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We  discuss  the  question  of  how  to  operationally  validate  whether  or
not  a  “hypercomputer”  performs  better  than  the  known  discrete
computational models. 

1. Introduction

It  is  widely  acknowledged  [1,  2],  that  every  physical  system  corre-
sponds to a computational process, and that every computational pro-
cess,  if  applicable,  has  to  be  physically  and  operationally  feasible  in
some  concrete  realization.  In  this  sense,  the  physical  and  computa-
tional  capacities  should  match,  because  if  one  is  lagging  behind  the
other, there is a lack in the formalism and its potential scientific (and
ultimately, technological) applicability. Therefore, the exact correspon-
dence of the mathematical formalism on the one hand, and the particu- 
lar physical system that is represented by that formalism on the other
hand, demand careful attention. 

If one insists on operationalizability [3], one need not go very far in
the  history  of  mathematics  to  encounter  suspicious  mathematical
objects.  Surely  enough,  the  number  p  can  be  defined  and  effectively
computed  as  the  ratio  of  the  circumference  to  the  diameter  of  a

“perfect”  (platonic)  circle.  Likewise,  the  numbers  2  and  3  can
be  interpreted  as  the  ratio  between  the  length  of  the  diagonal  to  the
side  length  of  any  square  and  cube,  respectively.  But  it  is  not  totally
unjustified to ask whether or not these numbers have any operational
meaning  in  a  strict  physical  sense;  that  is,  whether  such  numbers
could,  at  least  in  principle,  be  constructed  and  measured  with  arbi-
trary, or even absolute, precision. 

At the heart of most of the problems seems to lie the ancient issue
of  the  “very  large/small”  or  even  potential  infinite  versus  the  actual
infinite. Whereas the mathematical formalism postulates the existence
of  actual  infinite  constructions  and  methods  (such  as  the  summation
of a [convergent] geometric series, or diagonalization) the physical pro-
cesses, methods, and techniques are never infinite. 

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.



At the heart of most of the problems seems to lie the ancient issue

infinite. Whereas the mathematical formalism postulates the existence
of  actual  infinite  constructions  and  methods  (such  as  the  summation
of a [convergent] geometric series, or diagonalization) the physical pro-
cesses, methods, and techniques are never infinite. 

Suppose, as an example, one would attempt the operationalization
of p. Any construction of a “real” circle and one of its diameters, and
a subsequent measurement thereof, would find its natural scale bound
from below by the atomistic structure of matter upon which any such
circle is based. Long before those molecular or atomic scales, the physi- 
cal geometry might turn out to be not as straightforward as it appears
from larger scales; for example, the object might turn out to be a frac-
tal. 

Chaitin’s  omega  number  [4],  which  is  interpretable  as  the  halting
probability  of  a  universal  computer,  can  be  “computed  in  the  limit”
(without  any  computable  radius  of  convergence)  by  a  finite-size  pro-
gram in infinite time and with infinite space. Just as for p~the differ-
ence being the absence of any computable radius of convergence~the
first  digits  of  omega are  well  known [5],  yet  omega has been proved
to  be  algorithmically  incompressible  and  thus  random.  Nevertheless,

presently,  for  all  practical  purposes,  the  statement  that  “the  10101010

digit  in  a  decimal  expansion of p  is  5” is  as  unverifiable  as a similar
statement for omega. Omega encodes all decision problems which can
be algorithmically interpreted. For instance, for a particular universal
computer,  Goldbach’s  conjecture  and Riemann’s  hypothesis  could be
decided  with  programs  of  size  3484  and  7780  bits,  respectively  [6].
Yet,  omega appears to have two features which are normally consid-
ered  contradictory:  it  is  one  of  the  most  informative  mathematical
numbers imaginable, yet at the same time this information is so com-
pressed  that  it  cannot  be  deciphered.  Thus  omega  appears  to  be
totally structureless and random. In this sense, for omega, total infor-
mation  and  total  randomness  seem  to  be  “two  sides  of  the  same
coin”. On a more pragmatic level, it seems impossible here to differen-
tiate  between  order  and  chaos,  or  between  knowledge  and  chance.
This  gives  a  taste  of  what  can  be  expected  from  any  “hyper-
computation” beyond universal computability as defined by Turing. 

It should always be kept in mind that all our sense perceptions are
derived  from  elementary  discrete  events,  such  as  clicks  in  photon  or
particle  detectors,  even  if  they  appear  to  be  analog:  the  apparently
smooth  behavior  has  a  discrete  fine  structure.  Among  other  issues,
such as  finiteness  of  system resources,  this  discreteness  seems to pro-
hibit the “physical realization” of any actual infinities. 

What  is  the  physical  meaning  of  infinite  concepts,  such  as  space-
time  singularities,  point  particles,  or  infinite  precision?  For  instance,
are infinity machines with geometrically squeezed time cycles, such as
the ones envisioned by Weyl [7] and others [8|18], physically feasible?
Motivated  by  recent  proposals  to  utilize  quantum  computation  for
trespassing  the  Turing  barrier  [19|22],  these  accelerating  Turing

hypercomputation [24|26]. 

132 A. Leitsch, G. Schachner, and K. Svozil

Complex Systems, 18 © 2008 Complex Systems Publications, Inc.



What  is  the  physical  meaning  of  infinite  concepts,  such  as  space-
time  singularities,  point  particles,  or  infinite  precision?  For  instance,
are infinity machines with geometrically squeezed time cycles, such as
the ones envisioned by Weyl [7] and others [8|18], physically feasible?
Motivated  by  recent  proposals  to  utilize  quantum  computation  for
trespassing  the  Turing  barrier  [19|22],  these  accelerating  Turing
machines  have  been  intensively  discussed  [23]  among  other  forms  of
hypercomputation [24|26]. 

Certainly, the almost ruthless and consequential application of seem-
ingly  mind-boggling  theories  such  as  quantum  mechanics,  as  far  as
finitistic  methods  are  concerned,  has  yielded  one  victory  after
another.  But it  should be kept in mind that the use of  actual transfi-
nite concepts and methods remains highly conjectural. 

A priori, while it may appear rash to exclude the transfinite in gen-
eral, and transfinite set theory in particular, from physics proper, one
should  be  aware  of  its  counterintuitive  consequences  (such  as,  for
instance,  the  Banach|Tarski  paradox)  and  be  careful  in  claiming  its
physical applicability. Recall the old phrase attributed to Einstein and
Infeld [27, p. 31]: “Physical concepts are free creations of the human
mind, and are not, however it may seem, uniquely determined by the
external world.”

To this point, we are not aware of any test, let alone any applica-
tion, of the actual transfinite in nature. While general contemplations
about hypercomputations and the applicability of transfinite concepts
for physics  may appear philosophically interesting, our main concern
will be operational testability: if presented with claims that hypercom-
puters  exist,  how  could  we  possibly  falsify,  or  even  verify  and  test,
such propositions [28]? 

In what follows, hypercomputation will be conceptualized in terms
of a black box with its  input/output behavior.  Several  tests and their
rather  limited  scope  will  be  evaluated.  Already  in  1958,  Davis
[29,  p.  11]  sets  the  stage  of  the following discussion by pointing out
“…how  can  we  ever  exclude  the  possibility  of  our  being  presented,
some day (perhaps  by  some extraterrestrial  visitors),  with a  (perhaps
extremely  complex)  device  or  ‘oracle’  that  ‘computes’  a  noncomput-
able function?” While this may have been a remote, amusing issue in
the  days  written,  the  advancement  of  physical  theory  in  the  past
decades  has  made  necessary  a  careful  evaluation  of  the  possibilities
and  options  for  verification  and  falsification  of  certain  claims  that  a
concrete physical system “computes” a noncomputable function. 

2. On Black Boxes That Are Hypercomputers

In what follows we shall consider a device, an agent, or an oracle that
one  knows  nothing  about,  and  for  which  there  is  no  rational  under-
standing (in the traditional algorithmic sense) of its intrinsic working.
This device may, for the sake of further discussion, be presented to us
as an alleged “hypercomputer”. 
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The  following  notation  is  introduced.  Let  B  be  a  subset  of
X1 µµ Xm. The ith  projection of B (for i  1, …, m), written as Bi,
is defined by: 

Bi = 9x » x œ Xi,

I$ y œ X1 µµ Xi-1M I$ z œ Xi+1 µµ XmM Hy, x, zL œ B=.
For any x œ Nm we define 

†x§  max 8xi » i œ 81, …, m<<.
Then,  a  hypercomputer  can be  defined  via  its  input/output  behav-

ior of black boxes as follows. 
Definition 1  (black  box).  Let  X, Y  be  sets  and    be  the  set  of  natural
numbers. A subset B  of X µ Y µ N  is  called a black box  if B1  X.  X
is called the input set and Y the output set. 

Note that the condition B1  X  models a computing device that is
total; that is, an output always exists.
Definition 2. Let B be a black box. We define 

fB  8Hx, yL » H$ zL Hx, y, zL œ B<,
tB  8Hx, zL » H$ yL Hx, y, zL œ B<.

fB  is  called the input/output relation  of  B  and tB  the computing time
of B. If fB and tB are functions, then B is called deterministic. 

Every  halting  deterministic  Turing  machine  defines  a  black  box.
Indeed,  let  M  be  a  Turing  machine  (computing  a  total  function),
fM : X Ø Y  be the function computed by M, and tM  be the computing
time of M. Then 

8Hx, fM HxL, tM HxLL » x œ X<
is  a  (deterministic)  black  box.  Similarly,  all  halting  nondeterministic
Turing machines define black boxes. 
Definition 3  (hypercomputer).  A  strong  hypercomputer  is  a  black  box  B
where fB is not Turing-computable. 

Definition 4. Let  be a class of computable monotone functions  Ø 
containing  the  polynomials  (over    with  non-negative  coefficients).
Then  is called a bound class. 
Definition 5.  A weak hypercomputer  is  a  black box B  with the follow-
ing property: There exists a bound class  such that

† tMHxL > gH†x§L  almost  everywhere  for  all  g œ   and  for  all  Turing
machines M with fM  fB. 

† There exists an h œ  such that tBHxL § hH†x§L for all x œ B1. 

A  strong  hypercomputer  computes  either  a  noncomputable  func-
tion  or  decides  an  undecidable  problem.  A  weak  hypercomputation
outperforms  all  Turing  machines.  A  possible  scenario  for  a  weak
hypercomputer B is the following: fB  is an EXPTIME-complete prob-
lem;  therefore,  there  exists  no  polynomial  p  and  no  Turing  machine
M computing fB  with tMHxL § pH†x§L for all x œ X, but tBHxL § pH†x§L for
all x œ X and for a polynomial p. 
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A  strong  hypercomputer  computes  either  a  noncomputable  func-

outperforms  all  Turing  machines.  A  possible  scenario  for  a  weak
hypercomputer B is the following: fB  is an EXPTIME-complete prob-
lem;  therefore,  there  exists  no  polynomial  p  and  no  Turing  machine
M computing fB  with tMHxL § pH†x§L for all x œ X, but tBHxL § pH†x§L for
all x œ X and for a polynomial p. 

For  nondeterministic  hypercomputers  we  may  distinguish  between
the following cases:

† fB is not a function, 

† fB is a function, but tB is not. 

For stochastic hypercomputers, either tB  or both fB  and tB  are ran-
dom  variables,  and  the  requirements  on  the  computation  have  to  be
specified. 

3. Tests

Having  set  the  stage  for  a  general  investigation  into  hypercomputers
that are presented to us as black boxes, we shall consider a few cases
and tests.  These test  methods will  be essentially heuristic and present
no way of systematically addressing the issue of falsifying or even veri-
fying hypercomputation. 

One strategy for creating tests will be to consider problems that are
asymmetric  with  respect  to  their  creation  and  Áverification~which
should  be  “easy”~on  the  one  hand,  and  their  solution~which
should be “hard”~on the other hand.

3.1 NP-Complete Cases

It may be conjectured that, by operational means, it is not possible to
go beyond tests  of  hyper-NP-completeness.  Even for an NP-complete
problem~for  instance,  the  satisfiability  problem  of  propositional
logic (SAT)~it is not trivial to verify that a hypercomputer solves the
problem  in  polynomial  time.  Without  insight  into  the  internal  struc-
ture  of  the  hypercomputer,  we  cannot  obtain  a  proof  of  polynomial
time  computation,  which  is  an  asymptotic  result.  Even  here  we  rely
on experiments to test a “large” number of problems. A central prob-
lem consists  in  the  right  selection  of  problem sequences.  If  the  selec-
tion is based on random generators, we merely obtain results on aver-
age complexity, which would not be significant. 

Furthermore, we need at least some information about the polyno-
mial  in  question  (e.g.,  its  maximum  degree).  Otherwise  it  remains
impossible to decide by finite means whether some behavior is polyno-
mial or not. 

3.2 Harder Cases with Tractable Verification

Do  there  exist  (decision)  problems  that  are  harder  than  the  known
NP-complete  cases,  possibly  having  no  recursively  enumerable  solu-
tion and proof methods, whose results nevertheless are tractable verifi-
able?  For  example,  the  problem  of  graph  nonisomorphism  (GNI)  is
one that is not known to be in NP, not even in NP ‹ BPP. Neverthe-
less, it is possible to “efficiently verify” whether a “prover” solves this
problem correctly. 
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Do  there  exist  (decision)  problems  that  are  harder  than  the  known

tion and proof methods, whose results nevertheless are tractable verifi-
able?  For  example,  the  problem  of  graph  nonisomorphism  (GNI)  is
one that is not known to be in NP, not even in NP ‹ BPP. Neverthe-
less, it is possible to “efficiently verify” whether a “prover” solves this
problem correctly. 

If the prover claims that two graphs G1  and G2  are isomorphic, he
can  convince  us  by  providing  a  graph  isomorphism.  That  can  be
checked  in  polynomial  time,  which  also  means  that  GNI œ coNP.  If,
on the other hand, the prover claims that G1  and G2  are nonisomor-
phic, we can verify this by the following interactive proof.

1. Choose one of the graphs G1 and G2 with equal probability.

2. Apply an arbitrary permutation to its vertices; this yields graph H. 

3. The prover must decide whether H is equivalent to G1 or G2.

4. Repeat for N rounds. 

If the initial answer was wrong and the graphs G1 and G2 are actu-
ally isomorphic, the prover can in step 3 only guess which graph was
chosen in step 3 (since now H  could have been derived from either).
Hence,  after  N  rounds  we  can  be  sure  with  probability  1 - 2-N  that
the graphs G1 and G2 are nonisomorphic. 

By  denoting  the  class  of  interactive  proofs  by  IP,  we  have  shown
that  GNI œ IP.  Interactive  proofs  further  exist  for  every  language  in
PSPACE (which is assumed to be much larger than NP). In fact, it can
be shown [30] that IP equals PSPACE. This means, in particular, that
IP is closed under complement. 

The  protocol  in  the  example  given  has  the  property  that  in  each
round a constant number of messages is sent. In a generic interactive
proof  system  for  PSPACE  this  is  not  necessarily  true;  but  at  any
instance  the  number  of  messages  depends  polynomially  on  the  input
length. 

In  the  literature,  specific  classes  of  interactive  proof  systems  are
investigated as well, for example, the Arthur|Merlin class [31] and the
Goldwasser|Micali|Rackoff (GMR) class [32]. The former uses public
coin tosses, with the intention of accommodating certain languages in
the  lowest  complexity  class  possible.  The  latter  uses  private  coin
tosses, with the intention of covering the widest possible class of effi-
ciently verifiable languages;  additionally, it  has the feature of provid-
ing zero-knowledge proofs, which is of great significance in cryptogra-
phy.  (The  protocol  we  presented  does  not  have  the  zero-knowledge
property, unless GNI œ BPP, but can be modified to have it.) For fur-
ther information on interactive proof systems see [33, 34]. 

3.3 Inference of Problems

One may confront the hypercomputer with the problem of comparing
the solutions of multiple tasks. Such a comparison need not necessar-
ily involve the separate computation of the solutions of these multiple
tasks. 
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One may confront the hypercomputer with the problem of comparing

ily involve the separate computation of the solutions of these multiple
tasks. 

As an analogy, consider Deutsch’s problem as one of the first prob-
lems that quantum computers could solve effectively. Consider a func-
tion that takes a single (classical) bit into a single (classical) bit. There
are four such functions f1, …, f4, corresponding to all variations. One
can specify or “prepare” a function bitwise, or alternatively, one may
specify it by requiring that, for instance, such a function acquires dif-
ferent  values  on  different  inputs,  such  as  f  H0L ≠ f  H1L.  Thereby,  we
may,  even  in  principle,  learn  nothing  about  the  individual  functional
values alone. 

3.4 Generation of Random Sequences

By  implementing  Chaitin’s  “algorithm”  to  compute  Chaitin’s  omega
[35]  or  variants  thereof  [36],  it  would  in  principle  be  possible  to
“compute”  the  first  bits  of  random  sequences.  Such  random
sequences could, in principle, be subject to the usual tests of stochastic-
ity [37, 38]. 

Note that in quantum mechanics, the randomness of certain micro-
physical  events,  such  as  the  spontaneous  decay  of  excited  quantum
states [39, 40], or the quantum coin toss experiments in complete con-
text mismatches [37], is postulated as an axiom. This postulate is then
used  as  the  basis  for  the  production of  quantum randomness  oracles
such as the commercially available Quantis interface [41]. 

4. Impossibility of Unsolvable Problems Whose Solution Is 
Polynomially Verifiable

Let S0 be a finite (nonempty) alphabet and X Õ S0
*  be a semidecidable,

but not decidable, set. That means there exists a Turing machine that
accepts the language X, but does not terminate on all x œ S0

* . The con-
cept  of  “acceptable  by  Turing  machines”  is  equivalent  to  “derivable
by  inference  systems”  or  “producible  by  grammars”.  We  choose  the
approach of a universal proof system, that is, of a system which simu-
lates every Turing machine. 

Let P  be such a proof system. Let V  be an infinite set of variables
(over strings in S*). A metastring is an object x1 … xn  where xi œ S or
xi œ V.  If  X  is  a  metastring  and  q  is  a  substitution  (i.e.,  a  mapping
V Ø HV ‹ SL*), then X q is called an instance of X. If X q œ S*, we call
X q a ground instance of X.
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We may define  P  I, , S, S0M,  where    is  a  finite  set  of  meta-
strings (the axioms) and   is  a finite set  of rules,  that is,  expressions
of the form

X1 … Xn

X
where X1, …, Xn, X  are  metastrings  such that  the  set  of  variables  in
X is contained in the set of variables in X1, …, Xn. 

S0  is a (nonempty) subset of S (defining the strings of the theory to
be generated). 

 A  derivation  j  in  P  is  a  tree  such  that  all  nodes  are  labeled  by
strings in S*. In particular:

† The leaves of j are labeled by ground instances of axioms. 

† Let  N  be  a  node  in  j  which  is  not  a  leaf  and  HN, N1L, …, HN, NkL  be
the nodes from N, then N1 … Nk êN is a ground instance of a rule in X. 

A proof of an x  in S0
*  in P  is  a derivation in P  with the root node

labeled by x. We call x provable in P if there exists a proof of x in P.
 Fact:  As  S  is  finite  there  are  only  finitely  many  derivations  of

length less than or equal to k for any natural number k, where length
is the number of symbol occurrences. Let P @kD be the set of all deriva-
tions of length less than or equal to k.

We prove now that there is no recursive function g such that for all
x œ X:

H*L x is provable in P if and only if there exists a proof j of x 
with †j§ § gH†x§L. 

Proof.  Assume that there exists  a recursive g  such that H*L  holds.  We
construct a decision procedure of X: 

input : x œ X
• compute gH†x§L
• construct P@gH†x§LD
• if P@gH†x§LD contains a proof of x then x œ X
else x – X.

But we assumed X to be undecidable, thus we arrive at a complete
contradiction. ‡ 

It follows as a corollary that there exists no proof system that gener-
ates an undecidable problem X and X is polynomially verifiable. 

The  result  given  illustrates  one  of  the  problems  in  acknowledging
hypercomputation.  Even  if  we  have  a  strong  hypercomputer  solving,
let us say, the halting problem, the verification of its correctness is ulti-
mately unfeasible. Due to the absence of recursive bounds we cannot
expect to obtain a full proof of the corresponding property (halting or
nonhalting) from the hypercomputer itself. 
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The  result  given  illustrates  one  of  the  problems  in  acknowledging
hypercomputation.  Even  if  we  have  a  strong  hypercomputer  solving,
let us say, the halting problem, the verification of its correctness is ulti-

expect to obtain a full proof of the corresponding property (halting or
nonhalting) from the hypercomputer itself. 

When  we  consider  the  halting  problem  and  the  property  of  non-
halting, this can only be verified by a proof (and not by simulating a
Turing machine). By the undecidability of the problem there is no com-
plete (recursive) proof system doing the job. So when we obtain a veri-
fication  from the  hypercomputer  concerning  nonhalting,  the  form  of
this verification lies outside computational proof systems. 

However,  we  might  think  about  the  following  test  procedure  for
hypercomputers: humans create a test set of problems for an undecid-
able  problem  X,  that  is,  a  finite  set  Y  with  Y › X ≠ «  and
Y › Xc ≠ «.  The  humans  are  in  possession of  the  solutions,  prefera-
bly  of  proofs  jy  of  y œ X  or  of  y – X  for  any  y œ Y.  This  finite  set
may  at  least  serve  the  purpose  of  falsifying  hypercomputation
(provided the hypercomputer is not stochastic and wrong answers are
admitted).  Beyond  the  possibility  of  falsification  we  might  consider
the following scenario: the hypercomputer answers all  questions con-
cerning the test set Y  correctly, and its computing time is independent
of  the  complexity  of  the  proofs  jy.  Such  a  phenomenon  would,  of
course, not yield a verification of the hypercomputer but at least indi-
cate a behavior structurally differing from computable proof systems. 

But the ultimate barrier of verifying a hypercomputer is that of veri-
fying a  black box,  characterized by the attempt to induce a property
of infinitely many input/output pairs by a finite test set. 

5. Discussion and Summary

The considerations presented here may be viewed as special cases of a
very general black box identification problem: is it possible to deduce
certain features of a black box, without opening the box and without
knowing the intrinsic working of the black box, from its input/output
behavior  alone?  Several  issues  of  this  general  problem  have  already
been discussed. For instance, in an effort to formalize the uncertainty
principle,  Moore  [42]  considered  initial  state  identification  problems
of  (given)  deterministic  finite  automata.  Gold  [43|47]  considered  a
question related to induction:  if  one restricts  black boxes to comput-
able  functions,  then  the  rule  inference  problem,  that  is,  finding  out
which function is implemented by the black box, is in general unsolv-
able. The halting problem [48|50] can be translated into a black box
problem:  given a  black box with a  known partial  recursive  function,
then its  future  behavior  is  generally  unpredictable.  Even the problem
of  determining  whether  or  not  a  black  box  system  is  polynomial  in
computation space and time appears to be far from trivial.  

So,  if  presented  with  a  hypercomputer  or  oracle,  we  could  only
assert heuristic information, nothing more. We have to accept the fact
that more general assertions, or even proofs for computational capaci-
ties beyond very limited finite computational capacities remain impos-
sible, and will possibly remain so forever. 
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So,  if  presented  with  a  hypercomputer  or  oracle,  we  could  only
assert heuristic information, nothing more. We have to accept the fact

ties beyond very limited finite computational capacities remain impos-
sible, and will possibly remain so forever. 

The situation is not dissimilar from claims of absolute indetermin-
ism  and  randomness  on  a  microphysical  scale  [37],  where  a  few,
albeit  subtle,  tests of time series [38] generated by quantum random-
ness oracles  such as Quantis  [41]  can be compared against  advanced
algorithmic  random  number  generators  such  as  the  Rule30CA
Wolfram rule 30 generator implemented by Mathematica. Beyond heu-
ristic  testing,  any  general  statement  about  quantum  randomness
remains conjectural. 
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