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It is not enough to have no concept,
one must also be incapable of expressing it.

Karl Kraus

But no sooner do we depart from sense and instinct to follow the light of a
superior principle, to reason, meditate, and reflect on the nature of things, but a

thousand scruples spring up in our minds concerning those things which before we
seemed fully to comprehend. Prejudices and errors of sense do from all parts

discover themselves to our view; and, endeavouring to correct these by reason, we
are insensibly drawn into uncouth paradoxes, difficulties, and inconsistencies,
which multiply and grow upon us as we advance in speculation, till at length,

having wandered through many intricate mazes, we find ourselves just where we
were, or, which is worse, sit down in a forlorn Scepticism

George Berkeley

1 MOTIVATION

In what follows, the term context refers to a maximal collection of co-measurable
observables “bundled together” to form a “quasi-classical mini-universe” within
some “larger” nonclassical structure. Similarly, the contexts of an observable
are often defined as maximal collections of mutually co-measurable (compati-
ble) observables which are measured or at least could in principle be measured
alongside of this observable [Bohr, 1949; Bell, 1966; Heywood and Redhead, 1983;
Redhead, 1990]. Quantum mechanically, this amounts to a formalization of con-
texts by Boolean subalgebras of Hilbert lattices [Svozil, 2005c; Svozil, 2005d], or
equivalently, to maximal operators (e.g., Ref. [von Neumann, 1932, Sec. II.10, p.
90], English translation in Ref. [von Neumann, 1955, p. 173], Ref. [Kochen and
Specker, 1967, § 2], Ref. [Neumark, 1954, pp. 227,228], and Ref. [Halmos, 1974,
§ 84]).

In classical physics, contexts are rather unrevealing, as all classical observables
are in principle co-measurable, and there is only a single context which comprises
the entirety of observables. Indeed, that two or more observables may not be
co-measurable; i.e., operationally obtainable simultaneously, and thus may be-
long to different, distinct contexts, did not bother the classical mind until around
1920. This situation has changed dramatically with the emergence of quantum
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mechanics, and in particular with the discovery of complementarity and value in-
definiteness. Contexts are the building blocks of quantum logics; i.e., the pastings
of a continuity of contexts form the Hilbert lattices.

We shall make use of algebraic formalizations, in particular logic. Quantum logic
is about the relations and operations among statements referring to the quantum
world. As quantum physics is an extension of classical physics, so is quantum
logic an extension of classical logic. Classical physics can be extended in many
mindboggling, weird ways. The question as to why Nature “prefers” the quantum
mindboggling way over others appears most fascinating to the open mind. Before
understanding some of the issues, one has to review classical as well as quantum
logic and some of its doubles.

Logic will be expressed as algebra. That is an approach which can be formalized.
Other approaches, such as the widely held opportunistic belief that something is
true because it is useful might also be applicable (for instance in acrimonious
divorces), though less formalized. Some of the material presented here has al-
ready been published elsewhere [Svozil, 1998], in particular the partition logic
part [Svozil, 2005b], or the section on quantum probabilities [Svozil and Tkadlec,
1996]. Here we emphasize the importance of the notion of context, which may
serve as a unifying principle for all of the logics discussed.

2 CLASSICAL CONTEXTS

Logic is an ancient philosophical discipline. Its algebraization started in the mid-
nineteenth century with Boole’s Laws of Thought [Boole, 1958]. In what follows,
Boole’s approach, in particular to probability theory, is reviewed.

2.1 Boolean algebra

A Boolean algebra B is a set endowed with two binary operations ∧ (called “and”)
and ∨ (called “or”), as well as a unary operation “ ’ ” (called “complement”
or “negation”). It also contains two elements 1 (called “true”) and 0 (called
“false”). These entities satisfy associativity, commutativity, the absorption law
and distributivity. Every element has a unique complement.

A typical example of a Boolean algebra is set theory. The operations are identi-
fied with the set theoretic intersection, union, and complement, respectively. The
implication relation is identified with the subset relation.

2.2 Classical contexts as classical logics

A classical Boolean algebra is the representation of all possible “propositions” or
“knowables.” Every knowable can be combined with every other one by the stan-
dard logical operations “and” and “or.” Operationally, all knowables are in prin-
ciple knowable simultaneously. Stated differently: within the Boolean “universe,”
the knowables are all consistently co-knowable. In this sense, classical contexts
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Figure 1. Measurements of E1, E2, E3 on the “left,” and F1, F2, F3 on the “right”
hand side, along directions θi.

coincide with the collection of all possible observables, which are expressed by
Boolean algebras. Thus, classical contexts can be identified with the respective
classical logics.

2.3 Classical probabilities

Classical probabilities and joint probabilities can be represented as points of a
convex polytope spanned by all possible “extreme cases” of the classical Boolean
algebra; more formally: by all two-valued measures on the Boolean algebra. Two-
valued measures, also called dispersionless measures or valuations, acquire only
the values “0” and “1,” interpretable as falsity and truth, respectively. If some
events are independent, then their joint probability pq · · · can be expressed as the
product of their individual probabilities p, q, . . ..

The associated correlation polytope [Pitowsky, 1989b; Pitowsky, 1989a; Pitowsky,
1991; Pitowsky, 1994; Pitowsky and Svozil, 2001] (see also Refs. [Froissart, 1981;
Cirel’son (=Tsirel’son), 1980; Cirel’son (=Tsirel’son), 1993]) is spanned by a con-
vex combination of vertices, which are vectors of the form (p, q, . . . , pq, . . .), where
the components are the individual probabilities of independent events which take
on the values 0 and 1, together with their joint probabilities, which are the prod-
ucts of the individual probabilities. The polytope faces impose “inside–outside”
distinctions. The associated inequalities must be obeyed by all classical probability
distributions; they are bounds on classical (joint) probabilities termed “conditions
of possible experience” by Boole [Boole, 1958; Boole, 1862].

Two-event “1–1” case

Let us demonstrate the bounds on classical probabilities by the simplest nontrivial
example of two propositions; e.g.,

E ≡“a particle detector aligned along direction a clicks,” and
F ≡“a particle detector aligned along direction b clicks.”

Consider also the joint proposition
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E F E ∧ F ≡ E · F
1 0 0 0
2 0 1 0
3 1 0 0
4 1 1 1

full facet inequality
1 pq ≥ 0
2 p ≥ pq
3 p ≥ pq
4 pq ≥ p + q − 1

(a) (b)

Table 1. Construction of the correlation polytope for two events: (a) the four
possible cases are represented by the truth table, whose rows can be interpreted
as three-dimensional vectors forming the vertices of the correlation polytope; (b)
the resulting four faces of the polytope are characterized by half-spaces which are
obtained by solving the hull problem. .

E ∧ F ≡ “the two particle detectors aligned along directions a and b
click.”

The notation “1–1” alludes to the experimental setup, in which the two events
are registered by detectors located at two “adjacent sites.” For multiple direction
measurements, see Fig. 1.

There exist four possible cases, enumerated in Table 1(a). The correlation poly-
tope in this case is formed by interpreting the rows as vectors in three-dimensional
vector space. Four cases, interpretable as truth assignments or two-valued mea-
sures, correspond to the four vectors (0, 0, 0), (0, 1, 0), (1, 0, 0), and (1, 1, 1). The
correlation polytope for the probabilities p, q and the joint probabilities pq of an
occurrence of E, F , and both E&F

(p, q, pq) = κ1(0, 0, 0) + κ2(0, 1, 0) + κ3(1, 0, 0) + κ4(1, 1, 1) = (κ3 + κ4, κ2 + κ4, κ4)

is spanned by the convex sum κ1 + κ2 + κ3 + κ4 = 1 of these four vectors, which
thus are vertices of the polytope. κi can be interpreted as the normalized weight
for event i to occur. The configuration is drawn in Figure 2.

By the Minkoswki-Weyl representation theorem (e.g, Ref. [Ziegler, 1994, p.29]),
every convex polytope has a dual (equivalent) description: either as the convex
hull of its extreme points (vertices); or as the intersection of a finite number of half-
spaces. Such facets are given by linear inequalities, which are obtained from the
set of vertices by solving the so called hull problem. The inequalities coincide with
Boole’s “conditions of possible experience.” The hull problem is algorithmically
solvable but computationally hard [Pitowsky, 1990].

In the above example, the “conditions of possible experience” are given by
the inequalities enumerated in Table 1b). One of their consequences are bounds
on joint occurrences of events. Suppose, for example, that the probability of a
click in detector aligned along direction a is 0.9, and the probability of a click
in the second detector aligned along direction b is 0.7. Then inequality 4 forces
us to accept that the probability that both detector register clicks cannot be
smaller than 0.9 + 0.7 − 1 = 0.6. If, for instance, somebody comes up with a
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Figure 2. The correlation polytope for two events. The vertices are (0, 0, 0),
(0, 1, 0), (1, 0, 0), and (1, 1, 1). The four faces of the polytope are characterized by
the inequalities in Table 1(b).

joint probability of 0.4, we would know that this result is flawed, possibly by
fundamental measurement errors, or by cheating.

Four-event “2–2” case

A configuration discussed in quantum mechanics is one with four events grouped
into two equal parts E1, E2 and F1, F2. There are 24 different cases of occurrence
or nonoccurrence of these four events enumerated in Table 2.

By solving the hull problem, one obtains a set of conditions of possible expe-
rience which represent the bounds on classical probabilities enumerated in Table
3. For historical reasons, the bounds 17-18, 19-20, 21-22, and 23-24 are called the
Clauser-Horne inequalities [Clauser and Horne, 1974; Clauser and Shimony, 1978].
They are equivalent (up to permutations of pi, qi), and are the only additional
inequalities structurally different from the two-event “1–1” case.

Six event “3–3” case

A similar calculation [Pitowsky and Svozil, 2001] for six events E1, E2, E3, F1, F2, F3

depicted in Fig. 1 yields an additional independent [Colins and Gisin, 2004; Sliwa,
2003] inequality for their probabilities p1, p2, p3, q1, q2, q3 and their joint probabil-
ities of the type

p1q1 + p2q2 + p1q3 + p2q1 + p2q2 − p2q3 + p3q1 − p3q2 ≤ p1 + 2q1 + q2.



556 Karl Svozil

E1 E2 F1 F2 E1F1 E1F2 E2F1 E2F2

1 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 1 1 0 0 0 0
5 0 1 0 0 0 0 0 0
6 0 1 0 1 0 0 0 1
7 0 1 1 0 0 0 1 0
8 0 1 1 1 0 0 1 1
9 1 0 0 0 0 0 0 0
10 1 0 0 1 0 1 0 0
11 1 0 1 0 1 0 0 0
12 1 0 1 1 1 1 0 0
13 1 1 0 0 0 0 0 0
14 1 1 0 1 0 1 0 1
15 1 1 1 0 1 0 1 0
16 1 1 1 1 1 1 1 1

Table 2. Construction of the correlation polytope for four events. The 16 pos-
sible cases are represented by the truth table, whose rows can be interpreted as
three-dimensional vectors forming the vertices of the correlation polytope; (b) the
resulting four faces of the polytope are characterized by half-spaces which are
obtained by solving the hull problem.

3 QUANTUM CONTEXTS

Omniscience in a classical sense is no longer possible for quantum systems. Some of
the reasons are: (i) quantum complementarity and, algebraically associated with
it, the breakdown of distributivity; (ii) the impossibility to consistently assign
truth and falsity for all observables simultaneously and, associated with it, the
nonexistence of two-valued measures on even finite subsets of Hilbert logics; and
(iii) the alleged randomness of certain single outcomes.

3.1 Hilbert lattices as quantum logics

Quantum logic has been introduced by Garrett Birkhoff and John von Neumann
[von Neumann, 1932; Birkhoff and von Neumann, 1936; Mackey, 1957; Jauch, 1968;
Pták and Pulmannová, 1991] in the thirties. They organized it top-down, start-
ing from the Hilbert space formalism of quantum mechanics. Certain entities of
Hilbert spaces are identified with propositions, partial order relations and lattice
operations. These relations and operations are identified with the logical impli-
cation relation and operations such as “and,” “or,” and the negation. Thereby,
as we shall see, the resulting logical structures are “nonclassical,” in particular
“nonboolean.”

Kochen and Specker [Kochen and Specker, 1965b; Kochen and Specker, 1965a]
suggested to consider only relations and operations among compatible, co-measurable
observables; i.e., within Boolean subalgebras, which will be identified with blocks
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full facet inequality inequality for p1 = p2 = q1 = q2 = 1
2

1 p1q1 ≥ 0 p1q1 ≥ 0
2 p1q2 ≥ 0 p1q2 ≥ 0
3 p2q1 ≥ 0 p2q1 ≥ 0
4 p2q2 ≥ 0 p2q2 ≥ 0
5 p1 ≥ p1q1

1
2
≥ p1q1

6 p1 ≥ p1q2
1
2
≥ p1q2

7 q1 ≥ p1q1
1
2
≥ p1q1

8 q1 ≥ p1q2
1
2
≥ p1q2

9 p2 ≥ p2q1
1
2
≥ p2q1

10 p2 ≥ p2q2
1
2
≥ p2q2

11 q2 ≥ p2q1
1
2
≥ p2q1

12 q2 ≥ p1q2
1
2
≥ p2q2

13 p1q1 ≥ p1 + q1 − 1 p1q1 ≥ 0
14 p1q2 ≥ p1 + q2 − 1 p1q2 ≥ 0
15 p2q1 ≥ p2 + q1 − 1 p2q1 ≥ 0
16 p2q2 ≥ p2 + q2 − 1 p2q2 ≥ 0
17 0 ≥ p1q1 + p1q2 + p2q1 − p2q2 − p1 − q1 1 ≥ +p1q1 + p1q2 + p2q1 − p2q2

18 p1q1 + p1q2 + p2q1 − p2q2 − p1 − q1 ≥ −1 p1q1 + p1q2 + p2q1 − p2q2 ≥ 0
19 0 ≥ p1q1 + p1q2 − p2q1 + p2q2 − p1 − q2 1 ≥ +p1q1 + p1q2 − p2q1 + p2q2

20 p1q1 + p1q2 − p2q1 + p2q2 − p1 − q2 ≥ −1 p1q1 + p1q2 − p2q1 + p2q2 ≥ 0
21 0 ≥ p1q1 − p1q2 + p2q1 + p2q2 − p2 − q1 1 ≥ p1q1 − p1q2 + p2q1 + p2q2

22 p1q1 − p1q2 + p2q1 + p2q2 − p2 − q1 ≥ −1 p1q1 − p1q2 + p2q1 + p2q2 ≥ 0
23 0 ≥ −p1q1 + p1q2 + p2q1 + p2q2 − p2 − q2 1 ≥ −p1q1 + p1q2 + p2q1 + p2q2

24 −p1q1 + p1q2 + p2q1 + p2q2 − p2 − q2 ≥ −1 −p1q1 + p1q2 + p2q1 − p2q2 ≥ 0

Table 3. Construction of the correlation polytope for four events. The 24 faces
of the polytope spanned by the vertices corresponding to the rows enumerated
in Table 2. The bounds 17-18, 19-20, 21-22, and 23-24 are the Clauser-Horne
inequalities.

and contexts of Hilbert lattices. Nevertheless, some of their theorems formally
take into account ensembles of contexts [Kochen and Specker, 1967] for which a
multitude of incompatible observables contribute.

If theoretical physics is assumed to be a faithful representation of our experience,
such an “empirical,” “operational” [Bridgman, 1927; Bridgman, 1934; Bridgman,
1952] logic derives its justification by the phenomena themselves. In this sense,
one of the main justifications for quantum logic is the construction of the logical
and algebraic order of events based on empirical findings.

Definition

The dimensionality of the Hilbert space for a given quantum system depends on the
number of possible mutually exclusive outcomes. In the spin–1

2 case, for example,
there are two outcomes “up” and “down,” associated with spin state measurements
along arbitrary directions. Thus, the dimensionality of Hilbert space needs to be
two.
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generic lattice order relation “meet” “join” “complement”
propositional implication disjunction conjunction negation

calculus → “and” ∧ “or” ∨ “not” ¬
“classical” lattice subset ⊂ intersection ∩ union ∪ complement

of subsets
of a set
Hilbert subspace intersection of closure of orthogonal
lattice relation subspaces ∩ linear subspace

⊂ span ⊕ ⊥
lattice of E1E2 = E1 E1E2 E1 + E2 − E1E2 orthogonal

commuting projection
{noncommuting} { lim

n→∞(E1E2)n}
projection
operators

Table 4. Comparison of the identifications of lattice relations and operations for
the lattices of subsets of a set, for experimental propositional calculi, for Hilbert
lattices, and for lattices of commuting projection operators.

Then the following identifications can be made. Table 4 lists the identifications
of relations of operations of classical Boolean set-theoretic and quantum Hillbert
lattice types.

• Any closed linear subspace of — or, equivalently, any projection operator on —
a Hilbert space corresponds to an elementary proposition. The elementary
“true”–“false” proposition can in English be spelled out explicitly as

“The physical system has a property corresponding to the associ-
ated closed linear subspace.”

• The logical “and” operation is identified with the set theoretical intersection
of two propositions “∩”; i.e., with the intersection of two subspaces. It is
denoted by the symbol “∧”. So, for two propositions p and q and their
associated closed linear subspaces Mp and Mq,

Mp∧q = {x | x ∈ Mp, x ∈ Mq}.

• The logical “or” operation is identified with the closure of the linear span “⊕”
of the subspaces corresponding to the two propositions. It is denoted by the
symbol “∨”. So, for two propositions p and q and their associated closed
linear subspaces Mp and Mq,

Mp∨q = Mp ⊕ Mq = {x | x = αy + βz, α, β ∈ C, y ∈ Mp, z ∈ Mq}.

The symbol ⊕ will used to indicate the closed linear subspace spanned by
two vectors. That is,

u⊕ v = {w | w = αu + βv, α, β ∈ C, u, v ∈ H}.
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Notice that a vector of Hilbert space may be an element of Mp⊕Mq without
being an element of either Mp or Mq, since Mp⊕Mq includes all the vectors
in Mp ∪ Mq, as well as all of their linear combinations (superpositions) and
their limit vectors.

• The logical “not”-operation, or “negation” or “complement,” is identified with
operation of taking the orthogonal subspace “⊥”. It is denoted by the symbol
“ ′ ”. In particular, for a proposition p and its associated closed linear
subspace Mp, the negation p′ is associated with

Mp′ = {x | (x, y) = 0, y ∈ Mp},

where (x, y) denotes the scalar product of x and y.

• The logical “implication” relation is identified with the set theoretical subset
relation “⊂”. It is denoted by the symbol “→”. So, for two propositions p
and q and their associated closed linear subspaces Mp and Mq,

p → q ⇐⇒ Mp ⊂ Mq.

• A trivial statement which is always “true” is denoted by 1. It is represented by
the entire Hilbert space H. So,

M1 = H.

• An absurd statement which is always “false” is denoted by 0. It is represented
by the zero vector 0. So,

M0 = 0.

Diagrammatical representation, blocks, complementarity

Propositional structures are often represented by Hasse and Greechie diagrams.
A Hasse diagram is a convenient representation of the logical implication, as well
as of the “and” and “or” operations among propositions. Points “ • ” represent
propositions. Propositions which are implied by other ones are drawn higher than
the other ones. Two propositions are connected by a line if one implies the other.
Atoms are propositions which “cover” the least element 0; i.e., they lie “just above”
0 in a Hasse diagram of the partial order.

A much more compact representation of the propositional calculus can be given
in terms of its Greechie diagram [Greechie, 1971]. In this representation, the
emphasis is on Boolean subalgebras. Points “ ◦ ” represent the atoms. If they
belong to the same Boolean subalgebra, they are connected by edges or smooth
curves. The collection of all atoms and elements belonging to the same Boolean
subalgebra is called block; i.e., every block represents a Boolean subalgebra within
a nonboolean structure. The blocks can be joined or pasted together as follows.

• The tautologies of all blocks are identified.
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• The absurdities of all blocks are identified.

• Identical elements in different blocks are identified.

• The logical and algebraic structures of all blocks remain intact.

This construction is often referred to as pasting construction. If the blocks are
only pasted together at the tautology and the absurdity, one calls the resulting
logic a horizontal sum.

Every single block represents some “maximal collection of co-measurable ob-
servables” which will be identified with some quantum context. Hilbert lattices
can be thought of as the pasting of a continuity of such blocks or contexts.

Note that whereas all propositions within a given block or context are co-
measurable; propositions belonging to different blocks are not. This latter fea-
ture is an expression of complementarity. Thus from a strictly operational point
of view, it makes no sense to speak of the “real physical existence” of different
contexts, as knowledge of a single context makes impossible the measurement of
all the other ones.

Einstein-Podolski-Rosen (EPR) type arguments [Einstein et al., 1935] utilizing
a configuration sketched in Fig. 1 claim to be able to infer two different contexts
counterfactually. One context is measured on one side of the setup, the other
context on the other side of it. By the uniqueness property [Svozil, 2005d; Svozil,
2005a] of certain two-particle states, knowledge of a property of one particle entails
the certainty that, if this property were measured on the other particle as well,
the outcome of the measurement would be a unique function of the outcome of the
measurement performed. This makes possible the measurement of one context,
as well as the simultaneous counterfactual inference of another, mutual exclusive,
context. Because, one could argue, although one has actually measured on one
side a different, incompatible context compared to the context measured on the
other side, if on both sides the same context would be measured, the outcomes on
both sides would be uniquely correlated. Hence measurement of one context per
side is sufficient, for the outcome could be counterfactually inferred on the other
side.

As problematic as counterfactual physical reasoning may appear from an opera-
tional point of view even for a two particle state, the simultaneous “counterfactual
inference” of three or more blocks or contexts fails because of the missing unique-
ness property [Svozil, 2005a] of quantum states.

As a first example, we shall paste together observables of the spin one-half
systems. We have associated a propositional system

L(a) = {0, E,E′, 1},

corresponding to the outcomes of a measurement of the spin states along some
arbitrary direction a. If the spin states would be measured along a different spatial
direction, say b �= ±a, an identical propositional system

L(b) = {0, F, F ′, 1}
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Figure 3. Two-dimensional configuration of spin 1/2 state measurements along
two directions a and b.
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Figure 4. (a) Hasse diagram of the “Chinese lantern” form obtained by the past-
ing of two spin one-half propositional systems L(x) and L(x) which are nonco-
measurable. The resulting logical structure is a modular orthocomplemented lat-
tice L(x)⊕L(x) = MO2. The blocks (without 0, 1) are indicated by dashed boxes.
(b) Greechie diagram of the configuration depicted in (a).

would have resulted, with the propositions E and F explicitly expressed before.
The two-dimensional Hilbert space representation of this configuration is depicted
in Figure 3.

L(a) and L(b) can be joined by pasting them together. In particular, we identify
their tautologies and absurdities; i.e., 0 and 1. All the other propositions remain
distinct. We then obtain a propositional structure

L(a) ⊕ L(b) = MO2

whose Hasse diagram is of the “Chinese lantern” form and is drawn in Figure
4(a). The corresponding Greechie Diagram is drawn in Figure 4(b). Here, the
“O” stands for orthocomplementation, expressing the fact that for every element
there exists an orthogonal complement. The term “M” stands for modularity;
i.e., for all x → b, x ∨ (a ∧ b) = (x ∨ a) ∧ b. The subscript “2” stands for the
pasting of two Boolean subalgebras 22. Since all possible directions a ∈ R3 form
a continuum, the Hilbert lattice is a continuum of pastings of subalgebras of the
form L(a).
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The propositional system obtained is not a classical Boolean algebra, since the
distributive laws are not satisfied; i.e.,

F ∨ (E ∧ E′) ?= (F ∨ E) ∧ (F ∨ E′)
F ∨ 0 ?= 1 ∧ 1
F �= 1,

F ∧ (E ∨ E′) ?= (F ∧ E) ∨ (F ∧ E′)
F ∧ 1 ?= 0 ∨ 0
F �= 0.

Notice that the expressions can be easily evaluated by using the Hasse diagram
4(a): For any a, b, a ∨ b is just the least element which is connected by a and b;
a ∧ b is just the highest element connected to a and b. Intermediates which are
not connected to both a and b do not count. That is,

�
�

��
�

�

�
�

��
�

�
���

���a b

a ba ∨ b

a ∧ b

a∨ b is called a least upper bound of a and b. a∧ b is called a greatest lower bound
of a and b.

MO2 is a specific example of an algebraic structure which is called a lattice. Any
two elements of a lattice have a least upper and a greatest lower bound satisfying
the commutative, associative and absorption laws.

Nondistributivity is the algebraic expression of nonclassicality, but what is the
algebraic reason for nondistributivity? It is, heuristically speaking, scarcity, the
lack of necessary algebraic elements to “fill up” all propositions necessary to obtain
one and the same result in both ways as expressed by the distributive law.

3.2 Quantum contexts as blocks

All that is operationally knowable for a given quantized system is a single block
representing co-measurable observables. Thus, single blocks or, in another termi-
nology, maximal Boolean subalgebras of Hilbert lattices, will be identified with
quantum contexts. As Hilbert lattices are pastings of a continuity of blocks or
contexts, contexts are the building blocks of quantum logics.

A quantum context can equivalently be formalized by a single (nondegener-
ate) “maximal” self-adjoint operator C, such that all commuting, compatible co-
measurable observables are functions thereof. (e.g., Ref. [von Neumann, 1932],
Sec. II.10, p. 90, English translation p. 173; Ref. [Kochen and Specker, 1967], § 2;
Ref. [Neumark, 1954], pp. 227,228; Ref. [Halmos, 1974], § 84). Note that mutually
commuting opators have identical pairwise orthogonal sets of eigenvectors (forming
an orthonormal basis) which correspond to pairwise orthogonal projectors adding
up to unity. The spectral decompositions of the mutually commuting opators thus
contain sums of identical pairwise orthogonal projectors.
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Thus the “maximal” self-adjoint operator C has a spectral decomposition into
some complete set of orthogonal projectors Ei which correspond to elementary
“yes”-“no” propositions in the Von Neumann-Birkhoff type sense [von Neumann,
1932; Birkhoff and von Neumann, 1936]. That is, C =

∑n
i=1 ciEi with mutu-

ally different ci and
∑n

i=1 Ei = I. In n dimensions, contexts can be viewed
as n-pods spanned by the n orthogonal vectors corresponding to the projectors
E1, E2, · · · , En. As there exist many such representations with many different
sets of coefficients ci, “maximal” operator are not unique.

An observable belonging to two or more contexts is called link observable. Con-
texts can thus be depicted by Greechie diagrams [Greechie, 1971], consisting of
points which symbolize observables (representable by the spans of vectors in n-
dimensional Hilbert space). Any n points belonging to a context; i.e., to a max-
imal set of co-measurable observables (representable as some orthonormal basis
of n-dimensional Hilbert space), are connected by smooth curves. Two smooth
curves may be crossing in common link observables. In three dimensions, smooth
curves and the associated points stand for tripods. Still another compact represen-
tation is in terms of Tkadlec diagrams [Tkadlec, 2000], in which points represent
complete tripods and smooth curves represent single legs interconnecting them.

In two dimensional Hilbert space, interlinked contexts do not exist, since every
context is fixed by the assumption of one property. The entire context is just
this property, together with its negation, which corresponds to the orthogonal ray
(which spans a one dimensional subspace) or projection associated with the ray
corresponding to the property.

The simplest nontrivial configuration of interlinked contexts exists in three-
dimensional Hilbert space. Consider an arrangement of five observables A, B, C,
D, K with two systems of operators {A,B,C} and {D,K,A}, the contexts, which
are interconnected by A. Within a context, the operators commute and the associ-
ated observables are co-measurable. For two different contexts, operators outside
the link operators do not commute. A is a link observable. This propositional
structure (also known as L12) can be represented in three-dimensional Hilbert
space by two tripods with a single common leg. Fig. 5 depicts this configuration
in three-dimensional real vector space, as well as in the associated Greechie and
Tkadlec diagrams. The operators B,C,A and D,K,A can be identified with the
projectors corresponding to the two bases

BB−C−A = {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T },
BD−K−A = {(cosϕ, sinϕ, 0)T , (− sinϕ, cosϕ, 0)T , (0, 0, 1)T },

(the superscript “T” indicates transposition). Their matrix representation is the
dyadic product of every vector with itself.

Physically, the union of contexts {B,C,A} and {D,K,A} interlinked along
A does not have any direct operational meaning; only a single context can be
measured along a single quantum at a time; the other being irretrievably lost if
no reconstruction of the original state is possible. Thus, in a direct way, testing
the value of observable A against different contexts {B,C,A} and {D,K,A} is



564 Karl Svozil

�
��

�
��

�
��

B D

C

K

A

�

�

ϕ

ϕ
� � �� � K

D
A

C
B

{B,C,A} {A,D,K}

� �A

{A,D,K}{B,C,A}

(a) (b) (c)
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stand for individual basis vectors, and orthogonal tripods are drawn as smooth
curves; (c) Tkadlec diagram: points represent complete tripods and smooth curves
represent single legs interconnecting them.

metaphysical.
It is, however, possible to counterfactually retrieve information about the two

different contexts of a single quantum indirectly by considering a singlet state
|Ψ2〉 = (1/

√
3)(|+−〉+ | −+〉− |00〉) via the “explosion view” Einstein-Podolsky-

Rosen type of argument depicted in Fig. 1. Since the state is form invariant with
respect to variations of the measurement angle and at the same time satisfies the
uniqueness property [Svozil, 2005a], one may retrieve the first context {B,C,A}
from the first quantum and the second context {D,K,A} from the second quan-
tum. (This is a standard procedure in Bell type arguments with two spin one-half
quanta.)

More tightly interlinked contexts such as {A,B,C} − {C,D,E} − {E,F,A},
whose Greechie diagram is a triangle with the edges A, C and E, or {A,B,C} −
{C,D,E} − {E,F,G} − {G,H,A}, whose Greechie diagram is a quadrangle with
the edges A, C, E and G, cannot be represented in Hilbert space and thus have no
realization in quantum logics. The five contexts {A,B,C}−{C,D,E}−{E,F,G}−
{G,H, I}− {I, J,A} whose Greechie diagrams is a pentagon with the edges A, C,
E, G and I have realizations in R3 [Svozil and Tkadlec, 1996].

3.3 Probability theory

Kochen-Specker theorem

Quantum logics of Hilbert space dimension greater than two have not a single two-
valued state interpretable as consistent, overall truth assignment [Specker, 1960].
This is the gist of the beautiful construction of Kochen and Specker [Kochen
and Specker, 1967]. For similar theorems, see Refs. [Zierler and Schlessinger,
1965; Alda, 1980; Alda, 1981; Kamber, 1964; Kamber, 1965]. As a result of the
nonexistence of two-valued states, the classical strategy to construct probabilities



Contexts in Quantum, Classical and Partition Logic 565

by a convex combination of all two-valued states fails entirely.
One of the most compact and comprehensive versions of the Kochen-Specker

proof by contradiction in three-dimensional Hilbert space R3 has been given by
Peres [Peres, 1991]. (For other discussions, see Refs. [Stairs, 1983; Redhead, 1990;
Jammer, 1992; Brown, 1992; Peres, 1991; Peres, 1993; Zimba and Penrose, 1993;
Clifton, 1993; Mermin, 1993; Svozil and Tkadlec, 1996].) Peres’ version uses a
33-element set of lines without a two-valued state. The direction vectors of these
lines arise by all permutations of coordinates from

(0, 0, 1), (0,±1, 1), (0,±1,
√

2), and (±1,±1,
√

2).

These lines can be generated (by the “nor”-operation between nonorthogonal
propositions) by the three lines [Svozil and Tkadlec, 1996]

(1, 0, 0), (1, 1, 0), (
√

2, 1, 1).

Note that as three arbitrary but mutually nonorthogonal lines generate a dense
set of lines [Havlicek and Svozil, 1996], it can be expected that any such triple of
lines (not just the one explicitly mentioned) generates a finite set of lines which
does not allow a two-valued probability measure.

The way it is defined, this set of lines is invariant under interchanges (permu-
tations) of the x1, x2 and x3 axes, and under a reversal of the direction of each of
these axes. This symmetry property allows us to assign the probability measure 1
to some of the rays without loss of generality. Assignment of probability measure
0 to these rays would be equivalent to renaming the axes, or reversing one of the
axes.

The Greechie diagram of the Peres configuration is given in Figure 6 [Svozil
and Tkadlec, 1996]. For simplicity, 24 points which belong to exactly one edge
are omitted. The coordinates should be read as follows: 1̄ → −1 and 2 →

√
2;

e.g., 11̄2 denotes Sp(1,−1,
√

2). Concentric circles indicate the (non orthogonal)
generators mentioned above.

Let us prove that there is no two-valued probability measure [Svozil and Tkadlec,
1996; Tkadlec, 1998]. Due to the symmetry of the problem, we can choose a par-
ticular coordinate axis such that, without loss of generality, P (100) = 1. Fur-
thermore, we may assume (case 1) that P (211̄) = 1. It immediately follows
that P (001) = P (010) = P (102) = P (1̄20) = 0. A second glance shows that
P (201̄) = 1, P (11̄2) = P (112) = 0.

Let us now suppose (case 1a) that P (201) = 1. Then we obtain P (1̄12) =
P (1̄1̄2) = 0. We are forced to accept P (110) = P (11̄0) = 1 — a contradiction,
since (110) and (11̄0) are orthogonal to each other and lie on one edge.

Hence we have to assume (case 1b) that P (201) = 0. This gives immediately
P (1̄02) = 1 and P (211) = 0. Since P (011̄) = 0, we obtain P (21̄1̄) = 1 and
thus P (120) = 0. This requires P (21̄0) = 1 and therefore P (121̄) = P (121) = 0.
Observe that P (210) = 1, and thus P (1̄21̄) = P (1̄21) = 0. In the following step,
we notice that P (101̄) = P (101) = 1 — a contradiction, since (101) and (101̄) are
orthogonal to each other and lie on one edge.
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Figure 6. Greechie diagram of a finite subset of the continuum of blocks or con-
texts embeddable in three-dimensional real Hilbert space without a two-valued
probability measure [Svozil and Tkadlec, 1996, Figure 9].
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Thus we are forced to assume (case 2) that P (21̄1) = 1. There is no third
alternative, since P (011) = 0 due to the orthogonality with (100). Now we can
repeat the argument for case 1 in its mirrored form.

The most compact way of deriving the Kochen-Specker theorem in four dimen-
sions has been given by Cabello [Cabello et al., 1996; Cabello, 2000]. It is depicted
in Fig. 7.

Gleason’s derivation of the Born rule

In view of the nonexistence of classical two-valued states on even finite superstruc-
tures of blocks or contexts associated with quantized systems, one could still resort
to classicality within blocks or contexts. According to Gleason’s theorem, this is
exactly the route, the “via regia,” to the quantum probabilities, in particular to
the Born rule.

According to the Born rule, the expectation value 〈A〉 of an observable A is the
trace of ρA; i.e., 〈A〉 = tr(ρA). In particular, if A is a projector E corresponding to
an elementary yes-no proposition “the system has property Q,” then 〈E〉 = tr(ρE)
corresponds to the probability of that property Q if the system is in state ρ. The
equations ρ2 = ρ and tr(ρ2) = 1 are only valid for pure states, because ρ is not an
projector and thus idempotent for mixed states.

It is still possible to ascribe a certain degree of classical probabilistic behaviour
to a quantum logic by considering its block superstructure. Due to their Boolean
algebra, blocks are “classical mini-universes.” It is one of the mindboggling fea-
tures of quantum logic that it can be decomposed into a pasting of blocks. Con-
versely, by a proper arrangement of “classical mini-universes,” quantum Hilbert
logics can be obtained. This theme is used in quantum probability theory, in par-
ticular by the Gleason and the Kochen-Specker theorems. In this sense, Gleason’s
theorem can be understood as the functional analytic generalization of the gen-
eration of all classical probability distributions by a convex sum of the extreme
cases.

Gleason’s theorem [Gleason, 1957; Dvurečenskij, 1993; Cooke et al., 1985; Peres,
1993; Hrushovski and Pitowsky, 2004; Richman and Bridges, 1999] is a deriva-
tion of the Born rule from fundamental assumptions about quantum probabilities,
guided by the quasi–classical; i.e., Boolean, sub-parts of quantum theory. Essen-
tially, the main assumption required for Gleason’s theorem is that within blocks
or contexts, the quantum probabilities behave as classical probabilities; in partic-
ular the sum of probabilities over a complete set of mutually exclusive events add
up to unity. With these quasi–classical provisos, Gleason proved that there is no
alternative to the Born rule for Hilbert spaces of dimension greater than two.

3.4 Quantum violations of classical probability bounds

Due to the different form of quantum correlations, which formally is a consequence
of the different way of defining quantum probabilities, the constraints on classical
probabilities are violated by quantum probabilities. Quantitatively, this can be
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Figure 7. Greechie diagram of a finite subset of the continuum of blocks or contexts
embeddable in four-dimensional real Hilbert space without a two-valued proba-
bility measure [Cabello et al., 1996; Cabello, 2000]. The proof of the Kochen-
Specker theorem uses nine tightly interconnected contexts a = {A,B,C,D},
b = {D,E, F,G}, c = {G,H, I, J}, d = {J,K,L,M}, e = {M,N,O, P},
f = {P,Q,R,A}, g = {B, I,K,R}, h = {C,E,L,N}, i = {F,H,O,Q} consist-
ing of the 18 projectors associated with the one dimensional subspaces spanned
by A = (0, 0, 1,−1), B = (1,−1, 0, 0), C = (1, 1,−1,−1), D = (1, 1, 1, 1),
E = (1,−1, 1,−1), F = (1, 0,−1, 0), G = (0, 1, 0,−1), H = (1, 0, 1, 0), I =
(1, 1,−1, 1), J = (−1, 1, 1, 1), K = (1, 1, 1,−1), L = (1, 0, 0, 1), M = (0, 1,−1, 0),
N = (0, 1, 1, 0), O = (0, 0, 0, 1), P = (1, 0, 0, 0), Q = (0, 1, 0, 0), R = (0, 0, 1, 1). (a)
Greechie diagram representing atoms by points, and contexts by maximal smooth,
unbroken curves. (b) Dual Tkadlec diagram representing contexts by filled points,
and interconnected contexts are connected by lines. (Duality means that points
represent blocks and maximal smooth curves represent atoms.) Every observable
proposition occurs in exactly two contexts. Thus, in an enumeration of the four
observable propositions of each of the nine contexts, there appears to be an even
number of true propositions. Yet, as there is an odd number of contexts, there
should be an odd number (actually nine) of true propositions.
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investigated [Filipp and Svozil, 2004a] by substituting the classical probabilities
by the quantum ones; i.e.,

p1 → q1(θ) = 1
2 [I2 + σ(θ)] ⊗ I2,

p3 → q3(θ) = I2 ⊗ 1
2 [I2 + σ(θ)] ,

pij → qij(θ, θ′) = 1
2 [I2 + σ(θ)] ⊗ 1

2 [I2 + σ(θ′)] ,

with σ(θ) =
(

cos θ sin θ
sin θ − cos θ

)
, where θ is the relative measurement angle in the

x–z-plane, and the two particles propagate along the y-axis, as depicted in Fig. 1.
The quantum transformation associated with the Clauser-Horne inequality for

the 2–2 case is given by

O22(α, β, γ, δ) = q13(α, γ) + q14(α, δ) + q23(β, γ) − q24(β, δ) − q1(α) − q3(γ)
= 1

2 [I2 + σ(α)] ⊗ 1
2 [I2 + σ(γ)] + 1

2 [I2 + σ(α)] ⊗ 1
2 [I2 + σ(δ)]

+ 1
2 [I2 + σ(β)] ⊗ 1

2 [I2 + σ(γ)] − 1
2 [I2 + σ(β)] ⊗ 1

2 [I2 + σ(δ)]
− 1

2 [I2 + σ(α)] ⊗ I2 − I2 ⊗ 1
2 [I2 + σ(γ)] ,

where α, β, γ, δ denote the measurement angles lying in the x–z-plane: α and β
for one particle, γ and δ for the other one. The eigenvalues are

λ1,2,3,4(α, β, γ, δ) =
1
2
(
±

√
1 ± sin(α− β) sin(γ − δ) − 1

)
yielding the maximum bound ‖O22‖ = maxi=1,2,3,4 λi. Note that for the particular
choice of parameters α = 0, β = 2θ, γ = θ, δ = 3θ adopted in [Cabello, 2004; Filipp
and Svozil, 2004b], one obtains |O22| = 1

2

{
[(3 − cos 4θ) /2]1/2 − 1

}
≤ 1

2

(√
2 − 1

)
,

as compared to the classically allowed bound from above 0.

3.5 Interpretations

The nonexistence of two-valued states on the set of quantum propositions (of
greater than two-dimensional Hilbert spaces) interpretable as truth assignments
poses a great challenge for the interpretation of quantum logical propositions,
relations and operations, as well as for quantum mechanics in general. At stake is
the meaning and physical co-existence of observables which are not co-measurable.
Several interpretations have been proposed, among them contextuality, as well as
the abandonment of classical omniscience and realism discussed below.

Contextuality

Contextuality abandons the context independence of measurement outcomes [Bell,
1966; Heywood and Redhead, 1983; Redhead, 1990] by supposing that it is wrong
to assume (cf. Ref. [Bell, 1966], Sec. 5) that the result of an observation is in-
dependent of what observables are measured alongside of it. Bell [Bell, 1966,
Sec. 5] states that the “. . . result of an observation may reasonably depend not



570 Karl Svozil

only on the state of the system . . . but also on the complete disposition of the ap-
paratus.” Note also Bohr’s remarks [Bohr, 1949] about “the impossibility of any
sharp separation between the behavior of atomic objects and the interaction with
the measuring instruments which serve to define the conditions under which the
phenomena appear.”

Contextuality might be criticized as an attempt to maintain omniscience and
omni-realism even in view of a lack of consistently assignable truth values on quan-
tum propositions. Omniscience or omni-realism is the belief that “all observables
exist even without being experienced by any finite mind.” Contextuality supposes
that an “observable exists without being experienced by any finite mind, but it may
have different values, depending on its context.”

So far, despite some claims to have measured contextuality, there is no direct ex-
perimental evidence. Some experimental findings inspired by Bell-type inequalities
[Aspect et al., 1981; Aspect et al., 1982; Weihs et al., 1998], the Kochen-Specker
theorem [Simon et al., 2000; Hasegawa et al., 2006] as well as the Greenberger-
Horne-Zeilinger theorem [Pan et al., 2000] measure incompatible contexts one af-
ter another; i.e., temporally sequentially, and not simultaneously. Hence, different
contexts can only be measured on different particles. A more direct test of contex-
tuality might be an EPR configuration of two quanta in three-dimensional Hilbert
space interlinked in a single observable, as discussed above.

Abandonment of classical omniscience

As has been pointed out already, contextuality might be criticized for its presump-
tion of quantum omniscience; in particular the supposition that a physical system,
at least in principle, is capable of “carrying” all answers to any classically retriev-
able question. This is true classically, since the classical context is the entirety of
observables. But it need not be true for other types of (finite) systems or agents.
Take for example, a refrigerator. If it is automated in a way to tell you whether or
not there is enough milk in it, it will be at a complete loss at answering a totally
different question, such as if there is enough oil in the engine of your car. It is a
matter of everday experience that not all agents are prepared to give answers to
all perceivable questions.

Nevertheless, if one forces an agent to answer a question it is incapable to
answer, the agent might throw some sort of “fair coin” — if it is capable of doing
so — and present random answers. This scenario of a context mismatch between
preparation and measurement is the basis of quantum random number generators
[id Quantique, 2004] which serve as a kind of “quantum random oracle” [Calude,
2004; Calude and Dinneen, 2005]. It should be kept in mind that randomness, at
least algorithmically [Chaitin, 1990; Chaitin, 1987; Calude, 2002], does not come
“for free,” thus exhibiting an amazing capacity of single quanta to support random
outcomes. Alternatively, the unpredictable, erratic outcomes might, in the context
translation [Svozil, 2004] scenario, be due to some stochasticity originating from
the interaction with a “macroscopic” measurement apparatus, and the undefined.
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One interpretation of the impossibility to operationalize more than a single
context is the abandonment of classical omniscience: in this view, whereas it
might be meaningful theoretically and formally to study the entirety of the con-
text superstructure, only a single context operationally exists. Note that, in a
similar way as retrieving information from a quantized system, the only infor-
mation codable into a quantized system is given by a single block or context. If
the block contains n atoms corresponding to n possible measurement outcomes,
then the information content is a nit [Zeilinger, 1999; Donath and Svozil, 2002;
Svozil, 2002]. The information needs not be “located” at a particular particle,
as it can be “distributed” over a multi–partite state. In this sense, the quantum
system could be viewed as a kind of (possibly nonlocal) programmable integrated
circuit, such as a field programmable qate array or an application specific integrated
circuit.

Quantum observables make only sense when interpreted as a function of some
context, formalized by either some Boolean subalgebra or by the maximal opera-
tor. It is useless in this framework to believe in the existence of a single isolated
observable devoid of the context from which it is derived. In this holistic approach,
isolated observables separated from its missing contexts do not exist.

Likwise, it is wrong to assume that all observables which could in principle
(“potentially”) have been measured, also co-exist, irrespective of whether or not
they have or could have been actually measured. Realism in the sense of “co-
measurable entities sometimes exist without being experienced by any finite mind”
might still be assumed for a single context, in particular the one in which the
system was prepared.

Subjective idealism

Still another option is subjective idealism, denying the “existence” of observables
which could in principle (“potentially”) have been measured, but actually have
not been measured: in this view, it is wrong to assume that [Stace, 1949]

“entities sometimes exist without being experienced by any finite mind.”

Indeed, Bekeley states [Berkeley, 1710],

“For as to what is said of the absolute existence of unthinking things
without any relation to their being perceived, that seems perfectly un-
intelligible. Their esse [[to be]] is percepi [[to be perceived]], nor is it
possible they should have any existence out of the minds or thinking
things which perceive them.”

With this assumption, the Bell, Kochen-Specker and Greenberger-Horne-Zeilinger
theorems and similar have merely theoretical, formal relevance for physics, be-
cause they operate with unobservable physical “observables” and entities or with
counterfactuals which are inferred rather than measured.
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4 AUTOMATA AND GENERALIZED URN LOGIC

The following quasi–classical logics take up the notion of contexts as blocks rep-
resenting Boolean subalgebras and the pastings among them. They are quasi–
classical, because unlike quantum logics they possess sufficiently many two-valued
states to allow embeddings into Boolean algebras.

4.1 Partition logic

The empirical logics (i.e., the propositional calculi) associated with the generalized
urn models suggested by Ron Wright [Wright, 1978; Wright, 1990], and automaton
logics (APL) [Svozil, 1993; Schaller and Svozil, 1996; Dvurečenskij et al., 1995;
Calude et al., 1997; Svozil, 1998] are equivalent (cf. Refs. [Svozil, 1998, p.145] and
[Svozil, 2005b]) and can be subsumed by partition logics. The logical equivalence
of automaton models with generalized urn models suggests that these logics are
more general and “robust” with respect to changes of the particular model than
could have been expected from the particular instances of their first appearance.

Again the concept of context or block is very important here. Partition logics
are formed by pasting together contexts or blocks based on the partitions of a set
of states. The contexts themselves are derived from the input/output analysis of
experiments.

4.2 Generalized urn models

A generalized urn model U = 〈U,C,L,Λ〉 is characterized as follows. Consider an
ensemble of balls with black background color. Printed on these balls are some
color symbols from a symbolic alphabet L. The colors are elements of a set of
colors C. A particular ball type is associated with a unique combination of mono-
spectrally (no mixture of wavelength) colored symbols printed on the black ball
background. Let U be the set of ball types. We shall assume that every ball
contains just one single symbol per color. (Not all types of balls; i.e., not all
color/symbol combinations, may be present in the ensemble, though.)

Let |U | be the number of different types of balls, |C| be the number of different
mono-spectral colors, |L| be the number of different output symbols.

Consider the deterministic “output” or “lookup” function Λ(u, c) = v, u ∈ U ,
c ∈ C, v ∈ L, which returns one symbol per ball type and color. One interpretation
of this lookup function Λ is as follows. Consider a set of |C| eyeglasses build from
filters for the |C| different colors. Let us assume that these mono-spectral filters
are “perfect” in that they totally absorb light of all other colors but a particular
single one. In that way, every color can be associated with a particular eyeglass
and vice versa.

When a spectator looks at a particular ball through such an eyeglass, the only
operationally recognizable symbol will be the one in the particular color which is
transmitted through the eyeglass. All other colors are absorbed, and the symbols
printed in them will appear black and therefore cannot be differentiated from the
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black background. Hence the ball appears to carry a different “message” or symbol,
depending on the color at which it is viewed. This kind of “complementarity” has
been used for a demonstration of quantum cryptography [Svozil, 2006].

An empirical logic can be constructed as follows. Consider the set of all ball
types. With respect to a particular colored eyeglass, this set disjointly “decays”
or gets partitioned into those ball types which can be separated by the particular
color of the eyeglass. Every such partition of ball types can then be identified with
a Boolean algebra whose atoms are the elements of the partition. A pasting of all
of these Boolean algebras yields the empirical logic associated with the particular
urn model.

Consider, for the sake of demonstration, a single color and its associated par-
tition of the set of ball types (ball types within a given element of the partition
cannot be differetiated by that color). In the generalized urn model, an element a
of this partition is a set of ball types which corresponds to an elementary propo-
sition

“the ball drawn from the urn is of the type contained in a.”

4.3 Automaton models

A (Mealy type) automaton A = 〈S, I,O, δ, λ〉 is characterized by the set of states
S, by the set of input symbols I, and by the set of output symbols O. δ(s, i) = s′

and λ(s, i) = o, s, s′ ∈ S, i ∈ I and o ∈ O represent the transition and the output
functions, respectively. The restriction to Mealy automata is for convenience only.

In the analysis of a state identification problem, a typical automaton experiment
aims at an operational determination of an unknown initial state by the input of
some symbolic sequence and the observation of the resulting output symbols. Ev-
ery such input/output experiment results in a state partition in the following way.
Consider a particular automaton. Every experiment on such an automaton which
tries to solve the initial state problem is characterized by a set of input/output
symbols as a result of the possible input/output sequences for this experiment.
Every such distinct set of input/output symbols is associated with a set of ini-
tial automaton states which would reproduce that sequence. This state set may
contain one or more states, depending on the ability of the experiment to sepa-
rate different initial automaton states. A partitioning of the automaton states is
obtained if one considers a single input sequence and the variety of all possible
output sequences (given a particular automaton). Stated differently: given a set
of inputs, the set of initial automaton states “break down” into disjoint subsets
associated with the possible output sequences. (All elements of a subset yield the
same output on the same input.)

This partition can then be identified with a Boolean algebra, with the elements
of the partition interpreted as atoms. By pasting the Boolean algebras of the
“finest” partitions together one obtains an empirical partition logic associated
with the particular automaton. (The converse construction is also possible, but
not unique; see below.)
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For the sake of simplicity, we shall assume that every experiment just deals
with a single input/output combination. That is, the finest partitions are reached
already after the first symbol. This does not impose any restriction on the partition
logic, since given any particular automaton, it is always possible to construct
another automaton with exactly the same partition logic as the first one with the
above property.

More explicitly, given any partition logic, it is always possible to construct a
corresponding automaton with the following specification: associate with every
element of the set of partitions a single input symbol. Then take the partition
with the highest number of elements and associate a single output symbol with any
element of this partition. (There are then sufficient output symbols available for
the other partitions as well.) Different partitions require different input symbols;
one input symbol per partition. The output function can then be defined by
associating a single output symbol per element of the partition (associated with a
particular input symbol). Finally, choose a transition function which completely
looses the state information after only one transition; i.e., a transition function
which maps all automaton state into a single one.

A typical proposition in the automaton model refers to a partition element a
containing automaton states which cannot be distinguished by the analysis of the
strings of input and output symbols; i.e., it can be expressed by

“the automaton is initially in a state which is contained in a.”

4.4 Contexts

In the generalized urn model represent everything that is knowable by looking in
only a single color. For automata, this is equivalent to considering only a single
string of input symbols. Formally, this amounts to the identification of blocks with
contexts, as in the quantum case.

4.5 Proof of logical equivalence of automata and generalized urn mod-
els

From the definitions and constructions mentioned in the previous sections it is
intuitively clear that, with respect to the empirical logics, generalized urn models
and finite automata models are equivalent. Every logic associated with a gener-
alized urn model can be interpreted as an automaton partition logic associated
with some (Mealy) automaton (actually an infinity thereof). Conversely, any logic
associated with some (Mealy) automaton can be interpreted as a logic associ-
ated with some generalized urn model (an infinity thereof). We shall proof these
claims by explicit construction. Essentially, the lookup function Λ and the output
function λ will be identified. Again, the restriction to Mealy automata is for con-
venience only. The considerations are robust with respect to variations of finite
input/output automata.
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Direct construction of automaton models from generalized urn models

In order to define an APL associated with a Mealy automaton A = 〈S, I,O, δ, λ〉
from a generalized urn model U = 〈U,C,L,Λ〉, let u ∈ U , c ∈ C, v ∈ L, and
s, s′ ∈ S, i ∈ I, o ∈ O, and assume |U | = |S|, |C| = |I|, |L| = |O|. The following
identifications can be made with the help of the bijections tS , tI and tO:

tS(u) = s, tI(c) = i, tO(v) = o,
δ(s, i) = si for fixed si ∈ S and arbitrary s ∈ S, i ∈ I,
λ(s, i) = tO

(
Λ(t−1

S (s), t−1
I (i))

)
.

More generally, one could use equivalence classes instead of a bijection. Since
the input-output behavior is equivalent and the automaton transition function is
trivially |L|-to-one, both entities yield the same propositional calculus.

Direct construction of generalized urn models from automaton models

Conversely, consider an arbitrary Mealy automaton A = 〈S, I,O, δ, λ〉 and its
associated propositional calculus APL.

Just as before, associate with every single automaton state s ∈ S a ball type u,
associate with every input symbol i ∈ I a unique color c, and associate with every
output symbol o ∈ O a unique symbol v; i.e., again |U | = |S|, |C| = |I|, |L| = |O|.
The following identifications can be made with the help of the bijections τU , τC

and τL:

τU (s) = u, τC(i) = c, τL(o) = v, Λ(u, c) = τL(λ(τ−1
U (u), τ−1

C (c))).

A comparison yields

τ−1
U = tS , τ−1

C = tI , τ−1
L = tO.

Schemes using dispersion-free states

Another equivalence scheme uses the fact that both automaton partition logics and
the logic of generalized urn models have a separating (indeed, full) set of dispersion-
free states. Stated differently, given a finite atomic logic with a separating set of
states, then the enumeration of the complete set of dispersion-free states enables
the explicit construction of generalized urn models and automaton logics whose
logic corresponds to the original one.

This can be achieved by “inverting” the set of two-valued states as follows. (The
method is probably best understood by considering the examples below.) Let us
start with an atomic logic with a separating set of states.

(i) In the first step, every atom of this lattice is labeled by some natural number,
starting from “1” to “n”, where n stands for the number of lattice atoms.
The set of atoms is denoted by A = {1, 2, . . . , n}.
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(ii) Then, all two-valued states of this lattice are labeled consecutively by natural
numbers, starting from “m1” to “mr”, where r stands for the number of two-
valued states. The set of states is denoted by M = {m1,m2, . . . ,mr}.

(iii) Now partitions are defined as follows. For every atom, a set is created whose
members are the numbers or “labels” of the two-valued states which are
“true” or take on the value “1” on this atom. More precisely, the elements
pi(a) of the partition Pj corresponding to some atom a ∈ A are defined by

pi(a) = {k | mk(a) = 1, k ∈ M} .

The partitions are obtained by taking the unions of all pi which belong to the
same subalgebra Pj . That the corresponding sets are indeed partitions fol-
lows from the properties of two-valued states: two-valued states (are “true”
or) take on the value “1” on just one atom per subalgebra and (“false” or)
take on the value “0” on all other atoms of this subalgebra.

(iv) Let there be t partitions labeled by “1” through “t”. The partition logic is
obtained by a pasting of all partitions Pj , 1 ≤ j ≤ t.

(v) In the following step, a corresponding generalized urn model or automaton
model is obtained from the partition logic just constructed.

(a) A generalized urn model is obtained by the following identifications (see
also [Wright, 1978, p. 271]).

• Take as many ball types as there are two-valued states; i.e., r types
of balls.

• Take as many colors as there are subalgebras or partitions; i.e., t
colors.

• Take as many symbols as there are elements in the partition(s)
with the maximal number of elements; i.e., max1≤j≤t |Pj | ≤ n. To
make the construction easier, we may just take as many symbols as
there are atoms; i.e., n symbols. (In some cases, much less symbols
will suffice). Label the symbols by vl. Finally, take r “generic”
balls with black background. Now associate with every measure a
different ball type. (There are r two-valued states, so there will be
r ball types.)

• The ith ball type is painted by colored symbols as follows: Find
the atoms for which the ith two-valued state mi is 1. Then paint
the symbol corresponding to every such lattice atom on the ball,
thereby choosing the color associated with the subalgebra or par-
tition the atom belongs to. If the atom belongs to more than one
subalgebra, then paint the same symbol in as many colors as there
are partitions or subalgebras the atom belongs to (one symbol per
subalgebra).
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This completes the construction.

(b) A Mealy automaton is obtained by the following identifications (see also
[Svozil, 1993, pp. 154–155]).

• Take as many automaton states as there are two-valued states; i.e.,
r automaton states.

• Take as many input symbols as there are subalgebras or partitions;
i.e., t symbols.

• Take as many output symbols as there are elements in the parti-
tion(s) with the maximal number of elements (plus one additional
auxiliary output symbol “∗”, see below); i.e., max1≤j≤t |Pj | ≤ n+1.

• The output function is chosen to match the elements of the state
partition corresponding to some input symbol. Alternatively, let
the lattice atom aq ∈ A must be an atom of the subalgebra corre-
sponding to the input il. Then one may choose an output function
such as

λ(mk, il) =
{

aq if mk(aq) = 1
∗ if mk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t. Here, the additional output symbol
“∗” is needed.

• The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S,
i ∈ I), i.e., after one input the information about the initial state
is completely lost.

This completes the construction.

Example 1: The generalized urn logic L12

In what follows we shall illustrate the above constructions with a couple of exam-
ples. First, consider the generalized urn model

〈{u1, . . . , u5}, {red, green}, {1, . . . , 5},Λ〉

with Λ listed in Table 5(a).
The associated Mealy automaton can be directly constructed as follows. Take

tS = tO = id, where id represents the identity function, and take tI(red) = 0
and tI(green) = 1, respectively. Furthermore, fix a (five×two)-to-one transition
function by δ(., .) = 1. The transition and output tables are listed in Table 5(b).
Both empirical structures yield the same propositional logic L12 which is depicted
in Fig. 5(b).

Example 2: The automaton partition logic L12

Let us start with an automaton whose transition and output tables are listed in
Table 5(b) and indirectly construct a logically equivalent generalized urn model by
using dispersion-free states. The first thing to do is to figure out all dispersion-free
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ball type red green
1 1 3
2 1 4
3 2 3
4 2 4
5 5 5

δ λstate
1 2 3 4 5 1 2 3 4 5

0 1 1 1 1 1 1 1 2 2 5
1 1 1 1 1 1 3 4 3 4 5

(a) (b)

Table 5. (a) Ball types in Wright’s generalized urn model [Wright, 1990] (cf. also
[Svozil, 1998, p.143ff]). (b) Transition and output table of an associated automaton
model.

colors
c1 c2ball type

“red” “green”
1 ∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 5
2 ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
3 ∗ 2 ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗
4 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
5 1 ∗ ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗

Table 6. Representation of the sign coloring scheme Λ. “∗” means no sign at all
(black) for the corresponding atom.

states of L12 depicted in Fig. 5(b). There are five of them, which we might write
in vector form; i.e., in lexicographic order:

m1 = (0, 0, 0, 0, 1), m2 = (0, 1, 0, 1, 0), m3 = (0, 1, 1, 0, 0),
m4 = (1, 0, 0, 1, 0), m5 = (1, 0, 1, 0, 0).

Now define the following generalized urn model as follows. There are two sub-
algebras with the atoms 1, 2, 5 and 3, 4, 5, respectively. Since there are five two-
valued measures corresponding to five ball types. They are colored according to
the coloring rules defined above. and Λ as listed in Table 6.

Example 3: generalized urn model of the Kochen-Specker “bug” logic

Another, less simple example, is a logic which is already mentioned by Kochen
and Specker [Kochen and Specker, 1967] (this is a subgraph of their Γ1) whose
automaton partition logic is depicted in Fig. 8. (It is called “bug” by Professor
Specker [Specker, 1999] because of the similar shape with a bug.) There are 14
dispersion-free states which are listed in Table 7(a). The associated generalized
urn model is listed in Table 7(b).
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a3 = {10, 11, 12, 13, 14} a4 = {2, 6, 7, 8} a5 = {1, 3, 4, 5, 9}

a2 = {4, 5, 6, 7, 8, 9} a6 = {2, 6, 8, 11, 12, 14}

a1 = {1, 2, 3} a7 = {7, 10, 13}
a13 =
{1, 4, 5, 10, 11, 12}

a12 = {4, 6, 9, 12, 13, 14} a8 = {3, 5, 8, 9, 11, 14}

a11 = {5, 7, 8, 10, 11} a10 = {3, 9, 13, 14} a9 = {1, 2, 4, 6, 12}




  






Figure 8. Greechie diagram of automaton partition logic with a nonfull set of
dispersion-free measures.

(a) lattice atoms (b) colors
mr and

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 c1 c2 c3 c4 c5 c6 c7ball type

1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 5 5 9 9 1 13
2 1 0 0 1 0 1 0 0 1 0 0 0 0 1 4 6 9 9 1 4
3 1 0 0 0 1 0 0 1 0 1 0 0 0 1 5 5 8 10 3 10
4 0 1 0 0 1 0 0 0 1 0 0 1 1 2 5 5 9 9 12 13
5 0 1 0 0 1 0 0 1 0 0 1 0 1 2 5 5 8 11 11 13
6 0 1 0 1 0 1 0 0 1 0 0 1 0 2 4 6 9 9 12 4
7 0 1 0 1 0 0 1 0 0 0 1 0 0 2 4 7 7 11 11 4
8 0 1 0 1 0 1 0 1 0 0 1 0 0 2 4 6 8 11 11 4
9 0 1 0 0 1 0 0 1 0 1 0 1 0 2 5 5 8 10 12 10
10 0 0 1 0 0 0 1 0 0 0 1 0 1 3 3 7 7 11 11 13
11 0 0 1 0 0 1 0 1 0 0 1 0 1 3 3 6 8 11 11 13
12 0 0 1 0 0 1 0 0 1 0 0 1 1 3 3 6 9 9 12 13
13 0 0 1 0 0 0 1 0 0 1 0 1 0 3 3 7 7 10 13 10
14 0 0 1 0 0 1 0 1 0 1 0 1 0 3 3 6 8 10 12 10

Table 7. (a) Dispersion-free states of the Kochen-Specker “bug” logic with 14
dispersion-free states and (b) the associated generalized urn model (all blank en-
tries “∗”have been omitted).



580 Karl Svozil

4.6 Probability theory

The probability theory of partition logics is based on a full set of state, allowing to
define probabilities via the convex sum of those states. This is essentially the same
procedure as for classical probabilities. In the same way, bounds on probabilities
can be found through the computation of the faces of correlation polytopes.

Consider, as an example, a logic already discussed. Its automaton partition
logic is depicted in Fig. 8. The correlation polytope of this lattice consists of 14
vertices listed in Table 7, where the 14 rows indicate the vertices corresponding
to the 14 dispersion-free states. The columns represent the partitioning of the
automaton states. The solution of the hull problem yields the equalities

1 = P1 + P2 + P3 = P4 + P10 + P13,
1 = P1 + P2 − P4 + P6 + P7 = −P2 + P4 − P6 + P8 − P10 + P12,
1 = P1 + P2 − P4 + P6 − P8 + P10 + P11,
0 = P1 + P2 − P4 − P5 = −P1 − P2 + P4 − P6 + P8 + P9.

The operational meaning of Pi = Pai
is “the probability to find the automaton

in state ai.” The above equations are equivalent to all probabilistic conditions on
the contexts (subalgebras) 1 = P1 + P2 + P3 = P3 + P4 + P5 = P5 + P6 + P7 =
P7 + P8 + P9 = P9 + P10 + P11 = P4 + P10 + P13.

Let us now turn to the joint probability case. Notice that formally it is possible
to form a statement such as a1 ∧ a13 (which would be true for measure number
1 and false otherwise), but this is not operational on a single automaton, since
no experiment can decide such a proposition on a single automaton. Neverthe-
less, if one considers a “singlet state” of two automata which are in an unknown
yet identical initial state, then an expression such as a1 ∧ a13 makes operational
sense if property a1 is measured on the first automaton and property a13 on the
second automaton. Indeed, all joint probabilities ai ∧ aj ∧ . . . an make sense for
n-automaton singlets.

5 SUMMARY

Regarding contexts; i.e., the maximum collection of co-measurable observables,
three different cases have been discussed. The first, classical case, is characterized
by omniscience. Within the classical framework, all observables form a single con-
text, and everything that is in principle knowable is also knowable simultaneously.
Classical probability can be based upon the convex combinations of all two-valued
states. Fig. 9 depicts a “mind map” representing the use of contexts to build up
logics and construct probabilities.

In the generalized urn or automaton cases, if one sticks to the rules — that is,
if one does not view the object unfiltered or “screw the automaton box open” —
omniscience is impossible and a quasi–classical sort of complementarity emerges:
depending on the color (or input string) chosen, one obtains knowledge of a par-
ticular observable or context. All other contexts are hidden to the experimenter
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Figure 9. “Mind map” representing the use of contexts to build up logics and
construct probabilities.

unable to lift the bounds of one color filter or one input sequence. A system
science issue is emerging here; namely the question of how intrinsic observers per-
form inside of a given system [Svozil, 1993; Svozil, 1994]. The situation resembles
quantum mechanics even more if reversible systems are considered; where an ex-
periment can be “undone” only by investing all the information gained from previ-
ous experiments (without being able to copy these)[Greenberger and YaSin, 1989;
Herzog et al., 1995]. All incompatible blocks or contexts are pasted together to
form the partition logic. These pasting still allow a sufficient number of two-valued
states for the construction of probabilities based upon the convex combinations
thereof.

In the quantum case, the Hilbert lattices can formally be thought of as pastings
of a continuum of blocks or contexts, but the mere assumption of the physical
existence — albeit inaccessible to an intrisic observer — of even a finite number
of contexts yields a complete contradiction. In view of this, one can adopt at
least two interpretations: that an observable depends on its context; or that more
than one context for quantum systems has no operational meaning. The former
view has been mentioned by Bell (and also by Bohr to some degree), and can be
subsumed by the term “contextuality.” To the author, contextuality is the last
resort of a realism which is inclined to maintain “a sort of” classical omniscience,
even in view of the Kochen-Specker and Bell-type theorems.
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The latter viewpoint — that quantum systems do not encode more than a
single context — abandons omniscience, but needs to cope with the fact that
it is indeed possible to measure different contexts; even if there is a mismatch
between the preparation and the measurement context. It has been proposed that
in these cases the measurement apparatus “translates” one context into the other
at the prize of randomizing the measurement result [Svozil, 2004]. This context
translation principle could be tested by changing the measurement apparatus’
ability of translation.

All in all, contexts seem to be an exciting subject. The notion may become
more useful and relevant, as progress is made towards a better comprehension of
the quantum world and its differences with respect to other classical and quasi–
classical systems.
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[Dvurečenskij, 1993] Anatolij Dvurečenskij. Gleason’s Theorem and Its Applications. Kluwer
Academic Publishers, Dordrecht (1993).

[Einstein et al., 1935] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can quantum-
mechanical description of physical reality be considered complete? Physical Review, 47,
777–780 (1935). http://dx.doi.org/10.1103/PhysRev.47.777

[Filipp and Svozil, 2004a] Stefan Filipp and Karl Svozil. Generalizing Tsirelson’s bound on
bell inequalities using a min-max principle. Physical Review Letters, 93, 130407 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.130407

[Filipp and Svozil, 2004b] Stefan Filipp and Karl Svozil. Testing the bounds on quantum prob-
abilities. Physical Review A (Atomic, Molecular, and Optical Physics), 69, 032101 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.032101

[Froissart, 1981] M. Froissart. Constructive generalization of Bell’s inequalities. Nuovo Cimento
B, 64(2), 241–251 (1981).



584 Karl Svozil

[Gleason, 1957] Andrew M. Gleason. Measures on the closed subspaces of a Hilbert space.
Journal of Mathematics and Mechanics, 6, 885–893 (1957).

[Greechie, 1971] J. R. Greechie. Orthomodular lattices admitting no states. Journal of Combi-
natorial Theory, 10, 119–132 (1971).

[Greenberger and YaSin, 1989] Daniel B. Greenberger and A. YaSin. “Haunted” measurements
in quantum theory. Foundation of Physics, 19(6), 679–704 (1989).

[Halmos, 1974] Paul R.. Halmos. Finite-dimensional vector spaces. Springer, New York, Hei-
delberg, Berlin (1974).

[Hasegawa et al., 2006] Yuji Hasegawa, Rudolf Loidl, Gerald Badurek, Matthias Baron, and
Helmut Rauch. Quantum contextuality in a single-neutron optical experiment. Physical
Review Letters, 97(23), 230401 (2006). http://dx.doi.org/10.1103/PhysRevLett.97.230401

[Havlicek and Svozil, 1996] Hans Havlicek and Karl Svozil. Density conditions for quantum
propositions. Journal of Mathematical Physics, 37(11), 5337–5341 (November 1996).

[Herzog et al., 1995] Thomas J. Herzog, Paul G. Kwiat, Harald Weinfurter, and Anton Zeilinger.
Complementarity and the quantum eraser. Physical Review Letters, 75(17), 3034–3037 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3034

[Heywood and Redhead, 1983] Peter Heywood and Michael L. G. Redhead. Nonlocality and
the Kochen-Specker paradox. Foundations of Physics, 13(5), 481–499 (1983).

[Hooker, 1975] Clifford Alan Hooker. The Logico-Algebraic Approach to Quantum Mechanics.
Volume I: Historical Evolution. Reidel, Dordrecht (1975).

[Hrushovski and Pitowsky, 2004] Ehud Hrushovski and Itamar Pitowsky. Generalizations of
Kochen and Specker’s theorem and the effectiveness of Gleason’s theorem. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
35(2), 177194 (2004). http://dx.doi.org/10.1016/j.shpsb.2003.10.002

[id Quantique, 2004] id Quantique. Quantis - quantum random number generators (2004). http:
//www.idquantique.com

[Jammer, 1992] Max Jammer. John Steward Bell and the debate on the significance of his
contributions to the foundations of quantum mechanics. In A. van der Merwe, F. Selleri,
and G. Tarozzi, editors, Bell’s Theorem and the Foundations of Modern Physics, pages 1–23.
World Scientific, Singapore (1992).

[Jauch, 1968] J. M. Jauch. Foundations of Quantum Mechanics. Addison-Wesley, Reading,
MA. (1968).

[Kamber, 1964] Franz Kamber. Die Struktur des Aussagenkalküls in einer physikalischen The-
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