectively.

Furthermore, the effective dissipative n-atom potentials calculated per atom
are shown for n = 2 and n = 3 in Fig. C.13, whereas plots of the averaged
three-atom probability distribution in the isosceles configuration are displayed at
times tinit, titm, and tfin in Fig. C.15. The plots in both figures were calculated
using the Borromean parameter values of Tab. 6.1. Finally, the equivalence of
two- and three-atom potentials is shown by continuously removing one atom in
the three-atom case in Fig. C.14.
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Figure C.1.: The two-atom probability distribution with optimised parameter
values (see Tab. 4.3) is shown at increasing times tn. The distri-
butions are given in arbitrary units with the largest colour value
corresponding to the largest peak at respective time tn in columns
(a) and (b), while the largest colour value in columns (c) and (d)
corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.2.: The three-atom probability distributions with optimised parameter
values (see Tab. 5.1) are shown at initial time tinit = 0·γ−1 (subpanels
(a) and (c)) and at time t1 = 20 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times tinit and t1 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.3.: The three-atom probability distributions with optimised parameter
values (see Tab. 5.1) are shown at time t2 = 40 · γ−1 (subpanels
(a) and (c)) and at time t3 = 60 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times t2 and t3 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.4.: The averaged three-atom probability distributions with optimised
parameter values (see Tab. 5.1) are shown at time t4 = 80 · γ−1

(subpanels (a) and (c)) and at intermediate time titm = 100 · γ−1

(subpanels (b) and (d)). The distributions are given in arbitrary
units with the largest colour value corresponding to the largest peak
at times t4 and titm in subpanels (a) and (b), respectively, whereas
the largest colour value in subpanels (c) and (d) corresponds to the
largest peak at time tfin = 200 · γ−1.
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Figure C.5.: The three-atom probability distributions with optimised parameter
values (see Tab. 5.1) are shown at time t6 = 120 ·γ−1 (subpanels (a)
and (c)) and at time t7 = 140 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times t6 and t7 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.6.: The three-atom probability distributions with optimised parameter
values (see Tab. 5.1) are shown at time t8 = 160 ·γ−1 (subpanels (a)
and (c)) and at time t9 = 180 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times t8 and t9 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.7.: The three-atom probability distributions with Borromean parameter
values (see Tab. 6.1) are shown at initial time tinit = 0·γ−1 (subpanels
(a) and (c)) and at time t1 = 20 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times tinit and t1 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.8.: The three-atom probability distributions with Borromean parameter
values (see Tab. 6.1) are shown at time t2 = 40 · γ−1 (subpanels (a)
and (c)) and at time t3 = 60 · γ−1 (subpanels (b) and (d)). The
distributions are given in arbitrary units with the largest colour value
corresponding to the largest peak at times t2 and t3 in subpanels (a)
and (b), respectively, whereas the largest colour value in subpanels
(c) and (d) corresponds to the largest peak at time tfin = 200 · γ−1.
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Figure C.9.: The averaged three-atom probability distributions with Borromean
parameter values (see Tab. 6.1) are shown at time t4 = 80 · γ−1

(subpanels (a) and (c)) and at intermediate time titm = 100 · γ−1

(subpanels (b) and (d)). The distributions are given in arbitrary
units with the largest colour value corresponding to the largest peak
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64



10

r
3
1
/
r

0

(a)
Θ = 15◦ Θ = 30◦

(b)
Θ = 15◦ Θ = 30◦

(c)
Θ = 15◦ Θ = 30◦

(d)
Θ = 15◦ Θ = 30◦

0 10
r21/r0

10

r
3
1
/
r

0

Θ = 60◦

0 10
r21/r0

Θ = 120◦

0 10
r21/r0

Θ = 60◦

0 10
r21/r0

Θ = 120◦

0 10
r21/r0

Θ = 60◦

0 10
r21/r0

Θ = 120◦

0 10
r21/r0

Θ = 60◦

0 10
r21/r0

Θ = 120◦

0.0

0.5

1.0

Figure C.10.: The three-atom probability distributions with Borromean parame-
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(a) and (c)) and at time t7 = 140 · γ−1 (subpanels (b) and (d)).
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Figure C.11.: The three-atom probability distributions with Borromean parame-
ter values (see Tab. 6.1) are shown at time t8 = 160 ·γ−1 (subpanels
(a) and (c)) and at time t9 = 180 · γ−1 (subpanels (b) and (d)).
The distributions are given in arbitrary units with the largest colour
value corresponding to the largest peak at times t8 and t9 in sub-
panels (a) and (b), respectively, whereas the largest colour value
in subpanels (c) and (d) corresponds to the largest peak at time
tfin = 200 · γ−1.
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