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We study the idea of implantation of Piron’s and Bell’s geometrical lemmas for
proving some results concerning measures on finite as well as infinite-dimensional
Hilbert spaces, including also measures with infinite values. In addition, we present
parabola based proofs of weak Piron’s geometrical and Bell’s lemmas. These
approaches will not used directly Gleason’s theorem, which is a highly non-trivial
result.

1. INTRODUCTION

The Gleason theorem® is the corner-stone of measurement theory in
quantum mechanics. It says, that if the quantum mechanical system can be
described by a Hilbert space of dimension at least three, then any state of
the physical system corresponds to von Neumann operator. The original
proof of this theorem is highly non-trivial, and only after 30 years later a
simpler proof using also Piron’s geometrical lemma [ Ref. 2, pp. 75-78] was
present by Cooke et al.®

Today Gleason’s theorem is used in quantum measurement as well as
in mathematics. Dvuredenskij is the author of a monograph,® where there
are described plenty of applications of Gleason’s theorem to different areas
of mathematics.
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Plenty of authors was trying to simplify the proof of Gleason theorem.
One of very perspective methods is Piron’s geometrical lemma which gives
particular but physically very important results. Such a way was used, e.g.,
by Calude er al.® A different type of geometrical reasoning was used by
Specker,® Kochen and Specker,” and Bell.®®

In connection with Kochen—Specker argument, it seems that there are
some arguments to prove some particular cases using only Piron’s lemma,
e.g., the non-existence of two-valued states on the three-dimensional Hilbert
space. In the present paper, we give two particular forms of Piron’s
geometrical lemmas. A different type of geometrical reasoning was used by
Bell to prove the non-existence of two-valued states [ Ref. 8, pp. 450-451].

From a physical point of view, the non-existence of two-valued
measures indicates that there cannot be “elements of physical reality”®
which are independent of the particular measurement context. To state
these physical consequences pointedly, let us (wrongly) assume that there
indeed exists a “hidden arena” behind the quantum phenomena. Let us
further assume that this “hidden arena” behaves classically in the sense that
any conceivable logical property is either true or false, formalized by 1 and 0,
respectively. A proper formalization of “classical arena” is a Boolean algebra,
which possesses a full, separating and unital set of two-valued measures.
The connection between the quantum phenomena and the “hidden arena”
can then be identified with an injective partial lattice homomorphism
(preserving the lattice operations only among commensurable observables).

Classically, it almost goes without saying that any such logical prop-
erty can be either true or false independent of the “measurement context”
Redhead;'? ie., independent of which properties are measured alongside
with it. Thus a necessary condition for any such classical “hidden arena” to
exist is the possibility to define a two-valued measure on it, which should
be directly reflected by a two-valued measure on its associated quantum
logic via the injective partial lattice homomorphism.

Non-existence of two-valued measures on certain quantum logics
indicates a breakdown of the ideas reviewed above of a straightforwardly
conceivable “classical arena” together with its connection to the quantum
phenomena by injective partial lattice homomorphisms. In particular, it
can no longer be stated that physical properties exist independent of the
actual way by which they are inferred.

The above results and interpretations do not exclude more general,
weaker types of connections,® 'V as well as the possibility of nonsingular,
non two-valued measures.

We apply the geometrical method of Piron to two-valued measures
on infinite-dimensional Hilbert space, as well as to the description of all
infinite-valued measures on Hilbert-space quantum logic.
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2. PIRON’S GEOMETRICAL LEMMAS

The corner-stone of Gleason’s theorem is concentrated on the real
three-dimensional case of the Hilbert space H=R3 First we introduce
some terminology of spherical geometry.

Let #(R?) be the unit sphere in R>. If p and ¢ are two vectors in
F(R?), the angle between them is denoted by 0(p, g). For the point p of
the unit sphere . (R3), we define the northern hemisphere relative to p, N i
as the set of all points ¢ .%(R?) such that 0 <6(p, q) <nr/2; the point p
is the north pole of N,. The equator relative to p is the set E, of all unit
vectors orthogonal to p.

Let ge N,, then g # p. Among the great circles which pass through the
point ¢ there is a unique one whose plane cuts the equator E, at the points
which are orthogonal to ¢. We denote this great circle C(q). Then ¢ is the
northern-most point on C(g) whose latitude a, 0 <a <7/2, is the greatest
among all the points in C(g). In addition, any point § € C(g) has a latitude
from the interval [ —a, o ].

We say that a vector p in the northern hemisphere can be reached from
a vector ¢ in the same hemisphere, if there is a finite sequence of vectors
qo:=¢, 41, 4, := p in the northern hemisphere such that ¢, C(g;_,) for
i=1,.,n

We now present two forms of Piron’s geometrical lemmas which we
apply in our considerations. Their proofs can be found in Ref. 2, pp. 75-78
(we recall that the first result is used to prove the second one).

Lemma 2.1 (Weak Piron’s Geometrical Lemma). Let p be and ¢ be
two unit vectors in the northern hemisphere such that p lies in the region
between C(q) and the equator. Then there is a vector §e C(g) from the
northern hemisphere such that p e C(g).

Lemma 2.2 (Piron’s Geometrical Lemma). If p and ¢ are unit vectors
in the northern hemisphere with «, <«,, where «, and «, are the latitudes
of p and ¢, then p can be reached from g¢.

These results have been formulated by C. Piron,® pp. 75-78 (see also
Cooke et al.,® Kalmbach,'® Dvuredenskij), and they were applied by
Cooke et al® as a one to present a more simpler proof of the original
Gleason theorem. Weak Piron’s Geometrical Lemma has been used by
Calude et al.® to prove the non-existence of two-valued measure on
Z(R?) using topological arguments.

In what follows, we present some applications of these lemmas to
different situations of two-valued measures and infinite-valued measures.
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3. TWO-VALUED MEASURES

Let H be a real, complex, or quaternion Hilbert space with an inner
product (-, - ). We denote by Z(H) the system of all closed subspaces of H.
For a given Me #¥(H), M*:={xeH:(x, y)=0 for any ye M}. Then
L(H) is a complete orthomodular lattice. By @, M, we denote the joint
of a system { M,}, of mutually orthogonal subspaces of H. By sp({x,},) we
mean the span generated by the system of vectors {x,},.

A mapping m: ¥(H) — [0, 1] such that

m(H)=1 (3.1)

(@ ,)= 3 mio, (32)

teT teT

is said to be a finitely additive, o-additive, or completely additive measure on
Z(H) if (3.2) holds for any finite, countable or arbitrary index set 7. If the
dimension of H is finite, the g-additivity, or the complete additivity are
superfluous, and we shall say in this case that m is a measure.

We recall that Gleason” proved that if H is a separable real or com-
plex Hilbert space of dimension at least three, then there is a one-to-one
correspondence between g-additive measures m on ¥(H) and Hermitian
positive operators 7 on H of trace 1 which is given as follows

m(M)=t(TP,), MeZ(H) (3.3)

where P,, denotes the orthogonal projector from H onto M.

The first application of Piron’s Geometrical Lemmas gives the following
result without using Gleason’s theorem and which has serious physical conse-
quences. We prove the result using both geometrical lemmas to present them.

Theorem 3.1. On #(R3) there is no two-valued measure.

Proof 1 (Application of Weak Piron’s Geometrical Lemma). Sup-
pose that m is a two-valued measure. Choose a unit vector p in R such that
m(sp(p))=1. Consider p as the north pole; the equator is determined by
P:=sp(p)*.

Let C(p) be the great circle passing through p and the vectors
(—1,0,0) and (1,0, 0), i.e., it lies in the plane “y =0.” On this circle, one
of the vectors (v/2/2,0,/2/2) and (—./2/2,0,/2/2), say p;=(:/2/2, 0,
ﬁ/2), determines a one-dimensional subspace of measure 0. Applying
Weak Piron’s Geometrical Lemma, we see that all vectors of the northern
part lying in the region between C(p,) and the equator determine one-
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dimensional subspaces of measure 0. Therefore, there is a greatest latitude
o with /4 <a < 7/2 such that all vectors of northern hemisphere lying on
C(p) with a positive xth coordinate have a latitude less than « and
simultaneously they determine one-dimensional subspaces of measure zero.

Similarly, there is a least latitude f with —n/4 < <0 such that all
vectors of C(q) having a positive xth coordinate have a latitude greater
than f and simultancously they determine one-dimensional subspaces of
measure zero.

Consequently, the circle C(p) is divided into four connective arcs each
of length 7/2 such that all vectors of any arc determine subspaces of the
same measure.

One of border points has to determine a one-dimensional subspace of
measure 1; it is now our new north pole. We can assume that we have now
a new orientation of the sphere such that the north pole has a coordinate
(1,0,0), and the vector (1,0, 0) is a border point among arcs determining
a one-dimensional subspace of measure 0.

We choose in the northern hemisphere two open parts, the right half
S :={qe L (R*) :¢q,>0,q.>0} and the left half S, := {ge #(R?): ¢, <0,
q.>0}. Applying Weak Piron’s Geometrical Lemma, we can see that all
vectors from S, determine one-dimensional subspaces of measure 0.

On the other hand, any vector ¢ =(q,, g,, ¢.) €S, determines a one-
dimensional subspace of measure 1. Indeed, the vector ¢ together with the
vector (¢, —4q., 0)/«/q§+q§ in the equator and with the vector (—g¢,,
—4y, (43 +43)/4:-//1(— 4, — 4y, (a5 +¢3)/q.)| in S, forms an orthonormal
basis. Consequently, ¢ determines a subspace of measure 1.

Choose now three orthonormal vectors ( — 3, l/ﬁ, (=3, — 1/\/5, D
and (l/ﬁ, 0, l/ﬁ) we see that the first two lie in the left half and the
third one in the right half, which gives a contradiction.

Proof 2 (Application of Piron’s Geometrical Lemma). Suppose the
converse. Let m be a two-valued measure on #(R?). Then there is a unit
vector p in R such that m(sp(p))=1 and m(P)=0, where P=sp(p)™.
Consider p as the north pole; then P passes through the equator E,.

Take two mutually orthogonal vectors in the northern hemisphere
whose latitude is a« = z/4. Then one of them, denote it ¢, determines a one-
dimensional subspace Q of measure 0. Let C(g) be the great circle contain-
ing ¢ and vectors from Q* n P. Therefore any point § e C(g) determines a
subspace of measure 0.

If now § is a unit vector from the northern hemisphere belonging to
C(g), similarly as for C(g), we can show that any vector from C(§) deter-
mines a one-dimensional subspace of measure zero. Applying Piron’s
Geometrical Lemma, we can show that any unit vector of the northern
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hemisphere whose latitude is less than n/4 determines a one-dimensional
subspace of R*® of measure zero. Consequently, that holds for any unit
vector in R*® whose latitude is from the interval (—n/4, n/4).

Without loss of generality we can suppose that the vector ¢ lies in the
plane “y =0 with a positive xth coordinate, i.e., ¢ = (ﬂ/Z, 0, ﬂ/Z), and
take a unit vector ¢, from the northern hemisphere with the coordinate
(—ﬁ/Z, 0, 1/2), and let C(gq,) be the great circle passing through ¢, and
Pnsp(q,)*. It determines a new two-dimensional space P’ of measure-
zero, and suppose that C(g,) is now a new equator with the vector ¢ in
its new northern hemisphere. The latitude of ¢ with respect to P’ is now
/4 + /6 = Sn/12.

Repeating the previous process with ¢ and P’, we obtain that all vectors
whose latitude is from the interval (—57/12, 57/12) determine one-dimen-
sional subspaces of finite measure which gives that R* has measure 0 which
is a contradiction. O

It is easy to see that if dim H =2, there is plenty of two-valued
measures on ¥ (H).

Corollary 3.2. Let H be a complex, or quaternion three-dimensional
Hilbert space. Then on #(H) there is no two-valued measure.

Proof. Choose a unit vector ¢ and three mutually orthogonal vectors
Po» P1» P2 such that g L po, py, p,. Define p,=1(¢, p))| =" (¢, p;) pi» i=0,
1,2. Then ¢=32_,(q, p;) p: and (g, p;) € R for any i=0, 1, 2. Define the
three-dimensional real vector space M generated by p,, p;, p,. Then ge M,
and the restriction of (-, -) onto M x M attains only real values. The
measure m on ¥ (H) determines a unique measure /i on (M) in such a
way that m(spg(r)) =m(sp(r)) for any unit vector r in M, where spg
denotes the span over the real field.

Then 71 is a two-valued measure on the three-dimensional real Hilbert
space M which contradicts Theorem 3.1. O

The non-existence of any two-valued measure in the finite-dimensional
case entails that there must exists a finite number of subspaces for which
it is impossible to define a nontrivial two-valued measure. This follows
from the compactness of the space of all functions having the values 0 or
1 on subspaces of the space R>. Kochen and Specker” have found such a
construction for 117 vectors and Alda®® for 90 vectors. Recently Peres(!¥
produced an elegant proof of 33 vectors in R>.

Let S be now a real, complex, or quaternion Hilbert space with an
inner product (-, ). For any M =S, we put M*={xeS:(x, y)=0 for
any ye M}.
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We denote by F(S) the set of all orthogonally closed subspaces of S,
i.e., of all subspaces M < S such that M+ = M, and by E(S) the set of all
splitting subspaces of S, i.e., of all M = S such that M + M+ =S. Then F(S)
is a complete orthocomplemented lattice with respect to the set-theoretic
inclusion which is not necessary orthomodular, ie., if M =N, then N=
M v (N M%), On the other hand, E(S) is an orthomodular poset which
is not necessary a complete lattice. We have E(S) < F(S), and the equality
E(S)=F(S) holds iff S is complete, i.e., iff S is a Hilbert space (see Ref. 4,
Sec. 4.1).

A finitely additive measure on E(S), respectively on F(S), is a mapping
m: E(S)— [0, 1] such that m(S)=1, and m(M v N)=m(M )+ m(N) when-
ever M and N are mutually orthogonal. On E(S) there is plenty of finitely
additive measures, e.g., given a unit vector x in S, the mapping m,: M +—
[xa 1% where M e E(S) and x=x,,+ Xp1, Xpy€M and x,pe M™*, is a
finitely additive measure. On the other hand, on E(S) there is a completely
additive measure iff S is complete [ Ref. 4, Thm. 4.2.87]. We recall that there
is an open problem whether does exist at least one finitely additive measure
on F(S).

Another application of Piron’s Geometrical Lemma is to the space
F(S) which generalizes a result of Alda."*> Alda proved originally this
result using Gleason’s theorem. Below we present this result using Piron’s
Geometrical Lemma.

Corollary 3.3. Let S be a real, complex, or quaternion inner product
space of dimension at least three. Then there is no two-valued finitely
additive measure on F(S). In particular, there is no two-valued finitely
additive measure on the lattice of all closed subspaces of a Hilbert space
over R, C or the quaternion field.

Proof. 1f S is finite-dimensional, the assertion follows from Corollary 3.2.

Let dim S = oo. Choose a maximal orthonormal system {x;},.;in S.
We express the index set 7 in the form of a union of mutually disjoint three-
element sets Iz, ie., I={Jz1;5. Let H; be the three-dimensional Hilbert
space over the same field as S. Given f, choose a unitary operator Ug:
Hy;— Sy=sp({x,:iely}) and define the mapping U: L(H;) - Z(S) as
follows

UM):=@ UyM), Me ¥(Hj3)
B

We recall that @ denotes here the joint of mutually orthogonal elements
taken in F(S). Then M LN iff UM) L U(N), and then UM+ N)=U(M)
+ U(N), UH;)=S.



1744 Chevalier, Dvurecenskij, and Svozil

Suppose that m is a two-valued measure on F(S). Then my: L(H;) —
{0, 1}, defined via m (M) =m(U(M)), M € £ (HS,), is a two-valued measure
on Z(H,) which is by Corollary 3.2 impossible. O

Recently Ptak and Weber(!®) have constructed an inner product space
S such that E(S) consists of all finite- and cofinite-dimensional subspaces
of S. Such E(S) is then a lattice and of course there exists a two-valued
measure m on this E(S) defined by m(X)=1 if and only if X is a cofinite-
dimensional subspace. On the other hand, we can show that on E(S),
dim S #2, there is no two-valued completely additive measure, because the
existence of a completely additive measure on E(S) entails the complete-
ness of S which would be imply that on the Hilbert space S there exists a
two-valued measure [Ref. 4, Thm. 4.2.3] which is absurd.

4. MEASURES WITH INFINITE VALUES

Besides finite measures, in Hilbert space quantum mechanics we can
meet measures attaining infinite values. For example,

m(M):=dim(M), Me Z(H)

is one of such measures. Integrating quantum mechanical observables
through finite measures we can obtain measures which attain improper
value, e.g.,

m(M):=tr(T(Py A+ AP,))2, Me Z(H)

can be regarded as the integral of the form |,, x , dmy, where 4 and x , are
observables corresponding to a Hermitian operator (in general a self-
adjoint operator) 4 in H, and m is a g-additive measure on #(H) deter-
mined by 7 via (3.3).

For our aims we do not limit ourselves only to positive measures on
Z(H). A mapping m: L(H)>RuU{—o0} u{+o0} such that

m(0)=0 (4.1)
m<€i—) M,>= Y m(M,) (4.2)

where O is the null-space of H, is said to be a finitely additive, o-additive,
or completely additive measure on ¥(H) if (4.2) holds for any finite, count-
able or arbitrary index set 7. It is possible to show that m attains from the
improper value + oo at most one.
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The first description of measures with infinite values on #(H) is given
by Lugovaja and Sherstnev.!'” The following lemma is of similar impor-
tance as that for finite measures in Gleason’s proof. Here we present it
proving it in a different way as in the original (see Ref. 17; or Ref. 4,
Lem. 3.4.2), namely, we use Piron’s Geometrical Lemma.

Lemma 4.1 (Lugovaja-Sherstnev). Let m: Z(R3) - (—o0, + ] be
a finitely additive measure with m(R?) = oo, and let Q and P be one- and
two-dimensional subspaces of R?* of finite measure. Then Q < P.

Proof. 1If Q< P, we are ready. Suppose thus that Q £ P. It is clear
that Q L P. Denote by .#(R?) the unit sphere in R* and suppose that P
determines the equator. Choose a unit vector ¢ in Q supposing that ¢
belongs to the northern hemisphere, i.e., its latitude a with respect to P
satisfies 0 <a < 7/2, and let C(q) be the great circle determined by ¢ and
by an orthogonal vector ¢, from P n Q*. Then sp(q, ¢,) is of finite measure,
so that any vector §e C(g) lying in the northern hemisphere determines a
subspace of finite measure. By the same way as for C(¢) we can show that
any point from the northern hemisphere belonging to C(§) determines a
one-dimensional subspace of finite measure.

Using Piron’s Geometrical Lemma, we see that any unit vector of the
northern hemisphere whose latitude is less than a determines a one-dimen-
sional subspace of finite measure.

Consequently, all unit vectors whose latitude is from the interval
(—oa, o) determines a one-dimensional subspace of finite measure.

If «>mn/4, we obtain the contradiction. Otherwise, we continue as
follows. Without loss of generality we can assume that vector ¢ lies in the
plane “y=0," ie, ¢=(q,,0,¢,), where ¢,>0, ¢,>0, and sina=gq,.
Choose now a unit vector p in the northern hemisphere such that p=
(Px, 0, p.) and p, <0, p,=sin 2a. Then the great circle C(p) determines a
new two-dimensional space P, of finite measure, and we shall suppose that
P, determines a new equator with the vector ¢ in its northern hemisphere.
The new latitude of ¢ with respect to P; is o’ =a + 2o = 2a. Repeating all
above considerations, we can show that all unit vectors whose latitude is
from the interval (—a', a) =(—2a, 2a) determine a one-dimensional sub-
space of R? of finite measure.

Repeating this process sufficiently many times, we can found the least
integer n such that ()"« >n/4, and, in addition, we can found a two-
dimensional subspace P, of R* such that the latitude of ¢ relative to P, is
greater than n/4. Therefore, all vectors in %(R?) determine one-dimen-
sional subspaces of finite measure which is a contradiction with the
hypothesis that m(R?) = co. O
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Corollary 4.2. Let H be a complex, or quaternion three-dimensional
Hilbert space. Let m: ¥(H)— (— o0, + 00 ] be a finitely additive measure
with m(H) = oo, and let Q and P be one- and two-dimensional subspaces
of H of finite measure. Then Q = P.

Proof. 1t is clear that Q L P.

Choose a unit vector ge Q and three mutually orthogonal vectors
Pos P1» P» such that py L P, p,, p,eP and q .t p,y, p,, p,. Define p,=
(g, p)I ="' (g, pi) pir i=0,1,2. Then ¢=37_, (¢, p;) p; and (g, p;) € R for
any i =0, 1, 2. Define the three-dimensional real vector space M generated
by po, P1» P2. Then ge M, and the restriction of (-, -) onto M x M attains
only real values. The measure m on #(H) determines a unique measure 7
on #(M) in such a way that mi(spr(r)) =m(sp(r)) for any unit vector r
in M, where spy denotes the span over the real field.

Then /(M) = oo, and 71(Q) and 7i(P) are finite, where O and P are
real subspaces of M generated by ¢ and p,, p,, respectively. Applying
Lemma 4.1, we have ge O < P such that ge P, and Q < P. O

Corollary 4.3. Let H be a real, complex, or quaternion Hilbert space,
3<dim H=n< oo, and let m be a finitely additive measure on £ (H) with
m(H)=oo. If P and Q are two subspaces of H of dimension n—1 and 1,
respectively, and of finite measure, then Q = P.

Proof. 1f dim H =3, the assertion follows from Corollary 4.2. Sup-
pose thus that dim H > 3. Then dim(Q' n P)>2 and there exists a unit
vector y,€Q+nP, ie, y;, L O, y, L P, and dim(Q v P+ v sp(y,)) =3.
Hence

m(Q v P~ v sp(y,)) =0

In addition, dim((Q v P* v sp(y,)) N P)=2.

We assert that Q < P. If not, then there exists a unit vector y, L y;
belonging to (Q v P v sp(y,))nP such that Qv (sp(y,, ¥,))=0 v
P+ v sp(y,). Using Corollary 4.2, we have m(Q v P+ v sp(y;))<oo. O

Corollary 4.4. Let H be a real, complex, or quaternion finite-dimen-
sional Hilbert space. Let m be a finitely additive measure on ¥ (H), and let
M be a two-dimensional subspace of finite measure. Denote by

D(m) :={xeH :m(sp(x))< o0} (4.3)

Then D(m) is a linear submanifold of H.
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Proof. 1t is clear that M < D(m). Take two linearly independent
vectors x and y from D(m). If x¢ M, then dim(M v sp(x))=3 and
m(M v sp(x)) < oo by Corollary 4.3. If ye M v sp(x), then x+ y e D(m).
Otherwise, let y¢ M v sp(x). Then 3 <dim(M v sp(x, y)) <4, and by
Corollary 4.3, m(M v sp(x, y)) < oo, which proves x + y e D(m). O

For the reader’s convenience we present the following example to
illustrate Corollary 4.4.

Let 4 be a set of one-dimensional subspaces in a real, complex, or
quaternion finite-dimensional Hilbert space H. If two elements of A are
never orthogonal, we can define a measure m on ¥ (H) by:

0 if Ped or P={0}
0 otherwise

mp)={

In this case D(m)=)p.4 D. Thus D(m) is not a subspace and m is not
defined as in the previous Corollary 4.4.

Corollary 4.5. Let H be a real, complex, or quaternion finite-dimen-
sional Hilbert space. Let m be a finitely additive measure on Z(H), and let
there be a two-dimensional subspace of finite measure. Then there is a finite
measure m, on .#(D(m)) such that

% if Mg D(m)

m(M)= {mO(M) it M<D(m)

Conversely, if m, is a finite measure on #(M,), where M, is a sub-
space of H, then the mapping m defined on #(H) via

o0 if MZM,

m(M) = {mO(M) it McM,

defines a measure on #(H). In addition, if M, is at least a two-dimen-
sional subspace, then D(m)= M,.

Proof. 1Tt follows from Corollary 4.4. O

Corollary 4.6. Let m be a finitely additive measure on Z(H),
dim H < oo, such that there is a three-dimensional subspace of finite
measure. Then there is a unique Hermitian trace operator 7,, on D(m)
such that

BE: if Mg D(m)
( )_{tr(TmPM) if M<D(m)
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Proof. 1t follows from Corollary 4.5 and the classical Gleason
theorem. O

We say that a measure m is g-finite if there is a sequence of mutually
orthogonal subspaces {M,}, with @, M,=H such that m(M,) < o for
any n > 1. Lugovaja and Sherstnev!”) (see also Ref. 4, Thm. 3.4.8) presented
the generalization of Gleason’s theorem for o-finite measures with infinite
values. They argued as follows: D(m) is a linear submanifold dense in H.
There is a Hermitian bilinear form ¢ with D(¢) = D(m) which is defined via
tx, x):= || x| m(sp(x)), xe D(m). Given M e #(H), we define to P,, as a
bilinear form such that D(7¢ P,,)={xe H: Py xe D(m)}, and (o P,)(x, X)
=t(Pyx, Ppyx). If toP,, is a bounded bilinear form determined by some
trace operator T,, on H, we say that to P,,e Tr(H), where Tr(H) is the
system of all Hermitian trace operators on H, and write tr(zoP,,) =
tr(T,,). This, roughly speaking, proves the following result (for details see
Ref. 17; or Ref. 4, Thm. 3.4.8; in the second paper there are also some
generalizations of this result).

Theorem 4.7. Let H be a separable infinite-dimensional Hilbert space.
Let m be a o-finite g-additive measure on .#(H ). Then there exists a unique
symmetric bilinear form 7 with domain D(z) dense in H such that

(oo it 0P, ¢ Tr(H)
m( )_{tr(TmPM) if toP, e Tr(H)

5. BELL’S GEOMETRICAL LEMMA

J. Bell, the author of the well-known Bell inequalities, in his paper®
on the problem of hidden variables in quantum mechanics, was interesting
in Gleason’s theorem which in the particular case of H = R? entails that on
Z(R?) there is no two-valued measure. He was looking for a simpler proof
of Gleason’s theorem, and about his effort the following anecdote,!® [ Ref. 4,
p- 1307 is told: When J. Bell became familiar with the Gleason result, he
said that either he would find a relatively simpler proof, or he would leave
from this area. Fortunately, he found a relatively simple proof of the partial
result® that there is no two-valued measure on Z(R?). Below we present
a modification of his proof, and we apply it also for measures with infinite
values. It is worthy to recall that it holds for any finitely additive measure
on any #(H), dim H > 3.
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Lemma 5.1 (Bell’'s Geometrical Lemma). Let m be a finite finitely
additive measure on Z(R?). Let P and Q be two one-dimensional sub-
spaces of measure 1 and 0, respectively. Then, for the angle p between P
and Q, we have p > arc tan 1/2.

Proof. 1f P and Q are orthogonal, the statement is evident. Let now
P 1 Q. Choose a non-zero vector g€ Q and let p and p, be the projections
of g onto P and P*+. Then p, #0 # p, and dividing p, g, p, by |p|l, we can
assume that ¢ is chosen in such a way that |p|| =1, and that p and ¢ lies
in the same hemisphere determined by P*. Then ¢= p+ p,, and let us
express p; in the form p, =¢p’, where p’ is a unit vector and ¢> 0. Then
g=p+ep' and tan p =e.

Let p” be a unit vector orthogonal to both p and p’, and so to g.
Therefore,

Since ¢ L p”, we have
m(sp(q+y~'ep")) =0
where y is a real number. Therefore,
m(sp(—ep’+yep”)) =0

The vectors g+ 7y 'ep” and —ep’ + yep” are mutually orthogonal, so we
may add them, and we have

m(sp(p+e(y+77") p") =0
Now if ¢ < 1/2, there are real numbers y such that
sy +yH=+1
Therefore,
m(sp(p+p")) =0=m(sp(p—p"))

The vectors p + p” and p — p” are orthogonal. Adding them, we obtain
m(sp(p)) =0 which is a contradiction. O

Using Piron’s Geometrical Lemma, we can strengthen Lemma 5.1.
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Lemma 5.2. Let m be a finite finitely additive measure on ¥ (H),
dim H > 3. If P and Q are one-dimensional subspaces of measure one and
zero, then P L Q

Proof. Suppose that H = R>? We claim that Q < P*. When we use the
proof of Lemma 4.1, changing measure of infinite or finite values to
measure one or zero, respectively, we can show that Q < P~

If H is arbitrary, we define a three-dimensional subspace containing
P, Q and a one-dimensional subspace orthogonal to both P and Q, which
according to the first step proves that Q < P*. O

We have seen that if 3 <dim H < oo, then on #(H) there is no two-
valued measure; in any rate, there is a measure with n+ 1 values, namely
m(M):=dim M/n, M e ¥(H).

Applying Lemma 5.1, we have another proof of Theorem 3.1.

Corollary 5.3. On Z(R?) there is no two-valued measure.
Proof. 1t is an easy consequence of Bell’s Geometrical Lemma. [

The ideas of Bell’s Geometrical Lemma can be applied also for
measures with infinite values to obtain a weaker form of Lemma 4.1.

Lemma 5.4. Let m be a measure on Z(R?). Let P be a one-dimen-
sional subspace of infinite measure such that m(P*) is finite. Then, for any
one-dimensional subspace Q of finite measure, we have p > arctan 1/2,
where p is the angle between P and Q.

Proof. 1If P L Q, the statement is evident. Otherwise, suppose P L O,
and let pe P, p' € P*, and g € O be chosen in the same way as in the proof
of Lemma 5.1, i.e., ¢=p+&p’, where tan p =e.

Let p” be a unit vector orthogonal to both p and p’, and so to gq.
Then p”eP*, so that m(sp(p’)) and m(sp(p”)) are finite. Similarly
m(sp(q+7y~'ep")), where y is a real number, and m(sp(—ep’ + yep”)) are
also finite. Consequently, m(sp(p +e(y+y~') p”)) is finite.

Supposing ¢ < 1/2, there are real numbers y such that g(y +y~!)= +1.
Therefore, m(sp(p+ p”)) and m(sp(p— p")) are both finite. Adding
orthogonal vectors p + p” and p — p”, we obtain that m(sp(p)) is of finite
measure which is absurd. Therefore, tan p > 1/2. O

We recall that the assumption m(P~)is finite is essential in our con-
siderations, because there are measures m on Z(R*) with m(R?) = oo
which have not this property (compare with Lemma 4.1 and Corollary 4.5).
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6. PARABOLA BASED GEOMETRICAL LEMMA

In the present section, we show a parabola based proof of a new
geometrical lemma which entails both Weak Piron’s Geometrical Lemma
and Bell’'s Geometrical lemmas.

Let D be a one-dimensional subspace of R* and let Oxyz be Cartesian
coordinates* such that D= 0Oz and D+ =x0y. Let H be the plane z=1,
N be the point (0,0, 1) and @={(0, y,z)eR*: yz>0 or (y,z)=(0,0)}.
Notice that any line contained in @ is a one-dimensional subspace of R>.
For the line 4 c @, « is the angle between Oy and 4, V=4Il and T is
the intersection of /7 with the plane defined by the lines Ox and 4. Notice
that T is parallel to Ox and so NV L T.

We consider the parabola £ in the plane /7 determined by the focus
N and the vertex V. Remark that 7 is the tangent to £ at the vertex V. We
recall that the orthogonal projection of the focus of a parabola on a
tangent belongs to the tangent at the vertex and that any point in the
exterior of a parabola belongs to some tangent.

Lemma 6.1. Let m be a finitely additive measure on #(R3) and
I'c @ be a one-dimensional subspace. The point I"n I7 is denoted by P.

1. Assume that m(R*) =1, m(D)=1, m(4)=0. If P belongs to the
exterior of the parabola £ then m(I")=0.

2. Assume that m(R?) = oo, m(D) = o0, m(D*) < o, m(4) < oo. If P
belongs to the exterior of the parabola 2 then m(I") < 0.

Proof. (See Fig. 1.) (1) As 4 L Ox, any subspace of the plane defined
by 4 and Ox is of measure 0. If Pe 7T then P belongs to the plane defined
by Ox and 4 and thus m(I')=0. Now assume that P belongs to the
exterior of #, P¢ T. If a tangent to £ containing the point P meets T at
QO then PQ L NQ. We have also PQ L Oz and thus PQ is orthogonal to the
plane ONQ and so PQ 1L OQ. Let L=0PQ n xOy. The lines L and PQ are
parallel and m(L)=0. Since m(OQ)=0 and OQ 1 L, we have m(I")=0.

(2) We keep the same notations. Any subspace of the plane defined
by 4 and Ox is of finite measure and so m(0OQ)< oo. We have also
m(L) < oo and thus m(I") < oo. O

Remark 6.2. (1) If the point P belongs to the half plane of /7 limited
by T and which does not contain N, then m(OP)=0 if m satisfies the

4We recall that the orientation of the coordinatization is different of that used in previous
parts.
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Fig. 1.

hypotheses of the part (1) of Lemma 6.1 and m(OP) < oo if m satisfies the
hypotheses of part (2). We have proved Weak Piron’s Geometrical Lemma.

(2) Let Nx'y" be Cartesian coordinates in /7 with Ox | Nx' and
Oy | Ny' (see Fig.2). The equation of 2 is ' = —[x'%/(4 cota)] + cot a
since the distance between the focus N of £ and its directrix is p =2NV =
2cota. Let P=(2cota,0,1) and Q=(—2cota, 0, 1) the points of the
intersection of 2 with the x'-axis. We have tan NOP= NP =2cota and
thus POQ<x/2 if and only if cota<1/2 which is also equivalent to
tan(D, 4) < 1/2. If POQ < /2, let P' and Q' be the points of I7 with coor-
dinates (1,0, 1) and (—1, 0, 1). These points belong to the exterior of the
parabola £ and OP' L OQ', OP' 1L Oy, OQ' L Oy. If m is a finitely additive
measure with m(D) =1, m(4) =0 then, by the previous lemma, m(Oy) =
m(OP')=m(0OQ')=0 which is absurd. The conclusion is the same if
m(D) = oo, m(D") < oo, m(4) < oo and, in the two cases, tan(D, 4) > 1/2 is
necessary. We have obtain a new proof of Bell’s Geometrical Lemma.

Corollary 6.3. Let m be a finitely additive measure on .Z(R?) with
values in [0, 1]. If D is a one-dimensional subspace of measure 1 then, for
any one-dimensional subspace D’ of measure 0, D' = D*.

Proof. (See Fig.2.) If D' ¢ D*, we can assume that D' = ®. Let
a=V {(D",Op):D" is a line in @, m(D")=0}. By (2) of Remark 6.2,
a<m/2 and by hypothesis, «>0. Let 4 be the line in & such that

(Oy, 4) =a and its associated parabola #. Notice that if a point P¢ %
belongs to the exterior of £ then m(OP)=0. For any ¢€ (0, n/2 —a), let 4,

be the line in @ such that (m) =a+¢. Denote by T, the intersection
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Fig. 2.

of IT with the plane defined by Ox and 4, and let I, be the orthogonal sub-
space of this last plane. For any &, m(4,) >0 and thus m(I",) < 1.

Let 4, and B, be the points of the intersection of 7, and £ and let us
denote by C, the intersection of 7, and 4,. We have lim, _, ((4,B,/0C,) =0
and, as tan(C,04,)=1/2(A4,B,/OC,), the angle between OA4, and OB, is
arbitrary small. Thus, there exist ¢ >0 and two points X and Y on 7, such
that X, Y¢[A4,, B,] and OX 1L OY. We have m(OX)=m(0Y)=0 and, as
I, is orthogonal to the plane XOY, m(I",) <1 is absurd and D' D+. O

Corollary 6.4. Let m be a finitely additive measure on Z(R?*) such
that m(R*) = oo. If there exist a one-dimensional subspace D with m(D)
= o0 and m(D*') < oo then D* contains any subspace of finite measure.

Proof. The proof is very similar to the proof of Corollary 6.3. Assume
that there exists a one-dimensional subspace D’ such that m(D') < oo and
D' ¢ D*. We can suppose D' = ®. Let a=V {(D", Oy): D" is a line in @,
m(D") < o0}. By (2) of Remark 6.2, a <7z/2 and by hypothesis, a > 0. We
can introduce the line 4 in @ such that (Oy, 4) =a and the parabola 2.
For any point P in the open exterior of 2, m(OP) < co. The notations
&4, T, A, B,, C, are defined in the proof of Corollary 6.3 and, for any
g, m(4,) = oo. As in this proof, lim, _, ((A4,B,/OC,) =0 and, as tan(C,04,)
=1/2(4,B,/OC,) the angle between OA, and OB, is arbitrary small and
there exist ¢ >0 and two points X and Y on T, such that X, Y¢[4,, B,]
and OX L OY. Now, we have m(OX )< oo and m(OY) < co. As 4, is con-
tains in the plan XOY, m(4,) = oo is absurd. Thus, we have D' = D*. O

Corollary 6.5. There exists no two-valued finitely additive measure
on Z(R3).

Proof. Assume that m is a two-valued finitely additive measure on
Z(R?). There exists a one-dimensional subspace D such that m(D)=1. By
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Corollary 6.3, all one-dimensional subspaces not contained in D+ are of
measure one and it is easy to find three of them which are pairwise
orthogonal. It is absurd. O

7. CONCLUSIONS AND OPEN PROBLEMS

We have applied simple arguments of Piron as well as of Bell to prove
the non-existence of two-valued states on the system of all closed subspaces
of a real, complex or quaternion Hilbert space of dimension at least three
without using Gleason’s theorem which is a highly non-trivial result. In
addition, we implemented these methods also for describing measures with
infinite values.

In the process of the implantation of Piron’s and Bell’s ideas, we have
found open these problems:

e Prove Lemma 5.2 using only Weak Piron’s Geometrical Lemma.

Pove Lemma 4.1 using only Bell’s Geometrical Lemma.

Let @ be the set of all rational numbers. Denote by #(Q3) the set
of all subspaces of @3. Does #(Q3) possess a two-valued state? Try
to examine that using geometrical methods.

Let Q7 denote the set of all infinite sequences ¢ =(q,, ¢2,...) of Q*®
such that ¢;=0 for all but finitely many i. We set L(Q/)=
(McQ/:M**=M}, and &Q)={McQ/:M+M*-=0Q7}.
Then &(Q7) is a proper subset of #(Q7). Does &(Q7) or £2(Q7)
possess a two valued stat ? Is it possible to show that or disprove
that using simple geometrical methods?

e Let R, be the set of all computable (recursively enumerable) reals.
Denote by Z(R?) the set of all subspaces of R}. Does Z(R?) pos-
sess a two-valued state?
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