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Abstract

Do the partial order and ortholattice operations of a quantum logic correspond to the
logical implication and connectives of classical logic? Re-phrased, how far might a classi-
cal understanding of quantum mechanics be, in principle, possible? A celebrated result by
Kochen and Specker answers the above question in the negative. However, this answer is just
one among different possible ones, not all negative. It is our aim to discuss the above question
in terms of mappings of quantum worlds into classical ones, more specifically, in terms of
embeddings of quantum logics into classical logics; depending upon the type of restrictions
imposed on embeddings the question may get negative or positive answers.

1 Introduction

Quantum mechanics is a very successful theory which appears to predict novel “counterintuitive”
phenomena (see Wheeler [50], Greenberger, Horne and Zeilinger [12]) even almost a century
after its development, cf. Schrödinger [42], Jammer [19, 20]. Yet, it can be safely stated that
quantum theory is not understood (Feynman [10]). Indeed, it appears that progress is fostered by
abandoning long–held beliefs and concepts rather than by attempts to derive it from some classical
basis, cf. Greenberger and YaSin [13], Herzog, Kwiat, Weinfurter and Zeilinger [18] and Bennett
[4].

But just how far might a classical understanding of quantum mechanics be, in principle, pos-
sible? We shall attempt an answer to this question in terms of mappings of quantum worlds into
classical ones, more specifically, in terms of embeddings of quantum logics into classical logics.

One physical motivation for this approach is a result proven for the first time by Kochen and
Specker [26] (cf. also Specker [43], Zierler and Schlessinger [52] and John Bell [2]; see reviews
by Mermin [32], Svozil and Tkadlec [48], and a forthcoming monograph by Svozil [46]) stating
the impossibility to “complete” quantum physics by introducing noncontextual hidden parameter
models. Such a possible “completion” had been suggested, though in not very concrete terms,
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by Einstein, Podolsky and Rosen (EPR) [9]. These authors speculated that “elements of physical
reality” exist irrespective of whether they are actually observed. Moreover, EPR conjectured, the
quantum formalism can be “completed” or “embedded” into a larger theoretical framework which
would reproduce the quantum theoretical results but would otherwise be classical and determinis-
tic from an algebraic and logical point of view.

A proper formalization of the term “element of physical reality” suggested by EPR can be
given in terms of two-valued states or valuations, which can take on only one of the two values
0 and 1, and which are interpretable as the classical logical truth assignmentsfalse and true,
respectively. Kochen and Specker’s results [26] state that for quantum systems representable by
Hilbert spaces of dimension higher than two, there does not exist any such valuations : L→{0,1}
defined on the set of closed linear subspaces of the spaceL (these subspaces are interpretable
as quantum mechanical propositions) preserving the lattice operations and the orthocomplement,
even if one restricts the attention to lattice operations carried out among commuting (orthogonal)
elements. As a consequence, the set of truth assignments on quantum logics is not separating and
not unital. That is, there exist different quantum propositions which cannot be distinguished by
any classical truth assignment.

The Kochen and Specker result, as it is commonly argued, e.g. by Peres [35] and Mermin [32],
is directed against the noncontextual hidden parameter program envisaged by EPR. Indeed, if one
takes into account the entire Hilbert logic (of dimension larger than two) and if one considers all
states thereon, any truth value assignment to quantum propositions prior to the actual measurement
yields a contradiction. This can be proven by finitistic means, that is, with a finite number of one-
dimensional closed linear subspaces (generating an infinite set whose intersection with the unit
sphere is dense; cf. Havlicek and Svozil [17]). But, the Kochen–Specker argument continues, it
is always possible to prove the existence of separable valuations or truth assignments for classical
propositional systems identifiable with Boolean algebras. Hence, there does not exist any injective
morphism from a quantum logic into some Boolean algebra.

Since the previous reviews of the Kochen–Specker theorem by Peres [34, 35], Redhead [38],
Clifton [6], Mermin [32], Svozil and Tkadlec [48], concentrated on the nonexistence of classical
noncontextual elements of physical reality, we are going to discuss here some options and aspects
of embeddings in greater detail. Particular emphasis will be given to embeddings of quantum uni-
verses into classical ones which do not necessarily preserve (binary lattice) operations identifiable
with the logicalor andandoperations. Stated pointedly, if one is willing to abandon the preser-
vation of quite commonly used logical functions, then it is possible to give a classical meaning to
quantum physical statements, thus giving raise to an “understanding” of quantum mechanics.

Quantum logic, according to Birkhoff [5], Mackey [28], Jauch [21], Kalmbach [23], Pulman-
nová [37], identifies logical entities with Hilbert space entities. In particular, elementary proposi-
tionsp,q, . . . are associated with closed linear subspaces of a Hilbert space through the origin (zero
vector); the implication relation≤ is associated with the set theoretical subset relation⊆, and the
logical or ∨, and∧, andnot ′ operations are associated with the set theoretic intersection∩, with
the linear span⊕ of subspaces and the orthogonal subspace⊥, respectively. The trivial logical
statement1 which is always true is identified with the entire Hilbert spaceH, and its complement
/0 with the zero-dimensional subspace (zero vector). Two propositionsp andq are orthogonal if
and only ifp≤ q′. Two propositionsp,q are co–measurable (commuting) if and only if there exist
mutually orthogonal propositionsa,b,c such thatp = a∨b andq = a∨ c. Clearly, orthogonal-
ity implies co–measurability, since ifp andq are orthogonal, we may identifya,b,c with 0, p,q,
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respectively. The negation ofp≤ q is denoted byp 6≤ q.

2 Varieties of embeddings

One of the questions already raised in Specker’s almost forgotten first article [43]1 concerned an
embedding of a quantum logical structureL of propositions into a classical universe represented
by a Boolean algebraB. Thereby, it is taken as a matter of principle that such an embedding
should preserve as much logico–algebraic structure as possible. An embedding of this kind can be
formalized as a mappingϕ : L→ B with the following properties.2 Let p,q∈ L.

(i) Injectivity: two different quantum logical propositions are mapped into two different proposi-
tions of the Boolean algebra, i.e., ifp 6= q, thenϕ(p) 6= ϕ(q).

(ii) Preservation of the order relation: if p≤ q, thenϕ(p)≤ ϕ(q).

(iii) Preservation of ortholattice operations, i.e. preservation of the

(ortho-)complement: ϕ(p′) = ϕ(p)′,

or operation: ϕ(p∨q) = ϕ(p)∨ϕ(q),

andoperation: ϕ(p∧q) = ϕ(p)∧ϕ(q).

As it turns out, we cannot have an embedding from the quantum universe to the classical uni-
verse satisfying all three requirements (i)–(iii). In particular, a head-on approach requiring (iii) is
doomed to failure, since the nonpreservation of ortholattice operations among nonco–measurable
propositions is quite evident, given the nondistributive structure of quantum logics.

2.1 Injective lattice morphisms

Here we shall review the rather evident fact that there does not exist an injective lattice morphism
from any nondistributive lattice into a Boolean algebra. We illustrate this obvious fact with an
example that we need to refer to later on in this paper; the propositional structure encountered in
the quantum mechanics of spin state measurements of a spin one-half particle along two different
directions (modπ), that is, the modular, orthocomplemented latticeMO2 drawn in Figure 1 (where
p− = (p+)′ andq− = (q+)′).

Clearly,MO2 is a nondistributive lattice, since for instance,

p−∧ (q−∨q+) = p−∧1 = p−,

whereas
(p−∧q−)∨ (p−∧q+) = 0∨0 = 0.

Hence,
p−∧ (q−∨q+) 6= (p−∧q−)∨ (p−∧q+).

In fact,MO2 is the smallest orthocomplemented nondistributive lattice.

1In German.
2Specker had a modified notion of embedding in mind; see below.
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Figure 1: Hasse diagram of the “Chinese lantern” form ofMO2.

The requirement (iii) that the embeddingϕ preserves all ortholattice operations (even for
nonco–measurable and nonorthogonal propositions) would mean thatϕ(p−)∧ (ϕ(q−)∨ϕ(q+)) 6=
(ϕ(p−)∧ϕ(q−))∨ (ϕ(p−)∧ϕ(q+)). That is, the argument implies that the distributive law is not
satisfied in the range ofϕ. But since the range ofϕ is a subset of a Boolean algebra and for any
Boolean algebra the distributive law is satisfied, this yields a contradiction.

Could we still hope for a reasonable kind of embedding of a quantum universe into a classical
one by weakening our requirements, most notably (iii)? In the next three sections we are going
to give different answers to this question. In the first section we restrict the set of propositions
among which we wish to preserve the three operationscomplement′, or ∨, andand∧. We will
see that the Kochen–Specker result gives a very strong negative answer even when the restriction
is considerable. In the second section we analyze what happens if we try to preserve not all
operations but just the complement. Here we will obtain a positive answer. In the third section we
discuss a different embedding which preserves the order relation but no ortholattice operation.

2.2 Injective order morphisms preserving ortholattice operations among orthogo-
nal propositions

Let us follow Zierler and Schlessinger [52] and Kochen and Specker [26] and weaken (iii) by re-
quiring that the ortholattice operations need only to be preservedamong orthogonalpropositions.
As shown by Kochen and Specker [26], this is equivalent to the requirement of separability by the
set of valuations or two-valued probability measures or truth assignments onL. As a matter of
fact, Kochen and Specker [26] proved nonseparability, but also much more—thenonexistenceof
valuations on Hilbert lattices associated with Hilbert spaces of dimension at least three. For related
arguments and conjectures, based upon a theorem by Gleason [11], see Zierler and Schlessinger
[52] and John Bell [2].

Rather than rephrasing the Kochen and Specker argument [26] concerning nonexistence of
valuations in three-dimensional Hilbert logics in its original form or in terms of fewer subspaces
(cf. Peres [35], Mermin [32]), or of Greechie diagrams, which represent orthogonality very nicely
(cf. Svozil and Tkadlec [48], Svozil [46]), we shall give two geometric arguments which are
derived from proof methods for Gleason’s theorem (see Piron [36], Cooke, Keane, and Moran [7],
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and Kalmbach [24]).
Let L be the lattice of closed linear subspaces of the three-dimensional real Hilbert spaceR3.

A two-valued probability measureor valuationonL is a mapv : L→{0,1} which maps the zero-
dimensional subspace containing only the origin(0,0,0) to 0, the full spaceR3 to 1, and which
is additive on orthogonal subspaces. This means that for two orthogonal subspacess1,s2 ∈ L the
sum of the valuesv(s1) andv(s2) is equal to the value of the linear span ofs1 ands2. Hence, if
s1,s2,s3 ∈ L are a tripod of pairwise orthogonal one-dimensional subspaces, then

v(s1)+v(s2)+v(s3) = v(R3) = 1.

The valuationv must map one of these subspaces to1 and the other two to0. We will show
that there isno such map. In fact, we show that there is no mapv which is defined on all one-
dimensional subspaces ofR3 and mapsexactly one subspace out of each tripod of pairwise or-
thogonal one-dimensional subspaces to1 and the other two to0.

In the following two geometric proofs we often identify a given one-dimensional subspace of
R3 with one of its two intersection points with the unit sphere

S2 = {x∈ R3 | ||x||= 1} .

In the statements “a point (on the unit sphere) has value0 (or value1)” or that “two points (on the
unit sphere) are orthogonal” we always mean the corresponding one-dimensional subspaces. Note
also that the intersection of a two-dimensional subspace with the unit sphere is a great circle.

To start the first proof, let us assume that a functionv satisfying the above condition exists.
Let us consider an arbitrary tripod of orthogonal points and let us fix the point with value1. By
a rotation we can assume that it is the north pole with the coordinates(0,0,1). Then, by the
condition above, all points on the equator{(x,y,z) ∈ S2 | z= 0} must have value0 since they are
orthogonal to the north pole.

Let q = (qx,qy,qz) be a point in the northern hemisphere, but not equal to the north pole,
that is 0 < qz < 1. Let C(q) be the unique great circle which containsq and the points

±(qy,−qx,0)/
√

q2
x +q2

y in the equator, which are orthogonal toq. Obviously,q is the northern-

most point onC(q). To see this, rotate the sphere around thez-axis so thatq comes to lie in the
{y = 0}-plane; see Figure 2. Then the two points in the equator orthogonal toq are just the points
±(0,1,0), andC(q) is the intersection of the plane throughq and(0,1,0) with the unit sphere,
hence

C(q) = {p∈ R3 | (∃ α,β ∈ R) α2 +β2 = 1 andp = αq+β(0,1,0)} .

This shows thatq has the largestz-coordinate among all points inC(q).
Assume thatq has value0. We claim that then all points onC(q) must have value0. Indeed,

sinceq has value0 and the orthogonal point(qy,−qx,0)/
√

q2
x +q2

y on the equator also has value

0, the one-dimensional subspace orthogonal to both of them must have value1. But this subspace
is orthogonal to all points onC(q). Hence all points onC(q) must have value0.

Now we can apply the same argument to any pointq̃ onC(q) (by the last consideratioñq must
have value0) and derive that all points onC(q̃) have value0. The great circleC(q) divides the
northern hemisphere into two regions, one containing the north pole, the other consisting of the
points belowC(q) or “lying betweenC(q) and the equator”, see Figure 2. The circlesC(q̃) with
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q

C(q)

z

x

north pole (0,0,1)

between C(q) 
and the equator

Figure 2: The great circleC(q).

q̃∈C(q) certainly cover the region betweenC(q) and the equator.3 Hence any point in this region
must have value0.

But the circlesC(q̃) cover also a part of the other region. In fact, we can iterate this process.
We say that a pointp in the northern hemispherecan be reachedfrom a pointq in the northern
hemisphere, if there is a finite sequence of pointsq = q0,q1, . . . ,qn−1,qn = p in the northern
hemisphere such thatqi ∈C(qi−1) for i = 1, . . . ,n. Our analysis above shows that ifq has value0
andp can be reached fromq, then alsop has value0.

The following geometric lemma due to Piron [36] (see also Cooke, Keane, and Moran [7] or
Kalmbach [24]) is a consequence of the fact that the curveC(q) is tangent to the horizontal plane
through the pointq:

If q and p are points in the northern hemisphere withpz < qz, thenp can be reached
fromq.

This result will be proved in Appendix A. We conclude that, if a pointq in the northern hemisphere
has value0, then every pointp in the northern hemisphere withpz < qz must have value0 as well.

Consider the tripod(1,0,0),(0, 1√
2
, 1√

2
),(0,− 1√

2
, 1√

2
). Since(1,0,0) (on the equator) has

value0, one of the two other points has value0 and one has value1. By the geometric lemma and
our above considerations this implies that all pointsp in the northern hemisphere withpz < 1√

2

must have value0 and all pointsp with pz > 1√
2

must have value1. But now we can choose any

point p′ with 1√
2

< p′z < 1 as our new north pole and deduce that the valuation must have the same
form with respect to this pole. This is clearly impossible. Hence, we have proved our assertion
that there is no mapping on the set of all one-dimensional subspaces ofR3 which maps one space
out of each tripod of pairwise orthogonal one-dimensional subspaces to1 and the other two to0.

In the following we give a second topological and geometric proof for this fact. In this proof
we shall not use the geometric lemma above.

3This will be shown formally in the proof of the geometric lemma below.
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Fix an arbitrary point on the unit sphere with value0. The great circle consisting of points
orthogonal to this point splits into two disjoint sets, the set of points with value1, and the set of
points orthogonal to these points. They have value0. If one of these two sets were open, then the
other had to be open as well. But this is impossible since the circle is connected and cannot be
the union of two disjoint open sets. Hence the circle must contain a pointp with value1 and a
sequence of pointsq(n), n = 1,2, . . . with value0 converging top. By a rotation we can assume
that p is the north pole and the circle lies in the{y = 0}-plane. Furthermore we can assume that
all pointsqn have the same sign in thex-coordinate. Otherwise, choose an infinite subsequence of
the sequenceq(n) with this property. In fact, by a rotation we can assume that all pointsq(n) have
positivex-coordinate (i.e. all pointsq(n), n = 1,2, . . . lie as the pointq in Figure 2 and approach
the north pole asn tends to infinity). All points on the equator have value0. By the first step in
the proof of the geometric lemma in the appendix, all points in the northern hemisphere which
lie betweenC(q(n)) (the great circle throughq(n) and±(0,1,0)) and the equator can be reached
from q(n). Hence, as we have seen in the first proof,v(q(n)) = 0 implies that all these points must
have value0. Sinceq(n) approaches the north pole, the union of the regions betweenC(q(n)) and
the equator is equal to the open right half{q∈ S2 | qz > 0,qx > 0} of the northern hemisphere.
Hence all points in this set have value0. Let q be a point in the left half{q∈ S2 | qz > 0,qx < 0}
of the northern hemisphere. It forms a tripod together with the point(qy,−qx,0)/

√
q2

x +q2
y in

the equator and the point(−qx,−qy,
q2

x+q2
y

qz
)/||(−qx,−qy,

q2
x+q2

y

qz
)|| in the right half. Since these two

points have value0, the pointq must have value1. Hence all points in the left half of the northern
hemisphere must have value1. But this leads to a contradiction because there are tripods with
two points in the left half, for example the tripod(−1

2, 1√
2
, 1

2), (−1
2,− 1√

2
, 1

2), ( 1√
2
,0, 1√

2
). This

ends the second proof for the fact that there is no two-valued probability measure on the lattice of
subspaces of the three-dimensional Euclidean space which preserves the ortholattice operations at
least for orthogonal elements.

2.3 Injective morphisms preserving order as well asor and andoperations

We have seen that we cannot hope to preserve the ortholattice operations, not even when we restrict
ourselves to operations among orthogonal propositions.

An even stronger weakening of condition (iii) would be to require preservation of ortholattice
operations merely among the centerC, i.e., among those propositions which are co–measurable
(commuting) with all other propositions. It is not difficult to prove that in the case of complete
Hilbert lattices (and not mere subalgebras thereof), the center consists of just the least lower and
the greatest upper boundC = {0,1} and thus is isomorphic to the two-element Boolean algebra
2= {0,1}. As it turns out, the requirement is trivially fulfilled and its implications are quite trivial
as well.

Another weakening of (iii) is to restrict oneself to particular physical states and study the
embeddability of quantum logics under these constraints; see Bell, Clifton [1].

In the following sections we analyze a completely different option: Is it possible to embed
quantum logic into a Boolean algebra when one does not demand preservation of all ortholattice
operations?

One method of embedding an arbitrary partially ordered set into a concrete orthomodular
lattice which in turn can be embedded into a Boolean algebra has been used by Kalmbach [22]
and extended by Harding [16] and Mayet and Navara [31]. In theseKalmbach embeddings, as
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they may be called, the meets and joins are preserved but not the complement.
The Kalmbach embedding of some bounded latticeL into a concrete orthomodular latticeK(L)

may be thought of as the pasting of Boolean algebras corresponding to all maximal chains ofL
[15].

First, let us consider linear chains0 = a0 → a1 → a2 → ··· → 1 = am. Such chains generate
Boolean algebras2m−1 in the following way: from the first nonzero elementa1 on to the greatest
element1, form An = an∧ (an−1)′, where(an−1)′ is the complement ofan−1 relative to1; i.e.,
(an−1)′ = 1−an−1. An is then an atom of the Boolean algebra generated by the bounded chain
0 = a0 → a1 → a2 → ··· → 1.

Take, for example, a three-element chain0= a0→{a} ≡ a1→{a,b} ≡ 1= a2 as depicted in
Figure 3a). In this case,

A1 = a1∧ (a0)′ = a1∧1≡ {a}∧{a,b}= {a},
A2 = a2∧ (a1)′ = 1∧ (a1)′ ≡ {a,b}∧{b}= {b}.

This construction results in a four-element Boolean Kalmbach latticeK(L) = 22 with the two
atoms{a} and{b} given in Figure 3b).

Take, as a second example, a four-element chain0 = a0 → {a} ≡ a1 → {a,b} → {a,b,c} ≡
1 = a3 as depicted in Figure 3c). In this case,

A1 = a1∧ (a0)′ = a1∧1≡ {a}∧{a,b,c}= {a},
A2 = a2∧ (a1)′ ≡ {a,b}∧{b,c}= {b},
A3 = a3∧ (a2)′ = 1∧ (a2)′ ≡ {a,b,c}∧{c}= {c}.

This construction results in an eight-element Boolean Kalmbach latticeK(L) = 23 with the three
atoms{a}, {b} and{c} depicted in Figure 3d).

To apply Kalmbach’s construction to any bounded lattice, all Boolean algebras generated by
the maximal chains of the lattice are pasted together. An element common to two or more maximal
chains must be common to the blocks they generate.

Take, as a third example, the Boolean lattice22 drawn in Figure 3e).22 contains two linear
chains of length three which are pasted together horizontally at their smallest and biggest elements.
The resulting Kalmbach latticeK(22) = MO2 is of the “Chinese lantern” type, see Figure 3f).

Take, as a fourth example, the pentagon drawn in Figure 3g). It contains two linear chains:
one is of length three, the other is of length 4. The resulting Boolean algebras22 and23 are again
horizontally pasted together at their extremities0,1. The resulting Kalmbach lattice is given in
Figure 3h).

In the fifth example drawn in Figure 3i), the lattice has two maximal chains which share a
common element. This element is common to the two Boolean algebras, hence central inK(L).
The construction of the five atoms proceeds as follows:

A1 = {a}∧{a,b,c,d}= {a},
A2 = {a,b,c}∧{b,c,d}= {b,c},
A3 = B3 = {a,b,c,d}∧{d}= {d},
B1 = {b}∧{a,b,c,d}= {b},
B2 = {a,b,c}∧{a,c,d}= {a,c},
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where the two sets of atoms{A1,A2,A3 = B3} and{B1,B2,B3 = A3} span two Boolean algebras23

pasted together at the extremities and atA3 = B3 andA′3 = B′3. The resulting lattice is2×MO2 =
L12 depicted in Figure 3j).

2.4 Injective morphisms preserving order and complementation

In the following, we shall show thatany orthoposet can be embedded into a Boolean algebra
where in this case by anembeddingwe understand aninjective mapping preserving the order
relation and the orthocomplementation.

A slightly stronger version of this fact using more topological notions has already been shown
by Katrnǒska [25]. Zierler and Schlessinger constructed embeddings with more properties for
orthomodular orthoposets [52, Theorem 2.1] and mentioned another slightly stronger version of
the result above without explicit proof [52, Section 2, Remark 2].

For completeness sake we give the precise definition of an orthoposet. Anorthoposet(or
orthocomplemented poset) (L,≤,0,1,′ ) is a setL which is endowed with a partial ordering≤, (i.e.
a subset≤ of L×L satisfying (1)p≤ p, (2) if p≤ q andq≤ r, thenp≤ r, (3) if p≤ q andq≤ p,
thenp = q, for all p,q, r ∈ L). Furthermore,L contains distinguished elements0 and1 satisfying
0≤ p and p≤ 1, for all p∈ L. Finally, L is endowed with a function′ (orthocomplementation)
from L to L satisfying the conditions (1)p′′ = p, (2) if p≤ q, thenq′ ≤ p′, (3) the least upper
bound ofp andp′ exists and is1, for all p,q∈ L. Note that these conditions imply0′ = 1, 1′ = 0,
and that the greatest lower bound ofp andp′ exists and is0, for all p∈ L.

For example, an arbitrary sublattice of the lattice of all closed linear subspaces of a Hilbert
space is an orthoposet, if it contains the subspace{0} and the full Hilbert space and is closed
under the orthogonal complement operation. Namely, the subspace{0} is the0 in the orthoposet,
the full Hilbert space is the1, the set-theoretic inclusion is the ordering≤, and the orthogonal
complement operation is the orthocomplementation′.

In the rest of this section we always assume thatL is an arbitrary orthoposet. We shall con-
struct a Boolean algebraB and an injective mappingϕ : L→ B which preserves the order relation
and the orthocomplementation. The construction goes essentially along the same lines as the con-
struction of Zierler and Schlessinger [52] and Katrnoška [25] and is similar to the proof of the
Stone representation theorem for Boolean algebras, cf. Stone [45]. It is interesting to note that for
a finite orthoposet the constructed Boolean algebra will be finite as well.

We call a nonempty subsetK of L an ideal if for all p,q∈ L:

1. if p∈ K, thenp′ 6∈ K,

2. if p≤ q andq∈ K, thenp∈ K.

Clearly, if K is an ideal, then0∈K. An idealI is maximalprovided that ifK is an ideal andI ⊆K,
thenK = I .

Let I be the set of all maximal ideals inL, and letB be the power set ofI considered as a
Boolean algebra, i.e.B is the Boolean algebra which consists of all subsets ofI . The order relation
in B is the set-theoretic inclusion, the ortholattice operationscomplement, or, andandare given
by the set-theoretic complement, union, and intersection, and the elements0 and1 of the Boolean
algebra are just the empty set and the full setI . Consider the map

ϕ : L→ B
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which maps each elementp∈ L to the set

ϕ(p) = {I ∈ I | p 6∈ I}

of all maximal ideals which do not containp. We claim that the mapϕ

(i) is injective,

(ii) preserves the order relation,

(iii) preserves complementation.

This provides an embedding of quantum logic into classical logic which preserves the implication
relation and the negation.4

The rest of this section consists of the proof of the three claims above. Let us start with claim
(ii). Assume thatp,q∈ L satisfyp≤ q. We have to show the inclusion

ϕ(p)⊆ ϕ(q) .

Take a maximal idealI ∈ ϕ(p). Thenp 6∈ I . If q were contained inI , then by condition 2. in the
definition of an ideal alsop had to be contained inI . Henceq 6∈ I , thus proving thatI ∈ ϕ(q).

Before we come to claims (iii) and (i) we give another characterization of maximal ideals. We
start with the following assertion which will also be needed later:

If I is an ideal andr ∈ L with r 6∈ I andr ′ 6∈ I ,
then also the setJ = I ∪{s∈ L | s≤ r} is an ideal.

(1)

Here is the proof: It is clear thatJ satisfies condition 2. in the definition of an ideal. To show that it
satisfies condition 1. assume to the contrary that there existss∈ J ands′ ∈ J, for somes∈ L. Then
one of the following conditions must be true; (I)s,s′ ∈ J, (II) s≤ r ands′ ≤ r, (III) s∈ I ands′ ≤ r,
(IV) s≤ r, s′ ∈ I . The first case is impossible sinceI is an ideal. The second case is ruled out
by the fact thatr 6= 1 (namely,r = 1 would imply r ′ = 0 which would contradict our assumption
r ′ 6∈ I ). The third case is impossible sinces′ ≤ r impliesr ′ ≤ s which, combined withs∈ I would
imply r ′ ∈ I , contrary to our assumption. Finally the fourth case is nothing but a reformulation of
the third case withs ands′ interchanged. Thus we have proved thatJ is an ideal and have proved
the assertion (1).

Next, we prove the following new characterization of maximal ideals:

An idealI is a maximal ideal iffr 6∈ I impliesr ′ ∈ I . (2)

To prove this first assume that for allr ∈ L, if r 6∈ I , thenr ′ ∈ I and supposeI is apropersubset of
an idealK. Then there existsp∈ K such thatp 6∈ I . By our hypothesis (for allr ∈ L, r 6∈ I implies
r ′ ∈ I ), we havep′ ∈ I . Thus bothp∈ K andp′ ∈ K. This contradicts the fact thatK is an ideal.

Conversely, suppose thatI is a maximal ideal inL and suppose, to the contrary, that for some
r ∈ L,

r 6∈ I andr ′ 6∈ I . (3)

4Note that for a finite orthoposetL the Boolean algebraB is finite as well. Indeed, ifL is finite, then it has only
finitely many subsets, especially only finitely many maximal ideals. HenceI is finite, and thus also its power setB is
finite.
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Of courser 6= 1, since1′ = 0 and 0∈ I . Let

J = I ∪ (r) (4)

where(r) = {s∈ L | s≤ r} is the principal ideal ofr (note that(r) is indeed an ideal). Then,
under assumption (3), using (1) above, we have thatJ is an ideal which properly containsI . This
contradicts the maximality ofI and ends the proof of the assertion (2).

For claim (iii) we have to show the relation:

ϕ(p′) = I \ϕ(p) ,

for all p∈ L. This can be restated as

I ∈ ϕ(p′) iff I 6∈ ϕ(p)

for all I ∈ I . But this meansp′ 6∈ I iff p ∈ I , which follows directly from condition 1. in the
definition of an ideal and from assertion (2).

We proceed to claim (i), which states thatϕ is injective, i.e., ifp 6= q, thenϕ(p) 6= ϕ(q). But
p 6= q is equivalent top 6≤ q or q 6≤ p. Furthermore, if we can show that there is a maximal ideal
I such thatq∈ I andp 6∈ I then it follows easily thatϕ(p) 6= ϕ(q). Indeed,p 6∈ I meansI ∈ ϕ(p)
andq∈ I meansI 6∈ ϕ(q). It is therefore enough to prove that:

If p 6≤ q, then there exists a maximal idealI such thatq∈ I andp 6∈ I .

To prove this we note that sincep 6≤ q, we havep 6= 0. Let

Ipq = {K ⊆ L | K is an ideal andp 6∈ K andq∈ K}.

We have to show that among the elements ofIp,q there is a maximal ideal. Therefore we will use
Zorn’s Lemma. In order to apply it toIp,q we have to show thatIp,q is not empty and that every
chain inIp,q has an upper bound.

The setIp,q is not empty since(q) ∈ Ip,q. Now we are going to show that every chain inIp,q

has an upper bound. This means that, given a subset (chain) C of Ip,q with the property

for all J,K ∈ C one hasJ⊆ K or K ⊆ J ,

we have to show that there is an element (upper bound) U ∈ Ip,q with K ⊆U for all K ∈ C . The
union

UC =
⋃

K∈C
K

of all idealsK ∈ C is the required upper bound! It is clear that allK ∈ C are subsets ofUC . We
have to show thatUC is an element ofIp,q. Sincep 6∈ K for all K ∈ C we also havep 6∈ UC .
Similarly, sinceq∈ K for some (even all)K ∈ C , we haveq∈UC . We still have to show thatUC is
an ideal. Given two propositionsr,s with r ≤ s ands∈UC we conclude thats must be contained
in one of the idealsK ∈ C . Hence alsor ∈ K ⊆UC . Now assumer ∈UC . Is it possible that the
complementr ′ belongs toUC ? The answer is negative, since otherwiser ∈ J andr ′ ∈ K, for some
idealsJ,K ∈ C . But sinceC is a chain we haveJ ⊆ K or K ⊆ J, hencer, r ′ ∈ K in the first case
andr, r ′ ∈ J in the second case. Both cases contradict the fact thatJ andK are ideals. Hence,UC
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is an ideal and thus an element ofIp,q. We have proved thatIp,q is not empty and that each chain
in Ip,q has an upper bound inIp,q.

Consequently, we can apply Zorn’s Lemma toIp,q and obtain a maximal elementI in the
ordered setIp,q. Thus

p 6∈ I andq∈ I . (5)

It remains to show thatI is a maximal ideal inL. Thus suppose, to the contrary, thatI is not a
maximal ideal inL.

By (2) there existsr ∈ L such that bothr 6∈ I andr ′ 6∈ I . Furthermore, sincep 6= 0, then either
p 6≤ r or p 6≤ r ′. Without loss of generality suppose

p 6≤ r. (6)

It follows, by (1), and sincer 6∈ I andr ′ 6∈ I , thatI ∪(r) is an ideal properly containingI . But since,
by Conditions (5) and (6),q∈ I andp 6≤ r, we have

p 6∈ I ∪ (r) andq∈ I ∪ (r).

Thus I ∪ (r) ∈ Ipq and, sincer 6∈ I , we deduce thatI ∪ (r) properly containsI , contradicting the
fact thatI is amaximal elementin Ipq. This ends the proof of claim (i), the claim that the mapϕ
is injective.

We have shown:

Any orthoposet can be embedded into a Boolean algebra where the embedding pre-
serves the order relation and the complementation.

2.5 Injective order preserving morphisms

In this section we analyze a different embedding suggested by Malhas [29, 30].
We consider an orthocomplemented lattice(L,≤,0,1,′ ), i.e. a lattice(L,≤,0,1) with 0≤ x≤ 1

for all x∈ L, with orthocomplementation, that is with a mapping′ : L→ L satisfying the following
three properties: a)x′′ = x, b) if x≤ y, theny′ ≤ x′, c) x·x′ = 0 andy∨y′ = 1. Herex·y= glb(x,y)
andx∨y = lub(x,y).

Furthermore, we will assume thatL is atomic5 and satisfies the following additional property:

for all x,y∈ L,x≤ y iff for every atom a∈ L,a≤ x impliesa≤ y. (7)

Every atomic Boolean algebra and the lattice of closed subspaces of a separable Hilbert space
satisfy the above conditions.

Consider next a setU6 and letW(U) be the smallest set of words over the alphabetU ∪{′,→}
which containsU and is closed under negation (ifA∈W(U), thenA′ ∈W(U)) and implication (if
A,B∈W(U), thenA→ B∈W(U)).7 The elements ofU are calledsimple propositionsand the
elements ofW(U) are called(compound) propositions.

A valuationis a mapping
t : W(U)→ 2

5For everyx∈ L\{0}, there is an atoma∈ L such thata≤ x. An atom is an elementa∈ L with the property that if
0≤ y≤ a, theny = 0 or y = a.

6Not containing the logical symbols∪,′ ,→.
7Define in a natural wayA∪B = A′→ B, A∩B = (A→ B′)′, A↔ B = (A→ B)∩ (B→ A).
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such thatt(A) 6= t(A′) and t(A→ B) = 0 iff t(A) = 1 and t(B) = 0. Clearly, every assignment
s : U → 2 can be extended to a unique valuationts.

A tautology is a propositionA which is true under every possible valuation, i.e.,t(A) = 1,
for every valuationt. A set K ⊆W(U) is consistentif there is a valuation making true every
proposition inK . Let A ∈W(U) and K ⊆W(U). We say thatA derivesfrom K , and write
K |= A, in caset(A) = 1 for each valuationt which makes true every proposition inK (that is,
t(B) = 1, for all B∈K ). We define the set of consequences ofK by

Con(K ) = {A∈W(U) |K |= A}.

Finally, a setK is atheoryif K is a fixed-point of the operatorCon:

Con(K ) = K .

It is easy to see thatCon is in fact a finitary closure operator, i.e., it satisfies the following four
properties:

• K ⊆Con(K ),

• if K ⊆ K̃ , thenCon(K )⊆Con(K̃ ),

• Con(Con(K )) = Con(K ),

• Con(K ) =
⋃
{X⊆K ,X finite}Con(X).

The first three properties can be proved easily. A topological proof for the fourth property can be
found in Appendix B.

The main example of a theory can be obtained by taking a setX of valuations and constructing
the set of all propositions true under all valuations inX:

Th(X) = {A∈W(U) | t(A) = 1, for all t ∈ X}.

In fact, every theory is of the above form, that is,for every theoryK there exists a set of
valuationsX (depending uponK ) such thatK = Th(X). Indeed, take

XK = {t : W(U)→ 2 | t valuation witht(A) = 1, for all A∈K },

and notice that

Th(XK ) = {B∈W(U) | t(B) = 1, for all t ∈ XK }
= {B∈W(U) | t(B) = 1, for every valuation witht(A) = 1,

for all A∈K }
= Con(K ) = K .

In other words,theories are those sets of propositions which are true under a certain set of
valuations (interpretations).

Let now T be a theory. Two elementsp,q ∈ U areT -equivalent, writtenp≡T q, in case
p↔ q∈ T . The relation≡T is an equivalence relation. The equivalence class ofp is [p]T = {q∈
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U | p≡T q} and the factor set is denoted byU≡T ; for brevity, we will sometimes write[p] instead
of [p]T . The factor set comes with a natural partial order:

[p]≤ [q] if p→ q∈ T .

Note that in general,(U≡T ,≤) is not a Boolean algebra.8

In a similar way we can define the≡T -equivalence of two propositions:

A≡T B if A↔ B∈ T .

Denote by[[A]]T (shortly,[[A]]) the equivalence class ofA and note that for everyp∈U ,

[p] = [[p]]∩U.

The resulting Boolean algebraW(U)≡T is the Lindenbaum algebra ofT .
Fix now an atomic orthocomplemented lattice(L,≤,0,1,′ ) satisfying (7). LetU be a set of

cardinality greater or equal toL and fix a surjective mappingf : U → L. For every atoma∈ L, let
sa : U → 2 be the assignment defined bysa(p) = 1 iff a≤ f (p). Take

X = {tsa | a is an atom ofL}9 andT = Th(X).

Malhas [29, 30] has proven that thelattice (U≡T ,≤) is orthocomplemented,and, in fact,iso-
morphic toL. Here is the argument. Note first that there exist two elements0,1 in U such that
f (0) = 0, f (1) = 1. Clearly, 0 6∈ T , but 1 ∈ T . Indeed, for every atoma, a≤ f (1) = 1, so
sa(1) = 1, a.s.o.

Secondly, for everyp,q∈U ,

p→ q∈ T iff f (p)≤ f (q).

If p→ q 6∈ T , then there exists an atoma∈ L such thattsa(p→ q) = 0, sosa(p) = tsa(p) =
1, sa(q) = tsa(q) = 0, which—according to the definition ofsa—meana≤ f (p), but a 6≤ f (q).
If f (p) ≤ f (q), thena≤ f (q), a contradiction. Conversely, iff (p) 6≤ f (q), then by (7) there
exists an atoma such thata≤ f (p) anda 6≤ f (q). So,sa(p) = tsa(p) = 1, sa(q) = tsa(q) = 0, i.e.,
(p→ q) 6∈ T .

As immediate consequences we deduce the validity of the following three relations: for all
p,q∈U ,

• f (p)≤ f (q) iff [p]≤ [q],

• f (p) = f (q) iff [p] = [q],

• [0]≤ [p]≤ [1].

Two simple propositionsp,q∈U areconjugatein casef (p)′ = f (q).10 Define now the opera-
tion ∗ :UT →UT as follows:[p]∗ = [q] in caseq is a conjugate ofp. It is not difficult to see that the

8For instance, in caseT =Con({p}), for somep∈U . If U has at least three elements, then(U≡T ,≤) does not have
a minimum.

9Recall thatts is the unique valuation extendings.
10Of course, this relation is symmetrical.
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operation∗ is well-defined and actually is an orthocomplementation. It follows that(UT ,≤T ,∗ ) is
an orthocomplemented lattice.

To finish the argument we will show that this lattice isisomorphicwith L. The isomorphism
is given by the mappingψ : UT → L defined by the formulaψ([p]) = f (p). This is a well-
defined function (becausef (p) = f (q) iff [p] = [q]), which is bijective (ψ([p]) = ψ([q]) implies
f (p) = f (q), and surjective becausef is onto). If[p]≤ [q], then f (p)≤ f (q), i.e. ψ([p])≤ψ([q]).
Finally, if q is a conjugate ofp, then

ψ([p]∗) = ψ([q]) = f (q) = f (p)′ = ψ([p])′.

In particular,there exists a theory whose induced orthoposet is isomorphic to the lattice of
all closed subspaces of a separable Hilbert space. How does this relate to the Kochen-Specker
theorem?The natural embedding

Γ : U≡T →W(U)≡T , Γ([p]) = [[p]]

is order preserving and one-to-one, but in general it does not preserve orthocomplementation, i.e.
in generalΓ([p]∗) 6= Γ([p])′. We always haveΓ([p]∗)≤ Γ([p])′, but sometimesΓ([p])′ 6≤ Γ([p]∗).
The reason is that for every pair of conjugate simple propositionsp,q one has(p→ q′) ∈ T , but
the converse is not true.

By combining the inverseψ−1 of the isomorphismψ with Γ we obtain an embeddingϕ of L
into the Boolean Lindenbaum algebraW(U)≡T . Thus, the above construction of Malhas gives us
another method howto embed any quantum logic into a Boolean logic in case we require that only
the order is preserved.11

Next we shall give a simple example of a Malhas type embeddingϕ : MO2 → 24. Consider
again the finite quantum logicMO2 represented in Figure 1. Let us choose

U = {A,B,C,D,E,F,G,H}.

SinceU contains more elements thanMO2, we can mapU surjectively ontoMO2; e.g.,

f (A) = 0,

f (B) = p−,

f (C) = p−,

f (D) = p+,

f (E) = q−,

f (F) = q+,

f (G) = 1,

f (H) = 1.

For every atoma∈MO2, let us introduce the truth assignmentsa : U → 2 = {0,1} as defined
above (i.e.sa(r) = 1 iff a≤ f (r)) and thus a valuation onW(U) separating it from the rest of the
atoms ofMO2. That is, for instance, associate withp− ∈MO2 the functionsp− as follows:

sp−(A) = sp−(D) = sp−(E) = sp−(F) = 0,

sp−(B) = sp−(C) = sp−(G) = sp−(H) = 1.
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A B C D E F G H
sp− 0 1 1 0 0 0 1 1
sp+ 0 0 0 1 0 0 1 1
sq− 0 0 0 0 1 0 1 1
sq+ 0 0 0 0 0 1 1 1

Table 1: Truth assignments onU corresponding to atomsp−, p+,q−,q+ ∈MO2.
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[[B]] [[D]] [[E]] [[F]]
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n
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Figure 4: Hasse diagram of an embedding of the quantum logicMO2 represented by Figure 1.
Concentric circles indicate the embedding.

The truth assignments associated with all the atoms are listed in Table 1.
The theoryT we are thus dealing with is determined by the union of all the truth assignments;

i.e.,
X = {tsp− , tsp+

, tsq− , tsq+
} andT = Th(X).

The way it was constructed,U splits into six equivalence classes with respect to the theoryT ; i.e.,

U≡T = {[A], [B], [D], [E], [F ], [G]}.

Since [p] → [q] if and only if (p→ q) ∈ T , we obtain a partial order onU≡T induced byT
which isomorphically reflects the original quantum logicMO2. The Boolean Lindenbaum algebra
W(U)≡T = 24 is obtained by forming all the compound propositions ofU and imposing a partial
order with respect toT . It is represented in Figure 4. The embedding is given by

11In Section 2.4 we saw that it is possible to embed quantum logic into a Boolean logic preserving the order and the
complement.
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ϕ(0) = [[A]],
ϕ(p−) = [[B]],
ϕ(p+) = [[D]],
ϕ(q−) = [[E]],
ϕ(q+) = [[F ]],

ϕ(1) = [[G]].

It is order–preserving but does not preserve operations such as the complement. Although, in this
particular example,f (B) = ( f (D))′ implies(B→D′) ∈ T , the converse is not true in general. For
example, there is nos∈ X for whichs(B) = s(E) = 1. Thus,(B→ E′) ∈ T, but f (B) 6= ( f (E))′.

One needs not be afraid of order-preserving embeddings which are no lattice morphisms, after
all. Even automaton logics (see Svozil [47, Chapter 11], Schaller and Svozil [39, 40, 41], and
Dvurěcenskij, Pulmannov́a and Svozil [8]) can be embedded in this way. Take again the lattice
MO2 depicted in Figure 1. A partition (automaton) logic realization is, for instance,

{{{1},{2,3}},{{2},{1,3}}},

with

{1} ≡ p−,

{2,3} ≡ p+,

{2} ≡ q−,

{1,3} ≡ q+,

respectively. If we take{1},{2} and{3} as atoms, then the Boolean algebra23 generated by all
subsets of{1,2,3} with the set theoretic inclusion as order relation suggests itself as a candidate
for an embedding. The embedding is quite trivially given by

ϕ(p) = p∈ 23.

The particular example considered above is represented in Figure 5. It is not difficult to check that
the embedding satisfies the requirements (i) and (ii), that is, it is injective and order preserving.

It is important to realize at that point that, although different automaton partition logical struc-
tures may be isomorphic from a logical point of view (one-to-one translatable elements, order
relations and operations), they may be very different with respect to their embeddability. Indeed,
any two distinct partition logics correspond to two distinct embeddings.

It should also be pointed out that in the case of an automaton partition logic and for all finite
subalgebras of the Hilbert lattice of two-dimensional Hilbert space, it is always possible to find an
embedding corresponding to a logically equivalent partition logic which is a lattice morphism for
co–measurable elements (modified requirement (iii)). This is due to the fact that partition logics
andMOn have a separating set of valuations. In theMO2 case, this is, for instance

{{{1,2},{3,4}},{{1,3},{2,4}}},

with

{1,2} ≡ p−,
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Figure 5: Hasse diagram of an embedding ofMO2 drawn in a) into23 drawn in b). Again,
concentric circles indicate points of23 included inMO2.

p− p+ q− q+

s1 1 0 1 0
s2 1 0 0 1
s3 0 1 1 0
s4 0 1 0 1

Table 2: The four valuationss1,s2,s3,s4 onMO2 take on the values listed in the rows.

{3,4} ≡ p+,

{1,3} ≡ q−,

{2,4} ≡ q+,

respectively. This embedding is based upon the set of all valuations listed in Table 2. These
are exactly the mappings fromMO2 to 2 preserving the order relation and the complementation.
They correspond to the maximal ideals considered in Section 2.3. In this special case the embed-
ding is just the embedding obtained by applying the construction of Section 2.3, which had been
suggested by Zierler and Schlessinger [52, Theorem 2.1]. The embedding is drawn in Figure 6.

3 Surjective extensions?

The original proposal put forward by EPR [9] in the last paragraph of their paper was some form
of completion of quantum mechanics. Clearly, the first type of candidate for such a completion
is the sort of embedding reviewed above. The physical intuition behind an embedding is that the
“actual physics” is a classical one, but because of some yet unknown reason, some of this “hidden
arena” becomes observable while others remain hidden.

Nevertheless, there exists at least one other alternative to complete quantum mechanics. This
is best described by asurjective mapφ : B→ L of a classical Boolean algebra onto a quantum
logic, such that|B| ≥ |L|.

Plato’s cave metaphor applies to both approaches, in that observations are mere shadows of
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Figure 6: Hasse diagram of an embedding of the partition logic{{{1,2}, {3,4}}, {{1,3}, {2,4}}}
into 24 preserving ortholattice operations among co–measurable propositions. Concentric circles
indicate the embedding.

some more fundamental entities.

4 Summary

We have reviewed several options for a classical “understanding” of quantum mechanics. Partic-
ular emphasis has been given to techniques for embedding quantum universes into classical ones.
The term “embedding” is formalized here as usual. That is, an embedding is a mapping of the
entire set of quantum observables into a (bigger) set of classical observables such that different
quantum observables correspond to different classical ones (injectivity).

The term “observables” here is used for quantum propositions, some of which (the comple-
mentary ones) might not be co–measurable, see Gudder [14]. It might therefore be more appropri-
ate to conceive these “observables” as “potential observables.” After a particular measurement has
been chosen, some of these observables are actually determined and others (the complementary
ones) become “counterfactuals” by quantum mechanical means; cf. Schrödinger’s catalogue of
expectation values [42, p. 823]. For classical observables, there is no distinction between “observ-
ables” and “counterfactuals,” because everything can be measured precisely, at least in principle.

We should mention also acaveat. The relationship between the states of a quantum universe
and the states of a classical universe into which the former one is embedded is beyond the scope
of this paper.

As might have been suspected, it turns out that, in order to be able to perform the mapping
from the quantum universe into the classical one consistently, important structural elements of the
quantum universe have to be sacrificed:

• Since per definition, the quantum propositional calculus is nondistributive (nonboolean), a
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straightforward embedding which preserves all the logical operations among observables,
irrespective of whether or not they are co–measurable, is impossible. This is due to the
quantum mechanical feature ofcomplementarity.

• One may restrict the preservation of the logical operations to be valid only among mutually
orthogonal propositions. In this case it turns out that again a consistent embedding is im-
possible, since no consistent meaning can be given to the classical existence of “counter-
factuals.” This is due to the quantum mechanical feature ofcontextuality. That is, quantum
observables may appear different, depending on the way by which they were measured (and
inferred).

• In a further step, one may abandon preservation of lattice operations such asnotand the binary
andandor operations altogether. One may merely require the preservation of the implica-
tional structure (order relation). It turns out that, with these provisos, it is indeed possible to
map quantum universes into classical ones. Stated differently, definite values can be associ-
ated with elements of physical reality, irrespective of whether they have been measured or
not. In this sense, that is, in terms of more “comprehensive” classical universes (the hidden
parameter models), quantum mechanics can be “understood.”

At the moment we can neither say if the nonpreservation of the binary lattice operations (in-
terpreted asandandor) is a too high price for value definiteness, nor can we speculate of whether
or not the entire program of embedding quantum universes into classical theories is a progressive
or a degenerative case (compare Lakatosch [27]).

Appendix A: Proof of the geometric lemma

In this appendix we are going to prove the geometric lemma due to Piron [36] which was formu-
lated in Section 2.2. First let us restate it. Consider a pointq in the northern hemisphere of the
unit sphereS2 = {p∈R3 | ||p||= 1}. By C(q) we denote the unique great circle which containsq

and the points±(qy,−qx,0)/
√

q2
x +q2

y in the equator, which are orthogonal toq, compare Figure

2. We say that a pointp in the northern hemispherecan be reachedfrom a pointq in the north-
ern hemisphere, if there is a finite sequence of pointsq = q0,q1, . . . ,qn−1,qn = p in the northern
hemisphere such thatqi ∈C(qi−1) for i = 1, . . . ,n. The lemma states:

If q and p are points in the northern hemisphere withpz < qz, thenp can be reached
fromq.

For the proof we follow Cooke, Keane, and Moran [7] and Kalmbach [24]). We consider the
tangent planeH = {p∈R3 | pz = 1} of the unit sphere in the north pole and the projectionh from
the northern hemisphere onto this plane which maps each pointq in the northern hemisphere to the
intersectionh(q) of the line through the origin andq with the planeH. This maph is a bijection.
The north pole(0,0,1) is mapped to itself. For eachq in the northern hemisphere (not equal to the
north pole) the imageh(C(q)) of the great circleC(q) is the line inH which goes throughh(q) and
is orthogonal to the line through the north pole and throughh(q). Note thatC(q) is the intersection
of a plane withS2, andh(C(q)) is the intersection of the same plane withH; see Figure 7. The
line h(C(q)) dividesH into two half planes. The half plane not containing the north pole is the
image of the region in the northern hemisphere betweenC(q) and the equator. Furthermore note
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u u

the north pole
(0,0,1)

the image of the
region betweenC(q)
and the equator

h(q)

h(C(q))

Figure 7: The planeH viewed from above.

thatqz > pz for two points in the northern hemisphere if and only ifh(p) is further away from the
north pole thanh(q). We proceed in two steps.

Step 1. First, we show that, ifp andq are points in the northern hemisphere andp lies in the
region betweenC(q) and the equator, thenp can be reached fromq. In fact, we show that there
is a pointq̃ onC(q) such thatp lies onC(q̃). Therefore we consider the images ofq andp in the
planeH; see Figure 8. The pointh(p) lies in the half plane bounded byh(C(q)) not containing the
north pole. Among all pointsh(q′) on the lineh(C(q)) we setq̃ to be one of the two points such

u u

the north pole
(0,0,1)

´́
´́

´́
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´́
´́

´́
´́

u
J

J
J

J
J

J
J

J
J

J
J

J
J

u
h(q)

h(p)

h(q̃)

h(C(q̃))

h(C(q))

Figure 8: The pointp can be reached fromq.

that the line trough the north pole andh(q′) and the line throughh(q′) andh(p) are orthogonal.
Then this last line is the image ofC(q̃), andC(q̃) contains the pointp. Hencep can be reached
from q. Our first claim is proved.

Step 2. Fix a pointq in the northern hemisphere. Starting fromq we can wander around the
northern hemisphere along great circles of the formC(p) for points p in the following way: for
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n≥ 5 we define a sequenceq0,q1, . . . ,qn by settingq0 = q and by choosingqi+1 to be that point
on the great circleC(qi) such that the angle betweenh(qi+1) andh(qi) is 2π/n. The image inH of
this configuration is a shell whereh(qn) is the point furthest away from the north pole; see Figure
9. First, we claim that any pointp on the unit sphere withpz < qnz can be reached fromq. Indeed,

r
h(q) = h(q0)

h(q16)
d0

h(q2)

h(q1)

h(q14)

h(q15)
d14

d15

d16

Figure 9: The shell in the planeH for n = 16.

such a point corresponds to a pointh(p) which is further away from the north pole thanh(qn).
There is an indexi such thath(p) lies in the half plane bounded byh(C(qi)) and not containing
the north pole, hence such thatp lies in the region betweenC(qi) and the equator. Then, as we
have already seen,p can be reached fromqi and hence also fromq. Secondly, we claim thatqn

approachesq asn tends to infinity. This is equivalent to showing that the distance ofh(qn) from
(0,0,1) approaches the distance ofh(q) from (0,0,1). Let di denote the distance ofh(qi) from
(0,0,1) for i = 0, . . . ,n. Thendi/di+1 = cos(2π/n), see Figure 9. Hencedn = d0 · (cos(2π/n))−n.
Thatdn approachesd0 asn tends to infinity follows immediately from the fact that(cos(2π/n))n

approaches1 asn tends to infinity. For completeness sake12 we prove it by proving the equivalent
statement thatlog((cos(2π/n))n) tends to0 asn tends to infinity. Namely, for smallx we know
the formulaecos(x) = 1−x2/2+O(x4) andlog(1+x) = x+O(x2). Hence, for largen,

log((cos(2π/n))n) = n· log(1−2
π2

n2 +O(n−4))

12Actually, this is an exercise in elementary analysis.
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= n· (−2
π2

n2 +O(n−4))

= −2π2

n
+O(n−3) .

This ends the proof of the geometric lemma.

Appendix B: Proof of a property of the set of consequences of a theory

In Section 2.5 we introduced the setCon(K ) of consequences of a setK of propositions over
a setU of simple propositionsand the logical connectives negation′ and implication→. We
mentioned four properties of the operatorCon. In this appendix we prove the fourth property:

Con(K ) =
⋃

{X⊆K ,X finite}
Con(X) .

The inclusionCon(K ) ⊇ ⋃
{X⊆K ,X finite}Con(X) follows directly from the second property

of Con, i.e., from the monotonicity: ifX⊆K , thenCon(X)⊆Con(K ). For the other inclusion we
assume that a propositionA∈Con(K ) is given. We have to show that there exists a finite subset
X ⊆K such thatA∈Con(X).

In order to do this we consider the setV (W(U)) of all valuations. This set can be identified
with the power set ofU and viewed as a topological space with the product topology of|U |
copies of the discrete topological space{0,1}. By Tychonoff’s Theorem (see Munkres [33])
V (W(U)) is a compact topological space. For an arbitrary propositionB and valuationt the set
{t ∈V (W(U)) | t(B) = 0} of valuationst with t(B) = 0 is a compact and open subset of valuations
because the valuet(B) depends only on the finitely many simple propositions occurring inB.

Note that our assumptionA∈Con(K ) is equivalent to the inclusion

{t ∈ V (W(U)) | t(A) = 0} ⊆
⋃

B∈K
{t ∈ V (W(U)) | t(B) = 0}.

Since the set on the left-hand side is compact, there exists a finite subcover of the open cover on
the right-hand side, i.e. there exists a finite setX ⊆K with

{t ∈ V (W(U)) | t(A) = 0} ⊆
⋃

B∈X

{t ∈ V (W(U)) | t(B) = 0}.

This is equivalent toA∈Con(X) and was to be shown.
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[37] PTÁK , P., AND PULMANNOV Á , S. Orthomodular Structures as Quantum Logics. Kluwer
Academic Publishers, Dordrecht, 1991.

[38] REDHEAD, M. Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philoso-
phy of Quantum Mechanics. Clarendon Press, Oxford, 1990.

26



[39] SCHALLER, M., AND SVOZIL , K. Partition logics of automata.Il Nuovo Cimento 109B
(1994), 167–176.

[40] SCHALLER, M., AND SVOZIL , K. Automaton partition logic versus quantum logic.Inter-
national Journal of Theoretical Physics 34, 8 (August 1995), 1741–1750.

[41] SCHALLER, M., AND SVOZIL , K. Automaton logic.International Journal of Theoretical
Physics 35, 5 (May 1996), 911–940.
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