
How to Acknowledge Hypercomputation?

Alexander Leitsch*

Günter Schachner

Institut für Computersprachen
Vienna University of Technology
Favoritenstr.9/185, 1040 Vienna, Austria
*leitsch@logic.at

Karl Svozil†

Institute for Theoretical Physics,
Vienna University of Technology,
Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
†svozil@tuwien.ac.at

We discuss the question of how to operationally validate whether or
not a “hypercomputer” performs better than the known discrete
computational models.

1. Introduction

It is widely acknowledged [1, 2], that every physical system corre-
sponds to a computational process, and that every computational pro-
cess, if applicable, has to be physically and operationally feasible in
some concrete realization. In this sense, the physical and computa-
tional capacities should match, because if one is lagging behind the
other, there is a lack in the formalism and its potential scientific (and
ultimately, technological) applicability. Therefore, the exact correspon-
dence of the mathematical formalism on the one hand, and the particu-
lar physical system that is represented by that formalism on the other
hand, demand careful attention.

If one insists on operationalizability [3], one need not go very far in
the history of mathematics to encounter suspicious mathematical
objects. Surely enough, the number p can be defined and effectively
computed as the ratio of the circumference to the diameter of a

“perfect” (platonic) circle. Likewise, the numbers 2 and 3 can
be interpreted as the ratio between the length of the diagonal to the
side length of any square and cube, respectively. But it is not totally
unjustified to ask whether or not these numbers have any operational
meaning in a strict physical sense; that is, whether such numbers
could, at least in principle, be constructed and measured with arbi-
trary, or even absolute, precision.

At the heart of most of the problems seems to lie the ancient issue
of the “very large/small” or even potential infinite versus the actual
infinite. Whereas the mathematical formalism postulates the existence
of actual infinite constructions and methods (such as the summation
of a [convergent] geometric series, or diagonalization) the physical pro-
cesses, methods, and techniques are never infinite.

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

At the heart of most of the problems seems to lie the ancient issue

infinite. Whereas the mathematical formalism postulates the existence
of actual infinite constructions and methods (such as the summation
of a [convergent] geometric series, or diagonalization) the physical pro-
cesses, methods, and techniques are never infinite.

Suppose, as an example, one would attempt the operationalization
of p. Any construction of a “real” circle and one of its diameters, and
a subsequent measurement thereof, would find its natural scale bound
from below by the atomistic structure of matter upon which any such
circle is based. Long before those molecular or atomic scales, the physi-
cal geometry might turn out to be not as straightforward as it appears
from larger scales; for example, the object might turn out to be a frac-
tal.

Chaitin’s omega number [4], which is interpretable as the halting
probability of a universal computer, can be “computed in the limit”
(without any computable radius of convergence) by a finite-size pro-
gram in infinite time and with infinite space. Just as for p~the differ-
ence being the absence of any computable radius of convergence~the
first digits of omega are well known [5], yet omega has been proved
to be algorithmically incompressible and thus random. Nevertheless,

presently, for all practical purposes, the statement that “the 10101010

digit in a decimal expansion of p is 5” is as unverifiable as a similar
statement for omega. Omega encodes all decision problems which can
be algorithmically interpreted. For instance, for a particular universal
computer, Goldbach’s conjecture and Riemann’s hypothesis could be
decided with programs of size 3484 and 7780 bits, respectively [6].
Yet, omega appears to have two features which are normally consid-
ered contradictory: it is one of the most informative mathematical
numbers imaginable, yet at the same time this information is so com-
pressed that it cannot be deciphered. Thus omega appears to be
totally structureless and random. In this sense, for omega, total infor-
mation and total randomness seem to be “two sides of the same
coin”. On a more pragmatic level, it seems impossible here to differen-
tiate between order and chaos, or between knowledge and chance.
This gives a taste of what can be expected from any “hyper-
computation” beyond universal computability as defined by Turing.

It should always be kept in mind that all our sense perceptions are
derived from elementary discrete events, such as clicks in photon or
particle detectors, even if they appear to be analog: the apparently
smooth behavior has a discrete fine structure. Among other issues,
such as finiteness of system resources, this discreteness seems to pro-
hibit the “physical realization” of any actual infinities.

What is the physical meaning of infinite concepts, such as space-
time singularities, point particles, or infinite precision? For instance,
are infinity machines with geometrically squeezed time cycles, such as
the ones envisioned by Weyl [7] and others [8|18], physically feasible?
Motivated by recent proposals to utilize quantum computation for
trespassing the Turing barrier [19|22], these accelerating Turing

hypercomputation [24|26].

132 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

What is the physical meaning of infinite concepts, such as space-
time singularities, point particles, or infinite precision? For instance,
are infinity machines with geometrically squeezed time cycles, such as
the ones envisioned by Weyl [7] and others [8|18], physically feasible?
Motivated by recent proposals to utilize quantum computation for
trespassing the Turing barrier [19|22], these accelerating Turing
machines have been intensively discussed [23] among other forms of
hypercomputation [24|26].

Certainly, the almost ruthless and consequential application of seem-
ingly mind-boggling theories such as quantum mechanics, as far as
finitistic methods are concerned, has yielded one victory after
another. But it should be kept in mind that the use of actual transfi-
nite concepts and methods remains highly conjectural.

A priori, while it may appear rash to exclude the transfinite in gen-
eral, and transfinite set theory in particular, from physics proper, one
should be aware of its counterintuitive consequences (such as, for
instance, the Banach|Tarski paradox) and be careful in claiming its
physical applicability. Recall the old phrase attributed to Einstein and
Infeld [27, p. 31]: “Physical concepts are free creations of the human
mind, and are not, however it may seem, uniquely determined by the
external world.”

To this point, we are not aware of any test, let alone any applica-
tion, of the actual transfinite in nature. While general contemplations
about hypercomputations and the applicability of transfinite concepts
for physics may appear philosophically interesting, our main concern
will be operational testability: if presented with claims that hypercom-
puters exist, how could we possibly falsify, or even verify and test,
such propositions [28]?

In what follows, hypercomputation will be conceptualized in terms
of a black box with its input/output behavior. Several tests and their
rather limited scope will be evaluated. Already in 1958, Davis
[29, p. 11] sets the stage of the following discussion by pointing out
“…how can we ever exclude the possibility of our being presented,
some day (perhaps by some extraterrestrial visitors), with a (perhaps
extremely complex) device or ‘oracle’ that ‘computes’ a noncomput-
able function?” While this may have been a remote, amusing issue in
the days written, the advancement of physical theory in the past
decades has made necessary a careful evaluation of the possibilities
and options for verification and falsification of certain claims that a
concrete physical system “computes” a noncomputable function.

2. On Black Boxes That Are Hypercomputers

In what follows we shall consider a device, an agent, or an oracle that
one knows nothing about, and for which there is no rational under-
standing (in the traditional algorithmic sense) of its intrinsic working.
This device may, for the sake of further discussion, be presented to us
as an alleged “hypercomputer”.

How to Acknowledge Hypercomputation? 133

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

The following notation is introduced. Let B be a subset of
X1 µµ Xm. The ith projection of B (for i  1, …, m), written as Bi,
is defined by:

Bi = 9x » x œ Xi,

I$ y œ X1 µµ Xi-1M I$ z œ Xi+1 µµ XmM Hy, x, zL œ B=.
For any x œ Nm we define

†x§  max 8xi » i œ 81, …, m<<.
Then, a hypercomputer can be defined via its input/output behav-

ior of black boxes as follows.
Definition 1 (black box). Let X, Y be sets and  be the set of natural
numbers. A subset B of X µ Y µ N is called a black box if B1  X. X
is called the input set and Y the output set.

Note that the condition B1  X models a computing device that is
total; that is, an output always exists.
Definition 2. Let B be a black box. We define

fB  8Hx, yL » H$ zL Hx, y, zL œ B<,
tB  8Hx, zL » H$ yL Hx, y, zL œ B<.

fB is called the input/output relation of B and tB the computing time
of B. If fB and tB are functions, then B is called deterministic.

Every halting deterministic Turing machine defines a black box.
Indeed, let M be a Turing machine (computing a total function),
fM : X Ø Y be the function computed by M, and tM be the computing
time of M. Then

8Hx, fM HxL, tM HxLL » x œ X<
is a (deterministic) black box. Similarly, all halting nondeterministic
Turing machines define black boxes.
Definition 3 (hypercomputer). A strong hypercomputer is a black box B
where fB is not Turing-computable.

Definition 4. Let  be a class of computable monotone functions  Ø 
containing the polynomials (over  with non-negative coefficients).
Then  is called a bound class.
Definition 5. A weak hypercomputer is a black box B with the follow-
ing property: There exists a bound class  such that

† tMHxL > gH†x§L almost everywhere for all g œ  and for all Turing
machines M with fM  fB.

† There exists an h œ  such that tBHxL § hH†x§L for all x œ B1.

A strong hypercomputer computes either a noncomputable func-
tion or decides an undecidable problem. A weak hypercomputation
outperforms all Turing machines. A possible scenario for a weak
hypercomputer B is the following: fB is an EXPTIME-complete prob-
lem; therefore, there exists no polynomial p and no Turing machine
M computing fB with tMHxL § pH†x§L for all x œ X, but tBHxL § pH†x§L for
all x œ X and for a polynomial p.

134 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

A strong hypercomputer computes either a noncomputable func-

outperforms all Turing machines. A possible scenario for a weak
hypercomputer B is the following: fB is an EXPTIME-complete prob-
lem; therefore, there exists no polynomial p and no Turing machine
M computing fB with tMHxL § pH†x§L for all x œ X, but tBHxL § pH†x§L for
all x œ X and for a polynomial p.

For nondeterministic hypercomputers we may distinguish between
the following cases:

† fB is not a function,

† fB is a function, but tB is not.

For stochastic hypercomputers, either tB or both fB and tB are ran-
dom variables, and the requirements on the computation have to be
specified.

3. Tests

Having set the stage for a general investigation into hypercomputers
that are presented to us as black boxes, we shall consider a few cases
and tests. These test methods will be essentially heuristic and present
no way of systematically addressing the issue of falsifying or even veri-
fying hypercomputation.

One strategy for creating tests will be to consider problems that are
asymmetric with respect to their creation and Áverification~which
should be “easy”~on the one hand, and their solution~which
should be “hard”~on the other hand.

3.1 NP-Complete Cases

It may be conjectured that, by operational means, it is not possible to
go beyond tests of hyper-NP-completeness. Even for an NP-complete
problem~for instance, the satisfiability problem of propositional
logic (SAT)~it is not trivial to verify that a hypercomputer solves the
problem in polynomial time. Without insight into the internal struc-
ture of the hypercomputer, we cannot obtain a proof of polynomial
time computation, which is an asymptotic result. Even here we rely
on experiments to test a “large” number of problems. A central prob-
lem consists in the right selection of problem sequences. If the selec-
tion is based on random generators, we merely obtain results on aver-
age complexity, which would not be significant.

Furthermore, we need at least some information about the polyno-
mial in question (e.g., its maximum degree). Otherwise it remains
impossible to decide by finite means whether some behavior is polyno-
mial or not.

3.2 Harder Cases with Tractable Verification

Do there exist (decision) problems that are harder than the known
NP-complete cases, possibly having no recursively enumerable solu-
tion and proof methods, whose results nevertheless are tractable verifi-
able? For example, the problem of graph nonisomorphism (GNI) is
one that is not known to be in NP, not even in NP ‹ BPP. Neverthe-
less, it is possible to “efficiently verify” whether a “prover” solves this
problem correctly.

How to Acknowledge Hypercomputation? 135

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

Do there exist (decision) problems that are harder than the known

tion and proof methods, whose results nevertheless are tractable verifi-
able? For example, the problem of graph nonisomorphism (GNI) is
one that is not known to be in NP, not even in NP ‹ BPP. Neverthe-
less, it is possible to “efficiently verify” whether a “prover” solves this
problem correctly.

If the prover claims that two graphs G1 and G2 are isomorphic, he
can convince us by providing a graph isomorphism. That can be
checked in polynomial time, which also means that GNI œ coNP. If,
on the other hand, the prover claims that G1 and G2 are nonisomor-
phic, we can verify this by the following interactive proof.

1. Choose one of the graphs G1 and G2 with equal probability.

2. Apply an arbitrary permutation to its vertices; this yields graph H.

3. The prover must decide whether H is equivalent to G1 or G2.

4. Repeat for N rounds.

If the initial answer was wrong and the graphs G1 and G2 are actu-
ally isomorphic, the prover can in step 3 only guess which graph was
chosen in step 3 (since now H could have been derived from either).
Hence, after N rounds we can be sure with probability 1 - 2-N that
the graphs G1 and G2 are nonisomorphic.

By denoting the class of interactive proofs by IP, we have shown
that GNI œ IP. Interactive proofs further exist for every language in
PSPACE (which is assumed to be much larger than NP). In fact, it can
be shown [30] that IP equals PSPACE. This means, in particular, that
IP is closed under complement.

The protocol in the example given has the property that in each
round a constant number of messages is sent. In a generic interactive
proof system for PSPACE this is not necessarily true; but at any
instance the number of messages depends polynomially on the input
length.

In the literature, specific classes of interactive proof systems are
investigated as well, for example, the Arthur|Merlin class [31] and the
Goldwasser|Micali|Rackoff (GMR) class [32]. The former uses public
coin tosses, with the intention of accommodating certain languages in
the lowest complexity class possible. The latter uses private coin
tosses, with the intention of covering the widest possible class of effi-
ciently verifiable languages; additionally, it has the feature of provid-
ing zero-knowledge proofs, which is of great significance in cryptogra-
phy. (The protocol we presented does not have the zero-knowledge
property, unless GNI œ BPP, but can be modified to have it.) For fur-
ther information on interactive proof systems see [33, 34].

3.3 Inference of Problems

One may confront the hypercomputer with the problem of comparing
the solutions of multiple tasks. Such a comparison need not necessar-
ily involve the separate computation of the solutions of these multiple
tasks.

136 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

One may confront the hypercomputer with the problem of comparing

ily involve the separate computation of the solutions of these multiple
tasks.

As an analogy, consider Deutsch’s problem as one of the first prob-
lems that quantum computers could solve effectively. Consider a func-
tion that takes a single (classical) bit into a single (classical) bit. There
are four such functions f1, …, f4, corresponding to all variations. One
can specify or “prepare” a function bitwise, or alternatively, one may
specify it by requiring that, for instance, such a function acquires dif-
ferent values on different inputs, such as f H0L ≠ f H1L. Thereby, we
may, even in principle, learn nothing about the individual functional
values alone.

3.4 Generation of Random Sequences

By implementing Chaitin’s “algorithm” to compute Chaitin’s omega
[35] or variants thereof [36], it would in principle be possible to
“compute” the first bits of random sequences. Such random
sequences could, in principle, be subject to the usual tests of stochastic-
ity [37, 38].

Note that in quantum mechanics, the randomness of certain micro-
physical events, such as the spontaneous decay of excited quantum
states [39, 40], or the quantum coin toss experiments in complete con-
text mismatches [37], is postulated as an axiom. This postulate is then
used as the basis for the production of quantum randomness oracles
such as the commercially available Quantis interface [41].

4. Impossibility of Unsolvable Problems Whose Solution Is
Polynomially Verifiable

Let S0 be a finite (nonempty) alphabet and X Õ S0
* be a semidecidable,

but not decidable, set. That means there exists a Turing machine that
accepts the language X, but does not terminate on all x œ S0

* . The con-
cept of “acceptable by Turing machines” is equivalent to “derivable
by inference systems” or “producible by grammars”. We choose the
approach of a universal proof system, that is, of a system which simu-
lates every Turing machine.

Let P be such a proof system. Let V be an infinite set of variables
(over strings in S*). A metastring is an object x1 … xn where xi œ S or
xi œ V. If X is a metastring and q is a substitution (i.e., a mapping
V Ø HV ‹ SL*), then X q is called an instance of X. If X q œ S*, we call
X q a ground instance of X.

How to Acknowledge Hypercomputation? 137

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

We may define P  I, , S, S0M, where  is a finite set of meta-
strings (the axioms) and  is a finite set of rules, that is, expressions
of the form

X1 … Xn

X
where X1, …, Xn, X are metastrings such that the set of variables in
X is contained in the set of variables in X1, …, Xn.

S0 is a (nonempty) subset of S (defining the strings of the theory to
be generated).

 A derivation j in P is a tree such that all nodes are labeled by
strings in S*. In particular:

† The leaves of j are labeled by ground instances of axioms.

† Let N be a node in j which is not a leaf and HN, N1L, …, HN, NkL be
the nodes from N, then N1 … Nk êN is a ground instance of a rule in X.

A proof of an x in S0
* in P is a derivation in P with the root node

labeled by x. We call x provable in P if there exists a proof of x in P.
 Fact: As S is finite there are only finitely many derivations of

length less than or equal to k for any natural number k, where length
is the number of symbol occurrences. Let P @kD be the set of all deriva-
tions of length less than or equal to k.

We prove now that there is no recursive function g such that for all
x œ X:

H*L x is provable in P if and only if there exists a proof j of x
with †j§ § gH†x§L.

Proof. Assume that there exists a recursive g such that H*L holds. We
construct a decision procedure of X:

input : x œ X
• compute gH†x§L
• construct P@gH†x§LD
• if P@gH†x§LD contains a proof of x then x œ X
else x – X.

But we assumed X to be undecidable, thus we arrive at a complete
contradiction. ‡

It follows as a corollary that there exists no proof system that gener-
ates an undecidable problem X and X is polynomially verifiable.

The result given illustrates one of the problems in acknowledging
hypercomputation. Even if we have a strong hypercomputer solving,
let us say, the halting problem, the verification of its correctness is ulti-
mately unfeasible. Due to the absence of recursive bounds we cannot
expect to obtain a full proof of the corresponding property (halting or
nonhalting) from the hypercomputer itself.

138 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

The result given illustrates one of the problems in acknowledging
hypercomputation. Even if we have a strong hypercomputer solving,
let us say, the halting problem, the verification of its correctness is ulti-

expect to obtain a full proof of the corresponding property (halting or
nonhalting) from the hypercomputer itself.

When we consider the halting problem and the property of non-
halting, this can only be verified by a proof (and not by simulating a
Turing machine). By the undecidability of the problem there is no com-
plete (recursive) proof system doing the job. So when we obtain a veri-
fication from the hypercomputer concerning nonhalting, the form of
this verification lies outside computational proof systems.

However, we might think about the following test procedure for
hypercomputers: humans create a test set of problems for an undecid-
able problem X, that is, a finite set Y with Y › X ≠ « and
Y › Xc ≠ «. The humans are in possession of the solutions, prefera-
bly of proofs jy of y œ X or of y – X for any y œ Y. This finite set
may at least serve the purpose of falsifying hypercomputation
(provided the hypercomputer is not stochastic and wrong answers are
admitted). Beyond the possibility of falsification we might consider
the following scenario: the hypercomputer answers all questions con-
cerning the test set Y correctly, and its computing time is independent
of the complexity of the proofs jy. Such a phenomenon would, of
course, not yield a verification of the hypercomputer but at least indi-
cate a behavior structurally differing from computable proof systems.

But the ultimate barrier of verifying a hypercomputer is that of veri-
fying a black box, characterized by the attempt to induce a property
of infinitely many input/output pairs by a finite test set.

5. Discussion and Summary

The considerations presented here may be viewed as special cases of a
very general black box identification problem: is it possible to deduce
certain features of a black box, without opening the box and without
knowing the intrinsic working of the black box, from its input/output
behavior alone? Several issues of this general problem have already
been discussed. For instance, in an effort to formalize the uncertainty
principle, Moore [42] considered initial state identification problems
of (given) deterministic finite automata. Gold [43|47] considered a
question related to induction: if one restricts black boxes to comput-
able functions, then the rule inference problem, that is, finding out
which function is implemented by the black box, is in general unsolv-
able. The halting problem [48|50] can be translated into a black box
problem: given a black box with a known partial recursive function,
then its future behavior is generally unpredictable. Even the problem
of determining whether or not a black box system is polynomial in
computation space and time appears to be far from trivial.

So, if presented with a hypercomputer or oracle, we could only
assert heuristic information, nothing more. We have to accept the fact
that more general assertions, or even proofs for computational capaci-
ties beyond very limited finite computational capacities remain impos-
sible, and will possibly remain so forever.

How to Acknowledge Hypercomputation? 139

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

So, if presented with a hypercomputer or oracle, we could only
assert heuristic information, nothing more. We have to accept the fact

ties beyond very limited finite computational capacities remain impos-
sible, and will possibly remain so forever.

The situation is not dissimilar from claims of absolute indetermin-
ism and randomness on a microphysical scale [37], where a few,
albeit subtle, tests of time series [38] generated by quantum random-
ness oracles such as Quantis [41] can be compared against advanced
algorithmic random number generators such as the Rule30CA
Wolfram rule 30 generator implemented by Mathematica. Beyond heu-
ristic testing, any general statement about quantum randomness
remains conjectural.

Acknowledgments

This manuscript grew out of discussions between computer scientists
and physicists at the Vienna University of Technology, including,
among others, Erman Acar, Bernhard Gramlich, Markus Moschner,
and Gernot Salzer.

References

[1] S. Wolfram, A New Kind Of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[2] K. Svozil, “Computational Universes,” Chaos, Solitons & Fractals,
25(4), 2006 pp. 845|859. dx.doi.org/10.1016/j.chaos.2004.11.055.

[3] P. W. Bridgman, “A Physicist’s Second Reaction to Mengenlehre,”
Scripta Mathematica, 2, 1934 pp. 101|117, 224|234; cf. R. Landauer
[51].

[4] G. J. Chaitin, Algorithmic Information Theory, Cambridge: Cambridge
University Press, 1987.

[5] C. S. Calude and M. J. Dinneen, “Exact Approximations of Omega
Numbers,” International Journal of Bifurcation and Chaos (IJBC),
17(6), 2007 pp. 1937|1954 (CDMTCS Research Report Series 293).
dx.doi.org/10.1142/S0218127407018130.

[6] C. S. Calude, E. C. Calude, and M. J. Dinneen, “A New Measure of the
Difficulty of Problems,” Journal for Multiple-Valued Logic and Soft
Computing, 12, 2006 pp. 285|307 (CDMTCS Research Report Series
277). www.cs.auckland.ac.nz/CDMTCS//researchreports/277cris.pdf.

[7] H. Weyl, Philosophy of Mathematics and Natural Science, Princeton:
Princeton University Press, 1949.

[8] A. Grünbaum, Philosophical Problems of Space and Time (Boston
Studies in the Philosophy of Science, Vol. 12, 2nd ed., Dordrecht, The
Netherlands: D. Reidel Publishing Co., 1973.

[9] J. F. Thomson, “Tasks and Supertasks,” Analysis, 15, 1954 pp. 1|13.

[10] P. Benacerraf, “Tasks and Supertasks, and the Modern Eleatics,”
Journal of Philosophy, LIX(24), 1962 pp. 765|784.

140 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

[11] R. Rucker, Infinity and the Mind, Boston: Birkhäuser, 1982; New York:
Bantam Books, 1983 (reprint).

[12] I. Pitowsky, “The Physical Church|Turing Thesis and Physical Computa-
tional Complexity,” Iyyun, 39, 1990 pp. 81|99.

[13] J. Earman and J. D. Norton, “Forever Is a Day: Supertasks in Pitowsky
and Malament-Hogart Spacetimes,” Philosophy of Science, 60(1), 1993
pp. 22|42.

[14] M. Hogarth, “Predicting the Future in Relativistic Spacetimes,” Studies
in History and Philosophy of Modern Physics, 24, 1993 pp. 721|739.

[15] M. Hogarth, “Non-Turing Computers and Non-Turing Computability,”
Proceedings of the Biennial Meeting of the Philosophy of Science
Association (PSA), 1, 1994 pp. 126|138.

[16] E. W. Beth, The Foundations of Metamathematics, Amsterdam: North-
Holland, 1959.

[17] E. G. K. López-Escobar, “Zeno’s Paradoxes: Pre Gödelian Incomplete-
ness,” Yearbook 1991 of the Kurt-Gödel-Society, 4, 1991 pp. 49|63.

[18] K. Svozil, “The Church|Turing Thesis as a Guiding Principle for
Physics,” Unconventional Models of Computation (Discrete Mathemat-
ics and Theoretical Computer Science) (C. S. Calude, J. Casti, and
M. J. Dinneen, eds.), New York: Springer, 1998 pp. 371|385.

[19] C. S. Calude and B. Pavlov, “Coins, Quantum Measurements, and
Turing’s Barrier,” Quantum Information Processing, 1(1-2), 2002
pp. 107|127. (Mar 1, 2002) arxiv.org/abs/quant-ph/0112087v3.

[20] V. A. Adamyan, C. S. Calude, and B. S. Pavlov. “Transcending the
Limits of Turing Computability.” (May 11, 2003) arxiv.org/abs/
quant-ph/0304128v2.

[21] T. D. Kieu, “Quantum Algorithm for Hilbert’s Tenth Problem,”
International Journal of Theoretical Physics, 42, 2003 pp. 1461|1478.
(Oct 8, 2003) arxiv.org/abs/quant-ph/0110136v3.

[22] T. D. Kieu, “Computing the Noncomputable,” Contemporary Physics,
44, 2003 pp. 51|71. (Oct 8, 2003) arxiv.org/abs/quant-ph/0203034v4.

[23] T. Ord, “The Many Forms of Hypercomputation,” Applied Mathemat-
ics and Computation, 178(1), 2006 pp. 143|153.
dx.doi.org/10.1016/j.amc.2005.09.076.

[24] M. Davis, “The Myth of Hypercomputation,” Alan Turing: Life and
Legacy of a Great Thinker (C. Teuscher, ed.), Berlin: Springer, 2004
pp. 195|212.

[25] F. A. Doria and J. F. Costa, “Introduction to the Special Issue on
Hypercomputation,” Applied Mathematics and Computation, 178(1),
2006 pp. 1|3. dx.doi.org/10.1016/j.amc.2005.09.065.

[26] M. Davis, “Why There Is No Such Discipline as Hypercomputation,”
Applied Mathematics and Computation, 178, 2006 pp. 4|7.
dx.doi.org/10.1016/j.amc.2005.09.066.

[27] A. Einstein and L. Infeld, The Evolution of Physics, Cambridge: Cam-
bridge University Press, 1938.

[28] T. Y. Chow, “The Myth of Hypercomputation,” (contribution to a
discussion group on hypercomputation), 2004
cs.nyu.edu/pipermail/fom/2004-February/007883.html.

How to Acknowledge Hypercomputation? 141

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

[29] M. Davis, Computability and Unsolvability, New York: McGraw-Hill,
1958.

[30] A. Shamir, “IP  PSPACE,” Journal of the ACM (JACM), 39(4), 1992
pp. 869|877. dx.doi.org/10.1145/146585.146609.

[31] L. Babai, “Trading Group Theory for Randomness,” in Proceedings of
the Seventeenth Annual ACM Symposium On Theory of Computing
(STOC ’85), Providence, RI (N. Beebe, ed.), 1985 pp. 421|429.
dx.doi.org/10.1145/22145.22192.

[32] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity
of Interactive Proof Systems,” SIAM Journal on Computing (SICOMP),
18(1), 1989 pp. 186|208. dx.doi.org/10.1137/0218012.

[33] L. Babai and S. Moran, “Arthur|Merlin Games: A Randomized Proof
System, and a Hierarchy of Complexity Classes,” Journal of Computer
and System Sciences, 36(2), 1988 pp. 254|276.

[34] O. Goldreich, Foundations of Cryptography: Basic Tools, Vol. 1,
Cambridge: Cambridge University Press, 2001.

[35] G. J. Chaitin, Exploring Randomness (Discrete Mathematics and
Theoretical Computer Science Series), London: Springer-Verlag, 2001.

[36] C. Calude, Information and Randomness~An Algorithmic Perspective,
Berlin: Springer, 1994.

[37] K. Svozil, “The Quantum Coin Toss~Testing Microphysical Undecid-
ability,” Physics Letters A, 143(9), 1990 pp. 433|437.
dx.doi.org/10.1016/0375-9601(90)90408-G.

[38] C. S. Calude and M. J. Dinneen, “Is Quantum Randomness Algorithmic
Random? A Preliminary Attack,” in Proceedings of the First Interna-
tional Conference on Algebraic Informatics, Thessaloniki, Greece,
(S. Bozapalidis, A. Kalampakas, and G. Rahonis, eds.), Thessaloniki,
Greece: Aristotle University of Thessaloniki, 2005 pp. 195|196.

[39] T. Erber, “Testing the Randomness of Quantum Mechanics: Nature’s
Ultimate Cryptogram?” Annals of the New York Academy of Sciences.
Fundamental Problems in Quantum Theory: A Conference Held in
Honor of Professor John A. Wheeler, Vol. 755, (D. M. Greenberger and
A. Zeilinger, eds.), Berlin, Heidelberg, New York: Springer, 1995
pp. 748|756. dx.doi.org/10.1111/j.1749-6632.1995.tb39016.x.

[40] D. J. Berkeland, D. A. Raymondson, and V. M. Tassin, “Tests for
Nonrandomness in Quantum Jumps,” Physical Review A (Atomic,
Molecular, and Optical Physics), 69, 2004 pp. 052 103.
dx.doi.org/10.1103/PhysRevA.69.052103.

[41] id Quantique, “Quantis - Quantum Random Number Generators
(QRNG),” 2004. www.idquantique.com.

[42] E. F. Moore, “Gedanken-Experiments on Sequential Machines,”
Automata Studies (C. E. Shannon and J. McCarthy, eds.), Princeton:
Princeton University Press, 1956 pp. 129|153.

[43] M. E. Gold, “Language Identification in the Limit,” Information and
Control, 10(5), 1967 pp. 447|474.
dx.doi.org/10.1016/S0019-9958(67)91165-5.

[44] L. Blum and M. Blum, “Toward a Mathematical Theory of Inductive
Inference,” Information and Control, 28(2), 1975 pp. 125|155.

142 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

[45] D. Angluin and C. H. Smith, “A Survey of Inductive Inference: Theory
and Methods,” Computing Surveys, 15, 1983 pp. 237|269.

[46] L. M. Adleman and M. Blum, “Inductive Inference and Unsolvability,”
The Journal of Symbolic Logic, 56(3), 1991 pp. 891|900.
dx.doi.org/10.2307/2275058.

[47] M. Li and P. M. B. Vitányi, “Inductive Reasoning and Kolmogorov
Complexity,” Journal of Computer and System Science, 44(2), 1992
pp. 343|384. dx.doi.org/10.1016/0022-0000(92)90026-F.

[48] A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem,” Proceedings of the London Mathematical
Society, Series 2 (42 and 43), 230|265 and 544|546 (1936 and 1937),
reprinted in [52].

[49] H. Rogers, Jr., Theory of Recursive Functions and Effective Computabil-
ity, New York: McGraw-Hill, 1967.

[50] P. Odifreddi, Classical Recursion Theory, Vol. 1, Amsterdam: North-
Holland, 1989.

[51] R. Landauer, “Advertisement for a Paper I Like,” On Limits (J. L. Casti
and J. F. Traub, eds.), Report 94-10-056, Santa Fe, NM: Santa Fe
Institute, 1994 p. 39.
www.santafe.edu/research/publications/workingpapers/94-10-056.pdf.

[52] M. Davis, The Undecidable, New York: Raven Press, 1965.

How to Acknowledge Hypercomputation? 143

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.

