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Kurzfassung

In dieser Arbeit wurde ein neuer Ansatz zur Vorhersage von stabilen Kristall-
strukturen, die beim Gefrieren auftreten, untersucht. Diese Methode basiert auf
der Verwendung von genetischen Algorithmen, die eine Suche nach dem globalen
Minimum der freien Energie ermöglichen.

Mit Hilfe dieser Methode war es möglich, das aus der Literatur bekannte
Phasendigramm von neutralen Sternpolymeren zu verbessern und das Phasendi-
agramm für ionische Mikrogele neu zu berechnen, das ungewöhnliche Kristall-
strukturen wie hexagonale und trigonale Gitter enthält. Zusätzlich wurden par-
allel geschichtete zweidimensionale Gitter, sowie Systeme, die bei hohen Dichten
sog. cluster bilden, studiert.

Das neue Verfahren erwies sich als effizient und flexibel und könnte mit
entsprechenden Modifikationen für eine Vielzahl von ähnlichen Problemen in der
Theorie der kondensierten Materie verwendet werden.
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Abstract

In this work a new concept to predict equilibrium crystal structures in freezing
processes has been introduced. This approach is based on a genetic algorithm
that allows an unbiased search through the parameter space of all possible crystal
lattices.

It was possible to improve the already published phase diagram of neutral
star polymers, and to calculate the phase diagram of ionic microgels that includes
unusual structures such as hexagonal and trigonal lattices. Additionally, layers
of two-dimensional lattices and system that freeze into clustered crystals were
studied.

The new method proved its versatility and power for all cases it was applied to
and could be used for numerous similar problems in condensed matter physics.
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Introduction

Changes in the thermodynamic state of a system, like the increase of temperature
or pressure, can lead to the transformation of one phase into another. A phase
transition occurs when a thermodynamic potential, such as the free energy, or
one of its derivatives has a singularity and it is accompanied by a sudden change
in some of the properties of the substance. These phase transitions are ubiquitous
in everyday life and range from transitions between the vapor, liquid, and solid
phases, transitions between the isotropic and nematic phases in liquid crystals,
transitions between the ferromagnetic and the paramagnetic phases of magnetic
substances, to transitions to a superconducting state below a certain temperature.
If one or more of the first derivatives of the thermodynamic potential have a finite
discontinuity the transition is called discontinuous or first order transition. If the
first derivatives are continuous and second derivatives are discontinuous or infinite
the transition is called continuous, critical, or higher order transition.

The study of phase transitions started in the 1870s with the theories of van
der Waals. His model predicted the critical point, which is described by a critical
temperature and a critical pressure, on a qualitative level. Below the critical
temperature, the transition between the liquid and the vapor phase is discontin-
uous but above the critical temperature, the liquid phase can be continuously
transformed into the vapor phase. At the critical point a critical phase transition
occurs.

Nearly all substances arrange themselves in periodic structures upon suffi-
cient cooling. This liquid-solid transition is accompanied by a drastic change in
the symmetry properties of the substance. The isotropic liquid with an infinite
number of symmetry transformations is replaced by a solid that has only a finite
number of symmetry transformations, depending on the crystal lattice. This uni-
versal, symmetry breaking phenomenon is a very interesting field of study. In the
1950s it was possible to show that a system of hard spheres freezes into an ordered
solid at packing fractions η & 0.5 with the help of computer simulations [1, 2].
This finding suggested that the freezing transition is in general mainly driven by
entropy as the free energy of hard spheres is purely entropic. It has become a
common belief that a repulsive part in the interaction potential is needed for the
stabilization of the solid and attractive forces of sufficient range are required for
a liquid-gas transition.
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Due to considerable progress during the last years, the thermodynamic prop-
erties of crystalline solids can be calculated very accurately. A host of different
theories is available for the calculation of the free energy of the solid phase that
includes simple lattice sums [3], cell models [4, 5, 6, 7], harmonic solid theories
[8, 9], and density functional approaches [10, 11, 12, 13, 14]. Together with the
free energy of the liquid, which can be calculated via theories, like integral equa-
tion theories or perturbation theories [15, 16], the full liquid-solid phase diagram
can be determined on a qualitative level, sometimes even on a quantitative level.
However, it still remains an unsolved problem to predict a priori the stable crystal
structures of the solid phase by theoretical means. In the conventional approach,
a set of possible candidate structures - relying on experience, intuition, or plau-
sible arguments - is selected and the respective free energies are calculated and
compared. The structure with the lowest free energy for a given point of state is
the stable structure and phase boundaries can be calculated via a double tangent
construction.

The choice of these candidates is rather obvious for systems of particles that
have a harshly repulsive interaction potential (e.g. atoms) where packing effects
play a dominant role. Typically, one takes fcc, bcc, and hcp into account. This
preselection process bears the additional risk that further equilibrium crystal
structures are not among the candidates and therefore will never appear in the
phase diagram. However, if soft matter (see below) is considered, where the inter-
action potential of the particles diverges weakly near the origin or even remains
finite at full overlap of the particles, the crystal structures that these systems can
freeze in can be difficult to predict and their phase behavior is much more diver-
sified than expected. For instance, simulations predict stable bco and diamond
structures for a system of neutral star polymers even though the effective interac-
tion is radially symmetric [17]. Even simulations tend to favor crystal structures
with cuboidal primitive cells if the simulation box is, as usual, cubic.

The aim of this thesis is the study of an alternate approach to optimize the
search for stable crystal structures of a given substance at a certain thermody-
namic state. The central tool in this new approach is a genetic algorithm that
tries to mimic natural evolutionary processes. Genetic algorithms were developed
in the 1970s by J.H. Holland [18] to abstract and explain the adaptive processes of
natural systems and to design artificial systems that retain the important mech-
anisms of natural systems. The theory of genetic algorithms has been steadily
improved ever since [19, 20]. While they are used quite frequently in a large
variety of different optimization problems, like the traveling salesman problem,
or electronic circuit design, their use in physics has been rather limited. They
were used to optimize molecular geometry [21, 22], and to optimize laser pulses to
control molecules [23]. In this application, genetic algorithms offer the possibility
to search the parameter space of all possible crystal structures in an unbiased
way and to predict stable crystal structures without having to resort to preselect
candidate structures. It turned out that the new approach is an improvement
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over the conventional method but still has some shortcomings like the erratic
behavior of the algorithm close to phase transitions.

The systems that are investigated in this work belong to the class of soft

matter. These materials are composed of mesoscopic particles (typical size 1nm–
1µm) that are dispersed in a solvent whose constituent particles are much smaller
in size. These systems are also known under the names complex fluids or colloidal

dispersions. Examples include biological substances like proteins and viruses; in-
dustrial products like paints, inks, polishes, cosmetics, detergents, and drilling
muds; micelles and vesicles formed of surfactant molecules; and synthetic poly-
meric particles. These substances are called soft because their rigidity against
mechanical deformations is many orders of magnitude smaller than that of atomic
systems and they can be deformed by humans without the use of tools. Soft mat-
ter is of great diversity, for a general overview see [24, 25, 26]. An intriguing prop-
erty of these substances is the fact that the resolution of modern optic devices
is so high that the trajectories of single colloids can be analyzed [27], whereas
one had to solely rely on scattering experiments in atomic liquids. Therefore
soft matter serves as an ideal model system to study phenomena and theoret-
ical predictions in a detailed way. Another attractive feature of soft matter is
that, unlike systems consisting of atoms or small molecules, the interaction be-
tween the particles can be easily altered by changing the properties of the solvent
(e.g. by adding salt), or by changing the chemical structure of the mesoscopic
particles directly (e.g. by using different monomers or side groups for polymer
chains, changing the cross-linking density, or changing the length of the polymer
chains). Research on these substances has revealed a large number of interesting
phenomena, like re-entrant melting, where the liquid freezes upon compression
but becomes liquid again upon further compression.

There are two reasons why soft systems were chosen in this work: Firstly,
due to their immense richness their phase behavior still holds many secrets while
systems with a hard core have already been studied in great detail by theory,
simulations, and experiments; and secondly, soft systems can freeze in rather
unusual crystal structures [3, 17, 28, 29], which could serve as benchmarks for
this new approach.

The genetic algorithm was first used to predict three-dimensional crystal
structures of star polymers and ionic microgels and proved its power and versatil-
ity by correcting previous results [30, 31]. After this success, it was also applied
to study the structure of layered two-dimensional lattices and the formation of
clustered crystals.

This thesis is dedicated to show that this new approach is superior to the
conventional method and that the world of crystalline soft matter comprises ex-
citing and unexpected phenomena that this work could help to uncover.

This thesis is organized as follows:
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• Chapter 1 gives an overview of genetic algorithms and compares them to
other optimization strategies like hill climbing, simulated annealing, and
random search. Furthermore, the implementation of a genetic algorithm to
predict crystal structures is explained.

• Chapter 2 covers the statistical mechanical foundations and the different
methods that were used to calculate the thermodynamic properties of the
solid and liquid phases of the systems that were considered in this work.

• Chapter 3 specifies the systems that were investigated, namely star poly-
mers, ionic microgels, and the Gaussian core model and its generalization.

• The results are presented in chapter 4: Freezing of star polymers and ionic
microgels, the formation of layered structures of polymer solutions, and
freezing of clustered crystals in the generalized Gaussian core model are
studied.

• The appendix contains information about three- and two-dimensional Bra-
vais lattices and their identification by means of analysis of symmetry prop-
erties.
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Chapter 1

Genetic Algorithms

After the development of integral and differential calculus by Leibnitz and New-
ton in the 18th century the problem of finding maxima and minima of functions
became solvable for the first time in an analytic way by looking for a zero of the
gradient of the function. With this tool at hand the search for the best solution
of a problem (optimization) could also be solved analytically if the problem had
a simple enough structure. The lack of a universal method of optimization for
the more complex problems occurring in reality led to the development of an
enormous amount of different optimization strategies both driven by advances
in mathematics and the increased power of modern computers. These new al-
gorithms included both deterministic methods like hill climbing, or the simplex

method, and heuristic methods like evolutionary algorithms, or simulated anneal-

ing.

Genetic algorithms (GAs) form a subset of evolutionary algorithms and are
adaptive, heuristic search algorithms that mimic natural evolution first described
by Darwin [32] by including features such as natural selection, survival of the
fittest individual, sexual recombination, and mutation. They were introduced by
Holland in the 1970s [18] and later improved by Goldberg [19] and Michalewicz
[20]. GAs are aiming at the global optimum instead of the next local one and they
do not impose any restrictions on the function to be optimized, like continuity,
the existence of derivatives, or dimensionality. They are best suited for problems
in a large, complex search space where the enumeration of all possible solutions
(random search) is not possible. An attractive feature of GAs is that the imple-
mentation and parallelization is easy and efficient. Another notable difference to
other optimization concepts is the fact that GAs do not use the parameters to
be optimized themselves but an encoded version of the parameters. They were
applied successfully to a tremendous number of different fields that range from
molecular structure optimization, protein folding, container loading optimiza-
tion, game theory, timetabling problems, electronic circuit design, the traveling
salesman problem, criminal identification, economics, to forecasting stock market
prices and foreign exchange.
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1.1 Basic Concepts

Since natural evolution works on the level of chromosomes rather than on the
biological entities themselves, a possible solution is represented by an encoded
version of the parameters (genotype) instead of the value of the parameters (phe-
notype) in a genetic algorithm. This representation is realized as linear string
of genes and called individual. The prescription that maps the genotype to the
corresponding phenotype depends entirely on the structure of the problem and
has to be adapted by the user. According to nature one does not use a single
individual but a set of them, the population P (t). After initialization of the first
population a number is assigned to each individual that determines the fitness
for survival. Two individuals are chosen with probabilities proportional to the
relative position in the current population and mated to produce new individuals.
This step is repeated until enough individuals are created to form the next pop-
ulation. These new individuals can be modified again by mutation which occurs
with a fixed but small probability. Afterwards this new population is evaluated
and subsequent populations are created until a termination condition is met. A
canonical genetic algorithm in pseudocode could read:

begin
t=0
initialize(P (t))
evaluate(P (t))
while (not termination-condition) do

t=t+1
Q(t)=select(P (t − 1))
R(t)=recombine(Q(t))
P (t)=mutate(R(t))

done
end

The average fitness of the population will increase with the number of new
populations but it usually reaches a threshold and oscillates around that value
(see figure 1.1).

Due to the randomness involved in the creation of each new population genetic
algorithms do not belong to the class of convergent algorithms that fulfill the
condition

||xk+1 − x∗|| 6 C||xk − x∗||p,

where x∗ is the exact solution of the problem, xi the approximate solution in the
i-th iteration step, with C > 0 and p > 0.

For most problems where genetic algorithms are typically applied there are
no convergent algorithms available.
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Figure 1.1: Progression of the average fitness for two typical runs of the GA.

1.1.1 Individual

The individual I is a linear string of genes with fixed length l and each of its
genes can take values of a certain alphabet A = {a1, . . . , ak}. The set of binary
numbers is the most frequently used alphabet with Abinary = {0, 1}. In this case
the search space consists of 2l possible solutions. This discrete representation
is on the one hand very useful for problems that have discrete variables like
combinatorial problems but on the other hand it imposes implicitly lower and
upper bounds on continuous variables of the solution.

0 1 0 1 0 0 11

Figure 1.2: Schematic representation of an individual with length l = 8 using the
binary alphabet.

1.1.2 Initialization

The first population is generally chosen at random by assigning each gene in
every individual an element of the alphabet A according to uniformly distributed
random numbers.
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1.1.3 Evaluation and Fitness Function

In this step a positive number called fitness number f is assigned to each individ-
ual that describes the quality of the encoded solution. A higher fitness number
corresponds to a better and a lower one to a worse solution. To calculate this
number, the individual, which is then inserted into a problem specific fitness
function f(I), has to be decoded into its phenotype first. The evaluation of the
fitness function must be possible for all individuals I which in turn correspond
to all possible solutions in the search space.

The choice of this fitness function is not unique as any function g(x) with
g(x) > 0 ∀x > 0 and g(x + ε) > g(x) ∀x > 0, ε > 0 leads to another possible
fitness function f ′(I) = g(f(I)) that evaluates the individuals of the same prob-
lem. The functional form the fitness function determines the selection pressure

which is defined as the ratio of the selection probability of the best individual to
the average selection probability of all individuals; it represents a measure of the
preference of good to bad individuals. If the selection pressure is too high, good
individuals are highly preferred and propagate very fast, the diversity in the pop-
ulation decreases and the algorithm is very likely to converge to a local optimum.
If the selection pressure is too low, good individuals are hardly preferred, bad
individuals remain in the population and the GA converges very slowly or not at
all; the algorithm degenerates to a random search.

When the solutions have to fulfill certain constraints, it is best to make the
construction of the phenotypes in a way that all possible solutions are valid.
If this is not possible, individuals that describe solutions that violate these con-
straints have to be assigned to a low fitness number to suppress their propagation.
Experience shows that the number of invalid individuals is typically much higher
than the number of valid ones therefore the GA will not converge if the same
fitness number (e.g. f = 0) is assigned to all invalid ones. The decrease of the
fitness value has to be linked to the seriousness of the violation of the constraint.
One introduces a penalty function ψi(I) and an associated weight ri for each of
the n constraints and modifies the fitness function to

f ′(I) = f(I) −
n∑

i=1

riψi(I).

1.1.4 Selection

In the selection step the parents that will create the next population are selected
at random but according to natural selection which states that fitter individuals
will produce more offsprings than individuals with lower fitness numbers.

• Fitness Proportional Selection
The probability pi that the i-th individual is chosen in the selection among
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a population that consists of n individuals is

pi =
f(Ii)
n∑

j=1

f(Ij)
.

• Rank Selection
The probability that a given individual is selected does not depend on its
fitness value itself but on the rank of the individual compared to other
individuals. Two possible implementations of rank selection strategies are
linear ranking and tournament selection:

– Linear Ranking
The number of offsprings amax for the best individual is a fixed num-
ber. The individuals in the next population are created in such a way
that the number of offsprings for the second best individuals decrease
linearly. Thus only the best ∼ 2n/amax individuals act as parents for
the next generation.

– Tournament Selection
To select an individual, k individuals are selected at random from the
population and the one with the highest fitness value is chosen. The
value of k determines the selection pressure. This selection type is
best suited for problems where individuals cannot be evaluated inde-
pendently from the others, e.g. when trying to find a winning strategy
for a game.

1.1.5 Recombination

In the recombination step new individuals are created from the parents that were
selected in the previous step as follows:

• 1-point crossover

0 1 0 1 0 0 11 1 1 0 0 0 1 0 1

0 1 0 0 0 1 0 1 1 1 0 1 1 0 0 1

Figure 1.3: One-point crossover in a typical recombination step.

The crossover point is chosen randomly and the genes before and after that
point are exchanged.
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• 2-point crossover

0 1 0 1 0 0 11 1 1 0 0 0 1 0 1

0 1 0 0 0 1 1 0 1 10 0 1 1 0 1

Figure 1.4: Two-point crossover in a typical recombination step.

Two points are chosen randomly and the genes between these points are
exchanged.

• Uniform crossover

0 1 0 1 0 0 11 1 1 0 0 0 1 0 1

0 10 1 1 11 0 1 0 0 001 0 1

Figure 1.5: Uniform crossover in a typical recombination step.

Each gene is separately assigned to a gene of the offsprings at random.

1.1.6 Mutation

Mutation is needed to re-introduce lost genetic material to the population and
avoid inbreeding. Mutation should occur rather rarely and at random with a
fixed probability, typically pmutate ∼ 0.001. If a certain gene is mutated its value
is changed to another value in the alphabet A.

0 1 0 1 0 0 11

1 0 0 1000 1

Figure 1.6: Mutation in a typical mutation step
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1.1.7 Schemata and Building Blocks

A schema H is a similarity template describing a subset of individuals with
similarities at certain gene positions. The alphabet is expanded by the wildcard
character “?”. From now on it is assumed that the population consists of n
individuals with length l, which are encoded by using the alphabet of binary
numbers. In that case the alphabet A+ that is used to describe schemata becomes
A+ = {0, 1, ?}. To give an example, the schema H = ?001? comprises the
individuals 00010, 00011, 10010, and 10011. Each individual of length l is a
member of 2l schemata as the digit in the schema is either the one in the individual
or the wildcard ?. Therefore, a population consisting of n individuals contains
between 2l (if all individuals are identical) and n2l (if all individuals are mutually
different) schemata. The schema order o(H) is defined as the number of digits
unequal “?” in the schema and the defining length δ(H) is the distance between
the first and the last digit unequal “?”. Some examples:

H =? ? 1 ? 0 ? ? o(H) = 2 δ(H) = 2
H =1 0 ? ? 0 1 0 o(H) = 5 δ(H) = 6
H =? ? ? ? 1 ? ? o(H) = 1 δ(H) = 0

The fitness value of a schema f(H, t) is defined as average fitness value of all
individuals in the population P (t) that are elements of H. The frequency of
schema H in the population P (t) is denoted by m(H,P (t)). Then

m(H,Q(t + 1)) = m(H,P (t))n
f(H, t)
n∑

i=1

f(i)

= m(H,P (t))
f(H, t)

f̄
, (1.1)

where f̄ is the average fitness of the population. In the selection step schemata
that have a fitness value higher than f̄ will propagate while those that have
a fitness value lower than f̄ will diminish. Assuming that H has the fitness
f(h, t) = f̄ + cf̄ , the frequency m(H,Q(t+ 1)) becomes

m(H,Q(t+ 1)) = m(H,P (t))
f̄ + cf̄

f̄

= m(H,P (t))(1 + c).

Under the assumption that f̄ is constant

m(H,Q(t)) = m(H,P (0))(1 + c)t.

Therefore the number of schemata with a fitness value above f̄ will increase
exponentially while the ones with a fitness value below f̄ decrease exponentially.
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While the individuals are processed in the algorithm more schemata are processed
at the same time (implicit parallelism). It can be shown that in general O(n3)
schemata are processed in a population consisting of n individuals that use the
binary alphabet [18].

The crossover creates both new schemata and destroys some of the old ones.
The probability that the crossover point lies in the interval of the defining length
and hence the schema is most likely destroyed is given by

pdestroy =
δ(H)

l − 1

with the corresponding survival probability

precombination
survival > 1 − δ(H)

l − 1
. (1.2)

Inserting equation (1.2) in (1.1) yields

m(H,R(t)) > m(H,P (t))
f(H,P (t))

f̄

(

1 − δ(H)

l − 1

)

. (1.3)

A schema is untouched by mutation if no fixed gene is mutated and the probability
of survival is

pmutation
survival = (1 − pm)o(H) ≈ 1 − o(H)pm. (1.4)

Above approximation is accurate for very small mutation probabilities pm. Com-
bining equations (1.3) and (1.4) gives the final frequency of the schema in the
new population

m(H,P (t+ 1)) > m(H,P (t))
f(H,P (t))

f̄

(

1 − δ(H)

l − 1

)

(1 − o(H)pm)

or approximately,

m(H,P (t+ 1)) > m(H,P (t))
f(H,P (t))

f̄

(

1 − δ(H)

l − 1
− o(H)pm

)

.

This relation leads to the Schema Theorem: The frequency of schemata with
high fitness, small defining length, and low order increases exponentially in the
population. These schemata are called building blocks. The genetic algorithm
efficiently combines these building blocks to form better individuals from the
best partial solutions of the former population. Therefore the arrangement of the
genes in the individual is important and the encoding has to be appropriate for
the problem.
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1.2 Comparison to other Optimization Strate-

gies

1.2.1 Hill climbing Strategies

The basic strategy in hill climbing is the intuitive method any wanderer would
use to reach the peak of a mountain in a dense fog: always walk uphill. Hill
climbing does not necessarily need derivatives of the function to be optimized and
constraints can be included quite easily. An overview of different implementations
can be found in [33].

The major problem with hill climbing is that the result strongly depends on
the starting point of the search. It will work perfectly on functions that have
only one optimum as depicted in figure 1.7. When there are more peaks as in
figure 1.8 then the algorithm might find the global optimum quite often but is
almost completely useless when the objective function is multimodal like the one
in figure 1.9.

Figure 1.7: Single-peak function

1.2.2 Random Search

The enumeration of all possible solutions and the looking for an optimum by
comparing them is called random search. The order of the solutions is arbitrary,
accordingly the position of the global optimum in the search is random. While
it guarantees the exact global optimum of the problem, the method is in general
too time consuming to be useful for any problems but the most simple ones.
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Figure 1.8: Double-peak function

Figure 1.9: Multimodal function with many peaks

1.2.3 Simulated Annealing

This optimization technique was not inspired by biology but by metalworking.
To harden steel, it is first heated up and then cooled down. Depending on the
speed of the temperature reduction, the atoms have more or less time to arrange
themselves in a crystal lattice. Fast cooling freezes the atoms in a local minimum
of the free energy while slow cooling allows the atoms to reach the positions that
correspond to the global minimum of the free energy. This technique is known
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as annealing.
Simulated Annealing [34, 35] is based on this concept and Metropolis’ Monte-

Carlo simulation method. A starting solution x(0,0), temperature T (0), and vari-
ation d(0) are chosen. The objective function that will be minimized is denoted
by f(x), the actual best solution by x∗, and the actual solution by x̃ which is set
to x(0,0) at the beginning. A Monte-Carlo simulation is performed, where new
solutions are created by

x(i,j) = x̃+ d(i)z,

where z is a uniformly distributed random vector for all coordinates of the solu-
tion. If f(x(i,j)) < f(x∗) then x∗ is set to x(i,j), if f(x(i,j)) < f(x̃) or the random
number r ∈ [0, 1] is smaller than exp[(f(x(i,j))− f(x̃))/T (k)] then x̃ is set to x(i,j)

and the algorithm starts by constructing a new possible solution x(i,j+1). If the
value of the objective function has not improved within the last N steps then the
temperature and possibly the displacement d(i) is decreased until the temperature
has reached a pre-defined threshold Tmin and the final result of the solution is the
current x∗.

While the algorithm itself is quite simple the proper choice of the parameters
like the starting temperature, the initial displacement, the number N , the amount
of temperature reduction, the displacement decrease, and the upper bound on the
temperature Tmin are difficult to find. There are some rules for specific objective
functions but a general one is not known. Genetic algorithms and simulated
annealing share some common properties like the ability to escape local optima
but there are some fundamental differences as well. Simulated annealing changes
the parameters of the solutions themselves and has only one possible solution.
In a GA the genetic representations of the parameters are processed and there
is a large number of possible solutions in every population. A more detailed
comparison can be found in [36].

1.3 Application of the GA to the Freezing Tran-

sition

The conventional approach to the freezing transition would be to choose a set
of candidate structures and to calculate the free energy of each of them. The
structure with the lowest free energy would be the equilibrium structure.

It is possible to use a GA to determine the crystal structure in which a given
substance will freeze. In this approach the lattice is described by the primitive
vectors and possibly the positions of additional basis particles of the lattice.
These quantities are encoded in the individual and the fitness function is designed
in such a way that a lower free energy leads to an increased propagation in the
algorithm. The final result of the GA is then refined with a hill climbing algorithm
and the crystal structure is identified by the symmetry transformations of the
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primitive vectors.

1.3.1 Parametrization of Lattices

1.3.1.1 Three-dimensional Lattices

The three primitive vectors a, b, and c of a three-dimensional lattice can be
written as follows

a = a





1
0
0



 b = a





x cosϕ
x sinϕ

0



 c = a





xy cosψ cosϑ
xy sinφ cosϑ
xy sinϑ



 (1.5)

where

a

σ
=

(
nbnc

ρσ3x2y sinϕ sinϑ

) 1
3

,

σ is a (problem specific) length scale, nb is the number of basis particles of the
crystal structure, nc the cluster size (nc = 1 for non-clustered lattices), and ρ the
bulk number density. The five parameters x, y, φ, ψ, and ϑ have to satisfy the
constraints

0 < x 6 1 0 < ϕ 6 π/2
0 < y 6 1 0 6 ψ < π

0 < ϑ 6 π/2.
(1.6)

Without loss of generality the basis vector of the first particle is

B1 =





0
0
0



 .

Basis vectors for possibly additional particles in the basis are represented as linear
combinations of the primitive vectors and can be assumed to lie in the primitive
cell.

Bi = αia + βib + γic i = 2, . . . , nb

with the constraints

0 6 αi < 1, 0 6 βi < 1, 0 6 γi < 1. (1.7)

The total number of parameters np required to describe a crystal structure is thus
given by np = 5+3(nb−1) = 2+3nb. To encode these parameters in an individual
the string of genes is divided in np parts, three of them with length la that encode
the parameters ϕ, ψ, and ϑ and (3nb− 1) of them with length ln that encode the
remaining parameters. Each of those substrings is the binary representation of an
integer number mξ ∈ [0, . . . , 2l− 1], ξ ∈ {x, y, ϕ, ψ, ϑ, α2, β2, γ2, . . . , αnb

, βnb
, γnb

}.
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Once a quantity mξ has been evaluated, the corresponding parameter ξ can be
determined via

x =
mx + 1

2ln

y =
my + 1

2ln

ϕ =
π

2

mϕ + 1

2la

ψ = π
mψ

2la

ϑ =
π

2

mϑ + 1

2la

αi =
mαi

2ln

βi =
mβi

2ln

γi =
mγi

2ln
. (1.8)

The parameters ξ obtained with these formulas fulfill the constraints (1.6) and
(1.7) automatically.

The parameters la and ln are covered in more detail in section 1.4.

1.3.1.2 Two-dimensional Lattices

The parametrization of two-dimensional lattices can be realized in a fashion sim-
ilar to the three-dimensional one. The primitive vectors are written as

a = a

(
1
0

)

b = a

(
x cosϕ
x sinϕ

)

where
a

σ
=

(
nb

ησ2x sinϕ

) 1
2

,

σ is a (problem specific) length scale, nb the number of basis particles, and η the
area number density. The vectors of the basis particles are written similar to the
procedure in three dimensions:

B1 =

(
0
0

)

,

and
Bi = αia + βib i = 2, . . . , nb.

The constraints on the parameters encoded in the individual are analogous to the
three-dimensional case.
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1.3.1.3 Layered Lattices

A layered lattice consists of nl layers of identical parallel two-dimensional lattices;
their respective origins are shifted: The (nl−1) inter-layer vectors ci connect the
origin of the i-th layer to the one of the (i+1)-th level. Without loss of generality
the two-dimensional lattices are assumed to lie perpendicular to the z-axis. The
relation between the volume number density ρ of the system and the area number
density η in each layer is

η =
ρD

nl
,

where D is the distance between the first and last layer. The 2-d lattice in each
layer is parameterized as in section 1.3.1.2. The ci introduced above are given by

ci = αia + βib + hi





0
0
1



 i = 1, . . . , nl − 1

where the vectors a and b are the primitive vectors of the two-dimensional lattice
in each layer with zero z-component and hi the distance of the i-th to the (i+1)-th
layer. The parameters hi have to fulfill

hi > 0 i = 1, . . . , nl − 1
nl−1∑

i=1

hi = D. (1.9)

If the the parameters hi are encoded in the individual additional constraints have

D

h

h

h

1

2

3

n

2

n

l

1

n l−1
l−1

Figure 1.10: Sketch of a layered lattice

to be considered during the calculation. To allow a convenient implementation
in the GA, the quantities zi ∈ [0, 1), i = 1, . . . , nl − 2 are introduced, which can
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easily be included in the individual without external constraints. The parameters
hi are then given by

h1 = z1D

h2 = z2(D − h1)
...

hi = zi

(

D −
i−1∑

j=1

hj

)

...

hnl
= D −

nl−1∑

j=1

hj.

This parametrization,which might seem unnecessarily complicated at first sight,
guarantees that the relation (1.9) is automatically satisfied.

The total number of parameters np that characterize the particle positions
in this system is built up by 2nb parameters for the two-dimensional lattice in
the layers, 2(nl − 1) parameters for the x- and y-components of the inter-layer
vectors ci, and nl− 2 parameters for their z-component. They are encoded in an
individual in a similar fashion as described for the three-dimensional case.

1.3.1.4 Additional Parameters

It is possible to encode additional parameters of the system under consideration
in the individual if they have to be optimized together with the lattice structure.
In this work, the cluster size nc of clustered crystals (see section 4.3) and the lo-
calization parameter α in the Einstein model (see section 2.1.2) were incorporated
into the calculations.

• Cluster Size
A substring with length lc is added to the individual that defines an integer
number mnc

. The cluster size nc is then given by

nc = 1 +
mnc

2lcp
.

The parameter lcp < lc defines the resolution of nc which lies in the interval
[1, (2lc + 2lcp − 1)/2lcp].

• Localization Parameter
A substring with length lα is added to the individual that encodes the
integer number mα. The localization parameter α can be calculated via

α = αmin +mααinc.
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The parameter αmin ensures a lower limit for α because a crystal with
α . 30 can hardly be considered a solid. The parameter αinc > 1 is used to
have a higher upper bound on the value of α without the need to increase
the length of the substring.

The values of the parameters lc, lcp, αmin, and αinc that were chosen for the
calculations in this work are detailed in section 1.4.

1.3.2 Lattice Unification

The choice of the primitive vectors for a given lattice is not unique and this fact
poses a serious problem for any optimization method due to the infinite number
of different primitive vectors that describe exactly the same lattice. On top of
that, there is an additional ambiguity in the choice of the basis vectors if the
number of basis particles is greater than one.

To ensure the use of a uniquely defined set of primitive vectors and basis vec-
tors for every crystal structure, the following strategy was utilized when decoding
the information contained in the individual:

• Decode the primitive vectors and basis vectors from the individual.

• Modify the primitive vectors.

• Rotate the primitive and basis vectors to have the form as in equation (1.5).

• Modify the basis vectors.

• Calculate the projection of the vectors in the discrete space imposed by the
binary accuracy.

• Re-encode the primitive and basis vectors in the individual.

• Calculate the fitness value of the new lattice.

These steps are described in the following paragraphs where on the assumption
that a three-dimensional lattice is considered. For the other two cases discussed
above the algorithm follows similar lines.

1.3.2.1 Unified description of the lattice

The primitive vectors were chosen in such a way as to minimize the surface of the
cell spanned by the three vectors. To that end the following iterative algorithm
was applied: Starting with three primitive vectors (a∗,b∗,c∗), the quantity

Σ∗ = |a∗ × b∗| + |a∗ × c∗| + |b∗ × c∗|
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which represents half of the surface of the primitive cell is evaluated. Then the
corresponding Σ∗-value of the primitive cells spanned by the following twelve
linear combinations of the primitive vectors are calculated:

(a∗ ± b∗,b∗, c∗) (a∗ ± c∗,b∗, c∗)
(a∗,b∗ ± c∗, c∗) (a∗,b∗ ± a∗, c∗)
(a∗,b∗, c∗ ± a∗) (a∗, c∗, c∗ ± b∗).

and the smallest of these values is denoted by Σ̃. If Σ̃ is smaller than Σ∗ the cor-
responding combination represents the new primitive vectors and the algorithm
starts again. If Σ̃ is greater than Σ∗ the algorithm is finished.

1.3.2.2 Rotation of the Vectors

The three primitive vectors are ordered by their magnitude so that a is the
longest, b the second-longest, and c the shortest vector. Then the vectors are ro-
tated so that a is parallel to the x-axis and b lies in the x-y-plane. Via additional
inversion of the vectors and/or coordinate axes one arrives at the representation
(1.5) that fulfills the constraints (1.6).

1.3.2.3 Modification of the Basis Vectors

The lattice remains invariant under the following transformations of the basis
vectors {Bi}: Firstly, the set {Bi + vjklm} with

vjklm = −Bj + ka + lb +mc, j = 1, . . . , nb k, l,m ∈ Z

describes the same lattice. Secondly, the indices of the basis vectors {Bi} can be
permuted without changing the lattice.

To arrive at a uniquely defined set of basis vectors these ambiguities have to
be removed by imposing certain constraints on the basis vectors. In this work
the following algorithm was used:

1. Create the sets {B̃(j)
i } = {Bi − Bj}, j = 1, . . . , nb.

2. Solve the equations

ᾱ
(j)
i a + β̄

(j)
i b + γ̄

(j)
i c = B̃

(j)
i

3. Calculate

α
(j)
i = ᾱ

(j)
i − [ᾱ

(j)
i ]

β
(j)
i = β̄

(j)
i − [β̄

(j)
i ]

γ
(j)
i = γ̄

(j)
i − [γ̄

(j)
i ],

where [x] denotes the largest integer smaller or equal x. The resulting values

of α
(j)
i , β

(j)
i , and γ

(j)
i lie in the interval [0, 1).
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4. Calculate Υ(j) via

Υ(j) =

nb∑

i=1

(α
(j)
i + β

(j)
i + γ

(j)
i )

and find Υ(j∗) = min{Υ(j)}.

5. Sort in ascending order by α
(j∗)
i , then by β

(j∗)
i , and then by γ

(j∗)
i . This

ensures that the vector (0, 0, 0) will always be first.

6. Calculate the uniquely defined set of basis vectors via

Bi = α
(j∗)
i a + β

(j∗)
i b + γ

(j∗)
i c, i = 1, . . . , nb.

1.3.2.4 Projection into the Search Space

The binary representation of the vectors in the individual creates a discrete search
space. In general, the vectors a,b, c, {Bi} that have been obtained by the modi-
fications outlined above are not an element of that space. The primitive vectors
and the basis vectors have to be projected to the appropriate element of the
search space so that the vectors can be stored in the individual.

First the parameters x, y, ϕ, ψ, ϑ are calculated from the primitive vectors:

x =
b

a

y =
b

c

ϕ = arctan
by
bx

ψ = arctan
cy
cx

ϑ = arctan
cz sinψ

cy
,

where v denotes the magnitude of the vector v and vξ, ξ ∈ {x, y, z}, is the
ξ-component of the vector v. Then the corresponding integer number mc is
computed by inverting the appropriate equation in (1.8) and rounding to the
nearest integer. The binary representation of these numbers is then stored in the
individual.

The basis vectors also have to be transformed and to that end the primitive
vectors a′, b′, and c′ that are now encoded in the individual are calculated first.
The parameters αi, βi, and γi are obtained by solving the equations

αia
′ + βib

′ + γic
′ = Bi i = 2, . . . , nb.

Again, the appropriate relations (1.8) are inverted and the numbers mα2
, . . . , mγnb

are obtained as outlined above and their binary representation is stored in the
individual.
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1.3.3 Fitness Function

To find the crystal structure with the lowest free energy F , solutions with a low
free energy have to be preferred over ones with a higher free energy. Therefore
the positive definite fitness function should increase with decreasing free energy.
In addition it has to be taken into account that the free energy can take both
positive and negative values. The following two forms for the fitness functions
were used for the calculations in this thesis. The first one reads

f(I) = exp

(

1 − F (I)

Ffcc

)

(1.10)

and the second one

f(I) = exp

(

1 −
(
F (I)

Ffcc

)g(i)
)

, (1.11)

where F (I) is the free energy for the crystal structure that is described by the
individual I, Ffcc is the free energy of a fcc structure, and g(i) a scalar function
that depends on the number of the population i in the algorithm. The different
concepts to calculate the free energy are detailed in section 2.1.

1.3.4 Hill Climbing Method

During the run of the genetic algorithm the individual I∗ that encodes the crystal
structure with the lowest free energy is saved. As a consequence of the limited
accuracy due to the binary representation of the parameters with a finite number
of digits this solution is refined with a hill climbing algorithm. The np parameters
x, y, ϕ, ψ, ϑ, α2, . . . , γnb

are decoded from the individual I∗ and define the starting
point of the search, the np-dimensional vector q

q = (x, y, ϕ, ψ, ϑ, α2, . . . , γnb
).

The initial step size δ is set to

δ =

(
1

2

)min{ln,la}
.

The vector eξ, ξ ∈ {x, y, ϕ, ψ, ϑ, α2, . . . , γnb
} represents the unit vector in ξ-direction.

Then F (q), the free energy of the crystal structure that corresponds to the pa-
rameters in q, is calculated. The free energy of the vectors qi ∈ {q ± δeξ} is
computed and if the free energy F (q∗) = min{F (qi)} is lower than F (q) then
q is set to q∗. If not, then δ is decreased, typically δ → δ/3. Once δ is lower
than some threshold δthresh then the algorithm is terminated and the final crystal
structure is calculated from q∗. The typical number of steps required for a lattice
with one basis particle is ∼ 150.
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1.4 Numerical Details

1.4.1 Values of the Parameters

Most of the calculations in this thesis were carried out with the following values
for the parameters

Parameter Value

ln 12
la 6
lc 8
lcp 3
αmin 30
αinc 5
lα 10
pmutate 0.005
number of individuals n 1000
maximum number of new populations 100
δthresh 1 × 10−10

1.5 Comparison to other Implementations

Evolutionary algorithms have been used before to calculate the equilibrium con-
figuration of molecular clusters [21, 22]. Even though the method used there
is called “genetic algorithm” this terminology is not correct as the parameters
themselves were optimized and not their genetically encoded version.

In this contribution, a possible solution was characterized by its coordinates
and it was assigned to a fitness value. As in the GA, parents were selected and
offsprings were produced that formed the next generation of solutions. However,
in this implementation the algorithm that creates a child from the parents did
not happen on the genetic level but on a geometric level. A plane was selected
at random that separated each parent and the two parts were cross-combined.
Then the cluster was possibly mutated by displacing the particles in the cluster
in a random fashion.
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Chapter 2

Statistical Mechanics

To calculate the fitness function for all possible candidate structures one must be
able to compute the free energy of crystal structures. In this work two approxi-
mations were used: lattice sums and the Einstein model which are described in
section 2.1.

The calculation of the free energy of the liquid state which is important to
determine the complete phase diagram is covered in section 2.2.

2.1 Solid State

2.1.1 Lattice Sums

The lattice sum L of a crystal structure gives the exact free energy at zero temper-
ature and neglects the influence of entropy on the free energy. The free energy
per particle F/N (which is now identical with the internal energy) for simple
lattices, i.e. lattice with just one basis particle, is

Flatticesum

N
=

1

2

∑

{Ri}

′
Φ(Ri) (2.1)

where the set {Ri} consists of all lattice positions and Φ(r) is the pair potential
between the particles of the lattice and the prime denotes the omission of the
(0, 0, 0)-term. If the three primitive vectors a, b, and c of the lattice are known
F/N can be written as

Flatticesum

N
=

1

2

∑

ijk

′
Φ(|ia + jb + kc|) =

1

2

∑

ijk

′
Φ(|vijk|).

If the lattice has a basis, then not all points in the lattice are indistinguishable.
Therefore the lattice sum has to be averaged over the positions of the basis
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particles. The final result is

Flatticesum

N
=

1

2

∑

ijk

′
Φ(|vijk|) +

1

nb

∑

ijk

∑

l>m

Φ(|vijk + Bm − Bl|). (2.2)

Note that the (0, 0, 0)-term is included in the second summation.

2.1.2 Einstein Model

The Gibbs-Bogoliubov inequality [15]

F 6 F0 + 〈H − H0〉0 (2.3)

relates the free energy F of a system with the Hamiltonian H to the free energy
F0 of a reference system with the Hamiltonian H0. The expression 〈.〉0 denotes
an ensemble average in the reference system. If the reference system is “close
enough” to the system under consideration, both F0 and the ensemble average
〈H − H0〉0 can be calculated easily. If the Hamiltonian H0 has one or more
variational parameters then the r.h.s. of equation (2.3) can be minimized with
respect to these parameters to obtain an upper bound of the free energy of the
system of interest that can be used as an approximation for the same.

In the Einstein model each particle at position ri is assumed to be attached
to a lattice site Ri by a spring with spring constant k. The Hamiltonian of the
reference system is then

H0 =

N∑

i=1

(
p2
i

2m
+
k

2
(ri − Ri)

2

)

, (2.4)

where N is the number of particles, m the mass of each particle, and pi the mo-
mentum of particle i. The parameter k will be used as the variational parameter.
The Hamiltonian H of the system under consideration is given by

H =
N∑

i=1

p2
i

2m
+

1

2

N∑

i6=j
Φ(|ri − rj|). (2.5)

The kinetic contributions to the ensemble average in equation (2.3) cancel and
this relation becomes

F 6 F0 + 〈V 〉0 − 〈V0〉0 .
To calculate the free energy of the reference system, the partition function

Q0
N =

1

h3N

∫

drN
∫

dpNe−βH0(r,p) (2.6)

is evaluated first. Note that the usual pre-factor 1/N ! is missing since the particles
are distinguishable by the lattice site they are attached to. Due to the functional
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form of H0, all the integrals in (2.6) are Gaussian which can be solved analytically
to yield

Q0
N =

(
Λ

σ

)−3N (α

π

)−3N/2

,

where α = βkσ2/2 is the dimensionless spring constant, σ a length scale, and
Λ =

√

2πβ~2/m the thermal de Broglie wavelength.
The free energy F0 is then given by

F0 = −kBT logQ0
N = 3NkBT log

(
Λ

σ

)

+
3

2
NkBT log

(α

π

)

. (2.7)

As a consequence of the equipartition theorem the internal energy 〈V0〉0 is given
by

〈V0〉0 = 3NkBT/2. (2.8)

The ensemble average in the reference system of the potential energy of the
system, 〈V 〉0, can be obtained via

〈V 〉0 =
1

2

∫

dr′
∫

dr′′Φ(|r′ − r′′|)ρ(2)
0 (r′, r′′; {Ri}) (2.9)

with the two-particle density ρ
(2)
0 (r′, r′′; {Ri}). The one-particle density is pro-

portional to the Boltzmann factor of the harmonic potential:

ρ
(1)
0 (r; {Ri}) =

(α

π

) 3
2
∑

{Ri}
e−α(r−Ri)2 (2.10)

and the two-particle density can then be approximated by

ρ
(2)
0 (r′, r′′; {Ri}) = ρ

(1)
0 (r′; {Ri})ρ(1)

0 (r′′; {Ri}).

Inserting this expression in the integral (2.9) yields

〈V 〉0 =
N

2

√
α

2π

[

2α

∫ ∞

0

dx x2e−
α
2
x2

Φ(x) +

∑

{Ri}

′ 1

Ri

∫ ∞

0

dx xΦ(x)
(

e−
α
2
(x−Ri)2 − e−

α
2
(x+Ri)2

)
]

which can be rewritten as

β 〈V 〉0
N

= βΦE(0;α) +
1

2

∑

{Ri}

′
βΦE(Ri;α) (2.11)
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which is equivalent to the lattice sum with the Einstein potential ΦE(r;α)

ΦE(r;α) =







√
α3

2π

∞∫

0

dx x2e−
α
2
x2

Φ(x) r = 0

√
α
2π

1
r

∞∫

0

dx xΦ(x)
(

e−
α
2
(x−r)2 − e−

α
2
(x+r)2

)

r > 0

When crystals with single site occupancy are considered, the first term in equation
(2.11) is neglected because it corresponds to the potential energy of the particle
at the origin. If clustered crystals are considered, the average of the potential
energy becomes

β 〈V 〉0
N

= (nc − 1)βΦE(0;α) +
nc
2

∑

{Ri}

′
βΦE(Ri;α), (2.12)

with the cluster size nc which reduces to the correct expression for nc = 1.
Inserting equations (2.11), (2.8), and (2.7) into the Gibbs-Bogoliubov inequal-

ity yields (for nc = 1)

βF

N
6 3 log

(
Λ

σ

)

+
3

2
log
(α

π

)

− 3

2
+

1

2

∑

{Ri}

′
βΦE(Ri;α). (2.13)

To allow comparison to other free energy values calculated with different theories
the first term is, as usual, dropped in practice because it is possible to choose the
mass so that log(Λ/σ) vanishes. To minimize the remaining terms of equation
(2.13) the contribution proportional to logα favors α → 0 while the last one
favors α → ∞. The interplay of these two terms can lead to a local minimum at
α > 0. The free energy of the solid according to the Einstein model is then

βFeinstein

N
= min

α




3

2
log
(α

π

)

− 3

2
+

1

2

∑

{Ri}

′
βΦE(Ri;α)



 . (2.14)

It can be shown that the Einstein model is equivalent to a density-functional
theory where a mean-field form for the functional for the excess free energy and
a Gaussian shaped one-particle density is used [37].

2.2 Liquid State

The thermodynamic properties of a liquid in equilibrium are described by the
total correlation function h(r) and the direct correlation function c(r). These two
functions are related via the Ornstein-Zernike (OZ) equation [15] which reads for
a spatially homogeneous and isotropic liquid

h(r) = c(r) + ρ

∫

dr′c(|r − r′|)h(r′), (2.15)
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where the number density is denoted by ρ. The OZ equation can formally be
solved for h(r) by repeatedly inserting it into itself

h(r) = c(r)+ρ

∫

dr′c(|r−r′|)c(r′)+ρ2

∫

dr′′
∫

dr′c(|r−r′|)c(|r′−r′′|)c(r′′)+ . . . .

This equation can be interpreted in the following way: The total correlation
between two particles is equal to the sum of the direct correlation plus the indirect
correlation mediated by an increasing number of other particles.

The Fourier transform of the OZ equation becomes the algebraic equation

h̃(k) = c̃(k) + ρh̃(k)c̃(k) (2.16)

and the Fourier transformed correlation functions which are denoted by the tilde,
are related to the static structure factor S(k) through

S(k) = 1 + ρh̃(k) =
1

1 − ρc̃(k)
.

The static structure factor can be measured by scattering experiments and rep-
resents a very important link to compare theory and experiments.

The total correlation function is related to the radial distribution function

g(r) that is defined for a homogeneous system as

g(r) =
1

4πr2ρN

〈
∑

i6=j
δ(r − rij

〉

via
h(r) = g(r) − 1.

2.2.1 Integral Equation Theory

In general h(r) and c(r) are not known and the OZ equation alone is not sufficient
for determining both correlation functions. Another relation between h(r), c(r),
and the potential Φ(r) is required. Such a relation, F [c, h,Φ; r] = 0, is called
closure relation. The knowledge of the exact closure relation is equivalent to
knowing the partition function of the system which is only possible for simple
systems like the ideal gas. Various levels of simplification can be used to derive
closures from exact results of statistical mechanics.

In this work three closures were used to calculate the thermodynamic proper-
ties of the liquid state: the mean spherical approximation (MSA), the hypernetted

chain approximation (HNC), and the Rogers-Young closure (RY) [38].

• MSA Closure:The closure reads

g(r) = 0 r < σ
c(r) = −βΦ(r) r > σ,

(2.17)
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for a hard core system with hard core diameter σ. If there is no hard core
then the MSA closure becomes

c(r) = −βΦ(r) ∀r. (2.18)

In that case c(r) is explicitly known and h(r) can be calculated by Fourier
transforming c(r) to c̃(k), inserting it in equation (2.16) and transforming
h̃(k) back to h(r).

• HNC Closure: The HNC closure has the form

h(r) = e−βΦ(r)+h(r)−c(r) − 1. (2.19)

• PY Closure: The Percus-Yevick closure (PY) reads

c(r) =
(
e−βΦ(r) − 1

)
(h(r) − c(r) + 1) .

• RY Closure: The RY closure interpolates between the PY closure relation
and the HNC closure to achieve thermodynamic consistency between two
thermodynamic routes (see below). The functional form of this closure
reads

c(r) = e−βΦ(r)

(

1 +
e(h(r)−c(r))f(r) − 1

f(r)

)

− h(r) + c(r) − 1 (2.20)

and the mixing function f(r) is usually chosen to be

f(r) = 1 − e−αr α ∈ [0,∞).

In the limit α → ∞ the RY closure becomes the HNC closure and in the
limit α→ 0 the PY closure is obtained. Independently of α the RY closure
shows PY-like behavior for small distances and HNC-like behavior for large
distances. The mixing parameter is chosen so that the compressibility cal-
culated via two different thermodynamic routes coincide (for more details
see sections 2.2.2 and 2.2.3).

2.2.2 Thermodynamic Inconsistency

The thermodynamic properties of the fluid can be calculated from the correlation
functions via three different routes: the virial, the compressibility, and the energy
route. If the exact correlation functions were known, the results of all three routes
would coincide. If the correlation functions are obtained with closure relations
that contain approximations, then the results differ. This phenomenon is known
as thermodynamic inconsistency.
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From statistical mechanics one can derive the following three equations of
state:

• Virial Route: The pressure P v can be calculated with the virial equation

βP v

ρ
= 1 − 2π

3
ρ

∫ ∞

0

dr r3g(r)
dβΦ(r)

dr
.

• Energy Route: A thermodynamic quantity can be considered the sum
of an ideal part (“id”) that corresponds to the thermodynamic property
of an ideal system which can be calculated analytically, and an excess part
(“ex”) that stems from the pair interactions and usually has to be calculated
numerically. The excess internal energy U ex is obtained from the energy
equation

U ex

N
= 2πρ

∫ ∞

0

dr r2g(r)Φ(r).

The excess free energy F ex can then be calculated with

βF ex

N
=

∫ β

0

dβ ′U ex(β ′).

From this expression the excess pressure is obtained via

P e,ex = −
(
∂F ex

∂V

)

T

.

• Compressibility Route: The isothermal compressibility κT can be cal-
culated by the compressibility equation

ρkBTκT = 1 + ρ

∫

dr(g(r) − 1) = 1 + ρh̃(k = 0)

where

κT = − 1

V

(
dV

dP c

)

T

is the isothermal compressibility. Integration of this relation with respect
to the volume leads to the pressure P c.

2.2.3 Numerical Algorithms

2.2.3.1 Broyles’ Algorithm

There are several algorithms that are used to solve the OZ equation along with a
closure relation for the correlation functions. In this work the Broyles’ algorithm

was used [39].

35



Instead of the pair of correlation functions c(r) and h(r) rather c(r) and the
indirect correlation function γ(r) = h(r) − c(r) are used in this algorithm. The
Fourier transform of the OZ equation reads in terms of those functions

γ̃(k) =
ρc̃2(k)

1 − ρc̃(k)
(2.21)

and the closure relation is solved for c(r):

c(r) = G[γ(r),Φ(r)]. (2.22)

The iterative algorithm works as follows:

1. Set the iteration index i to 0 and make an initial guess for c(i)(r). Usually,
either a previous solution for c(r) or the MSA expression is used.

2. Fourier transform c(i)(r) to obtain c̃(i)(k).

3. Use equation (2.21) to obtain γ̃(i)(k).

4. Make an inverse Fourier transform to obtain γ(i)(r).

5. Use equation (2.22) to obtain c(i+
1
2
)(r)

6. Obtain c(i+1)(r) by mixing c(i)(r) and c(i+
1
2
)(r):

c(i+1)(r) = λc(i+
1
2
)(r) + (1 − λ)c(i)(r) 0 < λ 6 1

7. Check for convergence: If

max |c(i+1)(r) − c(i+1)(r)| < ε

then the iteration is finished. If not, return to step 2.

The choice of the mixing parameter λ has a significant impact on the convergence
behavior of the algorithm. A smaller value of λ leads to a slower yet more ensured
convergence. If the correlation functions start to increase to extremely high values
(i.e. ∼ 1 × 106), then a complete restart is necessary with a reduced value of λ.
The parameter ε is typically of order ε = 1 × 10−8.

2.2.3.2 Achieving Thermodynamic Consistency with the RY Closure

Thermodynamic consistency between the virial route and the compressibility
route is achieved by modifying the parameter α in the RY closure (see section
2.2.1). The function ∆κ(α) is defined as the difference of the isothermal com-
pressibility κT calculated via the two routes:

∆κ(α) = ρkBTκ
v
T (α) − ρkBTκ

c
T (α),
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with
ρkBTκ

c
T (α) = 1 + ρh̃(k = 0; ρ, α),

and

ρkBTκ
v
T (α) =

1
∂[βP v(α)]

∂ρ

.

The derivative of the pressure with respect to the density can be calculated via

∂[βP v(α)]

∂ρ
= 1 − 4π

3
ρ

∫ ∞

0

dr r3dβΦ(r)

dr
g(r; ρ, α)

−2π

3
ρ2

∫ ∞

0

dr r3dβΦ(r)

dr

∂g(r; ρ, α)

∂ρ

−2π

3
ρ2

∫ ∞

0

dr r3dβΦ(r)

dr

∂g(r; ρ, α)

∂α

dα

dρ
. (2.23)

The last term in equation (2.23) above is usually omitted as it is much smaller
than the other two terms and the neglect of the density dependence of αmakes the
calculations much easier. The derivative ∂g(r; ρ, α)/∂ρ is calculated numerically:

∂g(r; ρ, α)

∂ρ
∼= g(r; ρ+ δρ, α) − g(r; ρ, α)

δρ
.

The numerical implementation of the algorithm works as follows:

1. Choose a starting value of α(0) and set the iteration index i to 0. Usually
α = 1 or a known solution for similar system parameters is used.

2. Calculate g(r; ρ, α(i)), g(r; ρ+δρ, α(i)), g(r; ρ, α(i)+ε), and g(r; ρ+ δρ, α(i) + ε).
The value of δρ is typically δρσ3 ∼ 1 × 10−5

3. Calculate ∆κ(α(i)) and ∆κ(α(i) + ε).

4. If ∆κ(α(i)) < ς then the algorithm is finished. Typically, ς ∼ 1 × 10−6.

5. Set α(i+1) = α(i) + ε∆κ(α(i))/
[
(∆κ(α(i) + ε) − ∆κ(α(i))

]
and return to step

2.

It is possible that for no positive α-value consistency between the two routes can
be achieved. In this case the RY closure cannot be used for that particular state
of the liquid.

2.2.4 Calculation of the Free Energy

To calculate the full phase diagram of a system that includes both the liquid and
the solid phase, one must be able to calculate the free energy of the liquid from
the correlation functions. Some of the pair potentials that are considered in this

37



work are explicitly state-dependent and this fact has to be taken into account
when calculating of the free energy F (ρ) [40]. The ideal free energy per volume
fid(ρ) is given by

βfid(ρ) = ρ(log ρ− 1) + ρ log Λ3,

and the excess part per volume fex is obtained by evaluating

βfex(ρ) =
1

2
ρ2

∫

dr βΦ(r)

∫ 1

0

dλ g(λ)(r; ρ),

where g(λ)(r; ρ) represents the radial distribution function for the scaled pair
potential λΦ(r).

2.2.5 Phase Transitions

The coexistence of two phases is defined by thermal, mechanical, and chemi-
cal equilibrium which translates in the equality of temperature, pressure, and
chemical potential. As all calculations were performed at constant temperature
only the last two conditions are important. The pressure P and chemical poten-
tial µ can be calculated in the following way from the free energy per volume
F ∗(ρ) = F (ρ)/V :

P = −∂F
∂V

= −∂(F
∗(ρ)V )

∂V

= −F ∗(ρ) − V
∂F ∗(ρ)

∂ρ

∂ρ

∂V
︸︷︷︸

−N/V 2

= ρ
∂F ∗(ρ)

∂ρ
− F ∗(ρ)

µ =
∂F

∂N
=
∂(F ∗(ρ)V )

∂N

= V
∂F ∗(ρ)

∂ρ

∂ρ

∂N
︸︷︷︸

1/V

=
∂F ∗(ρ)

∂ρ
.

The equality of pressure and chemical potential between two phases 1 and 2 can
be interpreted geometrically as tangent to both F ∗

1 (ρ) and F ∗
2 (ρ) (double tangent

construction, see figure 2.1).
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Figure 2.1: Schematic representation of the double tangent construction close to
the phase transition. The free energies of the two coexisting phases are denoted
by F ∗

i (ρ).
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Chapter 3

Systems

The systems that were considered in this thesis belong to the class of soft matter.
These materials are composed of mesoscopic particles (typical size 1nm–1µm)
that are dispersed in a solvent whose constituent particles are much smaller in
size. Such systems are also known as complex fluids or colloidal dispersions.
These systems have a great diversity, for a general overview see [24, 25, 26].

Calculations for three different types of systems were performed in this work:
Ionic microgels which are covered in more detail in section 3.1, star polymers (see
section 3.2), and the Gaussian core model and its generalization (see section 3.3).

3.1 Ionic Microgels

Microgels [41] are cross-linked latex particles that are swollen by a good sol-
vent. Depending on their monomer- and cross-linking density they can behave
like hard-sphere particles [42] or soft colloids [43]. They are used as rheologi-
cal control agents in automotive surface coatings and show promise in printing
applications. Additionally, they might be used as drug delivery systems if they
can be designed to swell in close proximity to the target sites in the body. The
most common constituent polymer of microgels is poly(N -isopropylacrylamide)
(PNIPAM) which produces microgels that swell in water (see figure 3.1). Other
polymers like polyacrylic acid, polystyrene, or starch are also used. The poly-
mers of an ionic microgel carry ionizable groups so that the microgel carries a
net charge in the solution.

An effective interaction potential that does not depend on the less relevant
degrees of freedom (like fluctuations of the macromolecules, or the coordinates
and momenta of the counterions and solvent molecules) facilitates the calculations
enormously for theoretical purposes. The effective Hamiltonian Heff has the form

Heff =
N∑

i=1

Pi

2m
+
∑

i<j

Φeff(|ri − Rj|) + E0,
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Figure 3.1: The structural formula of Isopropylacrylamide.

where Pi denotes the momentum and Ri the position of the center of the i-th
microgel particle, and N is the total number of microgel particles. The term
E0 is usually called volume term because it does not depend on the positions
or momenta of the microgels but on their number density ρ. This term will be
discussed below.

The effective Hamiltonian Heff fulfills the relation

Z =
〈
e−βH

〉
=
〈
e−βHeff

〉

m
,

where H represents the Hamiltonian of the full system, including counterions and
solvent molecules, 〈. . . 〉 denotes a canonical trace, and the subscript m refers to
a trace with respect to the coordinates and momenta of the microgels only.

Within the formalism of linear response theory one can approximately calcu-
late the effective potential (for details see [44]). It has the following functional
form:

βΦeff(r) =







Z2λB

σ

[
24
κ2σ2 − 72

κ3σ3

(

e−κσ
(
1 + 2

κσ

)2
+
(
1 − 4

κ2σ2

))]

r = 0

Z2λB

σ

[
24
κ2σ2 + r

σ

(
144
κ4σ4 − 36

κ2σ2

)
+ r3

σ3
12
κ2σ2

− 72
κ4σ4

σ
r

(

e−κσ
(
1 + 2

κσ

)2
sinh(κr) +

(
1 − 4

κ2σ2

)
(1 − e−κr)

)]

r 6 σ

Z2λB

σ
144
κ4σ4

(

cosh(κσ/2) − 2 sinh(κσ/2)
κσ

)2
σ
r
e−κr r > σ.

(3.1)
In this equation Z is the net charge number of the microgels (possible Manning-
condensed counterions have been subtracted), σ is the diameter of a microgel
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particle, κ is the inverse Debye screening length, namely,

κ =
√

4πZρλB,

and λB is the Bjerrum length that denotes the distance at which the electrostatic
interaction between two elementary charges roughly equals the thermal energy:

λB =
e2

εkBT
,

where e denotes the elementary charge and ε the dielectric constant of the solvent.
The Bjerrum length has the value λB = 0.714nm for water at room temperature
and is kept fixed at that value in this work. The resulting effective potential
shows an explicit density dependence through κ. It is visualized in the figures
3.2 and 3.3.
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(a)

Figure 3.2: The effective interaction potential between charged microgels for fixed
charge Z = 200 and varying density.

The volume term E0 contains contributions from the counterion degrees of
freedom and is given by:

E0 = ZNkBT
[
ln(ZρΛ3) − 1

]
−N

6Z2e2

εσ

{

1

5
− 2

κ2σ2
+ (3.2)

6

κ3σ3

[

1 − 4

κ2σ2
+

(

1 +
4

κσ
+

4

κ2σ2

)

e−κσ
]}

− ZN
kBT

2
,
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Figure 3.3: The effective interaction potential between charged microgels for fixed
density ρσ3 = 4 and varying Z.

where Λ is the thermal de Broglie wavelength. Though the volume term has no
influence on the correlation functions of the microgel particles it is an important
contribution to the thermodynamics of the system. The dimensionless volume
term βσ3E0/V is depicted in figure 3.4.

This model neglects the steric repulsion that stems from the overlap between
the monomers of two interacting microgels. If the microgels are considered as
homogeneous spheres with diameter σ and monomer volume fraction φ the steric
free energy of a single microgel particle is given by [45]

F
(1)
st =

V0

vc
kBT

(
1

2
− χ

)

φ2,

where V0 = πσ3/6 is the volume of a microgel particle, vc is the volume of a
monomer, and χ characterizes the solvent quality (0 < χ < 1/2 represents a
good solvent and χ > 1/2 a poor one). The generalization of the Flory-Huggins
theory to two overlapping microgels with a center-to-center distance r < σ leads
to [31]

F
(2)
st (r) =

2V0

vc
kBT

(
1

2
− χ

)

φ2

[

1 − 3

2

( r

σ

)

+
1

2

( r

σ

)3
]

+ 2F
(1)
st .

Therefore the steric interaction potential, Φst(r) = F
(2)
st (r) − F

(2)
st (∞), reads

Φst(r) =

{

α
[

1 − 3
2

(
r
σ

)
+ 1

2

(
r
σ

)3
]

r 6 σ

0 r > σ.
(3.3)
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Figure 3.4: The dimensionless volume term of charged microgels for varying Z.

The pre-factor α is given by

α =
2V0

vc
kBT

(
1

2
− χ

)

φ2.

Inserting typical values for PNIPAM microgels yields an estimate for the range
of α (

1

2
− χ

)

. α . 200

(
1

2
− χ

)

,

with 0 6 χ 6 1/2. The steric interaction potential is visualized in figure 3.5.
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Figure 3.5: The steric interaction potential of microgels.
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3.2 Star Polymers

Star polymers are particles of mesoscopic size, where f linear polymer chains are
anchored on a common core. The number of “arms” f is called functionality of
the star polymer. The finite size of the core can be neglected if the chains are
much longer than the diameter of the core. Similar to the procedure in the above
section 3.1, an effective interaction potential Φsp(r) between two star polymer
particles can be obtained that depends on the distance between their centers
only [46, 47]. For f & 10 it is given by (see figure 3.6)

βΦsp(r) =
5

18
f 3/2







− log r
σ

+ 1
1+

√
f/2

r 6 σ

σ
r(1+

√
f/2)

e−
√

f

2σ
(r−σ) r > σ,

(3.4)

where σ is the corona diameter. The interaction diverges only logarithmically at
the origin so this system is also considered to be a soft one.
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Figure 3.6: The effective interaction potential of star polymers for varying func-
tionality f .

3.3 The Gaussian Core Model and its General-

ization

The Gaussian core model (GCM) approximates the effective interaction between
the centers of mass of two polymer chains. The Flory-Krigbaum potential [48]

47



that describes the exact interaction potential between polymer chains is given by

βΦFK(r) = N2
v2
seg

vsolv

(
3

4πR2
g

)3/2

(1 − 2χ)e
− 3r2

4R2
g ,

where N denotes the degree of polymerization (the number of monomers of the
polymer), vseg is the volume of a monomer segment, vsolv the volume of a solvent
molecule, Rg the radius of gyration of the chains, and χ characterizes the quality
of the solvent. The interaction potential of the GCM reads

ΦGCM(r) = εe−(r/σ)2 , (3.5)

with an energy scale ε and a length scale σ. The thermodynamics and the phase
behavior of the GCM have already been studied [49, 50].

The generalized Gaussian core model (GGCM) [51] is a generalization of the
GCM and is characterized by the interaction potential

ΦGGCM−n(r) = εe−(r/σ)n

, (3.6)

where σ defines the length scale and ε the energy scale. The parameter n governs
the steepness of the repulsion: n = 2 equals the GCM and in the limit n → ∞
the interaction potential of the penetrable sphere model (PSM) is obtained:

ΦPSM(r) =

{
ε r 6 σ
0 r > σ.

Figure 3.7 shows the potential of the three models.
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Figure 3.7: The interaction potential of the Gaussian core model (GCM), the pen-
etrable sphere model (PSM), and the generalized Gaussian core model (GGCM)
for n = 4, 10, 100.
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Chapter 4

Results

4.1 Freezing

4.1.1 Star Polymers

The first test of the utility of the GA was checking the zero-temperature phase
diagram of star polymer solutions that had already been published [3] (reproduced
in figure 4.1). That phase diagram was determined by comparing the lattice
sum of 3 different crystal structures - bco, diamond, and A15 (for details see
appendix A). The first calculation with the GA was performed with 1,2, and 8
basis particles using fitness function (1.10). The GA confirmed the fcc structure
for low densities and the diamond structure for 2 . ρσ3 . 2.6 but predicted a
trigonal structure instead of bco for 1.3 . ρσ3 . 1.9. A more detailed calculation
with a bco, trigonal and diamond structure as candidates showed that the trigonal
structure has indeed a lower free energy than the bco one (see figure 4.2). Instead
of the bco structures proposed in [3] for densities ρσ3 & 2.6 the GA predicts a
simple hexagonal lattice and then a hexagonal close-packed structure that both
have lower free energies than the respective bco structure. The phase diagram
calculated with the GA is plotted in figure 4.3.

An obvious flaw of the calculations with the GA are the problems near the
phase transition. Close to the intersection of the free energy curves of the two
competing structures the respective values of the fitness function are almost iden-
tical and both structures propagate in the population. As a consequence of the
random elements in the algorithm the final crystal structure was either one of the
two structures or a different one with a free energy value between the one of the
two competing structures (see figure 4.4). This problem can easily be overcome
by calculating the free energies close to the phase boundaries, using the structures
predicted by the GA as candidates.

Another shortcoming is the fact that the GA does neither find any structure
that has a lower free energy than the A15 structure, nor the A15 structure itself
for densities ρσ3 & 4 which led to the conjecture that indeed the A15 structure is
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the stable crystal structure for high densities. Thus the zero-temperature phase
diagram was calculated using fcc, trigonal, diamond, hexagonal, hcp, and A15 as
candidate structures (see figure 4.5).
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Figure 4.1: The zero-temperature phase diagram of star polymers in reproduced
from [3]. The packing fraction is denoted by η = πρσ3/6 and the functionality of
the star polymers by f .

The inability of the GA to find the A15 structure at high densities is most
likely due to the high number of local minima near the global minimum. The
values of the reduced free energy become quite large in these density ranges
(typically ∼ 1500) and the fitness function (1.10) barely discriminates values
that differ only slightly (∼ ±5). To improve the performance of the GA the
fitness function (1.11) was used with different functional forms for g(i):

g(i) = 1 + ai a ∈ { 1

10
,

2

10
,

3

10
}.

With this fitness function the behavior at low generation number i is almost
identical to the one of (1.10) while small changes in the free energy have a more
significant impact in later generations (see figure 4.6) With this enhancement the
GA was able to find a structure with eight basis particles that has a lower free
energy value than the one of an A15 structure (see figure 4.7). The structure in
these cases is a single-face centered monoclinic lattice with eight basis particles
(see figure 4.8).
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Figure 4.2: The free energy per volume as a function of density of a bco, trigonal,
and diamond structure for star polymers with f = 40.
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Figure 4.3: The zero-temperature phase diagram of star polymers (functionality
f vs. density) calculated with the genetic algorithm. The Symbols indicate the
respective stable crystal structure.
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Figure 4.4: The dimensionless free energy per particle as a function of density of
star polymers with f = 40 for a fcc structure, a trigonal structure, and calculated
with the genetic algorithm close to the transition from fcc to trigonal.
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Figure 4.5: The zero-temperature phase diagram (functionality f vs. density) of
star polymers calculated using fcc, trigonal, diamond, hexagonal, hcp, and A15
structures as candidates. The lines denote the points where the free energy curves
intersect.

54



0 50 100 150 200
i

-0.4

-0.3

-0.2

-0.1

0

∆re
l f(

i)

a=0.1
a=0.2
a=0.3

Figure 4.6: The relative difference of the fitness between a structure with βF/N =
1495 and βF/N = 1505 calculated with the fitness function (1.11) for three
different values of a. The free energy of the reference structure was assumed to
have a value of 1500.
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Figure 4.7: The dimensionless free energy per particle as a function of density
for a hcp structure, an A15 structure, and calculated with the GA using three
different fitness functions.
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Figure 4.8: Unit cell of the crystal structure of a star polymer with f = 100 and
ρσ3 = 5 found with the GA. The underlying Bravais lattice is single-face centered
monoclinic.
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4.1.2 Microgels

4.1.2.1 Predictions

The phase behavior of loosely cross-linked microgels with low monomer density,
for which the interaction potential (3.1) was derived, was yet unknown, so the
investigation started with the calculation of the zero-temperature phase diagram
via the genetic algorithm (figure 4.9) to find the possible candidates. The free
energy of the solid was calculated via lattice sums (see section 2.1.1)

0 1 2 3 4 5 6

ρσ3

100

200

300

400
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600

Z

fcc bcc hexagonal trigonal bco

Figure 4.9: The zero-temperature phase diagram (charge number Z vs. density)
of an ionic microgel with σ=100nm calculated with the genetic algorithm. The
symbols denote the respective stable crystal structure.

It was unclear, whether taking into account the influence of entropy on the
free energy would have a significant impact on the phase diagram of the solids for
T > 0. To investigate this phenomenon, the free energy was calculated via the
Einstein model (see section 2.1.2) and the localization parameter α was included
in the individual to optimize it at the same time as the lattice parameters. The
calculations showed that the sequence of crystal structures as a function of density
stays the same but the phase borders are slightly shifted and a narrow bco-region
shows up between the bcc- and the hexagonal region (see figure 4.10).

In both cases the algorithm has problems close to the phase boundaries so in
order to obtain their exact locations additional calculations using the predicted
structures as candidates are required (see figures 4.12 and 4.13).

The Hansen-Verlet criterion [52] predicts a liquid-solid phase transition where
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Figure 4.10: The phase diagram of an ionic microgel (charge number Z vs. den-
sity) with σ=100nm calculated with the genetic algorithm using the Einstein
model to calculate the free energy. The crystal structures in the points labeled
“undefined” vary rapidly with the density, so no single structure can be assigned
to this region. This proved to be no problem since the system was liquid in this
region.

the main peak of the structure factor S(k) reaches a value of ∼ 2.85. The OZ-
equation was solved with the HNC closure relation (2.19) and the structure factor
was calculated from the correlation functions. The value of the main peak of
S(k) can be seen in figure 4.11. According to this criterion a re-entrant melting
transition is predicted at densities 1 & ρσ3 & 2.5 and 150 & Z & 250. Re-
entrant melting, where the liquid freezes upon compression but becomes liquid
again upon further compression, is one scenario that can happen in soft systems
(for more details see section 4.3). The system should be frozen for Z & 300
everywhere except for very low densities. The increase of the first peak of the
structure factor upon compression is typical for all substances but the subsequent
decrease only happens in soft systems and hints at a re-entrant melting process.
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Figure 4.11: The value of the main peak of the structure factor S(k) for microgels
calculated with the HNC closure as a function of charge number Z and density.
The blue line marks the parameter values where S(k) = 2.85.
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4.1.2.2 Liquid-Solid Phase Diagram

The full liquid-solid phase diagram of microgels was determined by calculating
the free energy of the solid structures predicted by the GA within the Einstein
approximation and the free energy of the liquid using both the HNC and the
RY closure. The phase diagrams calculated with the HNC closure (figure 4.12)
and calculated with the RY closure (figure 4.13) look qualitatively similar. The
most notable quantitative difference is the location of the liquid-fcc-bcc-liquid
transition. The comparison with the prediction from the Hansen-Verlet criterion
shows a good agreement for low densities but it fails to predict the double re-
entrant melting at ρσ3 ∼ 3.

The coordination number of the crystal structures decrease with increasing
density from twelve (fcc), eight (bcc), to two (hexagonal, trigonal, and bco).
The correlation functions of the liquid calculated close to the transitions show a
precursor of these values. The number of next neighbors nn.n. in a liquid can be
calculated via

nn.n. = 4πρ

rc∫

0

r2g(r)dr,

where rc denotes the position of the first minimum of g(r). The correlation
functions were calculated with the HNC closure. The following state points were
chosen to calculate these values:

• ρσ3 = 0.3, Z = 200, near the liquid-fcc transition (see figure 4.14). The
point is marked by “(a)” in figure 4.12. The number of neighbors is ap-
proximately twelve, i.e. the number of next neighbors in a fcc lattice.

• ρσ3 = 2.3, Z = 200, near the bcc-liquid transition (see figure 4.15). The
point is marked by “(b)” in figure 4.12. The number of neighbors is ap-
proximately 14, i.e. the sum of the first two next neighbors shells in a bcc
lattice which are very close together (eight particles at distance 3

√

2/ρ
√

3/2

and six particles at distance 3
√

2/ρ ).

• ρσ3 = 3.2, Z = 400, near the liquid-hexagonal transition (see figure 4.16).
The point is marked by “(c)” in figure 4.12. Here the location of the first
minimum is hard to find due to the shoulder in g(r) but the next neighbor
number of two in the hexagonal lattice is reasonably well predicted.

• ρσ3 = 4.8, Z = 520, near the trigonal-liquid transition (see figure 4.17).
The point is marked by “(d)” in figure 4.12. In this case the first minimum
is again pronounced and the number of neighbors in the liquid is two as in
the trigonal lattice.
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Figure 4.12: Liquid-solid phase diagram (charge number Z vs. density) of micro-
gels with σ = 100nm. The properties of the liquid phase were calculated with the
HNC closure and the properties of the solid phase with the Einstein model. The
circles mark the points where the number of next neighbors were investigated.
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Figure 4.13: Liquid-solid phase diagram (charge number Z vs. density) of micro-
gels with σ = 100nm. The properties of the liquid were calculated with the RY
closure and the properties of the solid phase with the Einstein model.
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Figure 4.14: Pair correlation function g(r) and number of neighbors nn.n.(rc) of
a microgel with ρσ3 = 0.3, Z = 200, and σ = 100nm. The correlation functions
were calculated with the HNC closure.
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Figure 4.15: Pair correlation function g(r) and number of neighbors nn.n.(rc) of
a microgel with ρσ3 = 2.3, Z = 200, and σ = 100nm. The correlation functions
were calculated with the HNC closure.
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Figure 4.16: Pair correlation function g(r) and number of neighbors nn.n.(rc) of
a microgel with ρσ3 = 3.2, Z = 400, and σ = 100nm. The correlation functions
were calculated with the HNC closure.
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Figure 4.17: Pair correlation function g(r) and number of neighbors nn.n.(rc) of
a microgel with ρσ3 = 4.8, Z = 520, and σ = 100nm. The correlation functions
were calculated with the HNC closure.
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4.1.2.3 Lindemann Ratio

The Lindemann parameter [53] L is defined as the root-mean square displacement
of a particle from a lattice site, due to the harmonic oscillations, over the nearest-
neighbor distance a0:

L =

√

〈r2〉ρ
a0

,

with
〈
r2
〉

ρ
=

∫
dr r2ρ(r)
∫

dr ρ(r)
.

For the density (2.10) this expression becomes

〈
r2
〉

ρ
=

3

2α
.

The Lindemann ratio of the crystals encountered in the phase diagrams was
calculated for Z = 300 (figure 4.18), Z = 350 (figure 4.19), Z = 400 (figure
4.20), Z = 450 (figure 4.21), Z = 500 (figure 4.22), Z = 550 (figure 4.23), and
Z = 600 (figure 4.24). The microgel diameter was fixed at σ = 100nm. Usually, a
Lindemann ratio of 10 to 13% is considered an indication of a melting transition.
However, this criterion was only used for systems that show a steep repulsion
near overlap, accordingly its validity for soft systems is not granted.

Similar to the predictions of the Hansen-Verlet criterion the Lindemann ratios
predict the first re-entrant melting but fail at the second one. The crystals are
delocalized very strongly and the stable structures are not the ones with the
lowest Lindemann ratio. Instead, the crystal structure that has the lowest value
of L aside from fcc and bcc is the stable one.
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Figure 4.18: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 300 and σ = 100nm.
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Figure 4.19: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 350 and σ = 100nm.
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Figure 4.20: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 400 and σ = 100nm.
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Figure 4.21: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 450 and σ = 100nm.
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Figure 4.22: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 500 and σ = 100nm.
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Figure 4.23: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 550 and σ = 100nm.
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Figure 4.24: Lindemann ratio of fcc, bcc, hexagonal, trigonal, and bco crystals
of microgels with Z = 600 and σ = 100nm.
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4.1.2.4 Steric Interaction

The inclusion of the steric interaction (3.3) between the microgel particles will
have no impact on the phase behavior for high values of Z as the interaction
potential that stems from the electrostatic interactions scales with Z2 and the
maximum value of the steric interaction is limited to α . 200. The additional
repulsion from the steric interaction should stabilize the solid and decrease the
value of Z where re-entrant melting occurs first. A sufficiently large value of α
should lead to two separate fluid phases. The calculation of the phase diagrams
shows that these effects indeed occur (see figures 4.25, 4.26, and 4.27)
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Figure 4.25: Low density part of the phase diagram of an ionic microgel (charge
number Z vs. density) including steric interactions. The system parameters are
σ = 100nm and α = 50. The properties of the liquid phase were calculated with
the HNC closure.
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Figure 4.26: Low density part of the phase diagram of an ionic microgel (charge
number Z vs. density) including steric interactions. The system parameters are
σ = 100nm and α = 70. The properties of the liquid phase were calculated with
the HNC closure.
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Figure 4.27: Low density part of the phase diagram of an ionic microgel (charge
number Z vs. density) including steric interactions. The system parameters are
σ = 100nm and α = 100. The properties of the liquid phase were calculated with
the HNC closure.
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4.2 Layer Transition

The aim of the investigations of layered systems was to study the formation of
three-dimensional lattices out of a few layers as well as the transition from (n)
to (n + 1) layers. The constituent particles of the system were chosen to be
polymers with GCM interaction potential (3.5) because the phase behavior of
the bulk system is already known [49]: the stable crystal structures of the three-
dimensional system are fcc and bcc. The zero-temperature solid phase diagram
of the bulk system is as follows:

• fcc for 0 6 ρσ3 < 0.1794

• phase coexistence between fcc and bcc for 0.1794 6 ρσ3 6 0.1798

• fcc for 0.1798 < ρσ3

Both fcc and bcc lattices can be realized as stacked two-dimensional lattices,
which will be shown in the following paragraphs:

fcc lattice

• Square: The two-dimensional lattice is a square lattice with a lattice pa-
rameter of a and each layer is displaced by (a/2, a/2). If the distance be-
tween two layers is a/

√
2 then the resulting three-dimensional lattice built

up by an infinite number of layers is a fcc lattice with lattice constant
√

2a
(see figure 4.28).

• Rectangular: The two-dimensional lattice is a rectangular lattice with
the lattice parameters a and a/

√
2 and each layer is displaced by half of

the diagonal. If the distance between two layers is a/
√

8 then the resulting
three-dimensional lattice built up by an infinite number of layers is a fcc
lattice with lattice constant a (see figure 4.29).

• Hexagonal: The two-dimensional lattice is a hexagonal lattice with lattice
parameter a and each layer is displaced by (a/2, a/

√
12). If the distance

between two layers is
√

2/3a then the resulting three-dimensional lattice
built up by an infinite number of layers is a fcc lattice with lattice constant√

2a (see figure 4.30).

bcc lattice

• Square: The two-dimensional lattice is a square lattice with a lattice pa-
rameter of a and each layer is displaced by (a/2, a/2). If the distance
between two layers is a/2 then the resulting three-dimensional lattice built
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d aa

Figure 4.28: The representation of a fcc lattice by layered square lattices. The
particles in different layers have different colors and the two-dimensional unit cell
is drawn in red.

up by an infinite number of layers is a bcc lattice with lattice constant a
(see figure 4.31).

• Centered Rectangular: The two-dimensional lattice is a centered rectan-
gular lattice with lattice parameters a and

√
2a and each layer is displaced

by a/
√

2 in the direction of the longer primitive vector. If the distance be-
tween two layers is a/

√
2 then the resulting three-dimensional lattice built

up by an infinite number of layers is a bcc lattice with lattice constant a
(see figure 4.32).

• Hexagonal: The two-dimensional lattice is a hexagonal lattice with lattice
parameter a and each layer is displaced by (a/2, a/

√
12). If the distance

between two layers is a/
√

24 then the resulting three-dimensional lattice
built up by an infinite number of layers is a bcc lattice with lattice constant
a/

√
2 (see figure 4.33).

The structures that are expected are summarized in table 4.1.
The layers are assumed to be confined by hard walls which are separated by a

distance D and the first and last layer are located directly in the walls (for details
see 1.3.1.3). The calculations were carried out at fixed bulk number density ρσ3
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d

Figure 4.29: The representation of a fcc lattice by layered rectangular lattices.
The particles in different layers have different colors and the two-dimensional unit
cell is drawn in red.

and wall distance D. The wall distance was increased from σ to 10σ in intervals
of σ/2. The following numbers of layers were considered: nl ∈ {2, 3, 4, 5, 6, 7, 8}.
The free energy was approximated via lattice sums and all results were obtained
by the GA with a subsequent hill climbing search algorithm.

In the following sections the results are presented in detail for densities 0.1,
0.2, and 0.5. To identify the bulk crystal structure the layered arrangement is
more similar to, the respective ratio of layer distance d to lattice constant a is
calculated and compared to the values in table 4.1.
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a

d

Figure 4.30: The representation of a fcc lattice by layered hexagonal lattices. The
particles in different layers have different colors and the two-dimensional unit cell
is drawn in red.

lattice layer layer
2-D structure parameters displacement distance 3-D structure

square a (a/2, a/2) d/a = 1/
√

2 ∼= 0.71 fcc
square a (a/2, a/2) d/a = 1/2 = 0.5 bcc

rectangular a, a/
√

2 (a/2, a/
√

8) d/a = 1/
√

8 ∼= 0.35 fcc
centered

rectangular a,
√

2a (a/
√

2, 0) d/a = 1/
√

2 ∼= 0.71 bcc

hexagonal a (a/2, a/
√

12) d/a =
√

2/3 ∼= 0.82 fcc

hexagonal a (a/2, a/
√

12) d/a = 1/
√

24 ∼= 0.20 bcc

Table 4.1: The summary of the parameters of the expected layered arrangements.
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Figure 4.31: The representation of a bcc lattice by layered square lattices. The
particles in different layers have different colors and the two-dimensional unit cell
is drawn in red.
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Figure 4.32: The representation of a bcc lattice by layered centered rectangu-
lar lattices. The particles in different layers have different colors and the two-
dimensional unit cell is drawn in red.
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Figure 4.33: The representation of a bcc lattice by layered hexagonal lattices.
The particles in different layers have different colors and the two-dimensional
unit cell is drawn in red.
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4.2.1 Layer transition for ρσ3 = 0.1

At a density of ρσ3 = 0.1 the bulk system freezes into a fcc lattice. The number
of layers for the stable layered arrangement ranges from two (for D = σ) to six
(for D = 10σ). Even though the distance between the layers are free parameters,
the GA predicts that the layers are located equally spaced between the top and
the bottom layer. The free energy of the layered system as a function of wall
distance can be seen in figure 4.34 and the details of the layered configurations
are presented in tables 4.2, 4.3, and 4.4.

At low distances D . 3.0σ the stable layered arrangement is characterized
by two layers. First the two-dimensional Bravais lattice is rectangular, which is
then followed by a square lattice upon increasing wall distance. The increasing
ratio of the two rectangular sides, b/a, could hint at a continuous transformation
from the rectangular to the square lattice which could be verified by additional
calculations. For wall distances D & 2.5σ the two layers are arranged in a
hexagonal lattice. In all cases, the parameters of the equilibrium structures are
closer to a fcc lattice than to a bcc lattice.

As the wall distance increases, the area density in the layers increases and
the insertion of a new layer lowers this value. Therefore more and more layers
appear in the stable arrangement. The respective stable arrangement can be seen
in figure 4.34: it is the one with the lowest free energy. With two exceptions,
the first two-dimensional Bravais lattice is square when the respective number is
reached, then a transition to a hexagonal lattice occurs, and finally an additional
layer is formed and the two-dimensional lattice is square again. The parameters
of all these configurations indicate a fcc-like structure. The two exceptions are
centered rectangular lattices at wall distances 6σ and 8σ. In those cases the
parameters indicate a bcc-like structure.

Aside from two rogue results the layers are arranged in a fashion close to the
three-dimensional lattice of the bulk system.
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Figure 4.34: The free energy per particle βF/N of a layered system with bulk
number density ρσ3 = 0.1 as a function of wall distance D/σ. The different
curves correspond to a different number of layers nl. Details of the structures can
be found in tables 4.2, 4.3, and 4.4.
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D/σ nl 2-D structure layer displacement layer distance

1.0 2 rectangular, b/a = 0.62
1

2 d/a = 0.18

1.5 2 rectangular, b/a = 0.76
1

2 d/a = 0.16

2.0 2 square, a/σ = 3.16

1

2

d/a = 0.63

2.5 2 hexagonal, a/σ = 3.04 2

1
d/a = 0.82

3.0 2 hexagonal, a/σ = 2.77 2

1
d/a = 1.08

3.5 3 square, a/σ = 2.93

1,3

2

d/a = 0.60

4.0 3 square, a/σ = 2.74

1,3

2

d/a = 0.73

Table 4.2: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.1. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

4.5 3 hexagonal, a/σ = 2.77
3

2

1

d/a = 0.81

5.0 3 hexagonal, a/σ = 2.63
3

2

1

d/a = 0.95

5.5 4 square, a/σ = 2.70

1,3

2,4

d/a = 0.68

6.0 4 centered rectangular, b/a = 0.86 2,4

1,3

d/a = 0.59

6.5 4 hexagonal, a/σ = 2.67
3

2

1,4

d/a = 0.81

7.0 4 hexagonal, a/σ = 2.57
3

2

1,4

d/a = 0.91

7.5 5 square, a/σ = 2.58

1,3,5

2,4

d/a = 0.73

Table 4.3: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.1. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

8.0 5 centered rectangular, b/a = 0.75 2,4

1,3,5

d/a = 0.65

8.5 5 hexagonal, a/σ = 2.61
3

2,5

1,4

d/a = 0.82

9.0 5 hexagonal, a/σ = 2.53
3

2,5

1,4

d/a = 0.89

9.5 6 square, a/σ = 2.51

1,3,5

2,4,6

d/a = 0.76

10.0 6 hexagonal, a/σ = 2.63
3,6

2,5

1,4

d/a = 0.76

Table 4.4: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.1. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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4.2.2 Layer transition for ρσ3 = 0.2

The density ρσ3 = 0.2 represents a state that is close to the transition from fcc to
bcc in the bulk system but already in the bcc region. Compared to the system at
a density of ρσ3 = 0.1, the transitions to an increasing number of layers is shifted
to a lower wall distance and at high wall distances, seven layers start to appear.
Again, the GA predicts that the layers are separated by an equal distance to
each other. The free energy of the layered system as a function of wall distance is
depicted in figure 4.35 and the details of the layered configurations are specified
in tables 4.5, 4.6, and 4.7.

The sequence of two-dimensional Bravais lattices for a fixed number of layers is
similar to the behavior at ρσ3 = 0.1: first a stable square lattice, then a hexagonal
lattice, and then a transition to a square lattice with one additional lattice. All
configurations are fcc-like. The exceptions are centered rectangular lattices for
D = 6σ and 6.5σ with nl = 5 which corresponds to a bcc-like arrangement.

In this case the majority of the configurations of the layers do not corre-
spond to the crystal structure of the bulk system but the proximity to the phase
transition could be responsible for this effect.
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Figure 4.35: The free energy per particle βF/N of a layered system with bulk
number density ρσ3 = 0.2 as a function of wall distance D/σ. The different
curves correspond to a different number of layers nl. Details of the structures can
be found in tables 4.5, 4.6, and 4.7.
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D/σ nl 2-D structure layer displacement layer distance

1.0 2 rectangular, b/a = 0.70
1

2 d/a = 0.26

1.5 2 square, a/σ = 2.58

1

2

d/a = 0.58

2.0 2 hexagonal, a/σ = 2.40 2

1
d/a = 0.83

2.5 2 hexagonal, a/σ = 2.15 2

1
d/a = 1.16

3.0 3 square, a/σ = 2.24

1,3

2

d/a = 0.67

3.5 3 hexagonal, a/σ = 2.22
3

2

1

d/a = 0.79

4.0 3 hexagonal, a/σ = 2.08
3

2

1

d/a = 0.96

Table 4.5: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.2. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

4.5 4 square, a/σ = 2.1

1,3

2,4

d/a = 0.71

5.0 4 hexagonal, a/σ = 2.15
3

2

1,4

d/a = 0.78

5.5 4 hexagonal, a/σ = 2.05
3

2

1,4

d/a = 0.89

6.0 5
centered rectangular,
b/a = 0.89

2,4

1,3,5

d/a = 0.55

6.5 5
centered rectangular,
b/a = 0.68

2,4

1,3,5

d/a = 0.71

7.0 5 hexagonal, a/σ = 2.03
3

2,5

1,4

d/a = 0.86

7.5 5 hexagonal, a/σ = 1.96
3

2,5

1,4

d/a = 0.96

Table 4.6: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.2. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

8.0 6 hexagonal, a/σ = 2.08
3,6

2,5

1,4

d/a = 0.77

8.5 6 hexagonal, a/σ = 2.02
3,6

2,5

1,4

d/a = 0.84

9.0 6 hexagonal, a/σ = 1.96
3,6

2,5

1,4

d/a = 0.92

9.5 7 hexagonal, a/σ = 2.06
3,6

2,5

1,4,7

d/a = 0.77

10.0 7 hexagonal, a/σ = 2.01
3,6

2,5

1,4,7

d/a = 0.83

Table 4.7: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.2. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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4.2.3 Layer transition for ρσ3 = 0.5

The stable crystal structure of the bulk system is bcc at a density of ρσ3 = 0.5.
The maximum number of layers in the stable configuration is eight which occurs
at a wall distance D & 9.5σ. The GA predicts that the layers are located evenly
distributed between the top and the bottom layer as in the two previous cases.
The free energy of the layered system as a function of wall distance can be seen
in figure 4.36 and the details of the layered configurations are presented in tables
4.8, 4.9, and 4.10.

At a wall distance of D = σ the two layers are arranged in a square lattice
which corresponds to a bcc-like configuration. With increasing wall distance
the lattice in the two layers becomes hexagonal. This arrangement resembles
more a fcc lattice, similar to the two previous cases. For three layers and more,
the sequence of structures is throughout as follows: (nl) layers with a centered
rectangular lattice, then (nl) layers with a hexagonal lattice, and then a transition
to (nl + 1) layers with a centered rectangular lattice. In some cases one of the
two configurations is missing which is likely due to the step size of σ/2 between
two subsequent cases studied, which might be too coarse in these cases. The
arrangements with the square lattice and the centered rectangular lattices are
bcc-like while the ones with hexagonal lattices are fcc-like.

Although the chosen density value leads to a bcc crystal in the bulk phase,
the layered system is arranged both fcc- and bcc-like.
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Figure 4.36: The free energy per particle βF/N of a layered system with bulk
number density ρσ3 = 0.5 as a function of wall distance D/σ. The different
curves correspond to a different number of layers nl. Details of the structures can
be found in tables 4.8, 4.9, and 4.10.
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D/σ nl 2-D structure layer displacement layer distance

1.0 2 square, a/σ = 2.00

1

2

d/a = 0.50

1.5 2 hexagonal, a/σ = 1.75 2

1
d/a = 0.85

2.0 2 hexagonal, a/σ = 1.52 2

1
d/a = 1.32

2.5 3 centered rectangular, b/a = 0.67 2

1,3

d/a = 0.70

3.0 3 hexagonal, a/σ = 1.52
3

2

1

d/a = 0.99

3.5 4 centered rectangular, b/a = 0.70 2,4

1,3

d/a = 0.65

4.0 4 hexagonal, a/σ = 1.52
3

2

1,4

d/a = 0.88

Table 4.8: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.5. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

4.5 4 hexagonal, a/σ = 1.43
3

2

1,4

d/a = 1.05

5.0 5 hexagonal, a/σ = 1.52
3

2,5

1,4

d/a = 0.82

5.5 5 hexagonal, a/σ = 1.45
3

2,5

1,4

d/a = 0.95

6.0 5 hexagonal, a/σ = 1.39
3

2,5

1,4

d/a = 1.08

6.5 6 centered rectangular, b/a = 0.64 2,4,6

1,3,5

d/a = 0.85

7.0 6 hexagonal, a/σ = 1.41
3,6

2,5

1,4

d/a = 1.00

7.5 7 centered rectangular, b/a = 0.65 2,4,6

1,3,5,7

d/a = 0.80

Table 4.9: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.5. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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D/σ nl 2-D structure layer displacement layer distance

8.0 7 centered rectangular, b/a = 0.63 2,4,6

1,3,5,7

d/a = 0.90

8.5 7 hexagonal, a/σ = 1.38
3,6

2,5

1,4,7

d/a = 1.03

9.0 8 centered rectangular, b/a = 0.64

1,3,5,7

2,4,6,8 d/a = 0.85

9.5 9 hexagonal, a/σ = 1.39
3,6

1,4,7

2,5,8 d/a = 0.97

10.0 9 hexagonal, a/σ = 1.36
3,6

1,4,7

2,5,8 d/a = 1.05

Table 4.10: Structural details of the stable layered arrangements of a system with
fixed bulk number density ρσ3 = 0.5. The wall distance is denoted by D, the
number of layers by nl, the distance between two layers by d, and the lattice
parameters by a and b. All numerical values are rounded to two digits.
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4.2.4 Summary

The arrangement of the particles in the layers is influenced by the stable bulk
crystal structure but not completely dominated by it. This could be due to
the small difference in the free energy between the fcc and the bcc lattice in
the bulk phase (see figure 4.37) and the effects of the confinement even at large
wall distances. The typical sequence at low bulk densities - (nl) layers of square
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Figure 4.37: The difference of the free energy per particle between a fcc and a bcc
lattice for a system interacting via the GCM. The free energy was approximated
by lattice sums.

lattices, (nl) layers of hexagonal lattices, and (nl + 1) layers of square lattices
- was also found experimentally for a confined system of polystyrene particles
[54], that freeze into a fcc crystal without confinement. The centered rectangular
lattices that occur at higher densities have also been found in simulations [55, 56]
and experiments [57]. The prism shaped arrays that were observed in [57] can
not occur in the calculations performed here because these phases can not be
described the parametrization used here, i.e. by layers that have the same two-
dimensional structure.

Even though it is encouraging that the calculations yield results that have
already been observed in simulations and experiments, a quantitative comparison
requires the following improvements to the model used here:

• A more sophisticated model for the calculation of the free energy of the
layered systems is required.
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• A system where the free energy difference between a fcc and a bcc is larger
will certainly lead to a more pronounced difference in the sequence of two-
dimensional lattices in the bcc-region.

• A modified parametrization of the layered structures that includes also
prism phases would make it possible for these phases to appear in the
phase diagrams. This could be achieved by introducing basis particles that
can have (small) component perpendicular to the layer.

All these improvements should lead to more specific predictions and also allow a
more direct comparison to experiments.
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4.3 Clustering

Soft systems can show two different scenarios upon compression [58]: re-entrant
melting and clustering. A liquid that shows re-entrant melting freezes when
compressed but melts again if the density reaches a certain threshold. Systems
that cluster undergo a clustering transition where clusters of particles are formed
in which the particles are located nearly on top of each other. This effect manifests
itself in a pronounced peak at r = 0 in the radial distribution function g(r) (see
figure 4.38).
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Figure 4.38: Radial distribution function g(r) of a system with ρσ3 = 9, and
T ∗ = 1. The particles interact via the potential of the generalized Gaussian core
model, equation (3.6), with index 4. The correlation functions were obtained by
a canonical MC simulation with 4664 particles. The diameter of the particles is
denoted by σ. The data were kindly provided by B.M. Mladek.

Based on a mean field picture it has been shown that the Fourier transform
Φ̃(k) of the interaction potential Φ(r) determines which of the two scenarios is
realized [58]:

• If Φ̃(k) is positive for all k, then the system shows re-entrant melting (Q+-
class).

• If Φ̃(k) attains negative values, then the system shows clustering (Q±-class).

The number of particles in a cluster is called cluster size nc and is predicted to
scale linearly with the density [58]:

nc = ζρ.
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In non-clustered crystals the lattice constant l scales with 1/ 3
√
ρ, while it is inde-

pendent of the density in clustered crystals:

l ∝ 3
√
V = 3

√

N

ρ
∝ 3

√
nc
ρ

= 3
√

ζ = const.

The lattice constant of clustered crystals is uniquely determined by the functional
form of the interaction potential alone.

According to the criterion above the generalized Gaussian core model shows
re-entrant melting for n 6 2 and clustering for n > 2 [59]. To find the ground
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Figure 4.39: Fourier transform of the interaction potential of the GGCM with
index 4 as a function of wave vector k.. The negative contributions indicate that
this system should show clustering. The diameter of the particles is denoted by
σ.

state for the clustered crystal structures, calculations were done with the GA at
T = 0. The interaction potential was that of the GGCM with varying index
n. The cluster size nc was encoded in the individual and crystal structures with
one and two basis particles were considered. The free energy was calculated via
lattice sums (see section 2.1.1) and fitness function (1.10) was used.

The resulting crystal structures were either bcc or fcc with the transition
between those two structures occurring near index n ∼= 3 (see figure 4.40). Similar
to the star polymer and microgel case the behavior of the GA near the phase
transition was rather unreliable. The GA was able to predict the expected linear
dependence of the cluster size on the density ρ for all values of n (see figure 4.41).
The slope of these curves decreases with increasing n.
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Figure 4.40: Zero-temperature phase diagram of the GGCM (index n vs. density)
calculated with a genetic algorithm including clustering. The symbols denote the
respective stable crystal structure.

Based on the knowledge of the ground state crystal structures, calculations
at T > 0 can be performed using bcc and fcc structures as candidates. The free
energy of the solid structures was calculated with a mean field density functional
theory (DFT). The particles are assumed to be located according to a Gaussian
distribution around the cluster centers, where the density of the particles has the
form

ρ(r) = nc

(α

π

)3/2∑

{R}
e−α(r−R)2 = ncρ̃(r); (4.1)

α is the localization parameter of the Gaussian and {R} denotes the set of posi-
tions of the Nc centers of the clusters in the crystal. The excess part of the free
energy is given by equation (2.12) and the ideal contribution to the free energy
is obtained by evaluating

F id/N =
1

N

∫

dr ρ(r) [log ρ(r) − 1]

=
1

Ncnc

∫

drncρ̃(r) [log(ncρ̃(r)) − 1]

= log nc
1

Nc

∫

dr ρ̃(r)
︸ ︷︷ ︸

=1

+
1

Nc

∫

dr [log ρ̃(r) − 1] .
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Figure 4.41: The cluster size nc as a function of density for different n-values of
the crystals in figure 4.40 predicted by the GA for the GGCM-n potential.

The last term can be approximated by

1

Nc

∫

dr [log ρ̃(r) − 1] ∼= 3

2
log

α

π
− 3

2

if the Gaussians (4.1) do not overlap, which is fulfilled for α & 50. For lower values
of α this expression has to be calculated numerically. The minimum of the free
energy both with respect to the cluster size nc and the localization parameter α
defines the parameters of the equilibrium state at a given density and temperature
(see figure 4.42). A lower bound of 1 for the cluster size was introduced due to
physical reasons and a lower bound of 10 for the localization parameter α had
to be used as for such a weak localization one can hardly consider the system to
be solid. Some of the results are influenced by this choice as can be seen at low
densities in the figures below.

To obtain an estimate of the transition density from the liquid to the clus-
tered crystal, the free energy of the liquid was calculated with the MSA closure.
Although the distribution functions can have unphysical values for high densities
[59] the results in the region where the transition occurs are not affected by this
deficiency. The error stems from the fact that h̃(k), the Fourier transform of
h(r), is divergent and in the transformation into real space numerical errors oc-
cur. These numerical errors manifest themselves in large jumps in the free energy
as a function of the density.

The following calculations were carried out: the free energy of a clustered fcc
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Figure 4.42: The free energy per particle F/N as a function of cluster size nc
and localization parameter α for clustered fcc crystal with density ρσ3 = 6. The
particles interact via a GGCM with index 6 and ε = 1. Contour lines are indicated
in the (α, nc)-plane. The distance of the contour lines is 0.2 and the inner line
refers to a free energy value of 10.1.

crystal, a clustered bcc crystal, and the liquid phase were computed, as well as
the cluster size nc and the localization parameter α of the two crystal structures.
The indices n ∈ {4, 7, 10} and the pre-factors ε ∈ {1, 2, 10} were considered for
the potential (3.6). The results are depicted in figures 4.43 to 4.57. The insets
in the figures show the free energy difference of the three competing phases close
to the phase transitions.
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Figure 4.43: left: Free energy of a GGCM-system with n = 4 and ε = 1 calculated
with DFT for the solid phases and the MSA closure for the liquid phase. right:
The same for ε = 2.

0 5 10 15 20

ρσ3

0

10

20

30

40

50

n c

fcc
bcc

0 5 10 15 20

ρσ3

0

10

20

30

40
n c

fcc
bcc

Figure 4.44: The cluster size nc of the crystals considered in figure 4.43.
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Figure 4.45: The localization parameter α of the crystals considered in figure
4.43.
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Figure 4.46: left: Free energy of a GGCM-system with n = 4 and ε = 10
calculated with DFT for the solid phases and the MSA closure for the liquid
phase. right: The same for n = 7, ε = 1.
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Figure 4.47: The cluster size nc of the crystals considered in figure 4.46.
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Figure 4.48: The localization parameter α of the crystals considered in figure
4.46.
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Figure 4.49: left: Free energy of a GGCM-system with n = 7 and ε = 2 calculated
with DFT for the solid phases and the MSA closure for the liquid phase. right:
The same for ε = 10.
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Figure 4.50: The cluster size nc of the crystals considered in figure 4.49.
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Figure 4.51: The localization parameter α of the crystals considered in figure
4.49.
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Figure 4.52: left: Free energy of a GGCM-system with n = 10 and ε = 1
calculated with DFT for the solid phases and the MSA closure for the liquid
phase. right: The same for ε = 2.
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Figure 4.53: The cluster size nc of the crystals considered in figure 4.52.
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Figure 4.54: The localization parameter α of the crystals considered in figure
4.52.
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Figure 4.55: Free energy of a GGCM-system with n = 10 and ε = 10 calculated
with DFT for the solid phases and the MSA closure for the liquid phase.
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Figure 4.56: The cluster size nc of the crystals considered in figure 4.55.
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Figure 4.57: The localization parameter α of the crystals considered in figure
4.55.
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The cluster size nc and the localization parameter α seem to have a linear de-
pendence on the density above the transition density. Therefore linear regression
was applied to the data points. The slope of the line, kfcc or kbcc, that approxi-
mates the cluster size as a function of the density shows a very weak dependence
on the pre-factor ε and a non-linear dependence on the index n (see figure 4.58),
while the slope of the line that approximates the localization parameter shows a
linear dependence both on the index n (see figure 4.59) and on ε (see figure 4.60).
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Figure 4.58: The slope k of a linear regression of the cluster size–density curve
as a function of pre-factor ε.
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Figure 4.59: The slope k of a linear regression of the localization parameter–
density curve as a function of pre-factor ε.
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Figure 4.60: The slope k of a linear regression of the localization parameter–
density curve as a function of index n.

Due to the erratic behavior of the MSA closure for densities beyond the es-
timated transition, the calculation of a full phase diagram was very hard to
accomplish. Up to now it was successful for the index n = 4 (see figure 4.61).
A more accurate and reliable description of the liquid phase will certainly lead
to a wider range of parameters where a liquid-clustered crystal transition can be
predicted.

The results obtained by this mean field density functional theory, such as
cluster size, and the location of phase transitions, are in good agreement with
simulations on a quantitative level [60].
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Figure 4.61: Phase diagram of a GGCM system with index n = 4 including the
liquid phase and clustered bcc and fcc crystals. The solid lines denote the borders
of the coexistence region and the dotted line denotes the point where the liquid
and the solid free energy curves intersect. The calculation of a double tangent
was not possible in this region.
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Conclusions

In this work a new approach to predict equilibrium crystal structures in freezing
transitions was introduced and applied to selected problems in soft condensed
matter theory.

In this method the equilibrium crystal lattice was found via a genetic algo-
rithm. According to the strategy of GAs, the crystal lattice was encoded in an
individual in binary form. The individuals are evaluated via a fitness function
that assigns a higher value to lattices with a lower free energy. Individuals with
a higher fitness value propagate faster than ones with a lower fitness value. The
results obtained in this way were refined with a subsequent hill climbing search
algorithm to compensate the discrete representation induced by the binary rep-
resentation of the individual.

This technique has demonstrated its power and versatility in a number of
different problems. Considering different freezing transitions, it was possible to
demonstrate that this procedure is indeed superior to the conventional approach
to determine solid equilibrium structures in freezing processes, that relies on an
a priori selection of possible candidate structures.

The first application was dedicated to a revision of the phase diagram of neu-
tral star polymers that was already published in literature. Indeed the GA could
find new equilibrium structures that had not been considered in the conventional
approach. Secondly, the phase behavior of ionic microgels was investigated. The
properties of the solid phase were calculated with the Einstein model and the
localization parameter was successfully included in the individual where it was
optimized together with the lattice parameters. Using the structures predicted
in this way and calculating the properties of the liquid phase with integral equa-
tion theories, the full liquid-solid phase diagram was obtained. Crystal structures
such as bco, trigonal, and hexagonal lattices were found to be stable, that have
been considered up to date as unusual for systems that interact via a radially
symmetric pair potential. Two regions of re-entrant melting were discovered in
the phase diagram, which has not been encountered before. The freezing criterion
by Hansen and Verlet, as well as the melting criterion of Lindemann were able
to predict the first re-entrant melting transition on a qualitative level but failed
to predict the second transition which occurs at densities well above the overlap
density.
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However, close to the transitions between two phases the free energies and
thus the fitness values of the competing phases become almost identical and due
to the randomness involved in the genetic algorithm, both structures might be
considered as the equilibrium structure. Therefore the exact location of the tran-
sition is impossible to compute with the GA but can be calculated separately
using the structures predicted in the proximity of the transition as candidates.
Furthermore, problems arose when crystal structures with a high number of basis
particles (typically eight and more) were considered. With the help of a modi-
fied fitness function, convergence could be achieved for lattices with eight basis
particles.

The results for systems that consist of parallel layers of two-dimensional lat-
tices showed the same sequence of structures for increasing distance between
the top and bottom layer as experiments and simulations but unfortunately the
model that was used was too simple to allow a quantitative comparison. A more
realistic model and an improved parametrization of the lattices should be able to
remedy this shortcoming.

A system that interacts via a generalized Gaussian core model was also stud-
ied. For this system a clustering transition was predicted upon compression,
where clusters of particles are formed that sit nearly on top of each other. These
clusters form regular lattices, such as fcc or bcc. It was possible to confirm the
predicted linear dependence of the cluster size on the density and to calculate a
phase diagram that includes the liquid phase and two crystalline clustered phases.
The theoretical calculations were in good agreement with data from Monte Carlo
simulations.

Based on the experience gained, the GA could certainly be applied to a num-
ber of other problems in condensed matter theory, such as:

• Calculations with more sophisticated theories for the solid phase, ranging
from density functional theory to ab initio calculations.

• Phase transitions under extreme conditions that are not accessible to ex-
periments.

• The formation of clusters and the arrangement of particles in the clusters.

• Phase behavior of soft matter.
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Appendix A

Three-Dimensional Bravais
Lattices and Crystal Structures

A three-dimensional lattice is defined by three primitive vectors a,b, c that create
all points of the lattice {Rn} via

{Rn} = ia + jb + kc i, j, k ∈ Z.

Depending on the symmetry transformations that transform the lattice into itself
one can discern seven crystal systems. An axis is called n-fold symmetry axis, if a
rotation by angle φ = 2π/n around the axis transforms the lattice into itself. The
seven three-dimensional crystal systems have different symmetry transformations:

2-fold axes 3-fold axes 4-fold axes 6-fold axes Σ
cubic 9 4 3 0 16
hexagonal 7 1 0 1 9
tetragonal 5 0 1 0 6
trigonal 3 1 0 0 4
orthorhombic 3 0 0 0 3
monoclinic 1 0 0 0 1
triclinic 0 0 0 0 0

Ev-

ery Bravais lattice belongs exactly to one crystal system but since these sym-
metry properties can be fulfilled by more than one lattice there are fourteen
three-dimensional Bravais lattices.
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Figure A.1: Cubic conventional cell and its symmetry axes

A.1 Cubic Lattices

Simple Cubic (sc)

Primitive vectors of the lattice:

a =





a
0
0



b =





0
a
0



 c =





0
0
a





Volume of the unit cell:
Vc = a3

Body-Centered Cubic (bcc)

Primitive vectors of the lattice:

a =





a
0
0



b =





0
a
0



 c =





a/2
a/2
a/2
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Volume of the unit cell:

Vc =
1

2
a3

Face-Centered Cubic (fcc)

Primitive vectors of the lattice:

a =





a
0
0



b =





a/2
a/2
0



 c =





a/2
0
a/2





Volume of the unit cell:

Vc =
1

4
a3

A.2 Hexagonal Lattice

Figure A.2: Hexagonal conventional cell and its symmetry axes

Simple Hexagonal (hex)

Primitive vectors of the lattice:

a =





a
0
0



b =





a/2√
3a/2
0



 c =





0
0
c





Volume of the unit cell:

Vc =

√
3

2
a2c
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A.3 Tetragonal Lattices

Figure A.3: Tetragonal conventional cell and its symmetry axes

Simple Tetragonal

Primitive vectors of the lattice:

a =





a
0
0



b =





0
a
0



 c =





0
0
c





Volume of the unit cell:

Vc = a2c

Body-Centered Tetragonal

Primitive vectors of the lattice:

a =





a
0
0



b =





0
a
0



 c =





a/2
a/2
c/2
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Volume of the unit cell:

Vc =
1

2
a2c

A.4 Trigonal Lattice

Figure A.4: Trigonal conventional cell and its symmetry axes

Simple Trigonal (trig)

Primitive vectors of the lattice:

a =





a/
√

12
−a/2
c/3



b =





a/
√

12
a/2
c/3



 c =





−a/
√

3
0
c/3





Volume of the unit cell:

Vc =
1√
12
a2c

A trigonal lattice with c/a =
√

6 is a fcc-lattice; with c/a =
√

3/8 it is a bcc-
lattice.
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A.5 Orthorhombic Lattices

Figure A.5: Orthorhombic conventional cell and its symmetry axes

Simple Orthorhombic

Primitive vectors of the lattice:

a =





a
0
0



b =





0
b
0



 c =





0
0
c





Volume of the unit cell:
Vc = abc

Single-Face-Centered Orthorhombic

Primitive vectors of the lattice:

a =





a
0
0



b =





a/2
b/2
0



 c =





0
0
c





Volume of the unit cell:

Vc =
1

2
abc
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Body-Centered Orthorhombic (bco)

Primitive vectors of the lattice:

a =





a
0
0



b =





0
b
0



 c =





a/2
b/2
c/2





Volume of the unit cell:

Vc =
1

2
abc

A bco-lattice with c/a = b/a = 1 is a bcc-lattice; with c/a = b/a = 1/
√

2 is a
fcc-lattice and with c/a =

√

3/2 is a sc-lattice.

Face-Centered Orthorhombic

Primitive vectors of the lattice:

a =





a
0
0



b =





a/2
b/2
0



 c =





a/2
0
c/2





Volume of the unit cell:

Vc =
1

4
abc

A.6 Monoclinic Lattices

Figure A.6: Monoclinic conventional cell and its symmetry axes
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Simple Monoclinic

Primitive vectors of the lattice:

a =





a sin γ
a cos γ

0



b =





0
b
0



 c =





0
0
c





Volume of the unit cell:

Vc = abc sin γ

Single-Face-Centered Monoclinic

Primitive vectors of the lattice:

a =





(a sin γ)/2
(a cos γ)/2

−c/2



b =





0
b
0



 c =





(a sin γ)/2
(a cos γ)/2

c/2





Volume of the unit cell:

Vc =
1

2
abc sin γ

A.7 Triclinic Lattice

Triclinic

Primitive vectors of the lattice:

a =





a
0
0



b =





b sinα
b cosα

0



 c =





c cosβ cos γ
c cos β sin γ
c sin β





Volume of the unit cell:

Vc = abc cosα sin β

A.8 Diamond Structure

The diamond structure is built up by a fcc-lattice with the basis vectors:

b1 =





0
0
0



b2 =





a/4
a/4
a/4
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A.9 Hexagonal Close Packed

The hexagonal close packed structure (hcp) is built up by a simple hexagonal
lattice with the basis vectors:

b1 =





0
0
0



b2 =





a/2

a/
√

12
c/2





A.10 A15-Structure

The A15 structure is built up by a sc-lattice with the basis vectors:

b1 =





0
0
0



b2 =





a/2
a/2
a/2



b3 =





a/2
0
a/4



b4 =





a/2
0

3a/4





b5 =





a/4
a/2
0



b6 =





3a/4
a/2
0



b7 =





0
a/4
a/2



b8 =





0
3a/4
a/2
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Appendix B

Two-Dimensional Bravais
Lattices

Similar to the three-dimensional case there are four two-dimensional crystal sys-
tems and five two-dimensional Bravais lattices.

B.1 Hexagonal Lattice

The hexagonal lattice has a 6-fold rotation axis. Primitive vectors of the lattice:

a =

(
a
0

)

b =

(
a/2√
3a/2

)

Area of the unit cell:

Ac =

√
3a2

2

B.2 Square Lattice

The square lattice has a 4-fold rotation axis. Primitive vectors of the lattice:

a =

(
a
0

)

b =

(
0
a

)

Area of the unit cell:

Ac = a2

B.3 Rectangular Lattices

The rectangular lattice has two perpendicular mirror planes.
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Rectangular

Primitive vectors of the lattice:

a =

(
a
0

)

b =

(
0
b

)

Area of the unit cell:
Ac = ab

Centered Rectangular (Rhombic)

Primitive vectors of the lattice:

a =

(
a
0

)

b =

(
a/2
b/2

)

Area of the unit cell:

Ac =
ab

2

B.4 Oblique Lattice

The oblique lattice has no symmetry axes or mirror planes. Primitive vectors of
the lattice:

a =

(
a
0

)

b =

(
b cos γ
b sin γ

)

Area of the unit cell:
Ac = ab sin γ
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Appendix C

Lattice Identification

To identify the type of lattice, the crystal system to which the primitive vectors
a, b, and c belong has to be calculated first; then the Bravais lattice can be
determined.

Each crystal system has a unique number of symmetry axes (see appendix
A). An n-fold symmetry can be described by a rotation matrix A which is given
by

A = cos φ





1 0 0
0 1 0
0 0 1



+(1−cosφ)





exex exey exez
eyex eyey eyez
ezex ezey ezez



+sinφ





0 −ez ey
ez 0 −ex
−ey ex 0



 ,

where the unit vector e is parallel to the rotation axis. If the lattice is transformed
into itself upon a rotation then the solutions of the equations

xa(Aa) + ya(Ab) + za(Ac) = a

xb(Aa) + yb(Ab) + zb(Ac) = b

xc(Aa) + yc(Ab) + zc(Ac) = c (C.1)

are integer numbers. In a crystal the direction vector e that describes such a
symmetry axis is always parallel to ia + jb + kc, i, j, k ∈ Z. The algorithm to
calculate the symmetry axes thus works as follows:

1. Calculate all vectors vijk = ia + jb + kc with vijk 6 |a + b + c|, i, j, k ∈ Z.

2. Create all unit vectors el ‖ vijk that are not collinear and save the shortest
vector vijk that is parallel to el as ṽijk,l.

3. Solve the equations (C.1) for all el and φ = 2π/n, n = 2, 3, 4, 6.

4. Calculate

∆ = 16
∑

ξ∈{a,b,c}

(
x̄2
ξ(xξ − 1)2 + ȳ2

ξ (yξ − 1)2 + z̄2
ξ (zξ − 1)2

)
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for all solutions, where x̄ = x − [x] and [x] denotes the largest integer
smaller or equal x. The value of ∆ is zero if all solutions are integers and
is a maximum if all solutions can be written as n + 1/2, n ∈ Z. Usually
the primitive vectors that were obtained by the GA and the subsequent hill
climbing have errors therefore the condition ∆ < ε is used to determine
whether the combination (el, n) describes a symmetry axis. The parameter
ε ∼ 1 × 10−4 is a fixed but small value.

5. Count the number of symmetry axes. This value determines the crystal
system.

Most of the parameters of the lattice can be calculated from the vectors ṽijk,l.
The length of the vector ṽijk,l that is parallel to a unit vector, which describes a
n-, m-, and o-fold symmetry axis is denoted by ln,m,o.

• Cubic: a = l2,4.

• Hexagonal: c = l2,3,6; a = min{l2}.

• Tetragonal: c = l2,4; a = min{l2}.

• Trigonal: c = l3; a = l2.

• Orthorhombic: a = l
(1)
2 ; b = l

(2)
2 ; c = l

(3)
2 .

• Monoclinic: c = l2. The other parameters a, b, and γ can be obtained
by creating the two-dimensional sub-lattice perpendicular to the symmetry
axis, finding the shortest vectors that act as primitive vectors for this sub-
lattice, and calculating their length and angle.

After the crystal system is known the Bravais lattice has to be determined for
those crystal systems that have more than one corresponding Bravais lattice. In
most cases it can be evaluated by a relation between the lattice parameters a, b,
c, γ and the volume of the cell spanned by the primitive vectors, which is denoted
by Vabc = a · (b × c).

• Cubic: The ratio Vabc/a
3 determines the Bravais lattice. It is 1 for a simple

cubic lattice, 1/2 for a bcc-lattice, and 1/4 for a fcc-lattice.

• Tetragonal: The ratio Vabc/(a
2c) is 1 for a simple tetragonal lattice, and

1/2 for a body-centered tetragonal lattice.

• Orthorhombic: For a simple orthorhombic lattice the ratio Vabc/(abc) is 1
and 1/4 for a face-centered orthorhombic lattice. A ratio of 1/2 points to
both body-centered and single face-centered orthorhombic accordingly in
this case the equation

xaa + xbb + xcc =
a

2
ṽ

(1)
ijk,2 +

b

2
ṽ

(2)
ijk,2 +

c

2
ṽ

(3)
ijk,2
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is solved for xa, xb, and xc. If the solutions are integers, then the primitive
vectors form a body-centered orthorhombic lattice. If not, they form a
single face-centered orthorhombic lattice.

• Monoclinic: A ratio Vabc/(abc sin γ) of 1 refers to a simple monoclinic lattice,
one of 1/2 to a single face-centered monoclinic lattice.
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074903 (2005).

[32] C. Darwin, The Origin of Species by Means of Natural Selection (John Mur-
ray, Albemarle Street, London, 1859).

[33] H.-P. Schwefel, Evolution and Optimum Seeking (John Wiley, New York,
1995).

[34] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science 220, 671 (1983).
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