
IJUC_MS_SCHALLERSVOZIL(4) page 399

Int. Journ. of Unconventional Computing, Vol. 6, pp. 399–416 ©2010 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Zeno Squeezing of Cellular Automata

MARTIN SCHALLER1 AND KARL SVOZIL2

1Algorithmics, Parkring 10, 1010 Vienna, Austria
E-mail: martin_schaller@acm.org

2Institut für Theoretische Physik, University of Technology Vienna,
Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

E-mail: svozil@tuwien.ac.at

Received: May 06, 2009. Accepted: March 01, 2010

We have recently introduced two new models of computations: self-
similar cellular automata and self-similar Petri nets. Self-similar automata
result from a progressive, infinite tessellation of space and time. Self-
similar Petri nets consist of a potentially infinite sequence of coupled
transitions with ever increasing firing rates. Both models are capable of
hypercomputations and can, for instance, “solve” the halting problem
for Turing machines. We survey the main theory, state a new proposi-
tion about the indeterminism of self-similar cellular automata and present
a simplified construction of a hypercomputer within self-similar cellular
automata.

Keywords: Hypercomputers, cellular automata, Petri nets, Zeno’s paradox

1 INTRODUCTION

Self-similar cellular automata are closely related to cellular automata, a class
of dynamical systems characterized by discreteness (in space, time, state
values), determinism, and local interaction (see e.g., [11]). A cellular automa-
ton is an infinite lattice of finite automata, each linked with its neighboring
automata, whose underlying space-time structure results from a uniform tes-
sellation of space and time. In contrast, the underlying space-time structure
of a self-similar automaton is based on a progressive tessellation of space and
time, the very same tessellation that Zeno considered in his paradox of the
runner that cannot reach the end of a racecourse (see e.g., [20]). Whereas all

399



IJUC_MS_SCHALLERSVOZIL(4) page 400

400 M. SCHALLER AND K. SVOZIL

cells in a one-dimensional cellular automaton are updated synchronously, a
cell in a self-similar cellular automaton is updated twice as often as its left
neighbor. On the one hand, this modification results in completely new capa-
bilities; for instance, there exist self-similar cellular automata that are capable
of hypercomputing. On the other hand, new paradoxes arise; for instance, the
evolution of a self-similar cellular automaton that involves an infinite number
of steps might lead to a form of indeterminism that relates to Thomson’s lamp
paradox [25].

The carry-over of the self-similar cellular automaton model to the theory
of Petri nets (see, e.g., [16]) yields self-similar Petri nets. They are equivalent
to self-similar cellular automata for a finite number of calculation steps, but
differ in the infinite case. Self-similar Petri nets avoid the indeterminism of
self-similar cellular automata by halting in the infinite case.

As already mentioned, both self-similar cellular automata as well as self-
similar Petri nets have been introduced in [21]. There are several aspects that
make both models interesting. Both can be seen as variations of Zeno’s original
paradox, leading to new classes of supertasks (see e.g., [8]) and both allow the
construction of hypercomputers, and thus demonstrating that it is possible to
build hypercomputers based on simple building blocks: either finite automata
or Petri net transitions. Since the two models differ operationally only in the
infinite limit, new questions about causality and the ontological structure of
space and time arise.

The physical plausibility of accelerating Turing machines, supertasks, and
Zeno-like processes, is discussed elsewhere (see, e.g., [23]). Originally con-
ceived as a means to demonstrate self-reproduction capabilities in a universal
computing environment by von Neumann [27], the idea of perceiving the
physical universe as cellular automaton goes back to Zuse [29] and was devel-
oped further by other researchers [10, 26, 28]. Cellular automata based on
other tessellations than the uniform grid were studied in [14]. Hypercomput-
ing is a fast-growing field (see, e.g., [18, 22]), despite criticism related to
the methodology and the classification of what should be considered a valid
computing process [5, 6, 19].

For other approaches that use the infinite divisibility of Newtonian space-
time to construct hypercomputers see [2, 4, 24]. Another more abstract
approach is described in [7] that investigates abstract geometrical compu-
tations that naturally arise as a continuous counterpart of cellular automata.

The article is organized as follows. Section 2 defines self-similar cellular
automata, presents the basic properties and states a new proposition about
the indeterminism of self-similar cellular automata. Section 3 gives a new
construction of a hypercomputer that simplifies the construction presented
in [21]. Self-similar Petri nets are surveyed in Section 4. The final sec-
tion contains some concluding remarks and gives some directions for future
research.



IJUC_MS_SCHALLERSVOZIL(4) page 401

ZENO SQUEEZING OFCELLULAR AUTOMATA 401

2 SELF-SIMILAR CELLULAR AUTOMATA

2.1 Basic Definitions
The underlying structure of a cellular automaton results from a uniform
tessellation of space and time. Figure 1 depicts the evolution of a cellular
automaton. In contrast, self-similar automata result from a progressive tes-
sellation of space and time. A self-similar cellular automaton operates as a
cellular automaton on a one-dimensional lattice containing an infinite number
of cells. Moreover, the cell size and the time between two updates of the same
cell vary depending on the position of the cell in the lattice. Cellj has size
1/2j and the time between two updates is proportional to the cell size.

One natural way to embed the lattice intoR is the mappingj �→ 2−1/2j−1

that gives the start point of cellj . Then, the whole lattice maps to (− ∞, 2),
whereby cell 0 occupies the unit interval [0, 1).

Figure 2 depicts the evolution of a self-similar cellular automaton in con-
tradistinction to Figure 1. Informally speaking, a self-similar cellular automa-
ton features scale-invariance and self-similarity rather than homogeneity in
space and time.

In what follows, we present the formal definition and the description of
the update rule.

Definition 1. A self-similar cellular automaton is a tupleA = (S, fc, fd), where
S is a finite set of states, andfc andfd together represent the local rule, both
functions fromS3 to S.

Each cell is in a state of the state setS. The state of cellj is updated at
timesk/2j , wherek is an integer. The cell assumes its new state at timek/2j

and stays in this state until (k + 1)/2j , where the next state change occurs.
The cycle times of a cell are the time intervals from one state transition to the

−4 −3 −2 −1

0

0

1

1

2

2

3

3 4 5
cells

tim
e

FIGURE 1
Evolution of a cellular automaton.



IJUC_MS_SCHALLERSVOZIL(4) page 402

402 M. SCHALLER AND K. SVOZIL

−1
0

0

1

1

2

2

3

3 45
cells

tim
e

FIGURE 2
Evolution of a self-similar cellular automaton.

next one, thus, for cellj these are the half-open intervals [k/2j , (k + 1)/2j ).
This time scheduling implies that the left neighbor cellj − 1 cycles half as
fast, and the right neighbor cellj + 1 cycles twice as fast as the cellj . At any
given time, the configuration of the automaton is a mappingc : Z → S that
specifies the state of all cells. We denote the state of cellj at timet by cj (t)
and the configuration att by c(t).

The state of a cellj depends on the last state of the cell itself, and the
last states of its left and right neighbor cell. For notational convenience, we
introduce time operators that express the temporal dependencies of a cell. To
this end, we make use of interval arithmetic. For a scalarλ ∈ R and a (half-
open) interval [x,y) ⊂ R set:λ+ [x,y) = [λ+x,λ+y) andλ[x,y) = [λx,λy).
We denote the unit interval [0, 1) by1.

If T = (k + 1)/2j specifies a cycle of cellj , T↙ = (�k − 1
2 � + 1)/2j−1

denotes the last cycle of cellj − 1, T↓ = (k − 1 + 1)/2j the last cycle of cell
j , andT↘ = (2k − 1 + 1)/2j+1 the last cycle of cellj + 1, respectively, that



IJUC_MS_SCHALLERSVOZIL(4) page 403

ZENO SQUEEZING OFCELLULAR AUTOMATA 403

started beforek/2j . The operator↓ is a bijection of the set{(k+1)/2j |k ∈ Z},
and we denote by↑ its inverse.

The transition of cellj occurs every second time at the times 2k/2j = k/2j−1

synchronously with its left neighbor transition. A transition of this kind is
calledcoupled, otherwise it is calleddecoupled. The predicatecoupled((k +
1)/2j ) is true if and only if the transition of thej-th cell at timek/2j is coupled,
thus, if and only ifk is even. Cells that have a state resulting from a coupled
transition are filled gray in Figure 2, the cells that have a state resulting from
a decoupled transition are filled white.

The self-similar cellular automaton evolves according to the following
update rule. IfT = (k + 1)/2j is a cycle of cellj , the statecj in this interval,
formally described by the state functioncj (T), is given by

cj (T) =
{

fc(cj−1(T↙),cj (T↓),cj+1(T↘)) if coupled(T);

fd(cj−1(T↙),cj (T↓),cj+1(T↘)) if ¬coupled(T).
(1)

For any time pointt and any integerj there exists a unique intervalT =
(k + 1)/2j such thatt ∈ T. This allows us to setcj (t) = cj (T).

We remark that only one local rule function is necessary instead of two rule
functionsfc andfd, if an additional flag is added to each state that is toggled
for each transition. For the applications considered later on, the update rule
given above is more compact and concise.

2.2 Indeterminism
The evolution of a self-similar cellular automaton might become indeter-
ministic. In what follows we present an example. Consider the self-similar
cellular automatonA = ({0, 1}, fc, fd), wherefc andfd represent the left shift:
fc(?, ?, 0)= fd(?, ?, 0)= 0 andfc(?, ?, 1)= fd(?, ?, 1)= 1, where the ques-
tion mark denotes an arbitrary state. SupposeA starts at time 0, and consider
the state of cell 0 at time 1.c0(1) depends on the statec1(1/2), which itself
depends onc2(1/4), and so on, leading to an infinite regress. Both possibili-
tiesc0(1) = c1(1/2) = c2(1/4) = . . . = 0 andc0(1) = c1(1/2) = c2(1/4) =
. . . = 1 are consistent with the local rule and any initial configurationc(0),
proving that the evolution ofA is indeterministic and independent of its initial
configuration.

Classifying the evolution as indeterministic raises subtle questions that
relate to Thomson’s lamp paradox [25]. Consider a lamp were we are
instructed to switch it on for one second, to switch it off for a half second,
switch it on for a quarter second, and so on. Naturally, one may ask whether
the lamp is on or off after two seconds. Thomson argues as follows. If we
assume that the lamp is on, it is so, because it was switched on during the
sequence of jabs. But since the sequence is infinite, there is always a switch-
off operation later on in time, refuting this assumption. The same argument



IJUC_MS_SCHALLERSVOZIL(4) page 404

404 M. SCHALLER AND K. SVOZIL

holds if the lamp is off after the two seconds, leading to a contradiction, since
the lamp must be either on or off.

Thomson used this paradox to challenge the logical possibility of super-
tasks, but as Benacerraf [3] pointed out, the paradox disappears if one accepts
that the sequence of switch-on and -offs only determine the state of the lamp
in the first two seconds and only for the first two seconds. Then both possi-
bilities, the lamp is on or the lamp is off, are consistent with the instructions
given, and the state of the lamp after two seconds becomes indeterministic.

By formalizing the paradox, we are able to relate it more closely to self-
similar cellular automata. Lets(t) ∈ {0, 1} denote the state of the lamp at
time t and set¬0 = 1, as well as¬1 = 0. Then the set of instructions
as given above can be expressed ass(1) = 1 ands(2 − 1/2k + 1/2k+1) =
¬s(2 − 1/2k−1 + 1/2k) for k = 0, 1, 2,. . .. By altering the instructions to
s((1 + 1)/2k) = ¬s((1 + 1)/2k+1) we obtain a time-reversed variant of the
paradox, where the zeno squeezing of the switch operations occurs now at
the begin and not at the end of the considered time interval. The state att = 2
cannot deduced from the set of instructions and both states 0 and 1 at this
time are logically consistent. Even settings((1 + 1)/2k) = s((1 + 1)/2k+1)
brings no rescue, since the instructions do not allow to deduce the state for
anyt > 0 from the state att = 0.

In this form the paradox is similar to a form of Zeno’s original paradox
where the runner cannot even get started [20]. To reach the end of the race-
course the runner must first reach the midpoint of the racecourse, but before
that he must first complete the first quarter, and so on. In order to cover any
distance no matter how short, the runner must already have completed an
infinite number of runs.

That the evolution is not necessarily always indeterministic can be seen
be the following simple example. Assume that the state setScontains a state
q satisfyingfc(?,q, ?) = fd(?,q, ?) = q. If cell j is in stateq, it will for all
times stay in this state. Furthermore, the state of any cell to the left of cellj
is deterministic, since the causal chain arising in calculating the state of any
of these cells stops at cellj and no infinite regress can occur. The evolution
of cells right to cellj might still be indeterministic, but if the configuration
contains infinitely many cells in stateq the evolution is certainly deterministic.
For a more subtle example see subsection 2.4.

The following lemma reveals limitations of any deterministic evolution.

Lemma 1. The state ci (t2) of a cell i of a self-similar cellular automata at
time t2 that was started at t1 < t2 with configuration c(t1) is deterministic if
and only if there exists an index j such that ci (t2) depends only on states cl (t1)
with l < j.

Proof. We chooset1 = 0, t2 = k, wherek is a positive integer, and investigate
whether the state of cell 0 in the time intervalT = [k,k + 1) is uniquely
determined by the deterministic states at time 0, that is the configurationc(0).



IJUC_MS_SCHALLERSVOZIL(4) page 405

ZENO SQUEEZING OFCELLULAR AUTOMATA 405

The general case follows the same proof pattern. We express a cycle of cell
i at time intervalT as pair (i,T). The set of all possible cycles starting not
earlier than time 0 is then the setC = {i, (k + 1)/2i |i,k ∈ Z andk ≥ 0}.

We define a relation≺ on C by setting (i1,T1) ≺ (i2,T2) if and only if
i1 = i2 − 1 andT1 = T2↙, or i1 = i2 and T1 = T2↓, or i1 = i2 + 1
andT1 = T2↘. We denote the transitive closure of≺ by ≺∗. This relation
expresses the possible causal relationship between two transitions.

The setP = {(i,T′) ∈ C|(i,T′) ≺∗ (0,T)}, the “past light cone” of (0,T),
contains (0,T) as well as all cycles that might have an effect on the state of
cell 0 in time intervalT. We form increasing subsets ofP by settingPj =
{(i,T′) ∈ P|i < j} for j ≥ 0.

We call a functions : Pj → S a realization ofPj if s is consistent with
the update rule of the self-similar cellular automaton andsmatches the initial
configuration at time 0.

If we find aPj such that all realizations of it lead to the same state of cell 0
at time intervalT, we know that the state is deterministic and depends only on
cells of the initial configuration with index less thanj . Otherwise, if there is no
suchPj , there are always two realizationss1 ands2 that lead to different states
and which can be extended arbitrarily to the right, resulting in two different
evolutions of the self-similar cellular automata and to two different states of
cell 0 at time intervalT.

For the sake of illustration of the implications of this lemma, consider
the following example. LetC be the set of configurations, either of the form
. . . 00100. . ., in which exactly one 1 with a positive index appears, or the
configuration 0∞ consisting solely of 0’s. Assume that a self-similar automa-
ton is started at time 0 with a configurationc in C. Choose a timet > 0 and
let p be the state of cell 0 at timet. Applying the lemma, we see that there
exists no local rule and hence no scale-invariant cellular automaton such that
p is either 1 if and only ifc is of the form. . . 00100. . ., or 0 if and only if
c = 0∞. If p is the result of a deterministic evolution there is an indexj such
that p depends only on states of cells at time 0 with index less thanj . This
implies that the configurations 0∞ and. . . 00100. . ., where the index of 1 is
equal to or greater thanj , lead to the same statep.

2.3 Self-similar Cellular Automata with Quiescent State
The indeterminism of self-similar cellular automata can be restricted by con-
sidering the following subclass which adds a quiescent state to the original
concept and allows for lattices that contain only a finite number of cells.

Definition 2. A self-similar cellular automaton with quiescent state is a tuple
A = (S, fc, fd,q), whereS, fc, andfd are defined as in Def. 1, andq in S is a
distinguished state, the quiescent state, satisfyingfc(q,q,q) = fd(q,q,q) = q.



IJUC_MS_SCHALLERSVOZIL(4) page 406

406 M. SCHALLER AND K. SVOZIL

If the automaton has a quiescent state, we allow for finite or half-infinite
lattices that start with cell 0. The update rule of the automaton is adapted to
cope with cells that have no left or right neighbor. Furthermore we allow the
lattice to grow to the right. If either the left or right neighbor is missing, the
state of the missing neighbor is assumed to be the quiescent state. In case of a
finite lattice, consisting ofn+1 cells 0, 1,. . . ,n, we allow the lattice to grow,
if the state of celln differs from the quiescent state. If celln at timek/2n

changes to a state, different from the quiescent state, a new celln+1 is added
to the lattice. This new celln + 1 is initialized with the quiescent state and
attached to celln. The first update of this new cell occurs at timek/2n + 1/2.

We remark that the evolution of a finite lattice is always deterministic as
long as the lattice stays finite, since no infinite regress can occur. However, a
finite lattice can grow to infinity and the evolution can become indeterministic
as described in the preceding subsection.

2.4 Block Transformations
If the state set becomes larger, the specification of the values for the local
rulesfc andfd for all possible arguments is rather lengthy. Some self-similar
cellular automata allow an alternative specification. A coupled transition of
two neighbor cells can perform a simultaneous state change of the two cells.
If the state changes of these two neighbor cells are independent of their other
neighbors, we can specify the state changes as a transformation of one state
pair into another. Letz1,z2,z′

1,z′
2 be elements inS. We call a mapping of the

form z1 z2 �→ z′
1 z′

2 a block transformation. The block transformationz1 z2 �→
z′
1 z′

2 defines a function mapping of the formfc(x,z1,z2) = fd(x,z1,z2) = z′
1

andfc(z1,z2,y) = z′
2 for all x,y in S. Furthermore, we will also allow block

transformations that might be ambiguous for certain configurations. Consider
the block transformationsz1 z2 �→ z′

1 z′
2 andz2 z3 �→ z′′

2 z′
3 that might lead to an

ambiguity for a configuration that containsz1z2z3. Instead of resolving these
ambiguities in a formal way, we will restrict our attention to configurations
that are unambiguous.

Consider the self-similar cellular automatonA = (S, fc, fd), whereS is
the set ({0, 1} × {<,>}) ∪ {■ }. If q ∈ {0, 1}, we writeq< for (q,< ), and
q> for (q,> ), respectively. We specifyfc and fd by the following block
transformations

0>■ �→ 0<■ , 1>■ �→ 1<■ , ■ 0< �→ ■ 0>, ■ 1< �→ ■ 1>; (2)

0>0< �→ 0<0>, 1>0< �→ 0<1>, 0>1< �→ 1<0>, and 1>1< �→ 1<1>; (3)

together with the convention, that a cell remains in its previous state, if no
block transformation is applicable. LetA be started with a configuration of
the form. . . ■■ q1>q2<q3>q4< . . . qn−1>qn<■■ . . ., where allqi are in{0, 1}.



IJUC_MS_SCHALLERSVOZIL(4) page 407

ZENO SQUEEZING OFCELLULAR AUTOMATA 407

Symbol

State 0 1 X Y B

p (q,X,R) — — (s,Y,R) —

q (q, 0,R) (r ,Y,L) — (q,Y,R) —

r (r , 0,L) — (p,X,R) (r ,Y,L) —

s — — — (s,Y,R) (t,B,R)

t — — — — —

FIGURE 3
The functionδ.

It is easy to see that the evolution ofA is deterministic and thatA runs the
one-dimensional billard ball model of Margolus [15]. Furthermore, the con-
struction shows that a self-similar cellular automaton can simulate any 3-site
one-dimensional cellular automaton.

3 CONSTRUCTION OF A HYPERCOMPUTER

3.1 Preliminaries
In what follows we will construct a hypercomputer based on a self-similar
cellular automaton. This hypercomputer simulates a Turing machine and is
capable of performing infinitely many steps of the Turing machine in finite
time. We assume the following Turing machine model as described in [13].

Formally, aTuring machineis a tupleM = (Q,�,�, δ,q0,B,F), whereQ
is the finite set of states,� is the finite set of tape symbols,� ⊂ � is the set
of input symbols,q0 ∈ Q is the start state,B ∈ �\� is the blank, andF ⊂ Q
is the set of final states. The next move function or transition functionδ is a
mapping fromQ × � to Q × � × {L,R}, which may be undefined for some
arguments.

The Turing machineM works on a tape divided into cells that has a leftmost
cell but is infinite to the right. Letδ(q,a) = (p,b,D). One step (or move) of
M in stateq and the head ofM positioned over input symbola consists of the
following actions: scanning input symbola, replacing symbolabyb, entering
statep and moving the head one cell either to the left (D = L) or to the right
(D = R). In the beginning,M starts in stateq0 with a tape that is initialized
with an input wordw ∈ �∗, starting at the leftmost cell, all other cells blank,
and the head ofM positioned over the leftmost cell.

After presenting the construction of a hypercomputer, we will use the
following simple example to illustrate its working. LetL be the for-
mal language consisting of strings withn 0’s, followed by n 1’s: L =
{0n1n|n ≥ 1}. A Turing machine that accepts this language is given by



IJUC_MS_SCHALLERSVOZIL(4) page 408

408 M. SCHALLER AND K. SVOZIL

M = ({p,q, r ,s, t}, {0, 1}, {0, 1,X,Y,B}, δ,p,B, {t}), see [13], with the transi-
tion function depicted in Figure 3. Note thatL is a context-free language, but
M will serve for demonstration purposes. The computation ofM on input 01
is given below:

p01 � Xq1 � rXY � XpY � XYs� XYt.

3.2 The Stop and Go Hypercomputer Construction
Given an arbitrary Turing machineM we construct a self-similar cellular
automaton with quiescent stateAM = (S, fc, fd,�) that simulatesM.

SetT = (Q × {�,�}) ∪ �. Then the state setSof AM is given by

S= T ∪ (T × {�}) ∪ {�, ■ ,�}.

For an elementq in Q, we writeq� for (q,�) andq� for (q,�), respectively. We
write x� for an element (x,� ) in T × {�}. The local rule ofAM is specified
by the following block transformations, wherex denotes an element inT, a
andb are in� andq andp are inQ. If no block transformation is applicable,
a cell remains in its previous state.

1. Set

■ x �→ ■ x� if x �= q�; (4)

x� � �→ � x; (5)

a b �→ a b�; (6)

q� a �→ q� a�; (7)

a q� �→ a q�
�; (8)

x � �→ x � if x �= q�; (9)

q� � �→ q� B�; (10)

B� � �→ � B; (11)



IJUC_MS_SCHALLERSVOZIL(4) page 409

ZENO SQUEEZING OFCELLULAR AUTOMATA 409

■ � �→ � ■ . (12)

2. If δ(q,a) = (p,b,R) set

q� a �→ b p�
�; (13)

a q� �→ b p�
�. (14)

3. If δ(q,a) = (p,b,L) set

q� a �→ p� b�; (15)

a q� �→ p� b�. (16)

To simulateM on the inputa1 . . . an, AM is started with the configuration
■ q�

0 �a1�a2� . . .�an�. Note that according to Subsection 2.3AM starts with a
finite configuration and that whenever the rightmost cell of the configuration
differs from the quiescent state a new cell is appended to the lattice. Figure 4
depicts the computation ofAM on the Turing machine input 01 showing the
configurations where a state change occurred except the ones where only a
cell with quiescent state was appended to the lattice.

The construction ofAM achieves two goals. On the one hand, it simulates
correctly the Turing machineM, on the other hand the simulation of the
Turing machine is interleaved with a shift of the tape content and the head
of the Turing machine to the right, faster-cycling cells, thereby achieving a
progressive acceleration of the simulation.

We give an informal description of the construction. A symbol inQ×{�,�}
acts as head of the Turing machine, either facing to the left (�) or the right (�),
thereby indicating whether either the tape symbol to the left or to the right is
scanned next. The shift to the right has to be performed in a controlled way
to avoid that tape symbols to the right are moving faster than symbols to the
left, thereby spreading the tape content.

A controlled shift is achieved by a stop-and-go synchronization in form of
the two statesx andx� of each tape symbol and the head. The shift starts at
the left delimiter■ . If adjacent to a symbolx block transformation 4 changes
the state ofx tox�. A symbolx� moves one cell to the right, thereby changing
its state back tox and swapping place with�. If two symbolsx andy in T
are adjacent the right symbol is excited to statey�. If one of them is a tape
symbol and the other one is a head facing the tape symbol, one step of the
Turing machine is simulated according to block transformations 13 – 16. A
shift-over ends when the left delimiter■ swaps place with the spacer� due
to block transformation 12.



IJUC_MS_SCHALLERSVOZIL(4) page 410

410 M. SCHALLER AND K. SVOZIL

3.3 Results
The following proposition is analogous to Theorem 2 of [21], where a formal
and lengthy proof was given. Here we outline the proof by giving exemplary
derivations without performing all case distinctions in detail.

Proposition 1. If the Turing machine M halts on input w, AM halts in less
than4 time units. If M does not halt, AM enters at time4 the configuration
�∞.

Proof. To prove the proposition about the timing, we first consider the evo-
lution of the self-similar cellular automatonB = ({ a,a�,�, ■ ,−}, fc, fd,�)
with initial configuration■ a�a�· · ·�a�, wherea is an arbitrary input symbol
from�. Only block transformations 4, 5, 6, 9, and 12 are required to describe
the evolution ofB. We claim that a configuration�m■ a � a � · · · � a�, where
m is a positive integer, evolves in 21−m cycles of cell 0 to the configuration
�m+1■ a� a� · · · � a�. We perform the calculation form = 0, the initial con-
figuration, the general case follows from the scale-invariance and the fact that

leading�’s have no impact on the evolution. We use the notationc1
t−→ c2

to denote that configurationc1 changed at timet to configurationc2.

We obtain■ a � a � · · · 1−→ ■ a� � a � · · · 1.1−→ ■ � aa � · · · 1.11−→ ■ �
aa� � · · · 1.111−→ ■ � a � a · · · . The final steps before the whole configuration

has shifted one cell to the right are■ . . . aa� �
1.1...1−→ ■ � . . . aa� � �

1.1...11−→
■ �. . . a�a�

1.1...111−→ ■ �. . . a�a� 1.1...1111−→ ■ �. . . a�a��
2−→ �■ . . . a�a��.

A similar but more lengthy calculation, not done here, can be performed
for AM showing that in the regular case a configuration�m■ a1 �a2 � · · · �ai �
qd � ai+1 � · · · an� evolves in 21−m time units to a configuration�m+1■ b1 �
b2 � · · · � bj � pe � bj+1 � · · · bn�, whered ande are in{�,�}. The following
exceptions have to be considered. IfM halts, none of the rules 13 – 16 can
be applied andAM enters a final configuration as soon as the shift reaches
the head. The other exception occurs when the headq tries to scan a symbol
right from the end of the simulated tape, i.e., when a configuration of the
form · · · q�� occurs. In this case the symbolB, the blank, has to be appended
to the end of the simulated tape. This tape extension is the net effect of the
block transformations 10 and 11, see the space-time diagram of the example
in Figure 4 at time 10. 1111112. Note that extending the simulated tape by
a blank does not alter the time behavior of the overall shift. Hence, ifM
does not halt,AM reaches after 2+ 2/2 + 2/4 + . . . = 4 time units the final
configuration�∞.

The proof of the correctness of the simulation starts by mapping configura-
tions ofAM to instantaneous descriptions ofM. For instance, the configuration
�m■ a1 � a2 � · · · � ai � qd � ai+1 � · · · an� maps to the instantaneous descrip-
tiona1a2 · · · aiqai+1 · · · an, if d = � and toa1a2 · · · qaiai+1 · · · an if d = �. By
showing that each block transformation that is applied either does not alter the



IJUC_MS_SCHALLERSVOZIL(4) page 411

ZENO SQUEEZING OFCELLULAR AUTOMATA 411

cells
time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0. 0000000000002 ■ p� � 0 � 1 �
1. 0000000000002 ■ p�

� � 0 � 1 � �

1. 1000000000002 ■ � p� 0 � 1 � �

1. 1100000000002 ■ � X q�
� � 1 � �

1. 1110000000002 ■ � X � q� 1 � �

1. 1111000000002 ■ � X � r� Y� � �

1. 1111100000002 ■ � X � r� � Y �

1. 1111110000002 ■ � X � r� � Y � �

10. 0000000000002 � ■ X � r� � Y � �

10. 1000000000002 � ■ X� � r� � Y � �

10. 1100000000002 � ■ � X r� � Y � �

10. 1110000000002 � ■ � X p�
� � Y � �

10. 1111000000002 � ■ � X � p� Y � �

10. 1111100000002 � ■ � X � Y s�� � �

10. 1111110000002 � ■ � X � Y � s� �

10. 1111111000002 � ■ � X � Y � s� B� �

10. 1111111100002 � ■ � X � Y � s� � B �

10. 1111111110002 � ■ � X � Y � s� � B � �

11. 0000000000002 � � ■ X � Y � s� � B � �

11. 0100000000002 � � ■ X� � Y � s� � B � �

11. 0110000000002 � � ■ � X Y � s� � B � �

11. 0111000000002 � � ■ � X Y� � s� � B � �

11. 0111100000002 � � ■ � X � Y s� � B � �

11. 0111110000002 � � ■ � X � Y s�� � B � �

11. 0111111000002 � � ■ � X � Y � s� B � �

11. 0111111100002 � � ■ � X � Y � B t�� � �

11. 0111111110002 � � ■ � X � Y � B � t� �

11. 0111111111002 � � ■ � X � Y � B � t� B� �

11. 0111111111102 � � ■ � X � Y � B � t� � B �

11. 0111111111112 � � ■ � X � Y � B � t� � B � �

11. 1000000000002 � � � ■ X � Y � B � t� � B � �

11. 1010000000002 � � � ■ X� � Y � B � t� � B � �

11. 1011000000002 � � � ■ � X Y � B � t� � B � �

11. 1011100000002 � � � ■ � X Y� � B � t� � B � �

11. 1011110000002 � � � ■ � X � Y B � t� � B � �

11. 1011111000002 � � � ■ � X � Y B� � t� � B � �

11. 1011111100002 � � � ■ � X � Y � B t� � B � �

11. 1011111110002 � � � ■ � X � Y � B t�� � B � �

11. 1011111111002 � � � ■ � X � Y � B � t� B � �

FIGURE 4
A computation ofAM on input 01.



IJUC_MS_SCHALLERSVOZIL(4) page 412

412 M. SCHALLER AND K. SVOZIL

Cell n+2

1

1

1 1

2

1

1

1 1

2

1

1

1 1

221

211 2 2

Cell n−1 Cell n Cell n+1

FIGURE 5
Underlying graph of a self-similar Petri net [21].

instantaneous description or leads to the successive instantaneous description
of M, the correctness is proven.

We end the outline of the proof by remarking that each shift of the tape
content by one cell to the right simulates at least one step of the Turing
machine.

SinceAM is capable of performing infinite many steps ofM in finite time
the following proposition follows easily.

Corollary 1. If MU is a universal Turing machine, then AMU solves the halting
problem for Turing machines.

We imagine that an operator initializes the first cells of the self-similar
automaton with the input of the calculation. Ideally, in case that the simulated
Turing machine has halted, the self-similar automaton should propagate this
fact back to the left cells. But by Lemma 1 we know that there is no deter-
ministic way to do this. Therefore the operator would have to scan a possible
infinite numbers of cells to decide whether the Turing machine has halted or
not. The following section presents a closely related model of computation
that avoids the indeterminism in the infinite case.

4 SELF-SIMILAR PETRI NETS

Self-similar Petri nets result from carrying over the self-similar cellular
automaton model to the theory of Petri nets. We refer to [16] for a con-
cise introduction to Petri net theory, here we give only a very short summary
to settle the terminology.

The underlying graph of a Petri net is a directed, weighted, bipartite graph
consisting of two kind of nodes, called transitions and places. Figure 5 depicts
the underlying graph of a self-similar Petri net, drawing transitions as boxes
and places as circles. A place that has an arc to a transition is an input place
of this transition, if the arc is from the transition to the place, the place is an
output place. Arcs are labeled with their weights.

Places hold so-called tokens. A marking assigns to each place a number,
the number of tokens in this place. The marking in a Petri net is changed
according to the following transition (firing) rule:



IJUC_MS_SCHALLERSVOZIL(4) page 413

ZENO SQUEEZING OFCELLULAR AUTOMATA 413

1. A transitiont is enabled if each input placep of t is marked with at least
w(p, t) tokens, wherew(p, t) is the weight of the arc fromp to t.

2. An enabled transitiont may fire. A firing removesw(p, t) tokens from
each input placep, and addsw(t,p) tokens to each output placep of t,
wherew(t,p) is the weight of the arc fromt to p.

Self-similar Petri nets are both colored Petri nets and marked graphs. The
first says that the tokens of the Petri net carry values and that the firing rule
is adapted such that the value of an output token is determined by the values
of the input tokens. The latter says that each place is the input place and the
output place of at most one transition, which makes the Petri net deterministic.

We will informally describe how the concepts of self-similar cellular
automata are mapped to self-similar Petri nets, for a formal treatment we
refer to [21]. The states of a self-similar cellular automaton are mapped to the
values of the tokens. The transition of the self-similar Petri net uses the values
of the input tokens to calculate the value of the output tokens according to the
local rulesfc andfd that are carried over from self-similar cellular automata.

A firing of cell nconsumes two tokens of celln+1 and puts two new tokens
in the input place of celln+ 1. Since celln+ 1 consumes per firing only one
token from celln, and puts only one token in the input place of celln, cell
n+ 1 must fire twice before celln can fire again. As we can see, the doubling
of cycles from one cell to its right neighbor works now by a synchronisation
mechanism without reference to an external clock.

In analogy to self-similar cellular automata with quiescent state, a self-
similar Petri net is started with a finite number of cells and is allowed to grow
to the right, whenever the rightmost cell calculates a token value different
from the quiescent state.

To ensure the liveness of the self-similar Petri net the left- and rightmost
cells obey the the following boundary conditions. Each firing of the leftmost
cell puts one token in its left input place, each firing of the rightmost cell puts
two tokens in its right input place.

If the self-similar Petri net is started with a certain marking and proper
token values it can be shown that self-similar Petri nets and self-similar cellular
automata feature a step-by-step equivalence for calculations that involve only
a finite number of steps.

Self-similar Petri nets work without any reference to an external clock, but
it is possible to impose a time scheduling leading to timed self-similar Petri
nets. If we require that transitionn always fires when it is enabled and that
the firing process, which includes the consumption and production of tokens,
takes no longer than 1/2n time units, we obtain the same time model as for
self-similar cellular automata.

The construction of Subsection 3.2 can also be applied to timed self-similar
Petri nets, leading to a self-similar Petri netNM that simulates a Turing
machineM. In contrast to self-similar cellular automata, the evolution of



IJUC_MS_SCHALLERSVOZIL(4) page 414

414 M. SCHALLER AND K. SVOZIL

a Petri net can stop. This happens when no transition is enabled. In [21] it
was proven that the Petri net stops when the Turing machine does not halt,
thereby avoiding the indeterminismn of self-similar cellular automata.

5 SUMMARY

We have reviewed two recently introduced models of computation, both based
on an infinite, progressive tessellation of space and time. Space and time
tessellations are the same as the paradox of the runner that cannot reach the
end of a racecourse, imagined by Zeno more than 2500 years ago.

Both computing models are capable of hypercomputing, even if they differ
in the limit of non-halting Turing machine simulations. Thus we were able
to replace the sequence of shrinking Turing machines that Davies [4] used
to construct a hypercomputer within a Newtonian universe, by a sequence of
shrinking finite automata (or Petri net transitions).

If properly programmed, self-similar cellular automata enter a final quies-
cent configuration and loop forever there; if not, they end up in indeterminism.

The underlying graph of a self-similar Petri net grows to infinity, if the
simulated Turing machine does not halt. Since there is no longer a rightmost
cell that obeys the boundary condition that guaranteed the liveness of the
system for the finite case, the self-similar Petri net stops. Thus, self-similar
Petri nets halt if and only if the simulated Turing machine does not halt.

The main contributions of this paper are a proposition about the inde-
terminism of self-similar cellular automata and a simplified construction of
a hypercomputer. The stop-and-go construction requires only one synchro-
nization pulse that travels from the left delimiter to the right end of the
configuration, instead of the zigzagging pulse in [21]. It takes now only 4
time units instead of 6 to perform infinitely many steps of the simulated Tur-
ing machine. Furthermore, the construction is conceptually simpler and the
number of states of the self-similar cellular automaton was reduced. A draw-
back of the stop-and-go construction is the fact that the initial configuration
consumes now roughly twice the number of cells than the zigzag construction.

The construction of simple hypercomputers based on self-similar cellular
automata that simulate a universal Turing machine is an interesting research
problem, see [17] for simple universal Turing machines. We used self-similar
cellular automata mainly as a vehicle to construct a hypercomputer, but an
analytical and/or phenomenological investigation of this new model of com-
putation should allow to gain further insights and strengthen the connection to
cellular automata. It might also be possible to generalize those two models of
computation using graph grammars, graph transformation or graph rewriting
systems, see e.g., [9].

Both models suffer from what we call theresponse problem. We imagine
an operator that initializes the very first cells of either of the two machines with



IJUC_MS_SCHALLERSVOZIL(4) page 415

ZENO SQUEEZING OFCELLULAR AUTOMATA 415

the input of the calculation and then starts the machine. Ideally, after some
finite amount of time the operator would obtain an answer that is again written
to the first cells of the machine. Thus, the response problem is the problem of
propagating the final status of the simulated Turing machine, which is either
“halt" or “non-halt," back to the cells with lower index, say cell 0.

Both models fail to solve the response problem; yet due to different reasons.
If we extend the rules of the self-similar cellular automaton to propagate
a response back to the left cells, the automaton becomes indeterministic.
In contrast, self-similar Petri nets freeze if they run into infinity, thereby
eliminating any possibility to propagate information backward. Both models
do not allow for composition within the models themselves that would be
necessary to attack problems higher in the arithmetical hierarchy, see [12].
One rather cheap possibility to achieve composition is to associate a self-
similar Petri net with a timer. If the timer goes off, some control logic could
determine the state of the self-similar Petri net, and start another self-similar
Petri net, depending on the result of the first one. It would be interesting to
see more elegant solutions.

Self-similar automata and Petri nets show the same behavior as long as the
configuration is finite, but differ when the configuration becomes infinite, the
first one ends up in indeterminism whereas the second one halts. The existence
of two supertasks that differ only in their limit is a striking observation and
one might ask whether this fact relates to different ontological models of
space-time, especially to the relational versus absolute time dichotomy.

REFERENCES

[1] Andrew Adamatzky. (2002).Collision-based computing. Springer, London.

[2] Edwin J. Beggs and J. V. Tucker. (2006). Embedding infinitely parallel computation in
Newtonian kinematics.Applied Mathematics and Computation, 178(1):25–43.

[3] Paul Benacerraf. (1962). Tasks and supertasks, and the modern Eleatics.Journal of
Philosophy, LIX(24):765–784. reprinted in Ref. [20, pp. 103-129].

[4] E. Brian Davies. (2001). Building infinite machines.The British Journal for the Philosophy
of Science, 52(4):671–682.

[5] Martin Davis. (2004). The myth of hypercomputation. In Christof Teuscher, editor,Alan
Turing: Life and Legacy of a Great Thinker, pages 195–212. Springer, Berlin.

[6] Martin Davis. (2006). Why there is no such discipline as hypercomputation.Applied
Mathematics and Computation, 178:4–7.

[7] Jérôme Durand-Lose. (2009). Abstract geometrical computation and computable analysis.
In Cristian S. Calude, José Félix Costa, Nachum Dershowitz, Elisabete Freire, and Grzegorz
Rozenberg, editors,UC, volume 5715 ofLecture Notes in Computer Science, pages 158–
167. Springer.

[8] J. Earman and J.D. Norton. (1996). Infinite Pains: The Trouble with Supertasks. In
A. Morton and S.P. Stich, editors,Benacerraf and his Critics, pages 231–261. Blackwell,
Cambridge, MA.



IJUC_MS_SCHALLERSVOZIL(4) page 416

416 M. SCHALLER AND K. SVOZIL

[9] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. (2006).Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[10] Edward Fredkin. (1990). An informational process based on reversible universal cellular
automata.Physica, D45:254–270.

[11] Howard Gutowitz. (1991). Cellular Automata: Theory and Experiment. MIT
Press/Bradford Books, Cambridge Mass. ISBN 0-262-57086-6.

[12] M. L. Hogarth. (2004). Deciding Arithmetic using SAD Computers.BJPS, 55:681–691.

[13] J. E. Hopcroft and J. D. Ullman. (1979).Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA.

[14] M. Margenstern and K. Morita. (1999). A polynomial solution for 3-sat in the space
of cellular automata in the hyperbolic plane.Journal of Universal Computer Science,
5(9):563–573.

[15] Norman Margolus. (1984). Physics-like model of computation.Physica, D10:81–95.
reprinted in [1, Part I, Chapter 4].

[16] T. Murata. (1989). Petri nets: Properties, analysis and applications.Proceedings of the
IEEE, 77(4):541–580.

[17] Turlough Neary and Damien Woods. (2009). Four small universal Turing machines.
Fundam. Inf., 91(1):123–144.

[18] Toby Ord. (2006). The many forms of hypercomputation.Applied Mathematics and
Computation, 178:143–153.

[19] Petrus H. Potgieter. (2006). Zeno machines and hypercomputation.Theoretical Computer
Scienc, 358(1):23–33.

[20] Wesley C. Salmon. (1970, 2001).Zeno’s Paradoxes. Hackett Publishing Company.

[21] Martin Schaller and Karl Svozil. (2009). Scale-invariant cellular automata and self-similar
Petri nets.The European Physical Journal B, 69:297–311.

[22] Mike Stannett. (2006). The case for hypercomputation.Applied Mathematics and
Computation, 178(1):8–24.

[23] Karl Svozil. (1998). The Church-Turing thesis as a guiding principle for physics. In
Cristian S. Calude, John Casti, and Michael J. Dinneen, editors,Unconventional Models of
Computation, pages 371–385, Singapore. Springer.

[24] Karl Svozil. (2007). Omega and the time evolution of the n-body problem. In Cristian S.
Calude, editor,Randomness and Complexity, from Leibniz to Chaitin, pages 231–236,
Singapore. World Scientific. eprint arXiv:physics/0703031.

[25] James F. Thomson. (October 1954). Tasks and supertasks.Analysis, 15:1–13. reprinted in
Ref. [20, pp. 89-102].

[26] Tommaso Toffoli and Norman Margolus. (1990). Invertible cellular automata: A review.
Physica D, 45:229–253.

[27] John von Neumann. (1966).Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana. A. W. Burks, editor.

[28] Stephen Wolfram. (2002).A New Kind of Science. Wolfram Media, Inc., Champaign, IL.

[29] Konrad Zuse. (1967). Rechnender Raum.Elektronische Datenverarbeitung, pages 336–
344.


