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I. INTRODUCTION

A. The Physical Relevance of Cellular Automata

Cellular Automata (CAs) are mathematical constructs that model systems composed of discrete
components evolving over time according to simple local rules. Despite their simplicity, CAs ex-
hibit remarkable phenomenological complexity, making them powerful tools for studying a wide
range of natural and computational phenomena. Beyond their abstract utility, CAs hold profound
potential physical relevance as models for discrete universes and simulations, offering insights into
the fundamental principles underlying locally governed (though not necessarily spatially localized)
universes and the dynamics of complex systems. Their capacity for Church-Turing universal com-
putation, including the self-reproduction of universal devices within their framework, provides

metaphors that may extend to continuous physical models.

Historically, Konrad Zuse, in his seminal work Rechnender Raum (Calculating Space) [1-3],
proposed the bold hypothesis that the universe itself could be interpreted as a vast computational
structure evolving through local updates. Zuse’s digital physics posits that space, time, and matter
are inherently discrete, with their evolution governed by computational rules analogous to those of
CAs. This perspective suggests that physical laws are emergent properties of an underlying com-
putational substrate, where local interactions among discrete elements produce global patterns. In
this context, CAs serve as ideal candidates for modelling a digital universe, offering a conceptual

framework for exploring the computational essence of reality.

Independently, John von Neumann, utilizing their algorithmic and computational aspects, pro-
vided another profound perspective on the significance of CAs, emphasizing their universality and
self-replication capabilities [4]. Motivated by questions of biological self-reproduction and uni-
versal computation, von Neumann designed a CA capable of replicating itself. This achievement
demonstrated that even within a simple, rule-based system, it is possible to encode the complex-
ity of life-like processes and achieve computational universality. Von Neumann’s work laid the
foundation for studying self-reproducing systems, influencing fields ranging from artificial life to
nanotechnology, and underscoring the potential of CAs to model the interplay between computa-

tion and dynamics.

CAs have also found extensive applications as models of dynamical systems. Their discrete,

rule-driven structure makes them particularly suited for simulating phenomena where local inter-
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actions give rise to emergent behaviour, such as fluid dynamics, traffic flow, biological growth,
and even aspects of quantum mechanics. Unlike continuum-based models requiring analysis, CAs
inherently capture the often granular, stepwise nature of many physical processes.

In sum, CAs embody a profound duality, functioning both as abstract computational models and
as physically relevant systems. From Zuse’s vision of a computational universe to von Neumann’s
pioneering work on self-reproduction, CAs have reshaped our understanding of computation, bi-
ology, and the dynamics of physical systems. This interplay between simplicity and complexity
places CAs at the heart of efforts to unify computational theory with the physical world.

Their characterization in terms of equivalence through transformations such as reflection, state
permutation, and their combinations represents a critical step toward understanding their potential.

This study is motivated by such physical motivations.

B. Outline and Previous Work

A one-dimensional CA operates on a bi-infinite lattice of cells where each cell is in one state
from a finite set of possible states. A computational step of the automaton comprises the follow-
ing operations. For each cell the automaton reads the states of a small set of neighbouring cells
including the cell itself. The values of the states read are used as input of a lookup table, called
the local rule, that determines the new state of the cell. Then all cells are updated synchronously.
The net effect of one computational step is the calculation of a new bi-infinite sequence of states.

Multiple iterative computational steps of the CA leads to a sequence of configurations, termed
the evolution of the CA. If each configuration of a CA’s evolution is shifted the same number of
cells to the left or to the right, the CA’s evolution is still governed by the same local rule. This
fundamental property of CA is called shift invariance.

Other symmetry operations transform the local rule. If the CA’s evolution is reflected (or mir-
rored), the resulting evolution is governed by the reflected rule, which, in general, is different, to
the unmirrored one. Reflection is thus a symmetry operation that transforms rules.

Similarly, since the states of a CA are merely labels, permutating the labels does not change
the dynamic behaviour of the CA, but will in general result in a different local rule. Rules that
can be transformed into each other under reflection or permutation or their product are considered
equivalent. Consequently, the set of all CA rules splits up into classes of equivalent rules.

Wolfram [5] designated the family of one-dimensional CAs with two states and three neigh-
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bours as elementary. In [6], pp. 485-557, he gave a table that divided the 256 rules of the ele-
mentary CA into 88 equivalence classes with respect to the symmetry operations of reflecting the
lattice, permutation of the state set, and the product of these operations. A mathematical derivation
of this result was carried out by Li and Packard [7]. Cattaneo et al. [8] studied a variety of trans-
formations of the set of local rules, in particular, also the symmetry operations of two-state CAs
to be discussed in this work. They gave, inter alias, the general result for the equivalence classes
of two-state CAs with 2r 4 1 neighbours, where r is a nonnegative integer. The properties of sym-
metry transformations acting on CA rules have also been investigated, see e.g., [9]. Symmetry

transformations were even extended to generalized CAs over groups, see [10].

Determining the equivalence classes is an elementary classification and serves both to under-
stand the set of local rules in terms of symmetry operations and to reduce the number of non-
equivalent rules. There are a variety of other classification schemes. For instance, Wolfram’s clas-
sification [11] is based on the phenomenological behaviour of the dynamic evolution, the Culik-Yu
classification [12] captures the computational complexity of the limit sets; see [13] for an overview.
The classification by symmetry operations precedes these higher-level classifications as rules in
an equivalence class are all in the same class of other classification schemes (at least they should

be).

This study focuses on the equivalence classes of one-dimensional CAs induced by the symme-
try transformations of reflection and permutation and their product. The set of symmetry transfor-
mations forms a group which acts on the set of CA rules. Therefore group-theoretical concepts are
applied to determine the equivalence classes of CAs. In group-theoretical notation, equivalence
classes induced by group actions are called orbits, and this term is used in the following. One of
the main results of this study is the provision of formulas that give the number of orbits for a state
set of size two and three for any size of the neighbourhood. This study goes beyond the scope
of previous work by classifying the orbits according to their isomorphism type and deriving the

cardinalities of these classes.

The organisation of this study is as follows. Section II provides definitions on CAs and sym-
metry operators. Section III presents a method based on group actions to determine the number
of orbits. Section IV and V contains the calculations for a state set of size two and size three
respectively. Section VI presents a brute-force algorithm that can be used to validate the results

for small numbers of states and neighbours. Conclusion remarks are made in Section VII.
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II. DEFINITIONS
A. One-dimensional Cellular Automata

The states of a CA are represented by symbols from a finite set, also called an alphabet. As
the symbols only serve to designate the states, any finite set will do, so we choose the set ¥ =
{0,1,...,k— 1} to represent a state set of size k. The size (or cardinality) of an arbitrary set A is
denoted by |A|.

A word w = xgx1 ...x,,—1 over an alphabet X is a finite sequence of symbols from X juxtaposed.
The length of a word w, denoted |w|, is the length of the sequence, that is |xpx; ...x,—1| = m (the
notation |.| denotes both the size of a set and the length of a word). The set of all words of length m
over the alphabet ¥ is denoted by X™. A configuration x is a bi-infinite sequence over the alphabet

Y, defined as a mapping of Z into X. The i-th element, i € Z, of a configuration x is denoted by x;.

Definition 1. A one-dimensional CA is a triple (k,N, f), where

k > 2 is an integer, the number of states in the state set ¥ ={0,1,... . k—1};

N is the neighbourhood, a finite nonempty set of integers such that —N = N +d for an integer d;
f is the local rule, a function from X" to X.

Let n = |N| and N = {jo, j1,---,jn—1} Such that jo < j; < -+ < ju—1. The local mapping f

induces the global mapping on the set of configurations @y : X2 — ¥4, defined by CIDy (x); =

S i joXig jo -+ Xik oy )-

We have used the notation —N ={—j | je N} and N+d = {j+d | j € N}. If N is given,
we will write @ instead of CIDI}/ . Def. 1 is similar to the one used in [14], [15] or [16], apart that
we always use the first nonnegative integers as state set and more important that we introduce the
constraint —N = N +d to later define the reflection operator in a meaningful way. If the CA is
initialised with the configuration x, the CA computes in one step the configuration ® ¢ (x).

The shift operator ¢ operates on the set of configurations, it shifts a configuration one cell to the
left, formally defined by o (x); = x;11. By the definition of the CA, the global mapping commutes
with the shift operator: ®(c(c)) = o(Ps(c)). A fundamental result of Hedlund [17] shows that
an alternative, topological definition of an one-dimensional CA based on the shift operator and
continuous mappings is equivalent to the one above. We contrast Def. 1 with another definition
that is frequently found in literature, e.g. [18] or [11]. If p and ¢ are integers, let [p, g] denote the

integer interval {p,p+1,...,q}.



Definition 2. A radius-based CA is a CA (k,N, f) such that N = [—r,r|, where r is a nonnegative
integer, called the radius of the CA.

The local mapping f induces the global mapping ®/(x); = f(xi—rXi—y+1...Xiy,). Def. 2 en-
compasses only CAs with an odd (2r + 1) number of neighbours. The generalisation to an even
number of neighbours becomes cumbersome, e.g. by shifting the output configuration a half cell
and introducing half-integers to index the configuration, see Kari [16], or by loss of symmetry, see
Ruivo [19], while Def. 1 enables a uniform treatment of all neighbourhood sizes.

If k = |X|, then the set L(k,n) = {f|f: £" — X} is called the local rule space of the family of
CAs with k states and n neighbours. The size of L(k,n) is kK", If k > 1, |L(k,n)| grows extremely
fast as function of n: |L(k,0)| = k, and |L(k,n+ 1)| = |L(k,n)|*. The set G(k,N) = {®;|f €
L(k,|N|)} is called the global rule space of the family of CAs with k states and neighbourhood N.

Proposition 3. IfG(k] ,N]) = G(kz,Nz), then ki = ky and Ny = N».

Proof. If ki # ky, then clearly G(k;,Ny) # G(kp,N>). Suppose now that k; = k, and N; # Nj.
Then N; \ N, UN, \ N; is not empty. Without loss of generality, suppose Ny = {jo,---,jn—1} and
Jp € N1 \ N>. Define a local rule f by f(ag...a,—1) =1onlyifa,=1and a; =0 for i # p, and
a configuration x by x;, =1 and x; = 0 if i # j,. Then CID]}]1 (x); is 1 if i = 0 and O otherwise.
Let g € L(k,n) be arbitrary. If <I>g2 (x)o = 0 then (I)?‘ + <I>{gvz. If <I>g2 (x)o = 1, we conclude that
g(0...0)=1and CIDQJ2 (x) contains infinitely many 1’s, so also CIDI}J1 # CIDQb. Thus, we have shown

that &) ¢ G(k,Ny). O

Note the following two cases. First, if N, = N + ¢ for an integer ¢, then G(k,N;) =
{qu)f | (I)f IS G(k,Nz)}. Second, if N» C Ny, then G(k,Nz) - G(k,N]).

B. Symmetry operations

The notion of the equivalence of one-dimensional CAs is based on two classes of symmetry
operations: permutations of the state set and reflection of the configuration.

Let S; be the symmetric group of degree k, that is the set of all permutations of the set £ =
{0,1,...,k— 1}, and suppose & € Si. If a € ¥ we write the image of a under a as product aa.
The extension of & to words and configurations is defined by elementwise application. If w =

ap...a,—1 € X" is a word, set aw = (aap) ... (aa,—1). If x is a configuration, set (ox); = o (x;).
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Suppose f is a local rule that maps X" to £. The permutation operator & is defined by & f(w) =
af (o~ 'w) for all words w € X" It represents a transformation of the set of local rules. Note that
the “hat” on the operator is necessary, because o f and & f are distinct entities. The first one is the
composite function o o f, whereas the second represents the composite function aco fo o™ 1. If

1

@ is the induced global mapping of f, we define &®, similarly: &P ;(x) = ads(a™ x) for all

configurations x. From

(0®f(x)), = (a®p(a'x)), = of (@ (xiyjy- Xt )

= Qf (Xitjy - Xitj,_y) = Pep(x)i

follows @y = P .

The second type of operator is the reflection operator. If w = ag...a,—1 € X" is a word over L,
define rw = a,,_1 ...ap. Note that ra = a for all a € X. If x is a configuration, set (rx); = x_;. The
reflection operator 7 is defined by 7f(w) = f(rw) and 7®y(x) = r®(rx). Since r is self-inverse,
that is 7~! = r, we can also write #f(w) = rf(r~'w), making the notation consistent with the one
of the permutation operator.

From

(fCIDf(x))i = (rCIDf(rx))l. = (CIDf(rx))_l. =f ((rx)_,~+j0 . (rx)_,~+j,171)

(xi*jo . 'xifjnfl) = f(xi+jn71+d"'xi+jo+d)

(’”(Xi+jo+d---xi+jn_1+d)) =rf (Xi+jo+d---xi+jn_1+d) = (q)ff(x))[_,_d;

we conclude that 7@, = qu)ff. If the CA complies with Def. 2 the relation simplifies to 7@, =
Dy

We call R = {1,r}, the reflection group. The direct product of Sy and R, written as SiR, is the
group that contains all permutations, the reflection and their products. Suppose that & and 3 are

two operators. Then

aBfw)=apf(a'w)=aBf(B o 'w) = aBf(w).

The operators form a group that is in general isomorphic to SiR, but for n = 1 (or kK = 1) the
relation is only a homomorphism. Note that the reflection operator commutes with all permutation
operators. If the global mapping ® satisfies @y = &P, the CA is said to be invariant under the

operator Q.



The meaning of the operators defined above is illustrated by the following observation. Suppose
& is either one of the permutation operators or the reflection operator, and consider two radius-
based CAs (Def. 2) with the same state set and the same radius and respectively, with local rule
f and local rule & f. If the initial configuration of CA A is x and the one of CA B is ax, then the
same 1-1 correspondence between the configurations established by o persists for all iterations:
octhf(x) =Pl f(ocx) holds for any positive integer ¢ (®' denotes the -th iteration of ®). Suppose
now that the CAs are of the general form of Def. 1. The same relation holds, if & is a permuta-
tion, but if & = r, it changes. Then CA A is after one step in configuration ®¢(x), and CA B in
configuration ®;¢(rx). Using 7@, = 09®;, we obtain ®;¢(rx) = 097 ¢(rx) = 0~ 4rd¢(x), so

r®¢(x) = 69®;¢(rx). For any number ¢ of steps, the relation becomes rd(x) = o’ D} (rx).

III. PRELIMINARIES
A. Groups and Group Actions

We assume some basic knowledge of groups as it can be found in introductory textbooks, e.g.
[20], [21], or [22]. However, we briefly introduce the notation that is used in the following, define
group actions and related concepts and state some propositions about them, all of these to be found
in more depth and more relaxed pace in the references above.

Let H be a subgroup of G, denoted by H < G. If g € G, the left coset of H in G is defined
by gH = {gh | h € H}. The index [G : H| of H in G denotes the number of left cosets of H in
G. Lagrange’s theorem states that |G| = [G : H] x |H|. If g € G, the conjugate of H by g is the

' = {ghg~! | h € H}, which is also a subgroup isomorphic to H. A subgroup N of G is

set gHg™
called normal if gNg~! = N for all g € G.
A group action of a group G on a set A is a map from G x A to A satisfying the following

properties:
(i) g1(gra) = (g1g2)aforall g1,8> € G,a € A, and
(i1) la =a, forall a € A.

The relation on A, defined by a ~ b if and only if a = gb for some g € G, is an equivalence
relation. The equivalence classes [a] = {ga : g € G} are called G-orbits (or just orbits), and the

set of orbits forms a partition of A, denoted by A/G. The length of an orbit [d] is its size |[a]|. An
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element a € A is fixed by g € G if ga = a. The set of all group members that fix an element a € A
is called the stabilizer of a, that is the set stab(a) = {g € G|ga = a}, which forms a subgroup of
G. If g € G, the set of all fixed points of g is denoted by fix(g) = {a € A|ga = g}. The notation
is generalized to subgroups. If H < G, then the set fix(H) = {a € A|ga=aforallge H} =

NecH fix(g), consists of all elements of A that are fixed points for all g € H.

Proposition 4 (Orbit-Stabilizer Theorem). If the group G acts on A and a € A, then the length of

the G-orbit which contains a is equal to the index of the stabilizer of a in G:
|[a]| = |G : stab(a)].

Proof. The map ga — gstab(a) that associates the element ga of the orbit with the left coset

gstab(a) is well-defined and bijective. O

Every group G acts on the family of all its subgroups by conjugation. The orbits of this group
action are called conjugacy classes. If H < G, then the conjugacy class of H is the set of subgroups
[H] = {H' < G|H' = gHg ' for some g € G}. The set of conjugacy classes is denoted by €'(G).
If H < G and H is normal, then the orbit containing H is a singleton. If G is abelian, each orbit
of €(G) is a singleton. If H; and H, are subgroups of G, the relation H; < H, is a partial order
on the set of subgroups. It induces a partial order on %' (G) by [H;] < [H,] if and only if there is a
H{ € [H,] and a H} € [H] such that H{ < H}. The lattice (¢(G), <) is called the reduced subgroup
lattice of G.

We consider again a group G acting on an (arbitrary) set A. The orbit O € A/G is said to
be of type [H| € € (G) if the stabilizer of some a in O belongs to [H]. If two orbits O; and
O, are of the same type, then there is a bijection ¢ : O} — O», such that ¢(ga) = g¢(a) for all
g € G and all a € 0. The function ¢ is called a G-isomorphism. Define type(A/G,H) = {0 €
A/G the type of O is [H]}. Note that |A/G| = ¥ gjce () | type(A/G, H)|.

Having established the terminology, we consider now the family of one-dimensional CAs with
k states and n neighbours. The mapping SyR x L(k,n) — L(k,n); (a, f) — @ f fulfils the properties
of a group action. If f € L(k,n), the orbit of f is the set [f] = {Of | o € SyR} and the set of all
orbits is denoted by L(k,n)/SiR. Local rules in the same orbit are connected by symmetry trans-
formations, while orbits of the same type cannot be distinguished by symmetry transformations
alone. We abbreviate type(L(k,n)/SkR,H) to type(k,n,H). The aim of this study is to develop a
method for determining L(k,n)/SiR and the sets type(k,n,H) where [H]| € € (S¢R), and in partic-

ular to derive formulas for the cardinalities of these sets.



B. Counting Orbits

The following lemma relates the number of orbits to the number of fixed points of the group

elements.

Proposition 5 (Burnside’s Lemma). Let G be a group acting on the set A. The number of G —

orbits is
1

A/Gl =
|Gl

Y [fix(g)].

¢€G

Proof. In the sum Y, |fix(g)|, each a € A is counted |stab(a)| times (for stab(a) consists of all
those g € G which fix a). If a and b lie in the same orbit, then b = ga for a g € G. This implies
stab(b) = gstab(a)g~!, and in particular |stab(b)| = |stab(a)|. So, the [G : stab(a)] elements
constituting the orbit of a are, in the above sum, collectively counted [G : stab(a)] x |stab(a)|

times. Each orbit thus contributes |G| to the sum, and so Y, fix(g) = |A/G| x |G| O

The proof was adapted from [22]. Burnside’s lemma gives the total number of orbits. Since
we are also interested in the distribution of orbits by type, we will use the following method in
Section IV and Section V. Let [H] € €'(G). The set stab™ ! ([H]) = Unrejn stab~ ! (H') is the union
of all orbits of type [H], all having length [G : H] = |G|/ |H|. Thus

|type(4/G, H)| = |stab™ ' ([H])| /G : H] = | stab™ ' (H)| x |[H]| x |H| / |G]. (D

In calculating the numbers |stab™!(H)| we take a detour. The mapping fix(H) from the set of
subgroups of G into A does not create a partition of A: if Hj is a proper subgroup of H, (Hj is a
subgroup of H, and H, # H,), denoted by H| < H,, then fix(H,) C fix(H;). The mappings fix and
stab are related

stab™ ' (H) = fix(H) \ | stab™'(H"), (2)
H<H'

where H' is also assumed to be a subgroup of G. Since the sets stab™ ! (H) are disjoint, Equation (2)
implies

|stab™ ! (H)| = |fix(H)| — Y |stab~ ! (H")]. 3)
H<H'

To calculate | stab™! (H)| for all subgroups, we start with G, for which stab™! (G) = fix(G) holds,
the calculation of the subgroups can then be done successively.
In general, the numbers |G| and | fix(g)| are not sufficient to determine the numbers |type(A/G,H)|.

The following example describes two different group actions of the same group on the same set,
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so that the numbers |fix(g)| are the same, but the distribution of orbits by type is different. If a
group G acts on a set A, it induces a homomorphism ¢ : G — S4; g — (a +— ga), where S4 denotes
the symmetric group of A. We can therefore associate group elements of G with permutations
of the set A. Let V = {1,a,b,c} the Klein four-group and A = {1,2,...,6}. Consider the group

actions Y and y», both mappings of V x A onto A, where y; has the permutation representation
o1 = (), 0, = (12)(34), 0 = (34)(56), 0, = (12)(56);

and y is given by
T = (), % = (12)(34),7, = (13)(24), 7 = (14)(23).

It is easily verified that these representations satisfy the group axioms and are isomorphic to V. The
first group action Y partitions A into the orbits {1,2}, {3,4}, and {5,6}, the second group action
Y, leads to the partition {1,2,3,4},{5}, and {6}. Note that |fix(a)| = |fix(b)| = |fix(c)| = 2
and |[A/V| = 3 for both actions, while, for instance, type(A/V,V) = 0 for the first action, but
type(A/V,V) ={{5},{6}} for the second one.

C. Symmetry Operators acting on the Set of Local Rules

The domain of a local rule is the set X" of all words over ¥ having length n. If H is a subgroup
of SiR, the mapping H x X" — X" defined by (o, w) — aw satisfies the properties of a group
action.

We will now study mappings that are defined on an orbit of £ /H. Suppose A C X" is an H-
orbit, and g is a mapping A — X. If a € H then A = {aw|w € A} = A. This shows that the
domain of ¢ig is also A. Hence we can speak about functions defined on A that are invariant under
H.

The set {Ay,...,A,} of all H-orbits is a partition of X". If f is a local rule invariant under
H, then the restriction f|A; is clearly also invariant under H. On the other hand, if g; : A; — X;
i=1...,p,is asequence of mappings, all invariant under H, then the local rule defined by f(w) =
gi(w) if w € A; is also invariant under H. This shows that invariant functions defined on the orbits
are the building blocks of invariant functions defined on X".

Let A be again an H-orbit A and suppose g : A — X is invariant under H. Choose a word w

in A, and consider a different word in A, say v. Since there is an o € H such that v = aw, the
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relation g(v) = dig(v) = ag(a~'v) = ag(w) holds, and the value of g(v) is determined by g(w).

This implies that there are at most k different mappings g : A — X that are invariant under H.

D. Examples

We will study the group action of ((01)r) on some of the orbits of two-state and three-state

neighbourhoods.

1. Let X = {0,1}, and n = 2m be a positive even integer. Suppose that the group ((01)r) acts
on Y. Consider the word w = 01" (m copies of 0 followed by m copies of 1). The group

action of (01)r on w results in
(01)rw = (01)r(0™1™) = (01)(1™0™) = 0" 1" = w;

and so the set A = {w} represents a singleton orbit. Assume there is a function f from A to
¥ that is invariant under ((01)r). Then f has to satisfy the relation f((01)rw) = (01)rf(w).
But since f((01)rw) = f(w), we obtain the contradiction f(w) = (01) f(w). This shows that

there is no local rule on X" that is invariant under ((01)r).

2. Let X be as above, let n = 2m + 1 be a positive odd integer, and let w € X". If we write

w = ucw, where u and v are words of length m and c is a symbol of X, we see that
(01)rw = (01)r(ucv) = (01)(rv)c(ru) = ((01)rv)((01)c)((01)ru).

Since for all ¢ € {0,1}, ¢ # (01)c, we conclude that w # (01)rw, and that A = {w, (01)rw}
is an orbit of length 2. Choose a symbol a from {0,1} and set f(w) = a. If we set
f((01)rw) = (01)a, the function f is invariant under ((01)r). Since a was arbitrary, there

are two functions with domain A that are invariant under ((01)r).

3. Let £ ={0,1,2}, n = 2m be a positive even integer, and w = 0" 1™. The singleton A = {w}
is an orbit of ((01)r). Assume that f is invariant on A. Then f(w) = (01)f(w) must hold,
which is satisfiable by the choice f(w) = 2. Hence there exists exactly one function from A

to X that is invariant under ((01)r).

4. Let X be as above, but let n = 2m -+ 1 be a positive odd integer. Consider a word w of £"* and

write it in the form w = ucv, where u and v are words of length m and c is a symbol. The
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relation w = (01)rw leads to the constraints v = (01)ru and ¢ = 2, satisfied by 3" words. If
w is one of these words, a function f defined on the orbit {w} that is invariant is constrained
to the value f(w) = 2. All other orbits of £ have length 2 and allow for three different

invariant functions.

E. The Degree of an Orbit

We have seen in Subsection III C that the number of invariant functions on an orbit is at most
the size of the state set k = |£|. The examples above have shown that the number of invariant
functions might also be smaller than k. Let H < S;R and A be an orbit of £ /H. The degree of A

is defined to be the number of invariant functions on A, formally
deg(A)=|{f:A—=X| af=fforallx € H}|.

The procedure for calculating the orbits of a CA which we will present shortly, requires to
determine the degree of a given orbit. The following two lemmas will facilitate this task. The first
lemma states that to determine the degree of an orbit, it is sufficient to consider all group actions
on only one word of the orbit. The second lemma says that an orbit has degree k if the length of

the orbit equals the order of the group.

Lemma 6. Let H < SiR, A be an H-orbit, f be a function from A to ¥, and w be any word of A. If

flaw) = af(w) holds for all o in H, then f is invariant under H.

Proof. By definition, f is invariant under H if f(w) = ocf (o~ 'w) forall w € A and o € H. If we

!, we see that the condition becomes equivalent to f(w) = o~ f(aw)

replace o by its inverse o~
or f(aw) =af(w) forallw e Aand o0 € H.
Letv € A and B € H. Assuming that the condition of the lemma is fulfilled, we have to show

that f(Bv) = Bf(v). The proof is almost trivial. Since A is an H-orbit, there is a Y € H, such that
v=yw. Then f(Bv) = f((BY)w) = (BY)f(w) = B(vf(w)) = Bf(yw) = Bf(v). 0

Lemma 7. Let H < SgR and A be an H-orbit. If |A| = |H|, then deg(A) = k.

Proof. Let w be any word of A, and a be any symbol of X. Define a function f from A to X as
follows. Set f(w) = a and let v be another word of A. Since |A| = |H| there is exactly one ot € H
such that v = aw. This shows that the value f(v) = a.f(w) = aa is well defined. Lemma 6 implies

that f is invariant under H. [
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F. Outline of the Complete Calculation

Given a local rule space L(k,n), the method to calculate the numbers |type(k,n,H)|, [H] €
€ (SkR) is as follows.

1. Construct the group SiR that is the direct product of the permutation group S; and the re-
flective group R = {0,r}. Having done that, construct the sublattice of all subgroups of
SkR.

2. For each conjugation class [H] of € (SkR) choose one representative H € [H]. Determine

the orbits of the group action H x X" — X" and their degree. Then

|fix(H)| = H deg(A).
AEX! /H

3. Beginning with SiR calculate stab~!(H ) for all selected representatives by using Equa-
tion (3):

|stab™ ! (H)| = | fix(H)| — Z |stab™ 1 (H')|
H<H'

4. The number of orbits of type [H| is given by Equation (1):

|type(k,n, H)| = |stab™' (H)| x |[H]| x |H| /|G].

Sum up the numbers to obtain |L(k,n)/SkR|, the total number of orbits (or apply Burnside’s

lemma).

G. Shift-Equivalence

Another elementary equivalence relation was introduced in [19], which we first illustrate with
an example in the domain of elementary CAs (k = 2, n = 3), using Wolfram’s nomenclature to

label the rules, see [11]. Set X = {0, 1} and consider the elementary CAs f}, and f34, defined by

1 fw=010orw=011 1 fw=001orw=101
frz(w) = and f34(w) =

0 otherwise 0 otherwise

Define a function 4 : £* — X by h(01) = 1 and h(w) = 0 if w # 01. Then fi2(apaaz) = h(apa;)

and f3a4(apaiaz) = h(aya,) for all agaja, € £2. It is easy to see that @y, = 0Py,

14



Two CAs (k, Ny, f) and (k,N,, g) are said to be shift-equivalent if @?l =0/ CID(];]2 for some integer
J» denoted by CIDy1 2 CD;YZ. The relation < is an equivalence relation. A mapping p : X" — X",
m < n, is called a projection if there are integers qo, . ..,gn—1 suchthat0 < ¢gp < ... < g1 <n—1
and p(ag...an—1) =ay,...aq, , forallag...a,—1 € ". The set {qo,...,qgm—1} is called the index
set of the projection. A local rule f: X" — X is called reducible if there exists alocal rule 7 : ¥ — X
and a projection p : ¥ — X" with m < n, such that f = ho p, otherwise f is said to be irreducible.
Let N = {Jjo,-..,Jan—1} be the neighbourhood of the CA. If f is reducible, then there is a rule /
and a projection p such that f = ho p, and the index set of p is minimal. If {go,...,qu—1} is this
index set, the set M = {jy;,.--,jg, ,+ C N is called the support of f.

Suppose that f is reducible with support M, f = ho p, the index set of p is {qo,...,gm—1}, and
there is an integer 7 such that M’ = M +1 C N. Write M’ = {gys--odg, 3 Let p' be the projection

¥" — X" with index set {qj, ... ,q,,_ } and define a local rule with the same neighbourhood N as

fby f/=hop'. From

D1 (x)i = (ho p) itjo o Xiejy 1) = M ¥irejy Xy ) = hlXijyg v K, +1)

= Gth(x,-ﬂqo .. .xH_quA) = O't (h Op) (xi+j0 .. 'xi'f'jnfl) = (th)f(x))i

follows @y = 6'®y, so f and f" are shift-equivalent.

Let Ny and N, be integer intervals. Suppose |Ni| = n, |[N2| =m, m < n, f € L(k,m), and
f is irreducible. Then there are n —m + 1 local rules g; € L(k,n) such that CD]}]I 2 ®N2g;. The
reflected rules CIDJrA\;?i are all different, but shift-equivalent: <1>]rf§} N CIDJrA\;?i . If f is reflection-symmetric,
7f = f, then, if at all, only one of the g;, is reflection-symmetric. Note also the general relation
P 2 ®; r from Subsection II B. There is the special case of [N1| =2, and |N;| = 1. Let f € L(k, 1),
and consider the rules go,g; € L(k,2), such that go(apa;) = f(ao) and gi(apa1) = f(ar). Here,
equivalence by reflection and by shift coincide: g; = 7go and Py, 2 @, . This shows that the orbits
of L(k,2) /SR remain unchanged if shift-equivalence is taken into account.

Let Ny = [—ry,r1], and Ny = [—rp, 2] with rp < ry. If f € L(k,2ra+ 1), pla_y, ...ay) =
A_r,...ar,and g = fop € L(k,2r; + 1), then ®, = O. In this case, P;, = Py holds.

A local rule defined on a smaller neighbourhood might reappear in multiple copies that are shift-
equivalent when considering larger neighbourhoods. We conclude that shift-equivalence is another
important elementary equivalence relation. However, it is of a different nature since it concerns

only local rules that can be defined on a proper subset of the neighbourhood. The consideration

of shift-equivalence into the presented framework, which is based on the group of permutations
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FIG. 1. The lattice of ShR.

and reflection, goes beyond the scope of this study. Results for the number of equivalence classes,
obtained with a computer program that also considered shift-equivalence, can be found in [19] for

small families of CAs (k=2,n=2,3,4and k =3, n=2).

IV. TWO STATES

This section deals with the orbits of of one-dimensional two-state CAs, that is ¥ = {0, 1}.

A. The Group S>R

S>, the symmetric group of degree 2, contains as its elements the identity 1 and the transposition

(01). The direct product S»R is given by

$HR = <(01)><I’> = {1,(01)}{1,7’} = {1,(01),1”, (01)7’} = <(01),I’>.

The notation (a, f3,...) is called a generator, and denotes the group with the property that every
element of the group can be written as finite product of the elements of the generator and their
inverses. Since S is abelian and r commutes with 1 and (01), S>R is abelian too. It is isomorphic

to the Klein four-group. The lattice of subgroups is depicted in Fig. 1.

B. Odd Number of Neighbours

Suppose the number of neighbours is odd, n =2m+ 1, m =0, 1,2,.... For each subgroup H of
S>R, we will calculate the number of orbits of H acting on X". For the next paragraphs w denotes

a word of X",

22m+1

1. The group (1). All orbits are of length 1, and so X" partitions into singletons.
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. The group (r). The relation w = rw is satisfied if and only if the word w is of the form ua(ru)

where |u| = m and a is a symbol. This relation is fulfilled by 2"*! words. The set of these
words divides into 2"+ orbits of length 1. The remaining 2%"+! — 2"+1 words of X" are
all in orbits of length 2. The total number of orbits is therefore (227+1 —2m+1) /2 4 om+1 —
2m(2m 4 1),

. The group ((01)). Consider any word w of £" and let a denote the symbol in the centre of

the word. Then (01)a is the symbol in the centre of the word (01)w. This shows that the

words w and (01)w are always different. Hence X partitions into 22" orbits of length 2.

. The group ((01)r). As before, the words w and (01)rw are always different. Hence the

number of orbits is again 22"

. The group SpR. If w = rw holds, then also r(01)w = (01)w holds. We have seen that

there are 2! words satisfying the relation w = rw, and so there are 2 orbits of length 2
consisting of the words w and (01)w. The remaining 2>"*! — 2m+1 words divide into orbits

of length 4. Thus the total number of orbits is (2271 —2m+1) /4 4 om = pm=1(om 1 1),

All the orbits of the groups have degree 2. Put H; = SpR, H, = ((01)), Hz = ((01)r), Hy = (r)

and Hs = (1). Set a; = |fix(H;)

, bi = |stab™ ! (H;)|, and ¢; = |type(2,n, H;)

,fori=1,...,5. If p;

is the number of orbits (of degree 2) of the group H;, then a; = 2P!. We get

by =ay =cy;

by=ay—ay,co =by/2;
by =az—ay,c3 =b3/2;
by =aqs—ay,cq4 =by/2;

bs =as—ay —by —bs — by = as+2a; —ay — a3 — ag,cs = bs /4.

The total number of orbits is given by ) ;c;. Expressing the ¢;’s by the p;’s leads to the following

result.

Proposition 8. Let m be a nonnegative integer.

(i) The set of rules L(2,2m+ 1) partitions into }‘ (2 x 22" 4 02"(2"+1) 4 222m+l) orbits.
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(ii) The number of orbits of L(2,2m+ 1) by type are
|type(2,2m+1,5,R)| — 92" (@),
|type(2,2m+1,((01)))| = (22“_22'" lzm+1)>

type(2,2m+1,((01)r))| = (222'" 21" 12’”+1)>’

( (
(

B

>)| _ 22m 2m+1 22m 1(2m+]))

|type(2,2m+1,(1))] =

9

Bl= = D= =

(
|type(2,2m+1,(r
< (222111—0—1 +2 22m—l(2m+1) . 2 % 222m . 22m(2m+1)> '

Part (i) is a particular case of Proposition 21 in [8].

C. Even Number of Neighbours

Suppose the number of neighbours is even, n = 2m, m = 1,2,.... For the next paragraphs w
denotes a word of £". Example 1 has shown that there is no local rule invariant under ((01)r), and
by implication no local rule invariant under SpR. Thus, in calculating the number of orbits, we

therefore only have to consider the remaining subgroups.
1. The group (1). The set X" partitions into 22" orbits of length 1.
2. The group {(01)). The set £" partitions into 22"~ ! orbits of length 2.
3. The group (r). The set X" partitions into 2! (2" 4 1) orbits.

All the orbits of the three groups above are of degree 2. Put H, = (r), H, = ((01)), and
Hs = (1). Set a; = | fix(H;)|, b; = | stab ' (H;)

,and ¢; = |type(2,n, H,)|,

,3. If p; is the
number of orbits (of degree 2) of the group H;, then a; = 2P/. We get

by =aj,c1 =b1/2;
by =az,co=by/2;

b3 = aj —bl —bz,C3 :b3/4.

The total number of orbits is given by Y, c;. Expressing the ¢;’s by the p;’s leads to the following

result.
Proposition 9. Let m be a positive integer.

(i) The set L(2,2m) of local rules partitions into 41_1 (22'”_1 @1 4 g2 222m> orbits.
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TABLE I. Count of two-state orbits by type.

[type(2,n, )|
H n=1n=2n=3 n=4 n=>5
((01),r) 2 0 8 0 1024
((01)r) 0 0 4 0 32256
((01)) 0 2 41 128 32256
(r) 1 41 28| 512 523776
(1) 0 1| 44|16064|1073447 424
3 70 88/16704|1074036736

(ii) The number of orbits of L(2,2m) by type are

|type(2,2m, ((01)))] = 122",

type(2,2m, (r))| = 122720
)

) ;
type(2.2m, (1)) = 4 (2222t @)

Table I depicts the number of orbits of two-state CAs for a neighbourhood size n = 1,...,5.
For each n and each subgroup H of S»R the table gives the number of orbits of stab™! (H). The

last row lists the total number of orbits for a given n.

V. THREE STATES

After calculating the orbits of one-dimensional two-state CAs in Section IV this section deals

with one-dimensional three-state CAs, that is X = {0, 1,2}.

A. The Group S3R

The group S3R, which is the direct product of the symmetric group S3 and the reflection group
R, contains all the symmetry operators of one-dimensional three-state CAs.

Some remarks:

1. 83 is not abelian, and neither is S3R, for instance (01)(02) = (021), but (02)(01) = (012).

19



((01), (12),7)

((01)r, (012)) ((01), (12)) ((012),7)

00,0 (12,0 (@07 ll
' ‘ g\ (012))

Xy

FIG. 2. The lattice of S3R.

2. The depiction of the lattice of subgroups, Fig. 2, arranges groups of equal order in the same

row. From bottom to top the orders are 1, 2, 3, 4, 6, and 12.

3. The dashed rectangles demarcate conjugacy classes of subgroups. The other subgroups are
normal and form singleton classes with respect to conjugation. Collapsing the conjugacy

classes into single nodes result in the reduced subgroup lattice.
4. Groups are specified by generators, e.g. S3 = ((01), (12)).
5. From [(012)r]® = r follows ((012)r) = ((012), ).

6. The group ((01)r,(012)) consists of the elements 1, (01)r,(12)r,(20)r, (012), and (021).

B. The Orbits of the Subgroups of S3R acting on X"

The following lemma facilitates the calculation of orbits of subgroups that contain the permu-

tation (012).
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Lemma 10. Suppose H is a subgroup of S3R that contains the permutation (012), and suppose
that A is an orbit of H acting on X'. Then the number 3 divides the length of A.

Proof. There is no word in X" that is invariant under (012). This is equivalent to saying that for
all words w in X", the permutation (012) is not an element of the subgroup stab(w), and hence
that the group ((012)) is not a subgroup of stab(w). Since (012) and (210) are the only elements
of order 3 in H, the subgroup stab(w) is not divisible by 3. From |stab(w)| |A| = |H| follows the

proposition. u
The next simple lemma will help us in classifying orbits of degree 1.
Lemma 11. Suppose H is a subgroup of S3R and A is an orbit of H acting on X". Then deg(A) <1
(i) if (01) € H and there is aw € A such that w = (01)w; or
(ii) if (01)r € H and there is aw € A such that w = (01)rw.

Proof. Let o be (01) or (01)r and suppose that f is an invariant function from A to X. Then the
relation f(w) = a~! f(aw) = of(w) implies f(w) = 2. O

All words below are understood to be words over X. The word w always denotes a word of X".
Sometimes we will write w as a concatenation of two words, that is w = uv, if n = 2m is even, and
as a concatenation of a word, a symbol, and a further word, that is w = uav, if n = 2m—+1 is odd.
If we do so, we assume that |u| = |[v| = m. For each subgroup H of S3R the number of free orbits
of H acting on X" is calculated as follows. In the calculations themselves we will make frequent

use of Lemma 7 and Lemma 11, without explicitly referencing them.

1. The group (1). X" splits up into 3" orbits of length 1.

2. The group (r). A calculation similar to the state set of size 2 yields (3% 4-3™) /2 orbits of
degree 3 if n = 2m is even, and (32! 4-3"+1) /2 orbits of degree 3 if n = 2m + 1 is odd.

3. The groups ((01)), ((12)), ((20)). We study ((01)). Only the word w = 2" (n copies of 2)
satisfies the equation (01)w = w. Hence the orbit {2"} is of degree 1. The remaining words

split up into (3" — 1)/2 orbits of length 2 and degree 3.

4. The groups ((01)r), ((12)r), ((20)r). We study ((01)r).
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Suppose n = 2m is even and w = uv. The relation uv = (01)r(uv) = ((01)rv)((01)ru) implies
v = (01)ru and so is satisfied by 3™ words which form 3™ orbits of length 1 and degree 1.

The remaining words split up into (3% — 3™) /2 orbits of degree 3.

Suppose n =2m+1 is odd and w = uav. The relation uav = (01)r(uav) = ((01)rv)((01)a)((01)ru)
implies v = (01)ru and a = 2, which is satisfied by 3™ words resulting in 3" orbits of length

1 and degree 1. The remaining words split up into (32"+1 —3™) /2 orbits of degree 3.

. The group ((012)). All orbits are of the form {w, (012)w, (210)w} with pairwise different

elements. This shows that X partitions into 3"~ orbits of degree 3.

. The group S3 = ((01),(12)). The orbit {0",1",2"} is of degree 1 because (01)2" = 2". The

remaining words split up into (3"~! — 1) /2 orbits of length 6 and degree 3.

. The groups ((01),7), ((12),r), ((20),r). We study ((01),r). Only the word 2" satisfies the

relation w = rw = (01)w = (01)rw. The corresponding orbit {2"} is of degree 1.

Suppose n = 2m is even. There are two ways that the orbit {w, rw, (01)w, (01)rw} can fold

up into orbits of length 2.

First, if w = rw and w # (01)w holds. From the set of 3" words that satisfy w = rw we
remove 2". The remaining words in this set split up into (3" —1)/2 orbits of length 2 and

degree 3.

Second, if rw = (01)w and rw # w holds. If w = uv the relation rw = (01)w implies v =
(01)ru. As above, we remove from the set of 3" words that satisfy this relation the word 2"

to obtain (3" — 1)/2 orbits of length 2 and degree 1.

The remaining 32" —2(3” — 1) — 1 words in X" split up into orbits of length 4 and degree 3.
Summing up the orbits of degree 3, we obtain for their number (32 —2(3" — 1) — 1) /4 +
(3"—1)/2=(3"—-1)/4.

Suppose n = 2m + 1 is odd. We consider again the two different types of orbits of length 2.

The first occurs, if w = rw and w # (01)w holds. A similar calculation as above obtains

(3m*+1 —1)/2 orbits of length 2 and degree 3.

The second occurs, if rw = (01)w and rw # w. If w is written as uav, the relation becomes

(rv)a(ru) = ((01)u)((01)a)((01)v), yielding the constraints v = (01)ru and a = 2 which are
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10.

satisfied by 3" words. Removing the word 2" from this set results in (3" — 1)/2 orbits of

length 2 and degree 1.
The remaining 32"+ — (31 1) — (3" —1) — 1 = (3"*! —1)(3" — 1) words in X" split up
into free orbits of length 4. Hence the total number of orbits of degree 3 is (3”1 —1)(3" —

1/44+ @™ —1)/2=3""-1)3"+1)/4.

. The group ((012)r). If w = rw, then {w, (012)w, (210)w} is an orbit of length 3. If w # rw,

the orbit containing w is of length 6. The calculation is similar to the one of the group (r).
If n = 2m is even, X" partitions into (32"~ ! + 3’"‘1)/2 orbits of degree 3, if n =2m+ 1 is

odd, X" partitions into (32" 4 3™) /2 orbits of degree 3.

The group ((01)r,(012)). An orbit is of length 3 if and only if the orbit contains a word w

that satisfies the relation w = (01)rw.

Suppose n = 2m is even and write w = uv. Then w = (01)rw holds if and only if v = (01)ru
holds. Each of these 3™ words is in a different orbit. This shows that there are 3" orbits
of length 3. All of them have degree 1. The remaining words split up into (32’”_1 —3M)/2
orbits of length 6 and degree 3.

Suppose n = 2m+1 is odd and write w = uav. Then w = (01)rw holds if and only if
v = (01)ru holds and a = 2. Again, this shows that there are 3™ orbits of length 3 and

degree 1. The remaining words split up into (32" — 3™) /2 orbits of length 6 and degree 3.

The group S3R. The set {0, 1",2"} is the only orbit of length 3. The degree is 1. If n =1 it

is the only orbit.

Suppose n = 2m is even. By Lemma 10 the next possible length of an orbit is 6. If w is
a word in an orbit of length 6, either w = rw or w = atw, where o denotes a transposition.
There are 3" words for which w = rw. If we subtract the 3 words of the orbit of length 3, we
obtain 3(3"~! — 1) words that split up into (3"~! —1)/2 orbits of degree 3. There are also
3™ words for which w = (01)rw, or 3 x 3" words for which w = arrw, where o denotes any
of the three transpositions (01),(12),(20). If we subtract the 3 words of the orbit of length
3, we obtain 3(3™ — 1) words that split up into (3" — 1) /2 orbits of degree 1.

The remaining words of X" partition into orbits of length 12. The number of remaining

words is 32" —3(3"~! —1) —3(3" — 1) — 3, splitting up into (3" — 1)(3"~! — 1) /4 orbits
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FIG. 3. The orbits of S3R acting on {0,1,2}3.

of length 12 and degree 3. The total number of orbits of degree 3 then is (3" —1)(3" ! —
1)/4+ (3" 1 =1)/2=03"+1)(3" ' -1)/4.

Suppose n > 1 and n = 2m + 1 is odd. There are 3"*+! words that satisfy w = rw. Similar
to the calculation above, we obtain 3"*! — 3 words that split up into (3" — 1)/2 orbits of
degree 3. The relation ucv = (01)r(ucv) implies v = (01)r and ¢ = 2. As above, we see that

3m+1 3 words satisfying w = otrw split up into (3™ — 1) /2 orbits of degree 1.

The remaining words of X" partition into orbits of length 12. The number of remaining
words is 32+ —6(3™ — 1) — 3, splitting up into (3" — 1)? /4 orbits of length 12 and degree
3. The total number of orbits of degree 3 then is (3" — 1)? /44 (3" —1)/2 = (32" — 1) /4.
Fig. 3 depicts the orbits of £° /S3R. The graphs are informal, highlighting certain symmetries

of the orbits.

C. Counting the Orbits of L(3,1)/S3R by Type

Too shorten the notation, we enumerate the representatives of the conjugation classes: H; =
S3R, Hy = ((01)r,(012)), Hs = ((01),(12)), Hy = ((012)r), Hs = {(01),), He = {(012)), Hy =
((01)r), Hg = ((01)), Hy = (r), and Hjo = (1). We set a; = |fix(H;)|, b; = |stab™ ! (H;)|, and
ci = |type(3,n,H;)|. In the previous subsection we determined the degree of orbits for one repre-

sentative H; of the conjugation classes [H;]. If p; is the number of orbits of H; of degree 3, then
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a; = 371, We express now b; and ¢; in terms of a;. Then

by =a; =cy;
by =a; —ay,c2="by/2;
by =az—ay,c3 =b3/2;
by = a4 —ay,cqs = by /2;
bs =as—ay,cs =3bs/3 = bs;
be=as—a; —by—bz —by=as+2a; —ax—az —as,ce = bg /4;
b7 =a7—ay—by—bs=a;+a,—ay—as,c1 =3b7/6 =b7/2;
bg =ag—ay; —bs —bs =ag+a; —az —as,cg = 3bg /6 = bg/2;
by = a9 — ay — by —3bs = ag + 3a; — as — 3as,co = by /6,
bio =ai9—ay —by—bz —bs—3bs—bg—3b7 —3bg — by
= ajo — 6a; + 3a; + 3asz + as + 6as — ag — 3a7 — 3ag — ag, c19 = b1o/12.
The equations for cs, ¢7, and cg contain an additional factor 3 due to the size of the conjugation
classes, see Equation 1 and Fig. 2. The total number of orbits is therefore

10
1 1 1
Zci:E(a9+010)+8(a4+a6)+1(a7+48)- 4)

Proposition 12. Let m be a nonnegative integer. The set L(3,2m+ 1) of local rules partitions into

i (3(32m+1+3m+1)/2 n 332111+l) n l (3(32m+3m)/2 n 332m) n l (3(32m+l 73m)/2 n 3(32m+l 71)/2)
12 6 4

orbits.

Let m be a positive integer. The set L(3,2m) of local rules partitions into
i <3(32m+3m)/2 n 332m> n 1 (3(32m71+3m71)/2 n 332;1171> i l (3(32m_3m)/2 n 3(32m_1)/2>
12 6 4
orbits.
The total number of orbits can be derived more simply from Burnside’s Lemma:
L(3,n)/S3R| = —— fix(ax)| =
LG /3Rl = oo T [fix(@)

1—12 (|fix(1)] 4| fix(r)| + 3| fix((01))] + 3| fix((01)r)| + 2| fix((012))| + 2| fix((012)r)|),
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TABLE II. Count of three-state orbits by type.

H |type(3,1,H)||[type(3,2,H)|| [type(3,3,H)|
((01),(12),7) 1 1 9
((01)r,(012)) 0 0 9
((01),(12)) 0 1 36
((012)7) 1 4 360
((01), r) 2 8 6552
((012)) 0 4 4716
((01)r) 0 9 262431
((01)) 0 35 793 845
(r) 3 116 64566 684
(1) 0 1556635433 642324

7 1734635499 276 966

where we have used the relation |fix(a)| = |fix(BaB~')|. If we note that fix(a) = fix({a)),
we obtain Equation (4). Since the calculation depends only on the cyclic subgroups, Burnside’s
lemma is preferable, if only the total number of orbits is required.

Table II lists the cardinalities of orbits by type, i.e. |type(3,n,H)

, [H] € €(S3R), for a neigh-
bourhood size of one, two, and three. The last row gives the total number of orbits, that is
|L(3,n)/S3R|. In contrast to two-state CAs, we have refrained from giving explicit formulas for
ci = |type(3,n,H;)| in the above proposition. These formulas become lengthy, but can be easily

derived by expressing the ¢;’s in terms of the p;’s above.

D. Constructing local rules that are invariant

The focus of this study so far has been on deriving formulas for the cardinalities of the orbits
of CA rules by type as well as for their total number. We point out that an analogous method
to the one described in Subsection III F can be used to actually construct the local rules that are
invariant. We will not treat this subject systematically, but give an example. Let ¥ = {0,1,2}

and n = 3. The orbits of S3R acting on X and their degrees were derived in Subsection VB
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and depicted in Fig. 3. We have also seen that the degree of orbit A and C is 1 and the degree
of orbit B and D is 3. According to Subsection Il C, we form the set of local rules {f} on X*
by considering the restriction of f on the partitions A,...,D, denoted by f4,...,fp. Since the
degree of A is 1, we need to determine the value of f4 for a given word w, for instance 000.
The relation (12) f4(000) = f4((12)000) = £4(000) implies f4(000) = 0. The other values follow
from f4 (a000) = o f4(000) = a0, & € S3R. Similarly, (02)rfc(012) = fc((02)r012) = fc(012)
implies fc(012) = 1, the other values follow as above. Thus there is only one function f4 on A

and only one function fc on C invariant under S3R:

000 111 222 012 210 201 102 120 021
fa= , Jo= :
0 1 2 1 1 0 0 2 2

The orbit B is of degree 3, so we can pick a word in B, say 010, define f5(010) =a witha € £
arbitrary, and derive the other function values as above. We proceed with orbit D in the same way

and set fp(001) =b,b € X, so

010 101 121 212 020 202
fB= , and

a (0l)a (012)a (02)a (12)a (021)a

001 100 011 110 112 211 002 200 022 220 122 221
D= :
b b (01)b (01)b (012)b (012)b (12)b (12)b (021)b (021)b (02)b (02)b
We set f(w) = fx(w) if w € X. Since a and b were arbitrary symbols of X, there are 9 orbits of

length 1 of type S3R, in accordance with the entry |type(3,3,S3R)| in Table II.

VI. VALIDATION

In the previous sections the exact numbers of orbits for one-dimensional two-state and three-
state CAs were calculated. This section takes another approach and describes an algorithmic
brute-force approach to determine these numbers for small k£ and n. The algorithm is implemented
in Python 3 and depicted in Table III.

We start with some general considerations applicable to any programming language that sup-
ports arrays (referred to as sequences in Python). The state set £ = {0,1,...,k— 1} is ordered,
and so is the set X" if we adopt the lexicographical order. We write the set X" as an increasing
sequence (w;); 0 <i < k". This arrangement allows for the representation of a local rule f by

the sequence (b;), 0 < i < k", where b; = f(w;). We define an encoding function, denoted by
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TABLE III. Python 3 program that calculates the number of orbits.

import itertools as it

k=3;n=2 # number of states; neighbourhood size
s = tuple(range(k)) # state set (0,1,..,k-1)
def enc(w) : # encodes a word

v=0

for a in w : v = k¥v+a
return v # returns w[0]l*k~(n-1)+..+w[n-1]

rfl_pairs = [(enc(w),enc(w[::-1])) for w in it.product(s, repeat=n)

if w !'= wl::-1]1] # pairs (i,j), w_j = rw_i != w_i
def reflectRule(f) : # returns reflected rule
g = list(f) # copy f

for (i,j) in rfl_pairs : gl[i]l = f£[j]
return tuple(g)
def permutateRule(f, perm) : # returns permutated rule
g = [0] * k¥*n
for w in it.product(s, repeat=n)
glenc([perm[a] for a in w])] = perm[f[enc(w)]]
return tuple(g)
def orbit(f) : # returns the orbit of f
orb = set()
for perm in it.permutations(s)
pf = permutateRule(f,perm)
orb.update ({pf, reflectRule(pf)})

return tuple(orb)

def countOrbits() : # counts all orbits
processed = set() # keep track of processed rules
count = 0

for f in it.product(s,repeat=k#**n)
if f not in processed :
count += 1
processed.update (orbit (£))
return count

print (countOrbits()) # prints number of orbits

enc, which maps a word to an integer. The function returns the index i of the word w within the
sequence (w;) such that w = w;, or equivalently, the numerical value when w is read as a number
in base k: if w=a,_ ...ayp, then enc(w) = a,_ k"1 4+...+ag. Given a local rule f represented
by the sequence b = (b;) and a word w, to find f(w) compute j = enc(w), and then access the j-th

element in the sequence b: f(w) = b;.

The program listed in Table III implements local rules and words as sequences. The symmetry
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operators are implemented in a manner closely aligned with their theoretical definitions.

We first discuss the reflection operator. The variable rf1_pairs refers to a sequence of integer
pairs (i, j) satisfying the relations w; = rw; and w; # rw; (w[::-1] is a Python idiom used to
reverse a sequence). The function reflectRule takes a sequence f that represents a rule, and
returns its reflected version g. Initially, the rule provided as argument is copied into the variable g.
Then, a for loop iterates over refl_pairs, modifying the values of g accordingly to the pairs of
reflectRule.

We now shift focus to the implementation of the permutation operator. Permutations of the state
set are represented as sequences of length k. The function permutateRule accepts a local rule £
and a permutation perm, and returns the permutated rule g. It begins with initializing the variable g
with a sequence of length k. A for loop then iterates all words in the domain, and for each word w,
g is changed, according to the equation g(o(agp...a,—1)) = g((cap)...(cay,—1)) = 0o f(ag...an).

The function orbit determines the orbit of the input function f. It iterates all permutations of
Y, and adds the permutated rule and the permutated and reflected rule to the orbit. If f is invariant
under a certain operation then f will not be changed. Since the underlying data structure of the
equivalence class is a set, subsequent additions of the same element have no effect.

Lastly countOrbits iterates the set of local rules: it.product (s,repeat=k**n) creates the
cartesian product of ¥ with itself, k" times, representing the set of local rules. If a rule belongs to
an orbit of an already processed rule, the body of the for loop is skipped. Otherwise a new orbit
is created, the counter is incremented, and the members of the class are stored in a set referenced
by the variable processed.

On a typical PC, the program prints the result within a few seconds for the input parameters
k=2 and n <4 as well as for k = 3 and n < 2. With an optimized implementation and improved
hardware, it might be possible to achieve results for a few additional combinations, such as k = 2,
and n = 5. However, the algorithm’s runtime complexity prevents calculations for larger input
parameters.

The presented implementation is minimalistic. We briefly explore two kinds of improvements.

1. By incorporating minor changes, more detailed insights about the orbits can be obtained. As
an example, adding a hashtable to the function body of countEquiClasses allows tracking

the number of equivalence classes based on their size.

2. Although traversing the entire domain might be unfeasible, exploring only parts of it
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might still be instructive. For instance, if the main loop is adjusted to iterate only the set
fix(((012))), it is feasible to obtain the results for the upper lattice of S3R, which consists of

groups that encompass the group ((012)).

VII. SUMMARY

This work investigates the classification of one-dimensional cellular automata (CAs) into orbits
(also called equivalence classes) using a group-theoretical approach. A cellular automaton oper-
ates on a bi-infinite lattice of cells, each existing in one of a finite number of states, and evolves
according to local rules that depend on a fixed-size neighbourhood of cells.

The study defines equivalence through transformations such as reflection, permutation of states,

and their combinations. The key contributions include:

* Formalizing orbits by systematically incorporating symmetry operations, including reflec-
tion and state permutations, to identify and group equivalent rules within the set of local

rules;

* Deriving orbits for two-state and three-state cellular automata with arbitrary neighbour-
hood, which generalizes previous results and corroborates existing findings, such as the
well-established 88 equivalence classes for elementary cellular automata (two states, three

neighbours);

» Exploring group actions and symmetries acting on the set of local rules, developing a com-
prehensive methodological framework for calculating orbits of the set of local rules across

varying numbers of states and neighbourhood sizes;

* Classifying orbits by their isomorphism type with respect to the symmetry operations and

giving results for the number of orbits per type;

* Implementing an algorithmic validation through a brute-force approach in Python, empiri-

cally verifying the theoretical results for families of CAs with a small set of local rules.

The study concludes by highlighting the significance of symmetry-based classification in sub-
stantially reducing the number of unique CA rules. This approach provides a rigorous foundation
for future investigations into cellular automata dynamics and computational properties, potentially

opening new avenues for understanding discrete complex systems and computational mechanisms.

30



Acknowledgments

The authors would like to express their sincere thanks to the anonymous referees for their

valuable comments and suggestions.

This research was funded in whole or in part by the Austrian Science Fund (FWF) [Grant
DOI:10.55776/PIN5424624]. The authors acknowledge TU Wien Bibliothek for financial support

through its Open Access Funding Programme.

[1]
(2]

[10]

[11]

[12]
[13]

K. Zuse, Rechnender Raum (Friedrich Vieweg & Sohn, Braunschweig, 1969).

K. Zuse, Calculating Space. MIT Technical Translation AZT-70-164-GEMIT (MIT (Proj. MAC),

Cambridge, MA, 1970).
K. Zuse, Discrete mathematics and Rechnender Raum (1994).

J. von Neumann, Theory of Self-Reproducing Automata, edited by A. W. Burks (University of Illinois

Press, Champaign, Illinois, USA, 1966).
S. Wolfram, Statistical mechanics of cellular automata, Reviews of Modern Physics 55, 601 (1983).

S. Wolfram, Theory and Applications of Cellular Automata: Including Selected Papers, 1983-1986,

Advanced series on complex systems (World Scientific, 1986).

W. Li and N. H. Packard, The structure of the elementary cellular automata rule space, Complex Syst.
4 (1990).

G. Cattaneo, E. Formenti, L. Margara, and G. Mauri, Transformations of the one-dimensional cellular
automata rule space, Parallel Computing 23, 1593 (1997), cellular automata.

A. Castillo-Ramirez and M. Gadouleau, Elementary, finite and linear vn-regular cellular automata,
Information and Computation 274, 104533 (2020), aUTOMATA 2017.

A. Castillo-Ramirez, M. Sanchez-Alvarez, A. Vazquez-Aceves, and A. Z.-C. and, A gen-
eralization of cellular automata over groups, Communications in Algebra 51, 3114 (2023),
https://doi.org/10.1080/00927872.2023.2177663.

S. Wolfram, Universality and complexity in cellular automata, Physica D: Nonlinear Phenomena 10,
1 (1984).

K. Culik and S. Yu, Undecidability of ca classification schemes, Complex Syst. 2, 177-190 (1988).

M. Vispoel, A. J. Daly, and J. M. Baetens, Progress, gaps and obstacles in the classification of cellular

31


https://cba.mit.edu/events/03.11.ASE/docs/VonNeumann.pdf
https://doi.org/10.1103/revmodphys.55.601
https://books.google.at/books?id=llBjQgAACAAJ
https://api.semanticscholar.org/CorpusID:9203154
https://api.semanticscholar.org/CorpusID:9203154
https://doi.org/https://doi.org/10.1016/S0167-8191(97)00076-8
https://doi.org/https://doi.org/10.1016/j.ic.2020.104533
https://doi.org/10.1080/00927872.2023.2177663
https://arxiv.org/abs/https://doi.org/10.1080/00927872.2023.2177663
https://doi.org/https://doi.org/10.1016/0167-2789(84)90245-8
https://doi.org/https://doi.org/10.1016/0167-2789(84)90245-8

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]
[22]

automata, Physica D: Nonlinear Phenomena 432, 133074 (2022).

A. Castillo-Ramirez and M. G. Magaifia-Chavez, A study on the composition of elementary cellular
automata (2023), arXiv:2305.02947 [nlin.CG].

K. Culik, L. Hurd, and S. Yu, Computation theoretic aspects of cellular automata, Physica D: Nonlin-
ear Phenomena 45, 357 (1990).

J. Kari, Theory of cellular automata: A survey, Theoretical Computer Science 334, 3 (2005).

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems, Math. Syst. The-
ory 3, 320 (1969).

E. Jen, Aperiodicity in one-dimensional cellular automata, Physica D: Nonlinear Phenomena 45, 3
(1990).

E. L. Ruivo, P. P. de Oliveira, F. Lobos, and E. Goles, Shift-equivalence of k-ary, one-dimensional
cellular automata rules, Communications in Nonlinear Science and Numerical Simulation 63, 280
(2018).

D. Dummit and R. Foote, Abstract Algebra (Wiley, 2003).

J. S. Milne, Group theory (v4.00) (2021), available at www.jmilne.org/math/.

J. Rotman, An Introduction to the Theory of Groups, Graduate Texts in Mathematics (Springer New

York, 2012).

32


https://doi.org/https://doi.org/10.1016/j.physd.2021.133074
https://arxiv.org/abs/2305.02947
https://arxiv.org/abs/2305.02947
https://arxiv.org/abs/2305.02947
https://doi.org/https://doi.org/10.1016/0167-2789(90)90194-T
https://doi.org/https://doi.org/10.1016/0167-2789(90)90194-T
https://doi.org/https://doi.org/10.1016/j.tcs.2004.11.021
https://doi.org/10.1007/BF01691062
https://doi.org/10.1007/BF01691062
https://doi.org/https://doi.org/10.1016/0167-2789(90)90169-P
https://doi.org/https://doi.org/10.1016/0167-2789(90)90169-P
https://doi.org/https://doi.org/10.1016/j.cnsns.2018.03.017
https://doi.org/https://doi.org/10.1016/j.cnsns.2018.03.017
https://books.google.at/books?id=KJDBQgAACAAJ
https://books.google.at/books?id=4x8BCAAAQBAJ

	Orbits of One-Dimensional Cellular Automata Induced by Symmetry Transformations
	Abstract
	Introduction
	The Physical Relevance of Cellular Automata
	Outline and Previous Work

	Definitions
	One-dimensional Cellular Automata
	Symmetry operations

	Preliminaries
	Groups and Group Actions
	Counting Orbits
	Symmetry Operators acting on the Set of Local Rules
	Examples
	The Degree of an Orbit
	Outline of the Complete Calculation
	Shift-Equivalence

	Two States
	The Group S2R
	Odd Number of Neighbours
	Even Number of Neighbours

	Three States
	The Group S3R
	The Orbits of the Subgroups of S3R acting on n
	Counting the Orbits of L(3,n) / S3R by Type
	Constructing local rules that are invariant

	Validation
	Summary
	Acknowledgments

	References


