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Abstract. Some physical aspects related to the limit operations of the
Thomson lamp are discussed. Regardless of the formally unbounded and
even infinite number of “steps” involved, the physical limit has an op-
erational meaning in agreement with the Abel sums of infinite series.
The formal analogies to accelerated (hyper-) computers and the recur-
sion theoretic diagonal methods are discussed. As quantum information
is not bound by the mutually exclusive states of classical bits, it allows a
consistent representation of fixed point states of the diagonal operator.
In an effort to reconstruct the self-contradictory feature of diagonaliza-
tion, a generalized diagonal method allowing no quantum fixed points is
proposed.

1 Introduction

Caveats at the very beginning of a manuscript may appear overly prudent and
displaced, stimulating even more caveats or outright rejection. Yet, one should
keep in mind that, to rephrase a dictum of John von Neumann [1], from an op-
erational point of view [2], anyone who considers physical methods of producing
infinity is, of course, in a state of sin. Such sinful physical pursuits qualify for
Neils Henrik Abel’s verdict that (Letter to Holmboe, January 16, 1826 [3,4]),
“divergent series are the invention of the devil, and it is shameful to base on
them any demonstration whatsoever.” This, of course, has prevented no-one, in
particular not Abel himself, from considering these issues. Indeed, by reviving
old eleatic ideas [5, 6], accelerated computations [7] have been the main paradigm
of the fast growing field of hypercomputations (e.g., Refs. [8-10]). For the sake
of hypercomputation, observers have been regarded on their path toward black
holes [11-13], and automata have been densely embedded [14], to name just two
“mind-boggling” proposals.

In what follows we shall discuss issues related to the quasi-physical aspects of
hypercomputers, or more specifically, accelerated agents or processes approach-
ing the limit of infinite computation. Thereby, we shall not be concerned with
issues related to unbounded space or memory consumption discussed by Calude
and Staiger [15], although we acknowledge their importance. In analogy to Be-
nacerraf’s discussion [16] of Thomson’s proposal [17,18] of a lamp which is



switched on or off at geometrically decreasing time delays, Shagrir [19] suggested
that the physical state has little or no relation to the states in the previous ac-
celeration process.

This argument is not dissimilar to Bridgman’s [2] argument against the use
of Cantor-type diagonalization procedures on the basis that it is physically im-
possible to operationalize and construct some process “on top of” or after a
non-terminating, infinite process [20]. The method of diagonalization presents
an important technique of recursion theory [21-23]. Some aspects of its physical
realizability have already been discussed by the author [24-27]. In what follows
we shall investigate some further physical issues related to “accelerated” agents
and the operationalizability of the diagonalization operations in general.

2 Classical brightness of the Thomson lamp

The Thomson lamp is some light source which is switched off when it is on,
and conversely switched on when it is off; whereby the switching intervals are
geometrically (by a constant factor smaller than unity) reduced or “squeezed.”
By construction, the switching process never “saturates,” since the state always
flips from “on” to “off” and then back to “on” again ad infinitum; yet, as this
infinity of switching cycles is supposed to be reachable in finite time, one may
wonder what happens at and after the accumulation point.

The Thomson process can formally be described at intrinsic (unsqueezed,
unaccelerated) discrete time steps ¢; i.e., by the partial sum
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which can be interpreted as the result of all switching operations until time t.
The intrinsic time scale is related to an extrinsic (squeezed, accelerated) time
scale [28, p. 26]
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In the limit of infinite intrinsic time ¢ — oo, the proper time 7., = 2 remains
finite.

If one encodes the physical states of the Thomson lamp by “0” and “1,”
associated with the lamp “on” and “off,” respectively, and the switching process
with the concatenation of “4+1” and “-1” performed so far, then the divergent
infinite series associated with the Thomson lamp is the Leibniz series [29, 30, 3,
31]
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Here, “A” indicates the Abel sum [3] obtained from a “continuation” of the
geometric series, or alternatively, by s = 1—s. As this shows, formal summations
of the Leibnitz type (3) require specifications which could make them unique.



Moreover, divergent sums could be valuable approzimations of solutions of
differential equations which might be even analytically solvable. One of the best-
known examples of this case is Euler’s differential equation [32, 4, 33] 2%y +y = 2,
which has both (i) a formal solution as a power series f(z) = — Yoo onl(=2)",
which diverges for all nonzero values of z; as well as (ii) an exact solution
f(2) = €'/#Ei(—1/z) obtained by direct integration. Ei stands for the exponen-
tial integral Ei(z) = [ e™'/t. The difference between the exact and the series
solution up to index k& can be approximated [4] by |f(2) — fr(2)] < V2mze /%,
which is exponentially small for small z. To note another example, Laplace has
successfully (with respect to the predictions made) used divergent power se-
ries for calculations of planetary motion. Thus it is not totally unreasonable to
suspect that the perturbation series solutions obtained via diagrammatical tech-
niques [34-36] for the differential equations of quantum electrodynamics are of
this “well behaved” type.

Therefore, at least in principle, the Thomson lamp could be perceived as
a physical process governed by some associated differential equation, such as
y'(1 — 2z) — 1 = 0, which has an exact solution f(z) = log(1/1 — z); as well as
a divergent series solution f(z) = >0 o(—=2)"/n, so that the first derivative of
f(2), taken at z = 1, yields the Leibniz series s.

If one is willing to follow the formal summation to its limit, then the Abel sum
could be justified from the point of view of classical physics as follows. Suppose
that the switching processes can be disregarded, an assumption not dissimilar
to related concerns for Maxwell’s demon [37]. Suppose further that all measure-
ments are finite in the sense that the temporal resolution § of the observation
of the Thomson lamp cannot be made “infinitely small;” i.e., the observation
time is finitely limited from below by some arbitrary but non-vanishing time in-
terval. Then, the mean brightness of the Thomson lamp can be operationalized
by measuring the average time of the lamp to be “on” as compared to being
“off” in the time interval determined by the temporal resolution of the measur-
ing device. This definition is equivalent to an idealized “photographic” plate or
light-sensitive detector which additively collects light during the time the shutter
is open. Then, such a device would record the cycles of Thomson’s lamp up to
temporal resolution §, and would then integrate the remaining light emanating
from it. Suppose that § = 1/2%, and that at the time Y\ _ 27" = 2(1 — 27%),
the Thomson lamp is in the “off” state. Then the “on” and “off” periods sum
up to

so= 1+t emt = )
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By averaging over the initial time, there is a 50:50 chance that the Thomson
lamp is “on” or “off” at highest resolution — which is equivalent to repeating
the experiment with different offsets — resulting in an average brightness of 1/2,
which is identical to the Abel sum. In this way, the Abel sum can be justified
from a physical point of view. The use of the Abel sum may not be perceived
as totally convincing, as the Abel sum can be affected by changes to an initial
segment of the series.
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In a strict sense, this classical physics treatment of the brightness of the
Thomson lamp is of little use for predictions of the state of the Thomson lamp
after the limit of the switching cycles. One might still put forward that, in
accordance with our operationalization of the average brightness, there is a 50:50
probability that it is in state “on” or “off.” Just as for the Thomson lamp
discussed above, one needs to be careful in defining the output of an accelerated
Turing machine [28,24-27, 38, 39, 19].

3 Quantum state of the Thomson lamp

The quantum mechanical formalization of the Thomson lamp presents an in-
triguing possibility: as quantum information is not bound by two classically
contradictory states, the quantum state of the Thomson lamp can be in a super-
position thereof. At first glance, the fact that quantum information co-represents
contradictory cases appears “mind-boggling” at best. As Hilbert pointedly stated
(in Ref. [40, p. 163], he was not discussing quantum information theory): “ .. the
conception that facts and events could contradict themselves appears to me as an
exemplar of thoughtlessness'.” Nevertheless, “quantum parallelism” appears to
be an important property of quantum information and computation, which is
formally expressed by a coherent summation of orthogonal pure states. This
property can be used for quantum states which are formally invariant “fixed
points” of diagonalization operators.

We note a particular aspect of the quantization of the electromagnetic field
emanating from the Thomson lamp: the quanta recorded at the photographic
emulsion or detector impinge on these light sensitive devices not continuously
but in discrete “energy lumps” of E, = hv = hc/A, where v and A refer to
the frequency and wavelength of the associated field mode. We shall also not be
concerned with the photon statistics, which would require a detailed analysis of
the light source [41].

In what follows, the notation of Mermin [42] will be used. Let |0) = (1,0) and
[1) = (0,1) be the representations of the “off” and “on” states of the Thomson
lamp, respectively. Then, the switching process can be symbolized by the “not”

operator X = 1) , transforming |0) into |1) and wvice versa. Thus the quantum
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switching process of the Thomson lamp at time ¢ is the partial product [43,
Sect. 5.11]

t
_ + | I for even t,
S(t) = I:IOX - {X for odd t. (5)

In the limit, one obtains an infinite product S of matrices with the two accumu-
lation points mentioned above.

L« mir erscheint die Auffassung, als kénnten Tatsachen und Freignisse selbst

miteinander in Widerspruch geraten, als das Musterbeispiel einer Gedanken-
losigkeit.”



The eigensystem of S(¢) is given by the two 50:50 mixtures of |0) and |1)
with the two eigenvalues 1 and —1; i.e.,

()~ (10) £ |1)) === (0) £ |1)) = £}, (©
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In particular, the state [1);) associated with the eigenvalue +1 is a fized point
of the operator S(t). These are the two states which can be expected to emerge
as the quantum state of the Thomson lamp in the limit of infinity switching
processes. Note that, as for the classical case and for the formal Abel sum, they
represent a fifty-fifty mixture of the “on” and “off” states.

4 Quantum fixed point of diagonalization operator

In set theory, logic and in recursion theory [21,44-46,22,23], the method of
proof by contradiction (reductio ad absurdum) requires some “switch of the bit
value,” which is applied in a self-reflexive manner. Classically, total contradiction
is achieved by supposing that some proposition is true, then proving that under
this assumption it is false, and wvice versa. The general proof method thus can
be intuitively related to the application of a “not” operation.

The following considerations rely on the reader’s informal idea of effective
computability and algorithm, but they can be translated into a rigorous descrip-
tion involving universal computers such as Turing machines [45, Chapter C.1].
Assume that an algorithm A is restricted to classical bits of information. For the
sake of contradiction, assume that there exists a (suspicious) halting algorithm
h which outputs the code of a classical bit as follows:

[0 whenever B(X) does not halt,
MB(X)) = { 1 whenever B(X) halts. (7)

Then, suppose an algorithm A using h as a subprogram, which performs
the diagonal argument by halting whenever (case 1) h(B(X)) indicates that
B(X) does not halt (diverges), and conversely (case 2) by not halting when-
ever h(B(X)) indicates that B(X) halts (converges). Self-reflexivity reveals the
antinomy of this construction: upon operating on its own code, A reaches at a
total contradiction: whenever A(A) halts, h(A(A)) outputs 1 and forces A(A)
not to halt. Conversely, whenever A(A) does not halt, then h(A(A)) outputs 0
and steers A(A) into the halting mode. In both cases one arrives at a complete
contradiction. Classically, this contradiction can only be consistently avoided by
assuming the non-existence of A and, since the only non-trivial feature of A is
the use of the peculiar halting algorithm h, the impossibility of any such halting
algorithm.

As has already been argued [24-27], |44 ) = (1/v/2) (|0) + |1)) is the quantum
fixed point state of the “not” operator, which is essential for diagonal arguments,
as X|¢4) = |¢4). Thus in quantum recursion theory, the diagonal argument con-
sistently goes through without leading to a contradiction, as h(A(A)) yielding



[11) still allows a consistent response of A by a coherent superposition of its
halting and non-halting states. It should be noted, however, that the fixed point
quantum “solution” of the halting problem cannot be utilized. In particular, if
one is interested in the “classical” solution of the decision problem whether or not
A(A) halts, then one ultimately has to perform an irreversible measurement on
the fixed point state. This causes a state reduction into the classical states corre-
sponding to |0) and |1). Any single measurement yields an indeterministic result:
According to the Born rule (cf. [47, p. 804], English translation in [48, p. 302]
and [49]), when measured “along” the classical basis (observable) {|0),|1)}, the
probability that the fixed point state [¢)4) returns at random one of the two
classical states |0) (exclusive) or |1), is 1/2. Thereby, classical undecidability is
recovered. Thus, as far as problem solving is concerned, this method involving
quantum information does not present an advantage over classical information.
For the general case discussed, with regards to the question of whether or not
a computer halts, the quantum “solution” fixed point state is equivalent to the
throwing of a fair classical coin [50].

5 Quantum diagonalization

The above argument used the continuity of quantum bit states as compared to
the discrete classical spectrum of just two classical bit states for a construction
of fixed points of the diagonalization operator modeled by X. One could proceed
a step further and allow non-classical diagonalization procedures. Thereby, one
could allow the entire range of two-dimensional unitary transformations [51]

P sinw e~ cosw (8)

' cosw —e '¥ sinw)
b

where — < ,w <7, — 5 < a,¢ < 7, to act on the quantum bit. A typical
example of a non-classical operation on a quantum bit is the “square root of
not” (VX -vX = X) gate operator

\/Y:1<1+i1i> 7 ©

2\1—-31+41

which again has the fixed point state |11 ) associated with the eigenvalue +1.
Yet, not all of these unitary transformations have eigenvectors associated with
eigenvalues +1 and thus fixed points. Indeed, only unitary transformations of
the form

Us(uor0,B,0)] " ding(1, ) Us(w. 0 Br0) =
B < cosw+ e sin®w  Lemt(@FO) (e — 1) sin(2 w)) (10)

lei(@t@) (et — 1) sin(2w) e cos?w + sin®w

for arbitrary A have fixed points.



Applying non-classical operations on quantum bits with no fixed points

[UQ(wv «, 57 90)]71 diag(?i“, eM)UQ(wv «, @v 90) - ]
B et cos’w+ el N sin®w  Temt(@FP) (e — i) sin(2w) (11)
T\ et 0t (e — et sin(2w) e cos? w + e P sin? w
with u, A # 2nm, n € Ny gives rise to eigenvectors which are not fixed points,

and which acquire non-vanishing phases p, A in the generalized diagonalization
process.

Ubs(w7 a7 /87 Lp)

Fig. 1. Quantum gate operating on a qubit realized by a four-port interferometer with
two input ports |0),|1), a beam splitter S(7") with variable transmission T'(w), three
phase shifters Py, P2, P3, and two output ports [0)’,[1)".

For the sake of demonstration of a physical realization, consider an elemen-
tary diagonalization operator without a fixed point and with equal phases in
the diagonal terms; i.e., 4 = ), thus reducing to diag(e*,e™). The generalized
quantum optical beam splitter sketched in Fig. 1 can be described either by the
transitions [52]

Py :|0) — [0)ei(@tA),

Py |1) — [1)eP,

S:10) — VT 1) +iVR|0'), (12)

$:1) = VT|0)+iVR),

Py 1 |0") — |0%)e?,
where every reflection by a beam splitter S contributes a phase 7/2 and thus a
factor of e'™/2 = i to the state evolution. Transmitted beams remain unchanged;
i.e., there are no phase changes.

Alternatively, with \/T(w) = cosw and /R(w) = sinw, the action of a
lossless beam splitter may be described by the matrix?

ivVRw) \/T(w) \ (isinw cosw
VI (w) iy/R(w) cosw isinw )
2 The standard labeling of the input and output ports are interchanged. Therefore,
sine and cosine functions are exchanged in the transition matrix.



A phase shifter is represented by either diag (¢?,1) or diag(1,e*) in two-
dimensional Hilbert space. The action of the entire device consisting of such
elements is calculated by multiplying the matrices in reverse order in which the
quanta pass these elements [53, 54]; i.e.,

bs _[(€e¥0 i sinw cosw eilatp) 10
U (w,a,ﬁ,@)—(o 1)<COSW ZSIH(A))( 0 1 Oezﬂ )
i et (ath8+9) ginw et (B+¢) cosw (13)
e (ath) cosw  ietf sinw )

For this physical setup, the phases w = 7/2, = A — 7/2 and ¢ = —« can be
arranged such that U (7/2,a, A — 7/2, —a) = diag(e™, ™). Another example
is Ubs(ﬂ/2,2)\, —71/2 — \,0) = diag(e®*,e~*). For the physical realization of
general unitary operators in terms of beam splitters the reader is referred to
Refs. [55-58].

6 Summary

In summary we have discussed some physical aspects related to the limit op-
erations of the Thomson lamp. This physical limit, regardless of the formally
unbounded and even infinite number of “steps” involved, has an operational
meaning in agreement with the formal Abel sums of infinite series. We have
also observed the formal analogies to accelerated (hyper-)computers and have
discussed the recursion theoretic diagonal methods. As quantum information is
not bound by mutually exclusive states of classical bits, it allows a consistent
representation of fixed point states of the diagonal operator. In an effort to recon-
struct the self-contradictory feature of diagonalization and the resulting reductio
ad absurdum, a generalized diagonal method allowing no quantum fixed points
has been proposed.
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