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Abstract

Do the partial order and ortholattice operations of a quantum logic correspond to the
logical implication and connectives of classical logic? Re-phrased, how far might a classi-
cal understanding of quantum mechanics be, in principle, possible? A celebrated result by
Kochen and Specker answers the above question in the negative. However, this answer is just
one among different possible ones, not all negative. Itis our aim to discuss the above question
in terms of mappings of quantum worlds into classical ones, more specifically, in terms of
embeddings of quantum logics into classical logics; depending upon the type of restrictions
imposed on embeddings the question may get negative or positive answers.

1 Introduction

Quantum mechanics is a very successful theory which appears to predict novel “counterintuitive”
phenomena (see Wheeler [50], Greenberger, Horne and Zeilinger [12]) even almost a century
after its development, cf. Sabdinger [42], Jammer [19, 20]. Yet, it can be safely stated that
guantum theory is not understood (Feynman [10]). Indeed, it appears that progress is fostered by
abandoning long—held beliefs and concepts rather than by attempts to derive it from some classical
basis, cf. Greenberger and YaSin [13], Herzog, Kwiat, Weinfurter and Zeilinger [18] and Bennett
[4].

But just how far might a classical understanding of quantum mechanics be, in principle, pos-
sible? We shall attempt an answer to this question in terms of mappings of quantum worlds into
classical ones, more specifically, in terms of embeddings of quantum logics into classical logics.

One physical motivation for this approach is a result proven for the first time by Kochen and
Specker [26] (cf. also Specker [43], Zierler and Schlessinger [52] and John Bell [2]; see reviews
by Mermin [32], Svozil and Tkadlec [48], and a forthcoming monograph by Svozil [46]) stating
the impossibility to “complete” quantum physics by introducing noncontextual hidden parameter
models. Such a possible “completion” had been suggested, though in not very concrete terms,
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by Einstein, Podolsky and Rosen (EPR) [9]. These authors speculated that “elements of physical
reality” exist irrespective of whether they are actually observed. Moreover, EPR conjectured, the
guantum formalism can be “completed” or “embedded” into a larger theoretical framework which
would reproduce the quantum theoretical results but would otherwise be classical and determinis-
tic from an algebraic and logical point of view.

A proper formalization of the term “element of physical reality” suggested by EPR can be
given in terms of two-valued states or valuations, which can take on only one of the two values
0 and 1, and which are interpretable as the classical logical truth assignrfesésand true,
respectively. Kochen and Specker’s results [26] state that for quantum systems representable by
Hilbert spaces of dimension higher than two, there does not exist any such vakudtien {0, 1}
defined on the set of closed linear subspaces of the dpdtteese subspaces are interpretable
as quantum mechanical propositions) preserving the lattice operations and the orthocomplement,
even if one restricts the attention to lattice operations carried out among commuting (orthogonal)
elements. As a consequence, the set of truth assignments on quantum logics is not separating and
not unital. That is, there exist different quantum propositions which cannot be distinguished by
any classical truth assignment.

The Kochen and Specker result, as itis commonly argued, e.g. by Peres [35] and Mermin [32],
is directed against the noncontextual hidden parameter program envisaged by EPR. Indeed, if one
takes into account the entire Hilbert logic (of dimension larger than two) and if one considers all
states thereon, any truth value assignment to quantum propositions prior to the actual measurement
yields a contradiction. This can be proven by finitistic means, that is, with a finite number of one-
dimensional closed linear subspaces (generating an infinite set whose intersection with the unit
sphere is dense; cf. Havlicek and Svozil [17]). But, the Kochen—Specker argument continues, it
is always possible to prove the existence of separable valuations or truth assignments for classical
propositional systems identifiable with Boolean algebras. Hence, there does not exist any injective
morphism from a quantum logic into some Boolean algebra.

Since the previous reviews of the Kochen—Specker theorem by Peres [34, 35], Redhead [38],
Clifton [6], Mermin [32], Svozil and Tkadlec [48], concentrated on the nonexistence of classical
noncontextual elements of physical reality, we are going to discuss here some options and aspects
of embeddings in greater detail. Particular emphasis will be given to embeddings of quantum uni-
verses into classical ones which do not necessarily preserve (binary lattice) operations identifiable
with the logicalor andand operations. Stated pointedly, if one is willing to abandon the preser-
vation of quite commonly used logical functions, then it is possible to give a classical meaning to
guantum physical statements, thus giving raise to an “understanding” of quantum mechanics.

Quantum logic, according to Birkhoff [5], Mackey [28], Jauch [21], Kalmbach [23], Pulman-
nova [37], identifies logical entities with Hilbert space entities. In particular, elementary proposi-
tionsp,q, ... are associated with closed linear subspaces of a Hilbert space through the origin (zero
vector); the implication relatiort is associated with the set theoretical subset relatipand the
logicalor v, and A, andnot’ operations are associated with the set theoretic interseatimith
the linear spamb of subspaces and the orthogonal subspagcesspectively. The trivial logical
statement which is always true is identified with the entire Hilbert sp&teand its complement
0 with the zero-dimensional subspace (zero vector). Two proposiparglq are orthogonal if
and only if p < d'. Two propositions, g are co-measurable (commuting) if and only if there exist
mutually orthogonal propositiors, b, c such thatp =aVv b andq = aVv c. Clearly, orthogonal-
ity implies co-measurability, since f andq are orthogonal, we may identiy; b, c with O, p, q,



respectively. The negation pf< qis denoted by £ q.

2 Varieties of embeddings

One of the questions already raised in Specker’s almost forgotten first artictecpt®lerned an
embedding of a quantum logical structlwref propositions into a classical universe represented

by a Boolean algebrB. Thereby, it is taken as a matter of principle that such an embedding
should preserve as much logico—algebraic structure as possible. An embedding of this kind can be
formalized as a mappinyy: L — B with the following propertie$.Let p,q € L.

() Injectivity: two different quantum logical propositions are mapped into two different proposi-
tions of the Boolean algebra, i.e.,pf£ g, thend(p) # ¢(q).

(i) Preservation of the order relationf p < g, thend(p) < ¢(q).
(iif) Preservation of ortholattice operationise. preservation of the

(ortho-)complementd(p') = d(p)’,
or operation ¢(pVvag) = ¢(p) Vv $(q),
andoperation ¢(pAd) = (p) A ().

As it turns out, we cannot have an embedding from the quantum universe to the classical uni-
verse satisfying all three requirements (i)—(iii). In particular, a head-on approach requiring (iii) is
doomed to failure, since the nonpreservation of ortholattice operations among nonco—measurable
propositions is quite evident, given the nondistributive structure of quantum logics.

2.1 Injective lattice morphisms

Here we shall review the rather evident fact that there does not exist an injective lattice morphism
from any nondistributive lattice into a Boolean algebra. We illustrate this obvious fact with an
example that we need to refer to later on in this paper; the propositional structure encountered in
the quantum mechanics of spin state measurements of a spin one-half particle along two different
directions (modv), that is, the modular, orthocomplemented latié®, drawn in Figure 1 (where
p- = (p+) andg- = (g4.)").

Clearly,MO: is a nondistributive lattice, since for instance,

P-A (G- Vo) =p-Al=p_,

whereas
(p-AQ-)V(p-AQy)=0VvO0=0.
Hence,
P-A(0-Vay) # (P-AG-) V (P- ATy ).

In fact, MO, is the smallest orthocomplemented nondistributive lattice.

lin German.
2Specker had a modified notion of embedding in mind; see below.
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Figure 1: Hasse diagram of the “Chinese lantern” fornviad,.

The requirement (iii) that the embeddidgpreserves all ortholattice operations (even for
nonco—measurable and nonorthogonal propositions) would meaf(thatA (¢(g-) V(g )) #
(O(p-)Ad(g-)) V(d(p-)Ad(g+)). Thatis, the argument implies that the distributive law is not
satisfied in the range d@f. But since the range df is a subset of a Boolean algebra and for any
Boolean algebra the distributive law is satisfied, this yields a contradiction.

Could we still hope for a reasonable kind of embedding of a quantum universe into a classical
one by weakening our requirements, most notably (iii)? In the next three sections we are going
to give different answers to this question. In the first section we restrict the set of propositions
among which we wish to preserve the three operatammsplement, or Vv, andand A. We will
see that the Kochen—Specker result gives a very strong negative answer even when the restriction
is considerable. In the second section we analyze what happens if we try to preserve not all
operations but just the complement. Here we will obtain a positive answer. In the third section we
discuss a different embedding which preserves the order relation but no ortholattice operation.

2.2 Injective order morphisms preserving ortholattice operations among orthogo-
nal propositions

Let us follow Zierler and Schlessinger [52] and Kochen and Specker [26] and weaken (iii) by re-
quiring that the ortholattice operations need only to be presamexhg orthogongbropositions.

As shown by Kochen and Specker [26], this is equivalent to the requirement of separability by the
set of valuations or two-valued probability measures or truth assignmerits As a matter of

fact, Kochen and Specker [26] proved nonseparability, but also much moreaietieistencef
valuations on Hilbert lattices associated with Hilbert spaces of dimension at least three. For related
arguments and conjectures, based upon a theorem by Gleason [11], see Zierler and Schlessinger
[52] and John Bell [2].

Rather than rephrasing the Kochen and Specker argument [26] concerning nonexistence of
valuations in three-dimensional Hilbert logics in its original form or in terms of fewer subspaces
(cf. Peres [35], Mermin [32]), or of Greechie diagrams, which represent orthogonality very nicely
(cf. Svozil and Tkadlec [48], Svozil [46]), we shall give two geometric arguments which are
derived from proof methods for Gleason’s theorem (see Piron [36], Cooke, Keane, and Moran [7],



and Kalmbach [24]).

Let L be the lattice of closed linear subspaces of the three-dimensional real HilberfRspace
A two-valued probability measuia valuationonL is a mapv: L — {0,1} which maps the zero-
dimensional subspace containing only the orig0,0) to 0, the full spaceR® to 1, and which
is additive on orthogonal subspaces. This means that for two orthogonal subspaced. the
sum of the values(s;) andv(s,) is equal to the value of the linear spansfands,. Hence, if
S1,%,S3 € L are a tripod of pairwise orthogonal one-dimensional subspaces, then

V(1) +V(Sp) +V(ss) = V(R?) = 1

The valuationv must map one of these subspaced tand the other two t@®. We will show
that there isno such map. In fact, we show that there is no nvaphich is defined on all one-
dimensional subspaces Bf and mapsexactly one subspace out of each tripod of pairwise or-
thogonal one-dimensional subspaced tand the other two t®.

In the following two geometric proofs we often identify a given one-dimensional subspace of
IR3 with one of its two intersection points with the unit sphere

= {xc B®| |Ix]| = 1}

In the statements “a point (on the unit sphere) has valige valuel)” or that “two points (on the
unit sphere) are orthogonal” we always mean the corresponding one-dimensional subspaces. Note
also that the intersection of a two-dimensional subspace with the unit sphere is a great circle.

To start the first proof, let us assume that a functisatisfying the above condition exists.
Let us consider an arbitrary tripod of orthogonal points and let us fix the point with ¢alBg
a rotation we can assume that it is the north pole with the coordiri@tésl). Then, by the
condition above, all points on the equa{dk,y,z) € S | z= 0} must have valu@ since they are
orthogonal to the north pole.

Let g = (ax,0y,0,) be a point in the northern hemisphere, but not equal to the north pole,
that isO < g, < 1. Let C(q) be the unique great circle which contaigsand the points

+(qy, —0x,0)/ 4 /q§+q§ in the equator, which are orthogonaldo Obviously,q is the northern-

most point onC(q). To see this, rotate the sphere aroundzfaais so thagy comes to lie in the
{y = 0}-plane; see Figure 2. Then the two points in the equator orthogonalr®just the points
+(0,1,0), andC(q) is the intersection of the plane througtand (0,1,0) with the unit sphere,
hence

Clg)={pecR®| 3a,BeR)a’+p2=1andp=aq+p(0,1,0)}.

This shows that| has the largest-coordinate among all points ©(q).

Assume that has valued. We claim that then all points d@(q) must have valu@. Indeed,
sinceq has valued and the orthogonal poirftyy, —dx,0)/ /02 +q§, on the equator also has value
0, the one-dimensional subspace orthogonal to both of them must havelv@8uethis subspace
is orthogonal to all points 08(q). Hence all points o€(q) must have valué.

Now we can apply the same argument to any p@ioin C(q) (by the last consideratioimust
have valueD) and derive that all points 08(§) have valued. The great circléC(q) divides the
northern hemisphere into two regions, one containing the north pole, the other consisting of the
points belowC(q) or “lying betweenC(q) and the equator”, see Figure 2. The cirdi¥§) with
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Figure 2: The great circl€(q).

G € C(q) certainly cover the region betwe@{q) and the equatcr.Hence any point in this region
must have valué.

But the circlesC(§) cover also a part of the other region. In fact, we can iterate this process.
We say that a poinp in the northern hemisphe@n be reachedrom a pointg in the northern
hemisphere, if there is a finite sequence of pompts go,qs1,...,0n—1,0n = P in the northern
hemisphere such thgt € C(gi_1) fori =1,...,n. Our analysis above shows thatjihas valued
andp can be reached from then alsgp has value.

The following geometric lemma due to Piron [36] (see also Cooke, Keane, and Moran [7] or
Kalmbach [24]) is a consequence of the fact that the cGxep is tangent to the horizontal plane
through the poing:

If g and p are points in the northern hemisphere with< g,, thenp can be reached
fromq.

This result will be proved in Appendix A. We conclude that, if a pa@jiri the northern hemisphere
has valud, then every poinp in the northern hemisphere wifl} < g, must have valu@ as well.
Consider the tripoc{l,0,0),(O,%,%),(O,—%,\%). Since(1,0,0) (on the equator) has
valueO, one of the two other points has vald@and one has valuk By the geometric lemma and
our above considerations this implies that all poipt® the northern hemisphere with < %

must have valu® and all pointsp with p, > % must have valud. But now we can choose any

point p’ with % < p, < 1as our new north pole and deduce that the valuation must have the same
form with respect to this pole. This is clearly impossible. Hence, we have proved our assertion
that there is no mapping on the set of all one-dimensional subspaBgsadfich maps one space
out of each tripod of pairwise orthogonal one-dimensional subspadesnd the other two t6.

In the following we give a second topological and geometric proof for this fact. In this proof
we shall not use the geometric lemma above.

3This will be shown formally in the proof of the geometric lemma below.



Fix an arbitrary point on the unit sphere with valde The great circle consisting of points
orthogonal to this point splits into two disjoint sets, the set of points with valand the set of
points orthogonal to these points. They have vélul one of these two sets were open, then the
other had to be open as well. But this is impossible since the circle is connected and cannot be
the union of two disjoint open sets. Hence the circle must contain a poiith valuel and a
sequence of pointg(n), n=1,2,... with valueO converging top. By a rotation we can assume
that p is the north pole and the circle lies in thg = 0}-plane. Furthermore we can assume that
all pointsqy, have the same sign in tixecoordinate. Otherwise, choose an infinite subsequence of
the sequence(n) with this property. In fact, by a rotation we can assume that all pajmshave
positivex-coordinate (i.e. all pointg(n), n=1,2,... lie as the poing in Figure 2 and approach
the north pole as tends to infinity). All points on the equator have valueBy the first step in
the proof of the geometric lemma in the appendix, all points in the northern hemisphere which
lie betweerC(q(n)) (the great circle through(n) and+(0,1,0)) and the equator can be reached
from q(n). Hence, as we have seen in the first pre¢dn)) = 0 implies that all these points must
have valué. Sinceq(n) approaches the north pole, the union of the regions bet®égm)) and
the equator is equal to the open right hidfe S | g, > 0,qx > O} of the northern hemisphere.
Hence all points in this set have val0eLet g be a point in the left halfq € S | g, > 0,0« < 0}

of the northern hemisphere. It forms a tripod together with the p@ipt-ax,0)/,/dz+ 3 in

: gty R\ : :
the equator and the poitr-ay, —0y, =) /||(—0x, 0y, =g~ )| in the right half. Since these two

points have valué, the pointq must have valué. Hence all points in the left half of the northern

hemisphere must have valde But this leads to a contradiction because there are tripods with
e - 11 1 111 1 1 :

two points in the left half, for example the tr.lpc(dri,ﬁ,z), (_?’_ﬁ_’?)’ (ﬁ,o,ﬁ). This .

ends the second proof for the fact that there is no two-valued probability measure on the lattice of

subspaces of the three-dimensional Euclidean space which preserves the ortholattice operations at

least for orthogonal elements.

2.3 Injective morphisms preserving order as well a®r and and operations

We have seen that we cannot hope to preserve the ortholattice operations, not even when we restrict
ourselves to operations among orthogonal propositions.

An even stronger weakening of condition (iii) would be to require preservation of ortholattice
operations merely among the cen@ri.e., among those propositions which are co—measurable
(commuting) with all other propositions. It is not difficult to prove that in the case of complete
Hilbert lattices (and not mere subalgebras thereof), the center consists of just the least lower and
the greatest upper boui@l= {0,1} and thus is isomorphic to the two-element Boolean algebra
2={0,1}. As it turns out, the requirement is trivially fulfilled and its implications are quite trivial
as well.

Another weakening of (iii) is to restrict oneself to particular physical states and study the
embeddability of quantum logics under these constraints; see Bell, Clifton [1].

In the following sections we analyze a completely different option: Is it possible to embed
guantum logic into a Boolean algebra when one does not demand preservation of all ortholattice
operations?

One method of embedding an arbitrary partially ordered set into a concrete orthomodular
lattice which in turn can be embedded into a Boolean algebra has been used by Kalmbach [22]
and extended by Harding [16] and Mayet and Navara [31]. In thedmbach embeddingss



they may be called, the meets and joins are preserved but not the complement.

The Kalmbach embedding of some bounded lattic&o a concrete orthomodular lattiBgL )
may be thought of as the pasting of Boolean algebras corresponding to all maximal chiains of
[15].

First, let us consider linear chaifs=ay — a; — a — --- — 1 = a;,. Such chains generate
Boolean algebra®™ 1! in the following way: from the first nonzero elememton to the greatest
elementl, form A, = a, A (an-1)’, where(a,_1)" is the complement o#,_; relative tol; i.e.,
(an-1)' = 1—an_1. A, is then an atom of the Boolean algebra generated by the bounded chain
O=ag—a—ap—---—1

Take, for example, a three-element ch@ia ap — {a} = a1 — {a,b} = 1= ay as depicted in
Figure 3a). In this case,

Al = aA(ag) =asnl={a}r{ab}={a},
Ay = apA(a1) =1A(a1) ={a b} A{b} ={b}.

This construction results in a four-element Boolean Kalmbach laKide) = 22 with the two
atoms{a} and{b} given in Figure 3b).

Take, as a second example, a four-element chairgy — {a} = a1 — {a,b} — {a,b,c} =
1= ag as depicted in Figure 3c). In this case,

A = aA(a) =asnl={alA{ab,c}={a},
A = aA(a) ={ab}A{b.c}={b},
As = azA () =1A(a) ={ab,c} A{c}={c}].

This construction results in an eight-element Boolean Kalmbach lagtite = 23 with the three
atoms{a}, {b} and{c} depicted in Figure 3d).

To apply Kalmbach’s construction to any bounded lattice, all Boolean algebras generated by
the maximal chains of the lattice are pasted together. An element common to two or more maximal
chains must be common to the blocks they generate.

Take, as a third example, the Boolean lat®edrawn in Figure 3e)22 contains two linear
chains of length three which are pasted together horizontally at their smallest and biggest elements.
The resulting Kalmbach lattidé(2%) = MO; is of the “Chinese lantern” type, see Figure 3f).

Take, as a fourth example, the pentagon drawn in Figure 3g). It contains two linear chains:
one is of length three, the other is of length 4. The resulting Boolean algebaamsi2® are again
horizontally pasted together at their extremitie4. The resulting Kalmbach lattice is given in
Figure 3h).

In the fifth example drawn in Figure 3i), the lattice has two maximal chains which share a
common element. This element is common to the two Boolean algebras, hence cefttal.in
The construction of the five atoms proceeds as follows:

A1 = {a}A{ab,c,d} ={a},

Ay = {ab,c}A{b,c,d} ={b,c},
As = Bs={ahb,cd}r{d}={d},
Bi = {b}A{ab,c,d}={b},

B, = {ahb,c}A{ac,d} ={ac},



{a,b} =1 {a,b} =1

{a} {b}

0 0

L K(L)=2? L
a) b) c) d)
{a,b} =1 {a,b} =1
{a}i ;{b} {a} {b'}

0 0
L =22 K(L) =MO2

e

f)

: (a)
{a,b,c,d} l
{ab} G
{d} —
{a} (&
0
)
{a,b,c,d} =1
{a,b,c}
L
{a} {b}
0
L

) )

Figure 3: Examples of Kalmbach embeddings.
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where the two sets of atorjs, Ay, As = B3} and{By, B2, Bs = As} span two Boolean algebra3
pasted together at the extremities anéat= Bz andA; = Bj. The resulting lattice i2 x MO, =
L1, depicted in Figure 3)).

2.4 Injective morphisms preserving order and complementation

In the following, we shall show thainy orthoposet can be embedded into a Boolean algebra
where in this case by aembeddingve understand aimjective mapping preserving the order
relation and the orthocomplementation

A slightly stronger version of this fact using more topological notions has already been shown
by Katrnagska [25]. Zierler and Schlessinger constructed embeddings with more properties for
orthomodular orthoposets [52, Theorem 2.1] and mentioned another slightly stronger version of
the result above without explicit proof [52, Section 2, Remark 2].

For completeness sake we give the precise definition of an orthoposeartiioposet(or
orthocomplemented pogét, <,0,1,) is a sel. which is endowed with a partial ordering (i.e.

a subsek of L x L satisfying (L)p<p, (2) if p<gandg<r, thenp<r, (3)if p<gandq< p,
thenp = q, for all p,q,r € L). Furthermorel. contains distinguished elemerftaind1 satisfying
O<pandp<1,forall peL. Finally, L is endowed with a functioh(orthocomplementatign
from L to L satisfying the conditions (1) = p, (2) if p < q, thend < p/, (3) the least upper
bound ofp andp’ exists and id, for all p,q € L. Note that these conditions impy =1, 1' =0,
and that the greatest lower boundméndp’ exists and i9, for all p € L.

For example, an arbitrary sublattice of the lattice of all closed linear subspaces of a Hilbert
space is an orthoposet, if it contains the subsg&geand the full Hilbert space and is closed
under the orthogonal complement operation. Namely, the subgpade theO in the orthoposet,
the full Hilbert space is thé&, the set-theoretic inclusion is the ordering and the orthogonal
complement operation is the orthocomplementation

In the rest of this section we always assume that an arbitrary orthoposet. We shall con-
struct a Boolean algebBand an injective mappingy : L — B which preserves the order relation
and the orthocomplementation. The construction goes essentially along the same lines as the con-
struction of Zierler and Schlessinger [52] and Kaka [25] and is similar to the proof of the
Stone representation theorem for Boolean algebras, cf. Stone [45]. It is interesting to note that for
a finite orthoposet the constructed Boolean algebra will be finite as well.

We call a nonempty subsktof L anidealif for all p,q € L:

1. if peK, thenp €K,
2. if p<gandqgeK, thenp e K.

Clearly, ifK is an ideal, the® € K. Anideall is maximalprovided that ifK is an ideal andl C K,
thenK =1.

Let I be the set of all maximal ideals In and letB be the power set of considered as a
Boolean algebra, i.® is the Boolean algebra which consists of all subsets dhe order relation
in B is the set-theoretic inclusion, the ortholattice operatiom®mplementor, andand are given
by the set-theoretic complement, union, and intersection, and the elebraerd4 of the Boolean
algebra are just the empty set and the full ke€onsider the map

¢:L—B
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which maps each elemepte L to the set

o(p)={lel|pgl}
of all maximal ideals which do not contam We claim that the magp
(i) isinjective,
(i) preserves the order relation,
(iii) preserves complementation.

This provides an embedding of quantum logic into classical logic which preserves the implication
relation and the negatich.

The rest of this section consists of the proof of the three claims above. Let us start with claim
(ii). Assume thaip,q € L satisfyp < g. We have to show the inclusion

d(p) Cd(a).

Take a maximal idedl € ¢(p). Thenp & |. If g were contained im, then by condition 2. in the
definition of an ideal alsp had to be contained ih Henceq ¢ |, thus proving that € ¢(q).

Before we come to claims (iii) and (i) we give another characterization of maximal ideals. We
start with the following assertion which will also be needed later:

If I isanideal and € Lwithr ¢ | andr’ £,
then also the sek=1U{se L |s<r}is anideal.

(1)

Here is the proof: It is clear thdtsatisfies condition 2. in the definition of an ideal. To show that it
satisfies condition 1. assume to the contrary that there esdsisands’ € J, for somese L. Then
one of the following conditions must be true; §l¥ € J, (Il) s<r ands <r, (lll) sel ands <r,
(IV) s<r, s €l. The first case is impossible sintés an ideal. The second case is ruled out
by the fact that # 1 (namely,r = 1 would imply r’ = 0 which would contradict our assumption
r’ ¢1). The third case is impossible sinse< r impliesr’ < swhich, combined witls € | would
imply r’ € 1, contrary to our assumption. Finally the fourth case is nothing but a reformulation of
the third case witls ands’ interchanged. Thus we have proved thag an ideal and have proved
the assertion (1).

Next, we prove the following new characterization of maximal ideals:

An ideall is a maximal ideal iffr ¢ | impliesr’ € 1. (2)

To prove this first assume that for ale L, if r ¢ |, thenr’ € | and supposkis apropersubset of
an idealk. Then there existp € K such thatp £ |. By our hypothesis (forall € L, r £ | implies
r' € 1), we havep' € |. Thus bothp € K andp’ € K. This contradicts the fact thitis an ideal.
Conversely, suppose thiais a maximal ideal i and suppose, to the contrary, that for some
rei,
rglandr’ 1. (3)

“Note that for a finite orthoposét the Boolean algebr8 is finite as well. Indeed, if. is finite, then it has only
finitely many subsets, especially only finitely many maximal ideals. Hdnedinite, and thus also its power $is
finite.
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Of courser # 1, sincel’ =0and Oc I. Let
J=1U(r) 4)

where(r) = {se L | s<r} is the principal ideal of (note that(r) is indeed an ideal). Then,
under assumption (3), using (1) above, we havedhstan ideal which properly contairs This
contradicts the maximality dfand ends the proof of the assertion (2).

For claim (iii) we have to show the relation:

o(p) =1\d(p),

for all p € L. This can be restated as

Led(p)iff I d(p)

for all | € 1. But this meangy ¢ | iff p € I, which follows directly from condition 1. in the
definition of an ideal and from assertion (2).

We proceed to claim (i), which states thats injective, i.e., ifp # g, thend(p) # ¢(q). But
p # qis equivalent top £ q or g £ p. Furthermore, if we can show that there is a maximal ideal
| such thag € | andp ¢ | then it follows easily thad(p) # ¢(qg). Indeed,p € | meand € ¢(p)
andg € | meand ¢ ¢(q). It is therefore enough to prove that:

If p«£ q,then there exists a maximal iddaduch thag €| andp ¢ I.

To prove this we note that singe£ g, we havep # 0. Let
Ing={K CL|Kisanideal angp ¢ K andq € K}.

We have to show that among the elementgf there is a maximal ideal. Therefore we will use
Zorn’s Lemma. In order to apply it td, ; we have to show thak, q is not empty and that every
chain in I 4 has an upper bound.

The setly, q is not empty sincgq) < Ipq. Now we are going to show that every chain/gy,
has an upper bound. This means that, given a sublsair C of I, 4 with the property

forallJ,K e Conehasl CKorK CJ,

we have to show that there is an elemargger boundiU € I, q with K C U for all K € C. The

union
Ue=JK
KeC

of all idealsK € ( is the required upper bound! It is clear thatlklEe C are subsets dfi-. We
have to show that)- is an element off, 4. Sincep ¢ K for all K € C we also havep ¢ U
Similarly, sinceg € K for some (even allK € C, we haveq € U-. We still have to show thad- is
an ideal. Given two propositionss with r < sands € U, we conclude thas must be contained
in one of the idealX € C. Hence alsa € K C U,. Now assume € U.. Is it possible that the
complement’ belongs tdJ? The answer is negative, since otherwigeJ andr’ € K, for some
idealsJ,K € C. But since(C is a chain we havd C K or K C J, hencer,r’ € K in the first case
andr,r’ € J in the second case. Both cases contradict the factitaatlK are ideals. HencéJ

12



is an ideal and thus an elementgf;. We have proved thal, q is not empty and that each chain
in Ipq has an upper bound ify g.

Consequently, we can apply Zorn’s Lemmafg, and obtain a maximal elemehtin the
ordered sefj, 4. Thus

p&landgel. (5)

It remains to show thdt is a maximal ideal ir.. Thus suppose, to the contrary, thds not a
maximal ideal inL.

By (2) there exists € L such that both ¢ | andr’ ¢ |. Furthermore, since # 0, then either
p £ rorp<r’. Without loss of generality suppose

pLr. (6)

It follows, by (1), and since ¢ | andr’ ¢ |, thatl U(r) is an ideal properly containinlg But since,
by Conditions (5) and (6)g € | andp £ r, we have

pZluU(r)andge luU(r).

Thusl U (r) € Ipq and, since ¢ |, we deduce thatu (r) properly containg, contradicting the
fact thatl is amaximal elemenh Ipq. This ends the proof of claim (i), the claim that the nfap
is injective.

We have shown:

Any orthoposet can be embedded into a Boolean algebra where the embedding pre-
serves the order relation and the complementation.

2.5 Injective order preserving morphisms

In this section we analyze a different embedding suggested by Malhas [29, 30].

We consider an orthocomplemented lattice<,0,1,’), i.e. a latticg(L, <,0,1) with0 < x< 1
for all x € L, with orthocomplementation, that is with a mappind. — L satisfying the following
three properties: af’ = x, b) if x <y, theny <X, c)x-X' =0andyVvy = 1. Herex-y = glb(x,y)
andxVy = lub(x,y).

Furthermore, we will assume thiafis atomi® and satisfies the following additional property:

forall x,y € L,x <Yy iff for every atomac L,a<x impliesa<y. @)

Every atomic Boolean algebra and the lattice of closed subspaces of a separable Hilbert space
satisfy the above conditions.

Consider next a s&t® and letw(U) be the smallest set of words over the alphabet{’, —}
which containd) and is closed under negation fifc W(U), thenA’ € W(U)) and implication (if
ABcW(U), thenA — B e W(U)).” The elements o) are calledsimple propositiongnd the
elements oW (U) are calledcompound) propositions

A valuationis a mapping

t:WU)—2

SFor everyx e L\ {0}, there is an atora € L such thak < x. An atom is an elemert € L with the property that if
0<y<a,theny=0ory=a.

6Not containing the logical symbols,’ , —.

"Define in a natural wapUB = A’ — B,ANB= (A—B),A—B=(A—B)n(B— A).
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such thatt(A) # t(A') andt(A — B) = 0 iff t(A) = 1 andt(B) = 0. Clearly, every assignment
s:U — 2 can be extended to a unique valuatign

A tautologyis a propositionA which is true under every possible valuation, it€A) = 1,
for every valuatiort. A set X C W(U) is consistenif there is a valuation making true every
proposition inX. LetAeW(U) and X CW(U). We say thatA derivesfrom X, and write
K = A, in caset(A) = 1 for each valuationt which makes true every proposition & (that is,
t(B) =1, for all B € X). We define the set of consequence%oby

Con(X) ={AcW(U) | K |- A}.
Finally, a setX is atheoryif KX is a fixed-point of the operat@on
ConX) = X.

It is easy to see th&@onis in fact a finitary closure operator, i.e., it satisfies the following four
properties:

e X CCon%k),

e if X C %, thenCon(k) C Con(X),
e ConConX)) =Con(X),

o Con(K) = Uxcx.x finitey CONX).

The first three properties can be proved easily. A topological proof for the fourth property can be
found in Appendix B.

The main example of a theory can be obtained by taking A sétvaluations and constructing
the set of all propositions true under all valuationXin

Th(X)={AeW() |t(A) =1, forallt € X}.

In fact, every theory is of the above form, that fer every theoryX there exists a set of
valuationsX (depending upork) such thatX = Th(X). Indeed, take

Xg ={t:W(U) — 2|t valuation witht(A) =1, forall Ac KX},

and notice that

Th(Xg) = {BeW(U)|t(B)=1, forall t € Xy}
= {BeW(U) |t(B)=1, forevery valuation with(A) =1,
forall Ae X}
= Con(%)=X.
In other wordstheories are those sets of propositions which are true under a certain set of
valuations (interpretations).

Let now 7 be a theory. Two elemenis g € U are 7 -equivalent, writtenp =+ @, in case
p < g€ 7. The relation=q is an equivalence relation. The equivalence clagsisfp]; = {q ¢
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U | p=¢ q} and the factor set is denoted by, ; for brevity, we will sometimes writgp] instead
of [p]z. The factor set comes with a natural partial order:

P <[q ifp—qeT.

Note that in generalU=_, <) is not a Boolean algebfa.
In a similar way we can define thes-equivalence of two propositions:

A=;Bif AcBeT.

Denote by{[A]]+ (shortly,[[A]]) the equivalence class #fand note that for everp € U,

[p] = [[pl]NU.

The resulting Boolean algeb¥s(U ), is the Lindenbaum algebra af.

Fix now an atomic orthocomplemented lattide <,0,1,) satisfying (7). LetJ be a set of
cardinality greater or equal toand fix a surjective mappinfj: U — L. For every atona € L, let
S - U — 2 be the assignment defined &y p) = 1iff a< f(p). Take

X = {ts, | @ is an atom ot.}° and7Z = Th(X).

Malhas [29, 30] has proven that thadtice (U=, <) is orthocomplemente@nd, in fact,so-
morphic toL. Here is the argument. Note first that there exist two elem@&idtsn U such that
f(0)=0, f(1) = 1. Clearly,0¢ 7, butl e 7. Indeed, for every atoma, a < f(1) =1, so
s%(l) =1, as.o.

Secondly, for everyp,q e U,

p—qe7 iff f(p)<f(q).

If p— q¢ 7, then there exists an atoanc L such thats,(p — q) = 0, sosa(p) =ts,(p) =
1, sa(g) = ts,(q) = 0, which—according to the definition gk—meana < f(p), buta £ f(q).
If f(p) < f(q), thena < f(q), a contradiction. Conversely, if(p) £ f(q), then by (7) there
exists an atona such that < f(p) anda £ f(q). So,s(p) =ts,(p) =1, sa(q) =ts,(q) =0, i.e.,
(p—a)¢ 7.

As immediate consequences we deduce the validity of the following three relations: for all
p.geU,

o f(p) < f(q)iff
o f(p)=f(q)iff
<[p < [1].

< [p] < [d],

[p] = [d],
e [0 <[p]

Two simple propositiong, q € U areconjugatein casef (p)’ = f(q).1° Define now the opera-
tion* : Uy — Us as follows:[p]* = [g] in casey is a conjugate op. It is not difficult to see that the

8For instance, in cas& = Con({p}), for somep € U. If U has at least three elements, tifela., <) does not have
a minimum.
9Recall thats is the unique valuation extendirsg
100f course, this relation is symmetrical.
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operation’ is well-defined and actually is an orthocomplementation. It follows {at <,,*) is
an orthocomplemented lattice.

To finish the argument we will show that this latticégemorphicwith L. The isomorphism
is given by the mappingy : Uy — L defined by the formulap([p]) = f(p). This is a well-
defined function (becausgp) = f(q) iff [p] = [q]), which is bijective @([p]) = W([g]) implies
f(p) = f(q), and surjective becaudeas onto). If[p] < [g], thenf(p) < f(q), i.e. Y([p]) < Y([q]).
Finally, if g is a conjugate op, then

In particular,there exists a theory whose induced orthoposet is isomorphic to the lattice of
all closed subspaces of a separable Hilbert spadew does this relate to the Kochen-Specker
theorem?The natural embedding

MU=, =W(U)=,, F'([p]) =[[p]

is order preserving and one-to-one, but in general it does not preserve orthocomplemetigtion
in generall ([p]*) # [([p])’. We always haveé ([p]*) < T ([p])’, but sometime§ ([p])’ £ I ([p]*).
The reason is that for every pair of conjugate simple proposifipg®ne hagp — ') € 7, but
the converse is not true.

By combining the inversey—! of the isomorphismp with I' we obtain an embeddindy of L
into the Boolean Lindenbaum alget&U ). Thus, the above construction of Malhas gives us
another method hovo embed any quantum logic into a Boolean logic in case we require that only
the order is preservetf

Next we shall give a simple example of a Malhas type embeddlinilO, — 24. Consider
again the finite quantum log O, represented in Figure 1. Let us choose

U ={AB,C,D,E,F,GH}.

SinceU contains more elements th&0O,, we can mapJ) surjectively ontaMO»; e.g.,

f(A) = 0
f(B) = p-,
f(C) = p-,
f(D) = py,
f(E) = a-,
f(F) = a,
f(G) = 1,
f(H) = 1.

For every atoma € MOy, let us introduce the truth assignmegt U — 2 = {0, 1} as defined
above (i.esy(r) = 1iff a< f(r)) and thus a valuation dWW(U) separating it from the rest of the
atoms ofMO,. That is, for instance, associate with € MO, the functions, as follows:

Sp (A)=sp (D) =sp (E)=5p (F)

0,
p (C) =% (G) =% (H)=1

n
P
—
vy}
I
»
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ABCDEF G H
s, [0 1 1 0 0 0 1 1
S, /0 0 0 1 0 0 1 1
[0 00 0 1 0 1 1
% /0 0 0 0 0 1 1 1

Table 1: Truth assignments @hcorresponding to atoms_, p;,9-,q+ € MOo.

Figure 4: Hasse diagram of an embedding of the quantum Mg represented by Figure 1.
Concentric circles indicate the embedding.

The truth assignments associated with all the atoms are listed in Table 1.
The theoryT we are thus dealing with is determined by the union of all the truth assignments;
i.e.,
X = {t5p7 7t5p+ ,tsq7 7t5q+} andT = Th(X)

The way it was constructet, splits into six equivalence classes with respect to the théoiye.,

Since [p] — [q] if and only if (p — q) € 7, we obtain a partial order od—, induced byT
which isomorphically reflects the original quantum lol©,. The Boolean Lindenbaum algebra
WU)=, = 2% is obtained by forming all the compound propositions&Jofind imposing a partial
order with respect t@". It is represented in Figure 4. The embedding is given by

11n Section 2.4 we saw that it is possible to embed quantum logic into a Boolean logic preserving the order and the
complement.
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6(0) = [[A]l,
o(p-) = [[B]l,
o(py) = [[D]],
o(a-) = [[E]
¢(a) = [F]],
6(1) = [[G]].

It is order—preserving but does not preserve operations such as the complement. Although, in this
particular examplef (B) = (f(D))" implies(B— D’) € 7, the converse is not true in general. For
example, there is ne< X for whichs(B) = s(E) = 1. Thus,(B— E’) € T, but f(B) # (f(E))’.

One needs not be afraid of order-preserving embeddings which are no lattice morphisms, after
all. Even automaton logics (see Svozil [47, Chapter 11], Schaller and Svozil [39, 40, 41], and
Dvureenskij, Pulmanndy and Svozil [8]) can be embedded in this way. Take again the lattice
MO, depicted in Figure 1. A partition (automaton) logic realization is, for instance,

{{1}.{2,3}},{{2},{1,3}}},

with
{1 = p,
{2a3} = p+a
{2t = a,
{1’3} = q+a

respectively. If we takg1},{2} and{3} as atoms, then the Boolean algeBfagenerated by all
subsets of 1,2, 3} with the set theoretic inclusion as order relation suggests itself as a candidate
for an embedding. The embedding is quite trivially given by

d(p)=pe 2.

The particular example considered above is represented in Figure 5. It is not difficult to check that
the embedding satisfies the requirements (i) and (ii), that is, it is injective and order preserving.

It is important to realize at that point that, although different automaton partition logical struc-
tures may be isomorphic from a logical point of view (one-to-one translatable elements, order
relations and operations), they may be very different with respect to their embeddability. Indeed,
any two distinct partition logics correspond to two distinct embeddings.

It should also be pointed out that in the case of an automaton partition logic and for all finite
subalgebras of the Hilbert lattice of two-dimensional Hilbert space, it is always possible to find an
embedding corresponding to a logically equivalent partition logic which is a lattice morphism for
co—measurable elements (modified requirement (iii)). This is due to the fact that partition logics
andMO,, have a separating set of valuations. In k@, case, this is, for instance

{{{1,2},{3,4}},{{1.3},{2,4}}},
with
{1,2} = p,

18



1=1{1,2,3}
{2,3} {1,3}

1=1{1,2,3}

Figure 5: Hasse diagram of an embeddingM®, drawn in a) into22 drawn in b). Again,
concentric circles indicate points &t included inMO,.

pP- P+ 0- 04
s | 1 0 1 0
S| 1 0 0 1
5| O 1 1 0
| 0 1 0 1

Table 2: The four valuations, s, S3, 5 on MO, take on the values listed in the rows.

{3a 4} = Py,
{3} = a.,
{2’ 4} = 0Oy,

respectively. This embedding is based upon the set of all valuations listed in Table 2. These
are exactly the mappings froMO; to 2 preserving the order relation and the complementation.
They correspond to the maximal ideals considered in Section 2.3. In this special case the embed-
ding is just the embedding obtained by applying the construction of Section 2.3, which had been
suggested by Zierler and Schlessinger [52, Theorem 2.1]. The embedding is drawn in Figure 6.

3 Surjective extensions?

The original proposal put forward by EPR [9] in the last paragraph of their paper was some form
of completion of quantum mechanics. Clearly, the first type of candidate for such a completion
is the sort of embedding reviewed above. The physical intuition behind an embedding is that the
“actual physics” is a classical one, but because of some yet unknown reason, some of this “hidden
arena” becomes observable while others remain hidden.

Nevertheless, there exists at least one other alternative to complete quantum mechanics. This
is best described by surjective mapp: B — L of a classical Boolean algebra onto a quantum
logic, such thatB| > [L|.

Plato’s cave metaphor applies to both approaches, in that observations are mere shadows of
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Figure 6: Hasse diagram of an embedding of the partition 1ppf&, 2}, {3,4} }, {{1,3}, {2,4}}}
into 2* preserving ortholattice operations among co—measurable propositions. Concentric circles
indicate the embedding.

some more fundamental entities.

4 Summary

We have reviewed several options for a classical “understanding” of quantum mechanics. Partic-
ular emphasis has been given to techniques for embedding quantum universes into classical ones.
The term “embedding” is formalized here as usual. That is, an embedding is a mapping of the
entire set of quantum observables into a (bigger) set of classical observables such that different
guantum observables correspond to different classical ones (injectivity).

The term “observables” here is used for quantum propositions, some of which (the comple-
mentary ones) might not be co-measurable, see Gudder [14]. It might therefore be more appropri-
ate to conceive these “observables” as “potential observables.” After a particular measurement has
been chosen, some of these observables are actually determined and others (the complementary
ones) become “counterfactuals” by quantum mechanical means; chddofper's catalogue of
expectation values [42, p. 823]. For classical observables, there is no distinction between “observ-
ables” and “counterfactuals,” because everything can be measured precisely, at least in principle.

We should mention also@aveat The relationship between the states of a quantum universe
and the states of a classical universe into which the former one is embedded is beyond the scope
of this paper.

As might have been suspected, it turns out that, in order to be able to perform the mapping
from the quantum universe into the classical one consistently, important structural elements of the
guantum universe have to be sacrificed:

e Sinceper definition the quantum propositional calculus is nondistributive (nonboolean), a
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straightforward embedding which preserves all the logical operations among observables,
irrespective of whether or not they are co—-measurable, is impossible. This is due to the
guantum mechanical feature @dmplementarity

e One may restrict the preservation of the logical operations to be valid only among mutually
orthogonal propositions. In this case it turns out that again a consistent embedding is im-
possible, since no consistent meaning can be given to the classical existence of “counter-
factuals.” This is due to the quantum mechanical featurofextuality That is, quantum
observables may appear different, depending on the way by which they were measured (and
inferred).

¢ In a further step, one may abandon preservation of lattice operations socheasl the binary
andandor operations altogether. One may merely require the preservation of the implica-
tional structure (order relation). It turns out that, with these provisos, it is indeed possible to
map quantum universes into classical ones. Stated differently, definite values can be associ-
ated with elements of physical reality, irrespective of whether they have been measured or
not. In this sense, that is, in terms of more “comprehensive” classical universes (the hidden
parameter models), quantum mechanics can be “understood.”

At the moment we can neither say if the nonpreservation of the binary lattice operations (in-
terpreted asndandor) is a too high price for value definiteness, nor can we speculate of whether
or not the entire program of embedding quantum universes into classical theories is a progressive
or a degenerative case (compare Lakatosch [27]).

Appendix A: Proof of the geometric lemma

In this appendix we are going to prove the geometric lemma due to Piron [36] which was formu-
lated in Section 2.2. First let us restate it. Consider a pgpintthe northern hemisphere of the
unit spheres® = {p € R?| ||p|| = 1}. By C(q) we denote the unique great circle which contajns

and the pointst(gy, —0x,0)/,/0Z + g3 in the equator, which are orthogonaldocompare Figure

2. We say that a poinp in the northern hemispheran be reachedtom a pointq in the north-
ern hemisphere, if there is a finite sequence of paintsgp,d1,...,qn_1,0n = P in the northern
hemisphere such thgt € C(qgi_1) fori =1,...,n. The lemma states:

If g and p are points in the northern hemisphere with< g, thenp can be reached
fromq.

For the proof we follow Cooke, Keane, and Moran [7] and Kalmbach [24]). We consider the
tangent planél = {p € R | p, = 1} of the unit sphere in the north pole and the projectidrom

the northern hemisphere onto this plane which maps eachgiitihe northern hemisphere to the
intersectiorh(q) of the line through the origin anglwith the planeH. This maph is a bijection.

The north pol€0,0, 1) is mapped to itself. For eachin the northern hemisphere (not equal to the
north pole) the imagk(C(q)) of the great circl€(q) is the line inH which goes through(q) and

is orthogonal to the line through the north pole and throu@f). Note thatC(q) is the intersection

of a plane withS?, andh(C(q)) is the intersection of the same plane wih see Figure 7. The

line h(C(q)) dividesH into two half planes. The half plane not containing the north pole is the
image of the region in the northern hemisphere betw&ey and the equator. Furthermore note
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the north pole the image of the
(0,0,1) region betwee€(q)
®--——-------- I e and the equator

h(C(a))

Figure 7: The planél viewed from above.

thatg, > p, for two points in the northern hemisphere if and onli(p) is further away from the
north pole tharh(q). We proceed in two steps.

Step 1. First, we show that, f andq are points in the northern hemisphere gmiées in the
region betweerC(q) and the equator, thep can be reached from In fact, we show that there
is a point§ on C(q) such thatp lies onC(§). Therefore we consider the imagesgodind p in the
planeH; see Figure 8. The poiti( p) lies in the half plane bounded IbyC(q)) not containing the
north pole. Among all pointh(q') on the lineh(C(q)) we setd to be one of the two points such

~
the north pole -~

Figure 8: The poinp can be reached fromp

that the line trough the north pole ah¢y') and the line througih(q') andh(p) are orthogonal.
Then this last line is the image 6f§), andC(§) contains the poinp. Hencep can be reached
from g. Our first claim is proved.

Step 2. Fix a poing in the northern hemisphere. Starting frgmve can wander around the
northern hemisphere along great circles of the f@tp) for points p in the following way: for
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n > 5 we define a sequenep,qs, .- -,0n by settinggo = q and by choosingj. 1 to be that point

on the great circl€(q;) such that the angle betweb(t;..1) andh(q;) is 21/n. The image irH of

this configuration is a shell whetgqy) is the point furthest away from the north pole; see Figure
9. First, we claim that any poimg on the unit sphere witp, < gn, can be reached fromp Indeed,

h(due)

Figure 9: The shell in the plarté for n = 16.

such a point corresponds to a poinip) which is further away from the north pole thafg,).
There is an index such thath(p) lies in the half plane bounded IhC(q;)) and not containing
the north pole, hence such thaties in the region betwee@(q;) and the equator. Then, as we
have already seem, can be reached from and hence also from. Secondly, we claim thai,
approaches asn tends to infinity. This is equivalent to showing that the distancle(qf) from
(0,0,1) approaches the distance lufg) from (0,0,1). Letd; denote the distance &if(q;) from
(0,0,1) fori =0,...,n. Thend,/d;1 = cog2m/n), see Figure 9. Hena#, = dy- (cog21/n))".
Thatd, approachesy asn tends to infinity follows immediately from the fact th@og2rt/n))"
approache$ asn tends to infinity. For completeness s&keve prove it by proving the equivalent
statement thabg((cog2m/n))") tends to0 asn tends to infinity. Namely, for smak we know
the formulaecogx) = 1 —x2/2+ O(x*) andlog(1+ x) = x+ O(x?). Hence, for large,

log((cog2m/n))") = n-log(1— 2;[2 +0(n%)

12pactually, this is an exercise in elementary analysis.
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— n-<—2;f+o<n4>>

= —2:2 +0(n73).

This ends the proof of the geometric lemma.

Appendix B: Proof of a property of the set of consequences of a theory

In Section 2.5 we introduced the g8bn( X)) of consequences of a s&f of propositions over
a setU of simple propositiongnd the logical connectives negationand implication—. We
mentioned four properties of the opera@on In this appendix we prove the fourth property:

Con(KX) = U Con(X).

{xcx x finitey

The inclusionCon(X) 2 Uixcx.x finite}cor‘(x) follows directly from the second property
of Con i.e., from the monotonicity: iK C X, thenCon(X) C Con(X). For the other inclusion we
assume that a propositigne Con(X) is given. We have to show that there exists a finite subset
X C K such thatA € Con(X).

In order to do this we consider the se{W(U)) of all valuations. This set can be identified
with the power set o) and viewed as a topological space with the product topologyof
copies of the discrete topological spaf@1}. By Tychonoff's Theorem (see Munkres [33])
V(W(U)) is a compact topological space. For an arbitrary proposBiamd valuatiort the set
{te Y(W(U)) |t(B) =0} of valuationg with t(B) = 0is a compact and open subset of valuations
because the valu€B) depends only on the finitely many simple propositions occurriri} in

Note that our assumptioh € Con( X) is equivalent to the inclusion

{te VW()) [t(A) =0} C | {te V(W(U)) |1(B) =0}
Be K

Since the set on the left-hand side is compact, there exists a finite subcover of the open cover on
the right-hand side, i.e. there exists a finite)$&f K with

{te V(W) [t(A)=0} C | {te V(W(U)) |t(B) =0}.

BeX
This is equivalent té\ € Con(X) and was to be shown.
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