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Infinity is central to deriving macroscopic irreversibility from reversible microscopic laws across mathemat-
ics, theoretical computer science and physics. In analysis, infinite processes—such as Dedekind cuts and Cauchy
sequences—construct real numbers as equivalence classes of rational approximations, bridging discrete ratio-
nals to the continuous real line. In quantum mechanics, infinite tensor products model nested measurements,
where sectorization partitions the Hilbert space into equivalence classes, reconciling unitary evolution with
wavefunction collapse. In statistical mechanics, macrostates emerge as equivalence classes of microstates shar-
ing identical macroscopic properties, providing the statistical basis for thermodynamic irreversibility despite
reversible dynamics. Equivalence relations formalize For-All-Practical-Purposes (FAPP) indistinguishability,
reflecting operational limits on precision and observation. Together, these examples reveal a unified framework
where infinity and equivalence underpin emergent macroscopic behavior from microscopic reversibility.

Keywords: infinity, FAPP, Specker sequence, Chaitin’s Omega, halting probability

I. FROM RATIONALS TO REALS: THE ROLE OF
INFINITY

The construction of the real numbers from the rational num-
bers is a fundamental topic in mathematical analysis, high-
lighting the necessity of infinite processes. The rational num-
bers, denoted by Q, are countable and dense in the real num-
bers, but they are incomplete. This incompleteness arises be-
cause there exist ‘gaps’ in Q that correspond to irrational num-
bers. To fill these gaps and construct the real numbers, R,
mathematicians employ infinite methods, such as continued
fractions. Two prominent approaches are Dedekind cuts and
Cauchy sequences, both of which rely on the concept of infin-
ity. The discussion will explore methods employing infinite
means that transcend from rational to irrational numbers, then
progress through Specker sequences to uncomputable num-
bers, and finally examine Omega sequences leading to algo-
rithmically incompressible random reals. At this point, con-
cerns about the physical operationality of these infinite means
will be set aside, with the issue revisited later in the discus-
sion.

A. Dedekind Cuts

A Dedekind cut partitions the rational numbers into two
non-empty sets A and B such that every element of A is less
than every element of B, and A contains no greatest element.
The cut represents a real number, which may be rational or ir-
rational. For example, the cut corresponding to

√
2 is defined

by:

A = {x ∈Q | x2 < 2}, B = {x ∈Q | x2 > 2}.

This construction inherently involves an infinite sets A and
B. The completeness of the real continuum is embodied by
the property that every such cut corresponds to a unique real
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number, effectively filling the ‘irrational gaps between’ ratio-
nals. This construction vividly illustrates that the limit of a
sequence—often an irrational number—can be captured only
through an infinite process corresponding to the infinite sets A
and B.

Similarly, surreal numbers, introduced by Conway [1] and
explored in a mathematical dialogue by Knuth [2], are con-
structed recursively as equivalence classes of pairs of sets of
surreal numbers, subject to the condition that every element
of the first set is less than every element of the second set.
The construction begins with the empty set. At each stage,
new numbers are defined as {L | R}, where L and R are sets
of previously constructed numbers, provided that every mem-
ber of L is less than every member of R. This Dedekind cut-
like procedure, iterated transfinitely and allowing L and R to
be infinite, produces not only all standard real numbers but
also a vast continuum of infinite and infinitesimal numbers.
Thus, from the initial void—the empty set {|} identified with
the number 0—this infinite process generates a comprehen-
sive universe of numbers, truly ex nihilo omnia (everything
out of nothing).

B. Cauchy Sequences

Another method to construct the real numbers is through
Cauchy sequences of rational numbers. A Cauchy sequence
(xn)

∞
n=1 is a sequence whose elements become arbitrarily close

to each other as the sequence progresses. Formally, for every
ε > 0, there exists an integer N such that for all m,n ≥ N,
|xm− xn| < ε. The real numbers are then defined as equiva-
lence classes of Cauchy sequences, where two sequences are
equivalent if their difference converges to zero. This process
also relies on infinity, as the convergence of the sequence is
an infinite phenomenon.
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C. Infinite Decimal Expansions

A more familiar representation is that of infinite decimal ex-
pansions. Any real number can be expressed as an infinite se-
quence of digits, x0.x1x2x3 . . ., which in turn can be viewed as
an infinite sum. This representation not only emphasizes the
necessity of an infinite process but also shows how numbers
that cannot be finitely represented (such as irrational numbers)
naturally arise from the completion of an endless procedure.

D. Cantor’s Diagonalization and Irrational Numbers

Cantor’s diagonalization argument is a powerful tool that
demonstrates the uncountability of the real numbers and pro-
vides a method to construct irrational numbers from rationals
through an infinite process. Consider an enumeration of all
rational numbers in the interval [0,1], say r1,r2,r3, . . .. Each
rational number ri can be expressed as an infinite decimal ex-
pansion. By constructing a new number x whose n-th decimal
digit differs from the n-th decimal digit of rn, we ensure that
x is distinct from every rational number in the list. For in-
stance, if the n-th digit of rn is dn, define the n-th digit of x
as dn + 1 mod 10. The resulting number x is irrational, as it
cannot correspond to any rational number in the enumeration.
This construction explicitly relies on an infinite process that
‘constructs’ an irrational number [3, 4].

E. No Continua Without Infinite Means

The transition from the rational numbers to the real
numbers—whether through Dedekind cuts, Cauchy se-
quences, or infinite decimal expansions—as well as Can-
tor’s diagonalization argument necessitates the use of infi-
nite means. These Zeno-type constructions underscore the in-
dispensable role of infinity in bridging the gap between the
countable realm of Q and the uncountable continuum of R:
No finite procedure that starts with a finite set of rational num-
bers and uses only a finite number of operations can produce
an irrational number.

Whether the infinities inherently present in (classical) con-
tinua can be put to any operational physical use remains an
open question [5]. Suffice it to say that the assumption of con-
tinua, as well as the selection of one of their elements via the
axiom of choice, is a key ingredient in the apparent oxymoron
that is the widely used term deterministic chaos.

Noson Yanofsky has noted that the procedural approach
used here to generate the continuum and other mathematical
entities, such as irrational or uncomputable numbers, includ-
ing through methods like diagonalization, could be criticized.
The criticism stems from the view that tools like Dedekind
cuts and Cauchy sequences describe or represent numbers
rather than actually constructing them [6]]. However, while
this raises a relevant metamathematical concern, it ultimately
hinges on a matter of philosophical perspective.

F. Specker Sequences and the Role of Infinity

Just as infinity plays an indispensable role in the transition
from rational to irrational numbers and in the conceptualiza-
tion of mathematical continua, Specker sequences provide a
profound illustration of how infinity can lead us from the com-
putable to the uncomputable, thereby selecting a subset of ir-
rationals by tightening criteria. Almost all reals are of this
type.

A Specker sequence is a computable, monotonically in-
creasing, bounded sequence of rational numbers whose limit
is an uncomputable real number [7, 8]. Formally, a sequence
(an)

∞
n=1 is a Specker sequence if:

1. Each an is a computable rational number

2. The sequence is strictly increasing: an < an+1 for all n

3. The sequence is bounded above: there exists L∈Q such
that an < L for all n

4. The limit limn→∞ an is not a computable number

The existence of such sequences demonstrates that the in-
finite completion of even well-behaved, computable objects
can yield entities beyond algorithmic reach. The essence of
Specker’s construction is to encode an undecidable property
into the convergence behavior of the sequence. Although each
term an is produced by a finite, effective algorithm, the pro-
cess of converging to L is intrinsically infinite—any attempt to
specify a convergence criterion would require solving a prob-
lem that is uncomputable—indeed, to quote an early, infor-
mal intuition by Paul Ehrenfest, such a convergence criterion
“grows beyond any specifiable size” [9]. In this way, the limit
L becomes an uncomputable real number even though it is the
limit of a computable (recursive) sequence.

G. Chaitin’s Omega as the Ultimate Specker Sequence

Perhaps the most profound example of a limit of a Specker
sequence is Chaitin’s Omega (Ω), often called the ‘halting
probability’ [10]. This number represents the probability
that a randomly constructed self-delimiting program will halt
when run on a universal Turing machine.

Chaitin’s Ω can be expressed as:

Ω = ∑
p halts

2−|p|

where the sum is taken over all self-delimiting programs p
that halt, and |p| denotes the length of program p in bits.

Ω can be approximated by rational numbers:

Ωn = ∑
p halts within

n steps

2−|p|

The sequence (Ωn)
∞
n=1 is a Specker sequence—each Ωn is

computable for ‘small’ n [11], the sequence is monotonically
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increasing, bounded above by 1, yet its limit Ω is uncom-
putable. The uncomputable nature of Ω stems from the fact
that knowledge of its binary expansion would allow us to solve
the Halting Problem, which is provable impossible. Each ad-
ditional bit of precision in Ω encodes the solution to increas-
ingly complex instances of the Halting Problem. There does
not exist any computable convergence criterion: just as for
computing the nth bit of a Busy Beaver function, the time to
compute those instances Ωn outgrows any computable func-
tion of n [12].

All of the above reveals a fundamental qualitative shift
at infinity—one that goes beyond mere quantitative change:
Infinity generates fundamentally new mathematical objects.
The rational numbers, all of which are computable, give rise
through infinite processes to real numbers that no algorithm
can fully capture.

The transition from the finite to the infinite marks a pro-
found divide between what is algorithmically accessible and
what remains beyond reach. While we can approximate Ω

arbitrarily closely using computable methods, we can never
compute it exactly. Specker sequences thus demonstrate that
infinity is not merely a convenient mathematical abstraction
but a necessary concept that marks the boundary between the
computable and the uncomputable, between what can be algo-
rithmically constructed and what can only be defined through
infinite convergence. Indeed, despite random reals [13] con-
stituting almost all irrational numbers, locating specific in-
stances through computational, finite, or physically opera-
tional means remains provably impossible [14].

Specker sequences and Chaitin’s Omega are not defined us-
ing equivalence classes in their original formulations. But
they are related to equivalence classes in how they can be
introduced: They are indirectly tied through the Cauchy se-
quence construction of real numbers, where their limits are
equivalence classes.

II. INFINITE TENSOR PRODUCTS AND THE QUANTUM
MEASUREMENT PROBLEM

Infinite tensor products, when interpreted as infinite chains
of nested measurements, provide a compelling framework for
addressing the quantum measurement problem. By introduc-
ing disruptions to unitary equivalence through sectorization
and factorization, this approach offers a potential reconcilia-
tion between the unitary evolution of quantum systems and the
apparent collapse of the wavefunction during measurement.

The quantum measurement problem remains one of the
most profound challenges in quantum mechanics, arising from
the apparent inconsistency between two fundamental pro-
cesses identified by von Neumann in 1932 [15–17]. These
processes are:

Process 1: The discontinuous, probabilistic change in a
quantum state upon measurement. For a system in a su-
perposition ψ = ∑i ciφi, observing a quantity with eigen-
states φ1,φ2, . . . collapses the state to φ j with probability
|c j|2.

Process 2: The continuous, deterministic evolution of an
isolated system’s state according to the Schrödinger equa-
tion, ∂ψ/∂t =Uψ, where U is a unitary operator.

The crux of the measurement problem is whether the uni-
tary evolution (Process 2) can fully account for the collapse
observed in measurements (Process 1), or if an additional
mechanism is required. This section explores the use of
infinite tensor products, interpreted as infinite nestings of
Wigner’s friend scenarios, as a potential resolution to this
problem.

A. Infinite Tensor Products in Nested Measurement Scenarios

A promising approach to addressing the measurement prob-
lem involves infinite tensor products, which model an infi-
nite sequence of observers, each measuring the system ob-
served by the previous observer. This setup is reminiscent of
Wigner’s friend thought experiments, where the act of mea-
surement is recursively applied. Unlike finite tensor prod-
ucts, infinite tensor products can disrupt unitary equivalence
through mechanisms such as sectorization and factorization,
potentially providing a bridge between unitary evolution and
the apparent collapse of the wavefunction.

B. The Von Neumann-Landau Measurement Scheme

In the von Neumann-Landau framework, the measurement
process is modeled by the interaction between an object and
a measurement apparatus. The object is prepared in a state
|ψ〉=∑

n
i=1 ai|ψi〉, which is a superposition relative to the mea-

surement basis. The measurement apparatus is represented by
another state |φ〉 = ∑

n
j=1 b j|φ j〉. Upon interaction, the com-

bined state of the object and apparatus becomes:

|Ψ〉=
n

∑
i, j=1

ci j|ψi〉⊗ |φ j〉,

where the coefficients ci j cannot be factorized, indicating en-
tanglement between the object and the apparatus.

While this scheme is straightforward for finite systems,
extending it to an infinite chain of measurements—where
each measurement is itself measured by another observer, ad
infinitum—requires the use of infinite tensor products. This
extension is mathematically non-trivial and was first rigor-
ously studied by von Neumann in 1939 [18].

The construction of the infinite tensor product space pro-
ceeds as follows:

1. Begin with elementary tensors of the form
⊗

∞
n=1 |kn〉.

2. Define the inner product between two elementary ten-
sors as:〈

∞⊗
n=1

|kn〉

∣∣∣∣∣ ∞⊗
n=1

|ln〉

〉
=

∞

∏
n=1
〈kn|ln〉,

provided the product converges; otherwise, it is zero.
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3. Consider finite linear combinations of these elementary
tensors:

∑
i

ci

∞⊗
n=1

|k(i)n 〉,

where ci are complex coefficients and |k(i)n 〉 are basis
vectors.

4. Obtain the complete Hilbert space
⊗

∞
n=1 Hn by taking

the closure of the space of finite linear combinations.

This construction introduces several challenges that must
be addressed to fully understand its implications for the mea-
surement problem.

C. Challenges with Infinite Tensor Products

1. Cardinality

As pointed out by von Neumann in 1939 [18], a fundamen-
tal issue with infinite tensor products is the uncountable cardi-
nality of the resulting space. Just as the real numbers cannot
be enumerated by a countable set, the infinite tensor product
space cannot be spanned by a countable basis. Such general-
izations involve nonseparable Hilbert spaces and higher set-
theoretical powers of their orthonomal bases, thereby spoil-
ing unitary equivalence with (in)finite-dimensional separable
Hilbert spaces.

The interval [0,1) can be represented in binary form as

{0.x1x2x3 . . . | xi ∈ {0,1} for all i ∈ N} .

Here, each xi is a binary digit (0 or 1), and the sequence ex-
tends indefinitely. This set of all infinite binary sequences is
uncountable, with cardinality

#{0,1}N = 2ℵ0 ,

which, by Cantor’s diagonal argument mentioned earlier, is
strictly larger than the cardinality ℵ0 of the natural numbers.

In close analogy, consider an infinite sequence of qubits,
where each qubit is a two-state quantum system with basis
states |0〉 and |1〉. A product state in the infinite tensor product
is written as

|x1x2x3 . . .〉= |x1〉⊗ |x2〉⊗ |x3〉⊗ · · · ,

with xi ∈ {0,1} for all i ∈ N. The collection of all such prod-
uct states corresponds exactly to the set of infinite binary se-
quences, hence its cardinality is also 2ℵ0 .

A denumerable set of product states is any countable subset
of the infinite tensor product states. For instance, the set{

|000 . . .〉, |100 . . .〉, |010 . . .〉, . . .
}

can be put into a one-to-one correspondence with the natural
numbers N and thus has cardinality ℵ0. Clearly, ℵ0 < 2ℵ0 .

A Hilbert space is separable if it has a countable (finite or
infinite) orthonormal basis; otherwise it is called nonsepara-
ble. Two Hilbert spaces H1 and H2 are unitarily equivalent
if and only if they have the same dimension (that is, their or-
thonormal bases share the same cardinality). More explicitly,
if |ei〉 and | fi〉 are denumerable orthonormal bases for separa-
ble H1 and H2, respectively, then the unitary operator is given
by

U = ∑
i
| fi〉〈ei|.

In our scenario, the full Hilbert space of the infinite tensor
product space is nonseparable, as it has an orthonormal basis
consisting of product states with cardinality 2ℵ0 . Any candi-
date unitary operator mapping a countable (denumerable) sub-
set of product states (with cardinality ℵ0) to the full set must
preserve the inner-product structure and be surjective onto the
basis. However, since a unitary map must preserve the car-
dinality of an orthonormal basis, and we have ℵ0 < 2ℵ0 , no
such unitary operator can exist that maps a countable subset
onto the full uncountable basis.

2. Inner Product and Orthogonality

Another significant challenge arises in defining the inner
product for infinite tensor products. For two states |Ψ〉 =⊗

∞
i=1 |xi〉 and |Φ〉=

⊗
∞
i=1 |yi〉, the inner product is given by:

〈Ψ|Φ〉=
∞

∏
i=1
〈xi|yi〉.

If each 〈xi|yi〉= 1−εi with 0< εi� 1, and if the series ∑
∞
i=1 εi

diverges, then:

∞

∏
i=1

(1− εi)≈ exp

(
−

∞

∑
i=1

εi

)
→ 0.

This implies that states which are only slightly different across
infinitely many components can have an inner product that
approaches zero, making them effectively orthogonal. More-
over, if the states differ in even a single component such that
〈xk|yk〉= 0 for some k, the entire inner product becomes zero,
regardless of the similarity in other components. This behav-
ior disrupts traditional notions of orthogonality and compli-
cates the interpretation of measurement outcomes.

D. Sectorization as a Solution

To address these issues, von Neumann proposed partition-
ing the infinite tensor product space into disjoint ‘regions’ or
sectors—equivalence classes of states that are ‘close’ to each
other in a specific sense [18]. Two states |Ψ〉 and |Φ〉 are con-
sidered to be in the same sector if:

∞

∑
i=1

(1−|〈xi|yi〉|)< ∞.
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This condition ensures that the states differ significantly in
only finitely many components. These sectors can be thought
of as corresponding to distinct macroscopic or classical out-
comes, potentially offering a way to interpret measurement
results within the framework of unitary evolution [19–22].

E. Factorization and Unitary Equivalence

A further opportunity arises from the entanglement of in-
finite components, which can lead to different types of fac-
tors (e.g., type I, II, or III in von Neumann algebra classifi-
cation) that are not unitarily equivalent. This lack of unitary
equivalence suggests a mechanism by which the infinite tensor
product space can accommodate irreversible processes, such
as those observed in quantum measurements.

F. Role of equivalence classes

In sectorization, equivalence classes are employed to par-
tition the infinite tensor product space into distinct sectors,
each comprising states that are equivalent modulo differences
in only finitely many components. This classification is piv-
otal for associating each sector with a specific, classical mea-
surement outcome, thereby offering a framework to recon-
cile the continuous, unitary evolution of quantum systems
with the discrete nature of observed measurement results.
Furthermore, the lack of unitary equivalence between differ-
ent sectors—stemming from the factorization of the space—
underscores the critical role of equivalence classes in estab-
lishing the irreversibility characteristic of the quantum mea-
surement process. By defining these equivalence classes, sec-
torization simplifies the handling of complex quantum sys-
tems and provides insight into the transition from quantum
superpositions to definite classical states.

III. INFINITE PRECISION MICROSTATES AND THE
EMERGENCE OF MACROSCOPIC IRREVERSIBILITY

A common starting point in statistical physics is to describe
an isolated many-particle system by specifying its microstate
with infinite precision. In principle, if every particle’s posi-
tion and momentum were known exactly, the time-reversible
microscopic laws (that is, Newtonian or unitary quantum dy-
namics) imply that every evolution has a time-reversed twin.
This observation is at the heart of Loschmidt’s Umkehrein-
wand (reversal objection) [23]: If one were able to precisely
reverse the velocities of all particles, then every macroscopic
process (such as the free expansion of a gas) would be ex-
actly reversible. In other words, entropy would remain con-
stant with infinite precision.

In an extreme scenario where a hidden entity, such as
Maxwell’s demon, manipulates a system at the microphysical
level with infinite precision—unbeknownst to observers who
are limited to finite precision macroscopic measurements—
the demon could orchestrate processes like the spontaneous

unmixing of two previously mixed gases. This would make
entropy appear to decrease from the observers’ macroscopic
perspective, creating the illusion of a contradiction with the
second law of thermodynamics, which states that entropy in
an isolated system cannot decrease over time.

However, concepts such as physical means and demons ma-
nipulating microstates with infinite precision is an idealized
notion. In reality, our ability to specify, measure, or manip-
ulate microscopic degrees of freedom in any physical system
is operationally limited. These practical constraints mean that
microstates can only be defined with finite precision. Conse-
quently, when attempting to reverse a system’s evolution, the
unavoidable small uncertainties are amplified through the sys-
tem’s complex (often chaotic) dynamics.

Moreover, the concept of means-relative reversibility em-
phasizes that while the microscopic laws are symmetric, the
notion of a reversible process depends on the precision and
the scale at which the state is defined. Maxwell’s pragmatic
approach—“avoiding all personal inquiries [[about individual
molecules]] which would only get me into trouble” [24, 25]—
illustrates that the coarse-grained description relevant for ther-
modynamics deliberately sidesteps the need for infinite preci-
sion. In this framework, macroscopic irreversibility emerges
from the overwhelming statistical likelihood that a system will
evolve toward states of higher entropy, even though the under-
lying equations are time-symmetric.

The Ehrenfest urn model [26] provides an elementary prob-
abilistic illustration suggesting that entropy, viewed micro-
physically, might even decrease. Consider two urns initially
containing an uneven distribution of balls, with most in the
first urn. Assume a constant probability per time step for any
ball to transfer to the other urn. As the system evolves, it will
most likely approach an equilibrium state with roughly equal
numbers of balls (a 50:50 ratio) in both urns, corresponding
to maximum entropy in this analogy. However, even from
this high-probability equilibrium state, fluctuations are possi-
ble. Poincaré’s recurrence theorem implies that after an ‘enor-
mously long time,’ it is not only possible but inevitable that
the system will return to highly improbable states, such as
having all balls collected in a single urn. Therefore, the even-
tual reappearance of these low-entropy configurations (‘out-
liers’ or Buckel[26]) cannot be ruled out; indeed, their absence
over sufficiently long timescales would be extremely improb-
able. This guaranteed recurrence forms the basis of Zermelo’s
Wiederkehreinwand (recurrence objection) against monotonic
entropy increase at maximal (microphysical) resolution. The
simulation results depicted in Figure 1 demonstrate the sys-
tem’s tendency towards a state of higher entropy (equilib-
rium), punctuated by fluctuations that manifest as temporary,
occasional decreases in entropy. Moreover, if the system is
capable of universal computation, recurrence times for certain
‘computationally complex, resource-intensive’ states—such
as those associated with the halting probability Omega men-
tioned earlier—can be expected to grow ‘beyond any specifi-
able size’, potentially faster than any recursive (computable)
lower bound [27].

In statistical mechanics, a macroscopic state is essentially
an equivalence class, where the equivalence relation is defined
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FIG. 1. Evolution of the number of balls in Urn 1 (blue) and Urn 2 (dotted, orange) in the Ehrenfest Urn Model (N=100, 1000 steps), starting
from a low-entropy state with Urn 1 filled and Urn 2 empty. The dashed line marks the equilibrium state (N/2=50). The simulation highlights
the system’s relaxation towards equilibrium and the persistent fluctuations around it, illustrating the microscopic reversibility that underlies
Zermelo’s recurrence objection.

by the condition that two microscopic states are considered
equivalent if they share the same values for macroscopic vari-
ables, such as energy or volume. In the aforementioned exam-
ple, macroscopic states with roughly equal numbers of balls
(a 50:50 ratio) in both urns are much more likely than macro-
scopic states characterized by outliers with the same number
of balls. Therefore, macroscopic systems tend to evolve to-
ward entropy increase.

For example, in a gas, all possible molecular arrangements
that result in the same pressure and temperature belong to the
same macroscopic state. Consequently, microscopic states
can be formally ‘bundled together’ or ‘grouped’ based on
macroscopic equivalence: If they cannot be distinguished
through operational means at the macroscopic level, they are
defined as equivalent. The corresponding binary equivalence
relation, applied to microstates, naturally satisfies the proper-
ties of reflexivity, symmetry, and transitivity.

In summary, while the mathematical description of a sys-
tem in terms of infinite precision microstates leads to re-
versible trajectories, the physical impossibility of achiev-
ing such precision guarantees that real systems display irre-
versible behavior. The irreversible macroscopic laws of ther-
modynamics are thus understood as emergent, effective de-
scriptions that arise from practical limitations on precision
and the statistical averaging over an enormous number of mi-
crostates. The physical means define an equivalence rela-
tion on microphysical states. The corresponding equivalence
classes can be identified with macroscopic states.

IV. FORMALIZATION OF FAPPNESS BY EQUIVALENCE
RELATIONS

In an early critique of sectorization-type arguments [28, 29]
reviewed in Section II D, Bell argued [30] that unlimited
or even actually infinite means are physically unattainable.
He later introduced the related concept of For-All-Practical-
Purposes (FAPP) [31], which replaces transfinite means with
finite, physically operational ones.

The concept of FAPP indistinguishability can be rigor-
ously formalized using equivalence relations. In different
physical contexts, these equivalence relations partition mi-
croscopic configurations into equivalence classes, grouping
together states that are operationally indistinguishable at a
higher level of description. The three primary instantiations
of such equivalence classes, as discussed in previous sections,
are:

A. Classical Analysis

In classical mechanics and dynamical systems, coarse-
graining leads to an effective partitioning of phase space into
equivalence classes. Two microstates belong to the same class
if they yield identical macroscopic observables within a given
resolution limit. This follows naturally from measurement
constraints and computational limitations in practical analy-
sis.
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B. Sectorization in Quantum Mechanics

In quantum theory, the emergence of classical-like be-
havior is often described using superselection sectors or
decoherence-induced equivalence classes. Here, quantum
states that differ only by superpositions within a decohered
basis (due to environmental interactions) become practically
indistinguishable. Such states effectively belong to the same
equivalence class, as they do not interfere and cannot be re-
solved through macroscopic measurements.

C. Macrostates in Statistical Physics

In statistical mechanics, a macroscopic state corresponds to
an equivalence class of microstates that share the same macro-
scopic variables, such as energy, volume, or magnetization.
Since individual microstates fluctuate rapidly and are inacces-
sible in practice, all configurations that yield the same macro-
scopic properties are grouped together, forming a thermody-
namic macrostate.

In all three cases, the corresponding equivalence relation
on microstates satisfies reflexivity, symmetry, and transitiv-
ity, ensuring a well-defined partitioning of state space. This
formalization captures the essence of FAPP reasoning, where
practical indistinguishability justifies the use of equivalence
classes in physical descriptions.

V. CONCLUSION

This paper explored the role of infinity in bridging micro-
scopic and macroscopic descriptions in physics, focusing on
the emergence of irreversibility from reversible dynamics. We
examined how infinite processes are essential in mathemati-
cal constructions, such as the transition from rational to real
numbers, and how they manifest in physical theories, from
statistical mechanics to quantum measurement.

In classical analysis, infinite precision is a theoretical ide-
alization that is unattainable in practice. The necessity of
coarse-graining and finite resolution in measurements leads
naturally to the formation of equivalence classes that group
together states indistinguishable for all practical purposes
(FAPP). This provides a foundation for understanding macro-

scopic irreversibility despite the underlying time-reversible
microscopic laws.

In quantum mechanics, infinite tensor products and sec-
torization offer a framework for understanding the transi-
tion from unitary evolution to apparent wavefunction col-
lapse. Von Neumann’s insights [18] emphasize that the
full set of product states in an infinite tensor product is
uncountably infinite, with a cardinality of 2ℵ0 . The re-
sulting space is nonseparable. This sharply contrasts with
any countable subset, which has a cardinality of ℵ0; here,
the distinction reflects the difference between nonseparabil-
ity and separability. Since unitary operators preserve the in-
ner product structure—and, consequently, the cardinality of
any orthonormal basis—no unitary transformation can map
a countable subset onto the full uncountable set. There-
fore, under constraints such as (finite or infinite) denumerable
group actions, unitary equivalence fails in the limit of infi-
nite tensor products. The partitioning of Hilbert space into
equivalence classes through decoherence-induced superselec-
tion rules highlights how quantum-to-classical transitions can
emerge from infinite degrees of freedom.

In statistical mechanics, macrostates are equivalence
classes of microstates that share the same macroscopic ob-
servables, such as energy or volume. The practical impossibil-
ity of resolving individual microstates supports the statistical
interpretation of thermodynamic irreversibility.

By formalizing Bell’s FAPP approach using equivalence
relations, we provided a unifying perspective on how oper-
ational indistinguishability underlies emergent macroscopic
behavior. Across classical analysis, quantum mechanics, and
statistical physics, equivalence classes play a crucial role in
describing physical reality at different scales. This perspective
underscores the foundational role of infinity in physics and
its implications for the nature of measurement, irreversibility,
and emergent phenomena.
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Wahrscheinlichkeitsrechnung, die mit der kinetischen Deu-
tung der Entropievermehrung zusammenhängt, Mathematisch-
Naturwissenschaftliche Blätter 3, 1 (1906).

[27] K. Svozil, Randomness & Undecidability in Physics (World
Scientific, Singapore, 1993).

[28] K. Hepp, Quantum theory of measurement and macroscopic ob-
servables, Helvetica Physica Acta 45, 237 (1972).

[29] J. Bub, The measurement problem from the perspective of an
information-theoretic interpretation of quantum mechanics, En-
tropy 17, 7374 (2015).

[30] J. S. Bell, On wave packet reduction in the Coleman-Hepp, Hel-
vetica Physica Acta 48, 93 (1975).

[31] J. S. Bell, Against ‘measurement’, Physics World 3, 33 (1990).

https://doi.org/10.1145/321892.321894
https://doi.org/10.1142/S0218127407018130
https://doi.org/10.1142/S0218127407018130
https://doi.org/10.1007/978-1-4612-4808-8_28
https://doi.org/10.1007/978-1-4612-4808-8_28
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1007/978-3-662-04978-5
https://doi.org/10.1007/978-3-662-04978-5
https://doi.org/10.1007/978-3-642-61409-5
https://doi.org/10.1007/978-3-642-61409-5
https://press.princeton.edu/books/hardcover/9780691178561/mathematical-foundations-of-quantum-mechanics
https://press.princeton.edu/books/hardcover/9780691178561/mathematical-foundations-of-quantum-mechanics
https://doi.org/10.1103/RevModPhys.29.454
http://www.numdam.org/item/CM_1939__6__1_0/
http://www.numdam.org/item/CM_1939__6__1_0/
https://doi.org/10.1007/s10701-021-00424-1
https://arxiv.org/abs/arXiv:2003.03121
https://doi.org/10.1007/s10701-023-00678-x
https://arxiv.org/abs/arXiv:2209.01463
https://doi.org/10.3390/e25121600
https://doi.org/10.1088/1742-6596/2533/1/012008
https://doi.org/10.1088/1742-6596/2533/1/012008
https://arxiv.org/abs/arXiv:2304.07757
https://doi.org/10.1140/epjh/s13129-021-00029-2
https://makingscience.royalsociety.org/items/rr_8_188
https://makingscience.royalsociety.org/items/rr_8_188
https://makingscience.royalsociety.org/items/rr_8_188
https://archive.org/details/maxwellonheatsta0000maxw
https://archive.org/details/maxwellonheatsta0000maxw
https://archive.org/details/maxwellonheatsta0000maxw
https://www.lorentz.leidenuniv.nl/IL-publications/sources/Ehrenfest_06g.pdf
https://www.lorentz.leidenuniv.nl/IL-publications/sources/Ehrenfest_06g.pdf
https://doi.org/10.1142/1524
https://doi.org/10.5169/seals-114381
https://doi.org/10.3390/e17117374
https://doi.org/10.3390/e17117374
https://doi.org/10.5169/seals-114661
https://doi.org/10.5169/seals-114661
https://doi.org/10.1088/2058-7058/3/8/26

	(FAPP) Infinity Does Macroscopic Irreversibility From Microscopic Reversibility
	Abstract
	From Rationals to Reals: The Role of Infinity
	Dedekind Cuts
	Cauchy Sequences
	Infinite Decimal Expansions
	Cantor's Diagonalization and Irrational Numbers
	No Continua Without Infinite Means
	Specker Sequences and the Role of Infinity
	Chaitin's Omega as the Ultimate Specker Sequence

	Infinite Tensor Products and the Quantum Measurement Problem
	Infinite Tensor Products in Nested Measurement Scenarios
	The Von Neumann-Landau Measurement Scheme
	Challenges with Infinite Tensor Products
	Cardinality
	Inner Product and Orthogonality

	Sectorization as a Solution
	Factorization and Unitary Equivalence
	Role of equivalence classes

	Infinite Precision Microstates and the Emergence of Macroscopic Irreversibility
	Formalization of FAPPness by equivalence relations
	Classical Analysis
	Sectorization in Quantum Mechanics
	Macrostates in Statistical Physics

	Conclusion
	Acknowledgments
	References


