
Quantum algorithmic information theory

K. Svozil
Institut für Theoretische Physik

University of Technology Vienna

Wiedner Hauptstraße 8-10/136

A-1040 Vienna, Austria

e-mail: svozil@tph.tuwien.ac.at

www: http://tph.tuwien.ac.at/esvozil

http://tph.tuwien.ac.at/esvozil/publ/qait.tex

Abstract

The agenda of quantum algorithmic information theory, ordered ‘top-down,’ is the quantum
halting amplitude, followed by the quantum algorithmic information content, which in turn
requires the theory of quantum computation. The fundamental atoms processed by quantum
computation are the quantum bits which are dealt with in quantum information theory. The
theory of quantum computation will be based upon a model of universal quantum computer
whose elementary unit is a two-port interferometer capable of arbitrary U(2) transformations.
Basic to all these considerations is quantum theory, which is most conveniently expressible in
Hilbert space.

1 Information is physical, so is computation

The reasoning in constructive mathematics [16, 19, 20] and recursion theory, at least insofar as
their applicability to worldly things is concerned, makes implicit assumptions about the opera-
tionalizability of the entities of discourse. It is this postulated correspondence between practical
and theoretical objects, subsumed by the Church-Turing thesis, which confers power to the for-
mal methods. Therefore, any finding in physics concerns the formal sciences; at least insofar as
they claim to be applicable in the physical universe. In this sense one might quite justifiably say
that the Church-Turing thesis is under permanent physical attack.1 Conversely, any feature of
the (constructive or non-constructive [16, 19, 96]) formalism should correspond to some physically
operationalizable [21] property.

Hence, any theory of information, if applicable, has to deal with entities which are operational
[21, 64, 62, 60, 65]. In Bridgman’s words [22, p. V],

“the meaning of one’s terms are to be found by an analysis of the operations which
one performs in applying the term in concrete situations or in verifying the truth of
statements or in finding the answers to questions.”

1For an early discussion of this topic, see Davis [31, p. 11]:

“ . . . how can we ever exclude the possibility of our presented, some day (perhaps by some extrater-
restrial visitors), with a (perhaps extremely complex) device or “oracle” that “computes” a non com-
putable function?”

A main theme of Landauer’s work has been the connections between physics and computation; see, for example, his
1967 article [62] “Wanted: a physically possible theory of physics,” or his more recent survey [64] “Information is
physical.” See also Rosen [84]. As Deutsch puts it more recently [34, p. 101],

“The reason why we find it possible to construct, say, electronic calculators, and indeed why we can
perform mental arithmetic, cannot be found in mathematics or logic. The reason is that the laws
of physics ‘happen to’ permit the existence of physical models for the operations of arithmetic such
as addition, subtraction and multiplication. If they did not, these familiar operations would be non-
computable functions. We might still know of them and invoke them in mathematical proofs (which
would presumably be called ‘non constructive’) but we could not perform them.”
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In particular, the fundamental atom of information, the bit, must be represented by whatever
physical theories are available and must be experimentally producible and manipulable by whatever
physical operations are available.

The classical digital computer, at least up to finite resources, seems to be a canonical example
for physical information representation and processing. Classical digital computers, however, are
designed to behave classically. That is, if functioning correctly, certain of their physical states
can be mapped one-to-one onto the set of classical bit states. (This is achieved by appropriately
filtering out noise.) The set of instructions implement the classical propositional calculus and so
on.

In miniaturizing components, however, one encounters limits to the quasi-classical domain.
The alternative is either to stop miniaturization before quantum effects become dominant, or to
take the quantum domain seriously. The latter alternative (at least to the author) seems the only
progressive one, but it results in a head-on collision with long-held classical properties. Several
long-held assumptions about the character of information have to be adapted. Furthermore, the
formal computational techniques in manipulating information have to be revised.

This can be rather negatively perceived as a failure of the old models; but I think that we are
justified to think of it in very positive terms: Physics, in particular quantum physics, stimulates us
to re-consider our conceptions. We could hope that the outcome will be new tools and technologies
in computing.

Indeed, right now, we are experiencing an attack on the “Cook-Karp thesis,” putting into
question the robustness of the notion of tractability or polynomial time complexity class with
respect to variations of “reasonable” models of computation. In particular, factoring may require
polynomial time on quantum computers within “reasonable statistics” [87]. I would suspect that it
is wise of mathematicians and computer scientists to keep an eye on new developments in physics,
just as we physicists are required to be open for the great advances in the formal sciences.

2 Hilbert space quantum mechanics

“Quantization” has been introduced by Max Planck in 1900 [79]. Planck assumed a discretization
of the total energy UN of N linear oscillators (“Resonatoren”), UN = Pε ∈ {0, ε, 2ε, 3ε, 4ε, . . .},
where P ∈ N0 is zero or a positive integer and ε stands for the smallest quantum of energy. ε is a
linear function of frequency ν and proportional to Planck’s fundamental constant h; i.e., ε = hν.
That was a bold step in a time of the predominant continuum models of classical mechanics.

In extension of Planck’s discretized resonator energy model, Einstein [40] proposed a quantiza-
tion of the electromagnetic field. Every field mode of frequency ν could carry a discrete number
of light quanta of energy hν per quantum.

The present quantum theory is still a continuum theory in many respects: for infinite systems,
there is a continuity of field modes of frequency ω. Also the quantum theoretical coefficients char-
acterizing the mixture between orthogonal states, as well as space and time and other coordinates
remain continuous — all but one: action. Thus, in the old days, discretization of phase space
appeared to be a promising starting point for quantization. In a 1916 article on the structure of
physical phase space, Planck emphasized that the quantum hypothesis should not be interpreted at
the level of energy quanta but at the level of action quanta, according to the fact that the volume
of 2f -dimensional phase space (f degrees of freedom) is a positive integer of hf [80, p. 387],2

Es bestätigt sich auch hier wieder, daß die Quantenhypothese nicht auf Energieele-
mente, sondern auf Wirkungselemente zu gründen ist, entsprechend dem Umstand,
daß das Volumen des Phasenraumes die Dimension von hf besitzt.

The following is a very brief introduction to quantum mechanics for logicians and computer
scientists.3 To avoid a shock from a too early exposure to ‘exotic’ nomenclature prevalent in

2Again it is confirmed that the quantum hypothesis is not based on energy elements but on action elements,
according to the fact that the volume of phase space has the dimension hf .

3Introductions to quantum mechanics can be found in Feynman, Leighton & M. Sands [44], Harris [52], Lipkin [69],
Ballentine [3], Messiah [74], Dirac [38], Peres [78], von Neumann [99], and Bell [5], among many other expositions.
The history of quantum mechanics is reviewed by Jammer [55]. Wheeler & Zurek [100] published a helpful resource
book.
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physics–the Dirac bra-ket notation–the notation of Dunford-Schwartz [39] is adopted.4

All quantum mechanical entities are represented by objects of Hilbert spaces [99]. A Hilbert
space is a linear vector space H over the field Φ of complex numbers (with vector addition and
scalar multiplication), together with a complex function (·, ·), the scalar or inner product, defined
on H × H such that (i) (x, x) = 0 if and only if x = 0; (ii) (x, x) ≥ 0 for all x ∈ H; (iii)
(x + y, z) = (x, z) + (y, z) for all x, y, z ∈ H; (iv) (αx, y) = α(x, y) for all x, y ∈ H, α ∈ Φ; (v)
(x, y) = (y, x) for all x, y ∈ H (α stands for the complex conjugate of α); (vi) If xn ∈ H, n = 1, 2, . . .,
and if limn,m→∞(xn−xm, xn−xm) = 0, then there exists an x ∈ H with limn→∞(xn−x, xn−x) = 0.

The following identifications between physical and theoretical objects are made (a caveat: this
is an incomplete list):

(I) A physical state is represented by a vector of the Hilbert space H. Therefore, if two vectors
x, y ∈ H represent physical states, their vector sum z = x + y ∈ H represent a physical state
as well. This state z is called the coherent superposition of state x and y. Coherent state
superpositions will become most important in quantum information theory.

(II) Observables A are represented by self-adjoint operators A on the Hilbert space H such that
(Ax, y) = (x,Ay) for all x, y ∈ H. (Observables and their corresponding operators are
identified.)

In what follows, unless stated differently, only finite dimensional Hilbert spaces are
considered.5 Then, the vectors corresponding to states can be written as usual vectors
in complex Hilbert space. Furthermore, bounded self-adjoint operators are equivalent to
bounded Hermitean operators. They can be represented by matrices, and the self-adjoint
conjugation is just transposition and complex conjugation of the matrix elements.

Elements bi, bj ∈ H of the set of orthonormal base vectors satisfy (bi, bj) = δij , where δij is
the Kronecker delta function. Any state x can be written as a linear combination of the set
of orthonormal base vectors {b1, b2, · · ·}, i.e., x =

∑N
i=1 βibi, where N is the dimension of

H and βi = (bi, x) ∈ Φ. In the Dirac bra-ket notation, unity is given by 1 =
∑N

i=1 |bi〉〈bi|.
Furthermore, any Hermitean operator has a spectral representation A =

∑N
i=1 αiPi, where

the Pi’s are orthogonal projection operators onto the orthonormal eigenvectors ai of A (non-
degenerate case).

As infinite dimensional examples, take the position operator ~x = ~x = (x1, x2, x3), and the
momentum operator ~px = ~

i
~∇ = ~

i

(
∂

∂x1
, ∂

∂x2
, ∂

∂x3

)
, where ~ = h

2π . The scalar product is

given by (~x, ~y) = δ3(~x − ~y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3). The non-relativistic energy
operator (Hamiltonian) is H = ~p~p

2m + V (x) = − ~2
2m∇2 + V (x).

Observables are said to be compatible if they can be defined simultaneously with arbitrary
accuracy; i.e., if they are “independent.” A criterion for compatibility is the commutator.
Two observables A,B are compatible, if their commutator vanishes; i.e., if [A,B] = AB −
BA = 0. For example, position and momentum operators6 [x, px] = xpx − pxx = x~i

∂
∂x −

~
i

∂
∂xx = i ~ 6= 0 and thus do not commute. Therefore, position and momentum of a state

cannot be measured simultaneously with arbitrary accuracy. It can be shown that this
property gives rise to the Heisenberg uncertainty relations ∆x∆px ≥ ~

2 , where ∆x and ∆px

is given by ∆x =
√
〈x2〉 − 〈x〉2 and ∆px =

√
〈p2

x〉 − 〈px〉2, respectively. The expectation
value or average value 〈·〉 is defined in (V) below.

It has recently been demonstrated that (by an analog embodiment using particle beams) every
self-adjoint operator in a finite dimensional Hilbert space can be experimentally realized [82].

(III) The result of any single measurement of the observable A on a state x ∈ H can only be
one of the real eigenvalues of the corresponding Hermitean operator A. If x is in a coherent

4The bra-ket notation introduced by Dirac is widely used in physics. To translate expressions into the bra-ket
notation, the following identifications work for most practical purposes: for the scalar product, “〈≡ (”, “〉 ≡ )”,
“,≡ |”. States are written as | ψ〉 ≡ ψ, operators as 〈i | A | j〉 ≡ Aij .

5Infinite dimensional cases and continuous spectra are nontrivial extensions of the finite dimensional Hilbert
space treatment. As a heuristic rule, it could be stated that the sums become integrals, and the Kronecker delta
function δij becomes the Dirac delta function δ(i − j), which is a generalized function in the continuous variables

i, j. In the Dirac bra-ket notation, unity is given by 1 =
R+∞
−∞ |i〉〈i| di.

6the expressions should be interpreted in the sense of operator equations; the operators themselves act on states.
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superposition of eigenstates of A, the particular outcome of any such single measurement is
indeterministic; i.e., it cannot be predicted with certainty. As a result of the measurement,
the system is in the state which corresponds to the eigenvector an of A with the associated
real-valued eigenvalue αn; i.e., Ax = αnan (no summation convention here).

This “transition” x → an has given rise to speculations concerning the “collapse of the wave
function (state).” But, as has been argued recently [50], it is possible to reconstruct coher-
ence; i.e., to “reverse the collapse of the wave function (state)” if the process of measurement
is reversible. After this reconstruction, no information about the measurement must be left,
not even in principle. How did Schrödinger, the creator of wave mechanics, perceive the
ψ-function? In his 1935 paper “Die Gegenwärtige Situation in der Quantenmechanik” (“The
present situation in quantum mechanics” [85, p. 53]), Schrödinger states,7

Die ψ-Funktion als Katalog der Erwartung: . . . Sie [[die ψ-Funktion]] ist jetzt das
Instrument zur Voraussage der Wahrscheinlichkeit von Maßzahlen. In ihr ist die
jeweils erreichte Summe theoretisch begründeter Zukunftserwartung verkörpert,
gleichsam wie in einem Katalog niedergelegt. . . . Bei jeder Messung ist man
genötigt, der ψ-Funktion (=dem Voraussagenkatalog) eine eigenartige, etwas
plötzliche Veränderung zuzuschreiben, die von der gefundenen Maßzahl abhängt
und sich nicht vorhersehen läßt; woraus allein schon deutlich ist, daß diese zweite
Art von Veränderung der ψ-Funktion mit ihrem regelmäßigen Abrollen zwischen
zwei Messungen nicht das mindeste zu tun hat. Die abrupte Veränderung durch
die Messung . . . ist der interessanteste Punkt der ganzen Theorie. Es ist genau
der Punkt, der den Bruch mit dem naiven Realismus verlangt. Aus diesem Grund
kann man die ψ-Funktion nicht direkt an die Stelle des Modells oder des Realdings
setzen. Und zwar nicht etwa weil man einem Realding oder einem Modell nicht
abrupte unvorhergesehene Änderungen zumuten dürfte, sondern weil vom realis-
tischen Standpunkt die Beobachtung ein Naturvorgang ist wie jeder andere und
nicht per se eine Unterbrechung des regelmäßigen Naturlaufs hervorrufen darf.

It therefore seems not unreasonable to state that, epistemologically, quantum mechanics is
more a theory of knowledge of an (intrinsic) observer rather than the platonistic physics
“God knows.” The wave function, i.e., the state of the physical system in a particular
representation (base), is a representation of the observer’s knowledge; it is a representation
or name or code or index of the information or knowledge the observer has access to.

(IV) The probability Py(x) to find a system represented by state x in some state y of an ortho-
normalized basis is given by Py(x) = |(x, y)|2.

(V) The average value or expectation value of an observable A in the state x is given by 〈A〉x =∑N
i=1 αi|(x, ai)|2.

(VI) The dynamical law or equation of motion can be written in the form x(t) = Ux(t0), where
U† = U−1 (“† stands for transposition and complex conjugation) is a linear unitary evolution
operator.

The Schrödinger equation i~ ∂
∂tψ(t) = Hψ(t) is obtained by identifying U with U = e−iHt/~,

where H is a self-adjoint Hamiltonian (“energy”) operator, by differentiating the equation of
motion with respect to the time variable t; i.e., ∂

∂tψ(t) = − iH
~ e−iHt/~ψ(t0) = − iH

~ ψ(t).
In terms of the set of orthonormal base vectors {b1, b2, . . .}, the Schrödinger equation
can be written as i~ ∂

∂t (bi, ψ(t)) =
∑

j Hij(bj , ψ(t)). In the case of position base states

7The ψ-function as expectation-catalog: . . . In it [[the ψ-function]] is embodied the momentarily-attained sum
of theoretically based future expectation, somewhat as laid down in a catalog. . . . For each measurement one is
required to ascribe to the ψ-function (=the prediction catalog) a characteristic, quite sudden change, which depends
on the measurement result obtained, and so cannot be foreseen; from which alone it is already quite clear that this
second kind of change of the ψ-function has nothing whatever in common with its orderly development between two
measurements. The abrupt change [[of the ψ-function (=the prediction catalog)]] by measurement . . . is the most
interesting point of the entire theory. It is precisely the point that demands the break with naive realism. For this
reason one cannot put the ψ-function directly in place of the model or of the physical thing. And indeed not because
one might never dare impute abrupt unforeseen changes to a physical thing or to a model, but because in the realism
point of view observation is a natural process like any other and cannot per se bring about an interruption of the
orderly flow of natural events.
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ψ(x, t) = (x, ψ(t)), the Schrödinger equation takes on the form i~ ∂
∂tψ(x, t) = Hψ(x, t) =[

pp
2m + V (x)

]
ψ(x, t) =

[
− ~2

2m∇2 + V (x)
]
ψ(x, t).

For stationary ψn(t) = e−(i/~)Entψn, the Schrödinger equation can be brought into its time-
independent form H ψn = En ψn. Here, i~ ∂

∂tψn(t) = En ψn(t) has been used; En and ψn

stand for the n’th eigenvalue and eigenstate of H, respectively.

Usually, a physical problem is defined by the Hamiltonian H. The problem of finding the
physically relevant states reduces to finding a complete set of eigenvalues and eigenstates of
H. Most elegant solutions utilize the symmetries of the problem, i.e., of H. There exist two
“canonical” examples, the 1/r-potential and the harmonic oscillator potential, which can be
solved wonderfully by these methods (and they are presented over and over again in standard
courses of quantum mechanics), but not many more. (See, for instance, [33] for a detailed
treatment of various Hamiltonians H.)

For a quantum mechanical treatment of a two-state system, see appendix A. For a review of
the quantum theory of multiple particles, see appendix B.

3 Quantum information theory

The fundamental atom of information is the quantum bit, henceforth abbreviated by the term
‘qbit’. As we shall see, qbits feature quantum mechanics ‘in a nutshell.’

Classical information theory (e.g., [51]) is based on the classical bit as fundamental atom. This
classical bit, henceforth called cbit, is in one of two classical states t (often interpreted as “true”)
and f (often interpreted as “false”). It is customary to code the classical logical states by ptq = 1
and pfq = 0 (psq stands for the code of s). The states can, for instance, be realized by some
condenser who is discharged (≡ cbit state 0) or charged (≡ cbit state 1).

In quantum information theory [1, 34, 43, 6, 7, 35, 36], the most elementary unit of information
is the quantum bit, henceforth called qbit. Qbits can be physically represented by a coherent
superposition of the two orthonormal8 states t and f . The qbit states

xα,β = αt + βf (1)

form a continuum, with |α|2 + |β|2 = 1, α, β ∈ C.

3.1 Coding

Qbits can then be coded by

pxα,βq = (α, β) = eiϕ(sinω, eiδ cos ω) , (2)

with ω, ϕ, δ ∈ R (here, “(, )” does not denote the scalar product but just a qbit state). Qbits can
be identified with cbits as follows

(a, 0) ≡ 1 and (0, b) ≡ 0 , |a|, |b| = 1 , (3)

where the complex numbers a and b are of modulus one. The quantum mechanical states associated
with the classical states 0 and 1 are mutually orthogonal.

Notice that, provided that α, β 6= 0, a qbit is not in a pure classical state. Therefore, any
practical determination of the qbit xα,β amounts to a measurement of the state amplitude of t or
f . Any such single measurement will be indeterministic (provided again that α, β 6= 0). That is,
the outcome of a single measurement occurs unpredictably. Yet, according to the rules of quantum
mechanics, the probabilities that the qbit xα,β is measured in states t and f is Pt(xα,β) = |(xα,β , t)|2
and Pf (xα,β) = |(xα,β , f)|2 = 1− Pt(α,β), respectively.

The classical and the quantum mechanical concept of information differ from each other in
several aspects. Intuitively and classically, a unit of information is context-free. That is, it is
independent of what other information is or might be present. A classical bit remains unchanged,
no matter by what methods it is inferred. It obeys classical logic. It can be copied. No doubts can
be left.

8(t, t) = (f, f) = 1 and (t, f) = 0.
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By contrast, quantum information is contextual [57, 58]. A quantum bit may appear different,
depending on the method by which it is inferred. Quantum bits cannot be copied or “cloned”
[102, 37, 72, 75, 46, 26]. Classical tautologies are not necessarily satisfied in quantum information
theory. Quantum bits obey quantum logic. And, as has been argued before, they are coherent
superpositions of classical information.

3.2 Reading the book of Nature—a short glance at the prediction cat-
alog

To quote Landauer [63], “What is measurement? If it is simply information transfer, that is done
all the time inside the computer, and can be done with arbitrary little dissipation.” And, one may
add, without destroying coherence.

Indeed, as has been briefly mentioned in (III), there is reason to believe that—at least up to a
certain magnitude of complexity—any measurement can be “undone” by a proper reconstruction
of the wave-function. A necessary condition for this to happen is that all information about the
original measurement is lost. In Schrödinger’s terms, the prediction catalog (the wave function)
can be opened only at one particular page. We may close the prediction catalog before reading
this page. Then we can open the prediction catalog at another, complementary, page again. By
no way we can open the prediction catalog at one page, read and (irreversible) memorize the page,
close it; then open it at another, complementary, page. (Two non-complementary pages which
correspond to two co-measurable observables can be read simultaneously.)

Can we then in some sense “undo” knowledge from conscious observation? This question re-
lates to a statement by Wheeler [100, p. 184] that “no elementary phenomenon is a phenomenon
until it is a[[n irreversible]] registered (observed) phenomenon.” Where does this irreversible ob-
servation take place? Since the physical laws (with the possible exception of the weak force) are
time-reversible, the act of irreversible observation must, according to Wigner [101], occur in the
consciousness, thereby violating quantum mechanics.

4 Quantum recursion theory

4.1 Reversible computation and deletion of (q)bits

As a prelude to quantum computation, we briefly review classical reversible computation [61, 8,
45, 9, 66]. This type of computation is characterized by a single-valued inverse transition function.
In irreversible computations, logical functions are performed which do not have a single-valued
inverse, such as AND or OR; i.e., the input cannot be deduced from the output. Also deletion of
information or other many (states)-to-one (state) operations are irreversible. Reversible calculation
requires every single step to be reversible. Figure 1 [66] draws the difference between one-to-one
and many-to-one computation. This logical irreversibility is associated with physical irreversibility
and requires a minimal heat generation of the computing machine.

It is possible to embed any irreversible computation in an appropriate environment which makes
it reversible. For instance, the computing agent could keep the inputs of previous calculations in
successive order. It could save all the information it would otherwise throw away. Or, it could leave
markers behind to identify its trail, the Hänsel and Gretel strategy described by Landauer [66].
That, of course, might amount to a tremendous overhead in dynamical memory space (and time)
and would merely postpone the problem of throwing away unwanted information. But, as has
been pointed out by Bennett [8], for classical computations this overhead could be circumvented
by making the computer to erase all intermediate results, leaving behind only the desired output
and the originally furnished input. Bennett’s trick is to do a computation reversible, then copy its
output9 and then, with one output as input for the reversible computation, run the computation
backwards. In order not to consume exceedingly large intermediate storage resources, this strategy
could be applied after every single step. The price is a doubling of computation time, since it
requires one additional step for the back-computation.10 Since qbits cannot be copied, the trick

9Copying can be done reversible in classical physics, if the memory used for the copy is initially blank. Quantum
mechanically, this cannot be done on qbits; cf. below.

10If an irreversible computing agent exists which computes the input from a given output, then it is possible to
translate an irreversible computation from input to output into one which is reversible and erases everything else
except the final output, including the original input; i.e., that simply maps inputs into outputs. For details, see
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Figure 1: The lowest “root” represents the initial state interpretable as program. Forward computa-
tion represents upwards motion through a sequence of states represented by open circles. Different
symbols pi correspond to different initial states, that is, different programs. a) One-to-one com-
putation. b) Many-to-one junction which is information discarding. Several computational paths,
moving upwards, merge into one. c) One-to-many computation is allowed only if no information
is created and discarded; e.g., in copy-type operations on blank memory.
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does not work for quantum computations.

4.2 Selected features of quantum computation

The following features are important, but not sufficient qualities of quantum computers.

• Input, output, program and memory are represented by qbits.

• Any computation (step) can be represented by a unitary transformation of the computer as
a whole.

• Any computation is reversible. Because of the unitarity of the quantum evolution operator,
a deterministic computation can be performed by a quantum computer if and only if it
is reversible, i.e., if the program does not involve ”deletion” of information or ”many-to-
one” operations. Only one-to-one operations are allowed. Compared to classical irreversible
computation, this may result in a space and time overheads. Furthermore, no ”one-to-many”
operations are allowed. Thus, unless classical, qbits cannot be copied.

• Unless classical, qbits are context-dependent. That is, their value may depend on the method
by which they have been inferred, and on the co-measured qbits.

• Measurements may be carried out on any qbit at any stage of the computation. But, unless
classical, a qbit cannot be measured by a single experiment with arbitrary accuracy. The
computation process and the measurement have to be repeated in order to obtain sufficient
statistics.—Any such single measurement will yield merely a ”click” on some counter, from
which information about the qbit state must be inferred. Thereby, any single measurement
is indeterminate and coherence is destroyed. Therefore, it seems more proper to realize
that there is no such operational concept of ”a single qbit.” Because of complementarity,
single qbits cannot be determined precisely. What is henceforth called ”determination” or
”measurement” of a qbit is, in effect, the observation of a successive number of such qbits, one
after the other, from ”similar” computation processes (same preparation, same evolution).
By performing these measurements on ”similar” qbits, one can ”determine” this qbit within
an epsilon-neighborhood only. The parameter epsilon depends on the number of successive
measurements made.

• Quantum parallelism: during a computation (step), a quantum computer proceeds down all
coherent paths at once. If managed properly, this may give rise to speedups.

• Any subroutine must not leave around any qbits beyond it’s computed answer, because the
computational paths with different residual information can no longer interfere.

In order to appreciate quantum computation, one should make proper use of the above
features—quantum parallelism, unerasability of information, non-copying, context-dependence and
impossibility to directly measure the atoms of quantum information, the qbits, related to quantum
indeterminism.

Thereby, the “solution” to a decision problem may yield the classical bit values at random. It
may depend on other qbits of information which are inferred. It cannot be arbitrarily copied and,
in this sense, is unique.

4.2.1 Copying of quantum bits

Can a non-classical qbit be copied? No! — This answer amazes the classical mind.11 Informally
speaking, the reason is that, depending on the strategy, any attempt to copy a coherent superposi-
tion of states results either in a state reduction, destroying coherence, or, most important of all, in
the addition of noise which manifests itself as the spontaneous excitations of previously nonexisting
field modes [102, 37, 72, 75, 46, 26]. Therefore, qbits can be copied if and only if they are (known
to be) classical. Only one-to-one computation processes depicted in Fig. 1a) are allowed.

Bennett [8, 9].
11Copying of qbits would allow circumvention of the Heisenberg uncertainty relation by measuring two incompat-

ible observables on two identical qbit copies. It would also allow faster-than-light transmission of information, as
pointed out by Herbert [53]. Herbert’s suggestion stimulated the development of “no-cloning theorems” reviewed
here.
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This can be seen by a short calculation [102] which requires the multi-quantum formalism
developed in appendix B. A physical realization12 of the qbit state is a two-mode boson field with
the identifications

xα,β = αf + βt , (4)
f = | 01, 12〉 , (5)
t = | 11, 02〉 . (6)

The classical bit states are |01, 12〉 (field mode 1 unfilled, field mode 2 filled with one quantum)
and |11, 02〉 (field mode 1 filled with one quantum, field mode 2 unfilled).

An ideal amplifier, denoted by A, should be able to copy a classical bit state; i.e., it should
create an identical particle in the same mode

Ai|01, 12〉 → Af |01, 22〉 , Ai|11, 02〉 → Af |21, 02〉 . (7)

Here, Ai and Af stand for the initial and the final state of the amplifier.
What about copying a proper qbit; i.e., a coherent superposition of the cbits f = |01, 12〉 and

t = |11, 02〉? According to the quantum evolution law, the corresponding amplification process
should be representable by a linear (unitary) operator; thus

Ai(α|01, 12〉+ β|11, 02〉) → Af (α|01, 22〉+ β|21, 02〉) . (8)

Yet, the true copy of that qbit is the state

(xα,β)2 | 01, 02〉 = (α a†2 + β a†1)
2 | 01, 02〉

=
[
α2 (a†2)

2 + αβ (a†2a
†
1 + a†1a

†
2) + β2 (a†1)

2
]
| 01, 02〉

=
[
α2 (a†2)

2 + 2αβ a†2a
†
1 + β2 (a†1)

2
]
| 01, 02〉

= α2|01, 22〉+ 2αβ|11, 12〉+ β2|21, 02〉 . (9)

By comparing (8) with (9) it can be seen that a reasonable (linear unitary quantum mechanical
evolution for an) amplifier which could copy a qbit exists only if the qbit is classical.

A more detailed analysis (cf. [72, 75], in particular [46, 26]) reveals that the copying (amplifica-
tion) process generates an amplification of the signal but necessarily adds noise at the same time.
This noise can be interpreted as spontaneous emission of field quanta (photons) in the process of
amplification.

One application of this feature is quantum cryptography [13, 12, 11]. Thereby, the impossibility
to copy qbits is used for a cryptographic communication via quantum channels.

4.2.2 Context dependence of qbits

This section could be skipped at first reading.
Assume that in an EPR-type arrangement [41] one wants to measure the product

P = m1
xm2

xm1
ym2

ym1
zm

2
z

of the direction of the spin components of each one of the two associated particles 1 and 2 along
the x, y and z-axes. Assume that the operators are normalized such that |mj

i | = 1, i ∈ {x, y, z},
j ∈ {1, 2}. One way to determine P is measuring and, based on these measurements, “counter-
factually inferring” [78, 73] the three “observables” m1

xm2
y, m1

ym2
x and m1

zm
2
z. By multiplying

them, one obtains +1. Another, alternative, way to determine P is measuring and, based on these
measurements, “counterfactually inferring” the three “observables” m1

xm2
x, m1

ym2
y and m1

zm
2
z. By

multiplying them, one obtains −1. In that way, one has obtained either P = 1 or P = −1. Asso-
ciate with P = 1 the bit state zero 0 and with P = −1 the bit state 1. Then the bit is either in
state zero or one, depending on the way or context it was inferred.

This kind of contextuality is deeply rooted in the non-Boolean algebraic structure of quantum
propositions. Note also that the above argument relies heavily on “counterfactual reasoning,” be-
cause, for instance, only two of the six observables mj

i can actually be experimentally determined.
12the most elementary realization is a one-mode field with the symbol 0 corresponding to | 0〉 (empty mode) and

1 corresponding to | 1〉 (one-quantum filled mode).
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Here, the term “counterfactual reasoning” [78, 73] stands for arguments involving results of incom-
patible experiments, i.e., experiments which could never be performed simultaneously, since the
associated operators do not commute. The results thus have to be inferred rather than measured,
and the existence of such “elements of physical reality” thus have to be tacitly assumed [41].

4.3 Universal quantum computer based on the U(2)-gate

The “brute force” method of obtaining a (universal) quantum computer [6, 34, 66] by quantizing
the “hardware” components of a Turing machine suffers from the same problem as its classical
counterpart–it seems technologically unreasonable to actually construct a universal quantum device
with a “scaled down” (to nanometer size) model of a Turing machine in mind.

We therefore pursue a more fundamental approach [94, 95]. Recall that an arbitrary quantum
time evolution in finite-dimensional Hilbert space is given by x(t) = Ux(t0), where U is unitary.

It is well known that any n-dimensional unitary matrix U can be composed from elementary
unitary transformations in two-dimensional subspaces of Cn. This is usually shown in the context of
parameterization of the n-dimensional unitary groups (cf. [76, chapter 2] and [82, 81]). Thereby,
a transformation in n-dimensional spaces is decomposed into transformations in 2-dimensional
subspaces. This amounts to a successive array of U(2) elements, which in their entirety forms an
arbitrary time evolution U(n) in n-dimensional Hilbert space.

Hence, all quantum processes and computation tasks which can possibly be executed must be
representable by unitary transformations. Indeed, unitary transformations of qbits are a necessary
and sufficient condition for quantum computing. The group of unitary transformations in arbitrary-
but finite-dimensional Hilbert space is a model of universal quantum computer.

Unitary quantum mechanical operations are a natural extension of Turing’s “simple” classical
paper and pencil operations on a sheet of (one-dimensional) paper [97, section 9.I]. If one wants
to extend that notion further, one would have to extend physical theory, in particular quantum
theory. However, at the moment, such a further extension (beyond quantum mechanics) seems
only a remote possibility.

It remains to be shown that the universal U(2)-gate is physically operationalizable. This is done
in appendix D in the framework of Mach-Zehnder interferometry. Note that the number of elemen-

tary U(2)-transformations is polynomially bounded and does not exceed
(

n
2

)
= n (n− 1)/2 =

O(n2).

4.4 Other models of universal quantum computation

Deutsch [35] has proposed a model of universal computation based on quantum computation
networks. Thereby, the states in a 2n-dimensional Hilbert space are constructed as the product
state of n particles in two-dimensional Hilbert space. A set of gates that consists of all U(2)
(one-bit) quantum gates and the two-bit exclusive-or gate (that maps Boolean values (x, y) to
(x, x⊕ y)) is universal in the sense that all unitary operations on arbitrarily many bits n (U(2n))
can be expressed as compositions of these gates [4].

This approach should be distinguished from the interferometric approach using U(2)-gates
discussed before, which is based on single particle states in 2n-dimensional Hilbert space. In the
product state model, the addition of one particle effectively doubles the dimensionality of the
associated Hilbert space. In the interferometric model, this could only be achieved by doubling
the number of input and output ports. This could give rise to non-polynomial space overhead. In
the case of the product state model, in order to obtain a mixing between different particle states,
xor-gates are needed. The interferometric approach does not need xor-gates explicitly.

It has been claimed [87, 30] that certain supposedly NP -hard problems such as factoring can
be solved in polynomial time on quantum computers. However, it should be noted that this result
faces difficulties. For, it might not be easy to keep the quantum computer in a coherent superposi-
tion state over sufficient time and space scales in order to be able to execute tasks which are hard to
do classically—the computation may “decohere,” reducing the qbits to classical ones [59]. Further-
more, in order to obtain sufficient statistical data, a “great” (non-polynomially bounded) number of
single particles may be needed [91]. We shall not pursue these matters further [36, 14, 15, 6, 27, 87].
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4.5 Nomenclature

Consider a (not necessarily universal) quantum computer C and its ith program pi, which, at time
τ ∈ Z, can be described by a quantum state C(τ, pi). Let C(p) = s stand for a computer C with
program p which outputs s in arbitrary long time. In what follows we shall assume that the program
pi is coded classically. That is, we choose a finite code alphabet A and denote by A∗ the set of all
strings over A. Any program pi is coded as a classical sequence ppiq = s1is2i · · · sni ∈ A∗, sji ∈ A.
Whenever possible, ppiq will be abbreviated by pi. We assume prefix coding [51, 29, 28, 92, 23]; i.e.,
the domain of C is prefix-free such that no admissible program is the prefix of another admissible
program. Furthermore, without loss of generality, we consider only empty input strings. |p| stands
for the length of p.

4.6 Diagonalization

This is neither the place for a comprehensive review of the diagonalization method [83, 77], nor
suffices the author’s competence for such an endeavor. Therefore, only a few hallmarks are stated.
As already Gödel pointed out in his classical paper on the incompleteness of arithmetic [47], the
undecidability theorems of formal logic [31] (and the theory of recursive functions [83, 77]) are
based on semantical paradoxes such as the liar [2] or Richard’s paradox. A proper translation of
the semantic paradoxes results in the diagonalization method. Diagonalization has apparently first
been applied by Cantor to demonstrate the non-enumerability of real numbers [25]. It has also
been used by Turing for a proof of the recursive undecidability of the halting problem [97].

A brief review of the classical algorithmic argument will be given first. Consider a universal
computer C. For the sake of contradiction, consider an arbitrary algorithm B(X) whose input is a
string of symbols X. Assume that there exists a “halting algorithm” HALT which is able to decide
whether B terminates on X or not. The domain of HALT is the set of legal programs. The range
of HALT are cbits (classical case) and qbits (quantum mechanical case).

Using HALT(B(X)) we shall construct another deterministic computing agent A, which has as
input any effective program B and which proceeds as follows: Upon reading the program B as
input, A makes a copy of it. This can be readily achieved, since the program B is presented to A
in some encoded form pBq, i.e., as a string of symbols. In the next step, the agent uses the code
pBq as input string for B itself; i.e., A forms B(pBq), henceforth denoted by B(B). The agent
now hands B(B) over to its subroutine HALT. Then, A proceeds as follows: if HALT(B(B)) decides
that B(B) halts, then the agent A does not halt; this can for instance be realized by an infinite
DO-loop; if HALT(B(B)) decides that B(B) does not halt, then A halts.

The agent A will now be confronted with the following paradoxical task: take the own code as
input and proceed.

4.6.1 Classical case

Assume that A is restricted to classical bits of information. To be more specific, assume that HALT
outputs the code of a cbit as follows (↑ and ↓ stands for divergence and convergence, respectively):

HALT(B(X)) =
{

0 if B(X) ↑
1 if B(X) ↓ . (10)

Then, whenever A(A) halts, HALT(A(A)) outputs 1 and forces A(A) not to halt. Conversely,
whenever A(A) does not halt, then HALT(A(A)) outputs 0 and steers A(A) into the halting mode.
In both cases one arrives at a complete contradiction. Classically, this contradiction can only be
consistently avoided by assuming the nonexistence of A and, since the only nontrivial feature of A
is the use of the peculiar halting algorithm HALT, the impossibility of any such halting algorithm.

4.6.2 Quantum mechanical case

Recall that a quantum computer C evolves according to a unitary operator U such that (τ stands
for the discrete time parameter) C(τ, pi) = UC(τ − 1, pi) = U tC(0, pi).

As has been pointed out before, in quantum information theory a qbit may be in a coherent
superposition of the two classical states t and f . Due to this possibility of a coherent superposition
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of classical bit states, the usual reductio ad absurdum argument breaks down. Instead, diagonal-
ization procedures in quantum information theory yield qbit solutions which are fixed points of
the associated unitary operators.

In what follows it will be demonstrated how the task of the agent A can be performed con-
sistently if A is allowed to process quantum information. To be more specific, assume that the
output of the hypothetical “halting algorithm” is a halting qbit

HALT(B(X)) = hα,β . (11)

One may think of HALT(B(X)) as a universal “watchdog” computer C ′ simulating C and containing
a dedicated halting bit, which it outputs at every (discrete) time cycle [34]. Alternatively, it can
be assumed that the computer C contains its own halting bit indicating whether it has completed
its task or not. Note that the halting qbit hα,β can be represented by a normalized13 vector in
two-dimensional complex Hilbert space spanned by the the orthonormal vectors “t” and “f .” Let
the halting state h1,0 = t (up to factors modulus 1) be the physical realization that the computer
has “halted;” likewise let h0,1 = f (up to factors modulus 1) be the physical realization that
the computer has not “halted.” Note that, since quantum computations are governed by unitary
evolution laws which are reversible, the halting state does not imply that the computer does not
change as time evolves. It just means that it has set a signal — the halting bit — to indicated that it
has finished its task. α and β are complex numbers which are a quantum mechanical measure of the
probability amplitude that the computer is in the halting and the non-halting states, respectively.
The corresponding halting and non-halting probabilities are |a|2 and |a|2, respectively.

Initially, i.e., at t = 0, the halting bit is prepared to be a 50:50 mixture of the classical halting
and non-halting states t and f ; i.e., h1/

√
2,1/

√
2. If later C ′ finds that C converges (diverges) on

B(X), then the halting bit of C ′ is set to the classical value t (f).
The emergence of fixed points can be demonstrated by a simple example. Agent A’s diagonal-

ization task can be formalized as follows. Consider for the moment the action of diagonalization
on the cbit states. (Since the qbit states are merely a coherent superposition thereof, the action of
diagonalization on qbits is straightforward.) Diagonalization effectively transforms the cbit value t
into f and vice versa. Recall that in equation (10), the state t has been identified with the halting
state and the state f with the non-halting state. Since the halting state and the non-halting state
exclude each other, f, t can be identified with orthonormal basis vectors in a two-dimensional vec-
tor space. Thus, the standard basis of Cartesian coordinates can be chosen for a representation of
t and f ; i.e.,

t ≡
(

1
0

)
and f ≡

(
0
1

)
. (12)

The evolution representing diagonalization (effectively, agent A’s task) can be expressed by the
unitary operator D by

Dt = f and Df = t . (13)

Thus, D acts essentially as a not-gate. In the above state basis, D can be represented as follows:

D =
(

0 1
1 0

)
. (14)

D will be called diagonalization operator, despite the fact that the only nonvanishing components
are off-diagonal.

As has been pointed out earlier, quantum information theory allows a coherent superposition
hα,β = αt + βf of the cbit states t and f . D acts on cbits. It has a fixed point at the qbit state

h∗ := h 1√
2
, 1√

2
=

t + f√
2
≡ 1√

2

(
1
1

)
. (15)

h∗ does not give rise to inconsistencies [90]. If agent A hands over the fixed point state h∗ to the
diagonalization operator D, the same state h∗ is recovered. Stated differently, as long as the output
of the “halting algorithm” to input A(A) is h∗, diagonalization does not change it. Hence, even if
the (classically) “paradoxical” construction of diagonalization is maintained, quantum theory does
not give rise to a paradox, because the quantum range of solutions is larger than the classical one.

13(hα,β , hα,β) = 1.
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Therefore, standard proofs of the recursive unsolvability of the halting problem do not apply if
agent A is allowed a qbit.

Another, less abstract, application for quantum information theory is the handling of incon-
sistent information in databases. Thereby, two contradicting cbits of information t and f are
resolved by the qbit h∗ = (t + f)/

√
2. Throughout the rest of the computation the coherence

is maintained. After the processing, the result is obtained by an irreversible measurement. The
processing of qbits, however, would require an exponential space overhead on classical computers in
cbit base [42]. Thus, in order to remain tractable, the corresponding qbits should be implemented
on truly quantum universal computers.

It should be noted, however, that the fixed point qbit “solution” to the above halting problem,
as far as problem solving is concerned, is of not much practical help. In particular, if one is
interested in the “classical” answer whether or not A(A) halts, then one ultimately has to perform
an irreversible measurement on the fixed point state. This causes a state reduction into the classical
states corresponding to t and f . Any single measurement will yield an indeterministic result. There
is a 50:50 chance that the fixed point state will be either in t or f , since Pt(h∗) = Pf (h∗) = 1

2 .
Thereby, classical undecidability is recovered. Stated pointedly: With regards to the question of
whether or not a computer halts, the “solution” h∗ is equivalent to the throwing of a fair coin.

Therefore, the advance of quantum recursion theory over classical recursion theory is not so
much classical problem solving but the consistent representation of statements which would give
rise to classical paradoxes.

4.6.3 Proper quantum diagonalization

The above argument used the continuity of qbit states as compared to the two cbit states for a
construction of fixed points of the diagonalization operator. One could proceed a step further and
allow nonclassical diagonalization procedures. Such a step, albeit operationalizable, has no classical
operational equivalent, and thus no classical interpretation.

Consider the entire range of two-dimensional unitary transformations [76]

U(2)(ω, α, β, ϕ) = e−i β

(
ei α cosω −e−i ϕ sin ω
ei ϕ sin ω e−i α cosω

)
, (16)

where −π ≤ β, ω ≤ π, − π
2 ≤ α,ϕ ≤ π

2 , to act on the qbit. A typical example of a nonclassical
operation on a qbit is the “square root of not” gate (

√
not

√
not = D)

√
not =

1
2

(
1 + i 1− i
1− i 1 + i

)
. (17)

Not all these unitary transformations have eigenvectors associated with eigenvalues 1 and thus
fixed points. Indeed, it is not difficult to see that only unitary transformations of the form

[U(2)(ω, α, β, ϕ)]−1 diag(1, eiλ) U(2)(ω, α, β, ϕ) =

=

(
cos ω2 + ei λ sin ω2 −1+ei λ

2 e−i (α+ϕ) sin(2ω)
−1+ei λ

2 ei (α+ϕ) sin(2ω) ei λ cos ω2 + sin ω2

)
(18)

have fixed points.
Applying nonclassical operations on qbits with no fixed points

D′ = [U(2)(ω, α, β, ϕ)]−1 diag(eiµ, eiλ)U(2)(ω, α, β, ϕ)

=

(
ei µ cos(ω)2 + ei λ sin(ω)2 e−i (α+p)

2

(
ei λ − ei µ

)
sin(2ω)

ei (α+p)

2

(
ei λ − ei µ

)
sin(2 ω) ei λ cos(ω)2 + ei µ sin(ω)2

)
(19)

with µ, λ 6= nπ, n ∈ N0 gives rise to eigenvectors which are not fixed points, but which acquire
nonvanishing phases µ, λ in the generalized diagonalization process.

5 Quantum algorithmic information

Quantum algorithmic information theory can be developed in analogy to algorithmic information
theory [29, 28, 23, 68]. Before proceeding, though, one decisive strategic decision concerning the
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physical character of the program has to be made. This amounts to a restriction to purely classical
prefix-free programs.

The reason for classical programs, as well as for the requirement of instant decodability,
is the desired convergence of the Kraft sum over the exponentially weighted program length∑

p exp(|p| log k) ≤ 1, where |p| stands for the length of p and k is the base of the code (for
binary code, k = 2). If arbitrary qbits were allowed as program code, then the Kraft sum would
diverge.

Nevertheless, qbits are allowed as output. Since they are objects defined in Hilbert space H,
the basic definitions of algorithmic information theory have to be slightly adapted.

The canonical program associated with an object s ∈ H representable as vector in a Hilbert
space H is denoted by s∗ and defined by

s∗ = min
C(p)=s

p . (20)

I.e., s∗ is the first element in the ordered set of all strings that is a program for C to calculate
s. The string s∗ is thus the code of the smallest-size program which, implemented on a quantum
computer, outputs s. (If several binary programs of equal length exist, the one is chosen which
comes first in an enumeration using the usual lexicographic order relation “0 < 1.”)

Let again “|x|” of an object encoded as (binary) string stand for the length of that string. The
quantum algorithmic information H(s) of an object s ∈ H representable as vector in a Hilbert
space H is defined as the length of the shortest program p which runs on a quantum computer C
and generates the output s:

H(s) = |s∗| = min
C(p)=s

|p| . (21)

If no program makes computer C output s, then H(s) = ∞.
The joint quantum algorithmic information H(s, t) of two objects s ∈ H and t ∈ H representable

as vectors in a Hilbert space H is the length of the smallest-size binary program to calculate s and
t simultaneously.

The relative or conditional quantum algorithmic information H(s|t) of s ∈ H given t ∈ N is the
length of the smallest-size binary program to calculate s from a smallest-size program for t:

H(s|t) = min
C(p,t∗)=s

|p| . (22)

Most features and results of algorithmic information theory hold for quantum algorithmic in-
formation as well. In particular, we restrict our attention to universal quantum computers whose
quantum algorithmic information content is machine-independent, such that the quantum algo-
rithmic information content of an arbitrary object does not exceed a constant independent of that
object. That is, for all objects s ∈ H and two computers C and C ′ of this class,

|HC −HC′ | = O(1) . (23)

Furthermore, let s and t be two objects representable as vectors in Hilbert space. Then (recall
that t ∈ N),

H(s, t) = H(t, s) + O(1) ; (24)
H(s|s) = O(1) ; (25)

H(H(s)|s) = O(1) ; (26)
H(s) ≤ H(s, t) + O(1) ; (27)

H(s|t) ≤ H(s) + O(1) ; (28)
H(s, t) = H(s) + H(t|s∗) + O(1) (if s∗ is classical) ; (29)
H(s, t) ≤ H(s) + H(t) + O(1) (subadditivity) ; (30)
H(s, s) = H(s) + O(1) ; (31)

H(s,H(s)) = H(s) + O(1) . (32)

Notice that there exist sets of objects S = {s1, . . . , sn}, n < ∞ whose algorithmic informa-
tion content H(S) is arbitrary small compared to the algorithmic information content of some
unspecified single elements si ∈ S; i.e.,

H(S) < max
si∈S

H(si) . (33)
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6 Quantum omega

Chaitin’s Ω [29, 28, 89, 23] is a magic number. It is a measure for arbitrary programs to take a finite
number of execution steps and then halt. It contains the solution of all halting problems, and hence
of questions codable into halting problems, such as Fermat’s theorem. It contains the solution of
the question of whether or not a particular exponential Diophantine equation has infinitely many
or a finite number of solutions. And, since Ω is provable “algorithmically incompressible,” it is
Martin-Löf/Chaitin/Solovay random. Therefore, Ω is both: a mathematician’s “fair coin,” and a
formalist’s nightmare.

Here, Ω is generalized to quantum computations.14

In the orthonormal halting basis {t, f}, the computer C with classical input pi can be repre-
sented by C(τ, pi) = t (t, C(τ, pi)) + f (f, C(τ, pi)).

Recall that initially, i.e., at time τ = 0, the halting bit is in a coherent 50:50-superposition;
i.e., in terms of the halting basis, C(0, pi) = (t + f)/

√
2 for all pi ∈ A∗. This corresponds to

the fact that initially it is unknown whether or not the computer halts on pi. When during the
time evolution the computer has completed its task, the halting bit value is switched to t by some
internal operation. If the computer never halts, the halting bit value is switched to f by some
internal operation. Otherwise it remains in the coherent 50:50-superposition.

Alternatively, the computer could be initially prepared in the non-halting state f . After com-
pletion of the task, the halting bit is again switched to the halting state t.

In analogy to the fully classical case [29, 28, 88, 23], the quantum halting amplitude15 Ω can be
defined as a weighted expectation over all computations of C with classical input pi (|pi| stands
for the length of pi)

Ω ≡
∑

C(pi)∈H

2−|pi|/2(t, C(pi)) . (34)

Likewise, the halting amplitude for a particular output state s,

Υ(s) ≡
∑

C(pi)=s

2−|pi|/2(t, C(pi)) . (35)

For a set of output states S = {s1, s2, s3, . . . , sn} which correspond to mutually orthogonal vectors
in Hilbert space,

Υ(S) ≡
∑

C(pi)∈S

2−|pi|/2(t, C(pi)) . (36)

Terms corresponding to different programs and states have to be summed up incoherently.
Thus, the corresponding probabilities are

|Ω|2 =
∑

C(pi)∈H

2−|pi||(t, C(pi))|2 (37)

P (s) ≡ |Υ(s)|2 =
∑

C(pi)=s

2−|pi||(t, C(pi))|2 (38)

P (S) ≡
∑

C(pi)∈S

|Υ(s)|2 =
∑

C(pi)∈S

2−|pi||(t, C(pi))|2 . (39)

The following relations hold,

Υ(S) =
∑

si∈S

Υ(si) , (40)

Ω = Υ(H) =
∑

si∈H

Υ(si) . (41)

For s ⊂ S ⊂ H,
0 ≤ P (s) ≤ P (S) ≤ |Ω|2 ≤ 1 . (42)

14The quantum omega was invented in a meeting of G. Chaitin, A. Zeilinger and the author in a Viennese coffee
house (Café Bräunerhof) in January 1991. Thus, the group should be credited for the original invention, whereas
any blame should remain with the author.

15The definition of Ω and Υ differ slightly from the ones introduced by the author previously [93].
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Alternatively, the quantum halting probability and the quantum algorithmic information by the
quantum algorithmic information content. That is,

P ∗(s) = 2−|s
∗| = 2−H(s) (43)

P ∗(S) =
∑

si∈S

P ∗(s) =
∑

s∈S

2−H(s) (44)

P ∗(H) = |Ω∗|2 =
∑

n∈H

2−H(n) . (45)

|Ω∗|2 ≤ |Ω|2 , (46)
P ∗(s) ≤ P (s) , (47)
P ∗(S) ≤ P (S) . (48)

The following relations are either a direct consequence of the definition (43) or follow from the
fact that for programs in prefix code, the algorithmic probability is concentrated on the minimal
size programs, or alternatively, that there are few minimal programs:

H(s) = − log2 P ∗(s) ; (49)
H(s) = − log2 P (s) + O(1) . (50)

Notice again that, because of complementarity, single qbits cannot be determined precisely.
They just appear experimentally as some clicks in a counter. What we can effectively do is
to observe a successive number of such qbits, one after the other, from “similar” computation
processes (same preparation, same evolution). By performing these measurements on “similar”
qbits, one can “determine” this qbit within an ε-neighborhood only.

For nontrivial choices of the quantum computer C, several remarks are in order. (In what
follows, we mention only Ω, but the comments apply to Υ as well.) If the program is also coded
in qbits, the above sum becomes an integral over continuously many states per code symbol of the
programs. In this case, the Kraft sum needs not converge. Just as for the classical analogue it is
possible to “compute” Ω as a limit from below by considering in the t’th computing step (time
τ) all programs of length τ which have already halted. (This “computation” suffers from a radius
of convergence which decreases slower than any recursive function.) The quantum Ω is complex.
|Ω|2 can be interpreted as a measure for the halting probability of C; i.e., the probability that an
arbitrary (prefix-free) program halts on C.

Finally, any irreversible measurement of |Ω|2 causes a state collapse. Since C(τ, pi) may not be
in a pure state, the series in (34) and (35) will not be uniquely defined even for finite times. Thus
the nondeterministic character of Ω is not only based on classical recursion theoretic arguments
[29, 28] but also on the metaphysical assumption that God plays the quantum dice.

Appendices

A Two-state system

Having set the stage of the quantum formalism, an elementary two-dimensional example of a two-
state system shall be exhibited ([44, pp. 8-11]). Let us denote the two base states by 1 and
2. Any arbitrary physical state ψ is a coherent superposition of 1 and 2 and can be written as
ψ = 1(1, ψ) + 2(2, ψ) with the two coefficients (1, ψ), (2, ψ) ∈ C.

Let us discuss two particular types of evolutions.
First, let us discuss the Schrödinger equation with diagonal Hamilton matrix, i.e., with vanish-

ing off-diagonal elements,

Hij =
(

E1 0
0 E2

)
. (51)

In this case, the Schrödinger equation decouples and reduces to

i~
∂

∂t
(1, ψ(t)) = E1(1, ψ(t)) , i~

∂

∂t
(2, ψ(t)) = E2(2, ψ(t)) , (52)
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resulting in
(1, ψ(t)) = ae−iE1t/~ , (2, ψ(t)) = be−iE2t/~ , (53)

with a, b ∈ C, |a|2 + |b|2 = 1. These solutions correspond to stationary states which do not change
in time; i.e., the probability to find the system in the two states is constant

|(1, ψ)|2 = |a|2 , |(2, ψ)|2 = |b|2 . (54)

Second, let us discuss the Schrödinger equation with with non-vanishing but equal off-diagonal
elements −A and with equal diagonal elements E of the Hamiltonian matrix; i.e.,

Hij =
(

E −A
−A E

)
. (55)

In this case, the Schrödinger equation reads

i~
∂

∂t
(1, ψ(t)) = E(1, ψ(t))−A(2, ψ(t)) , (56)

i~
∂

∂t
(2, ψ(t)) = E(2, ψ(t))−A(1, ψ(t)) . (57)

These equations can be solved in a number of ways. For example, taking the sum and the difference
of the two, one obtains

i~
∂

∂t
((1, ψ(t)) + (2, ψ(t))) = (E −A)((1, ψ(t)) + (2, ψ(t))) , (58)

i~
∂

∂t
((1, ψ(t))− (2, ψ(t))) = (E + A)((1, ψ(t))− (2, ψ(t))) . (59)

The solution are again two stationary states

(1, ψ(t)) + (2, ψ(t)) = ae−(i/~)(E−A)t , (60)
(1, ψ(t))− (2, ψ(t)) = be−(i/~)(E+A)t . (61)

Thus,

(1, ψ(t)) =
a

2
e−(i/~)(E−A)t +

b

2
e−(i/~)(E+A)t , (62)

(2, ψ(t)) =
a

2
e−(i/~)(E−A)t − b

2
e−(i/~)(E+A)t . (63)

Assume now that initially, i.e., at t = 0, the system was in state , 1) =, ψ(t = 0)). This
assumption corresponds to (1, ψ(t = 0)) = 1 and (2, ψ(t = 0)) = 0. What is the probability that
the system will be found in the state 2 at the time t > 0, or that it will still be found in the state
1 at the time t > 0? Setting t = 0 in equations (62) and (63) yields

(1, ψ(t = 0)) =
a + b

2
= 1 , (2, ψ(t = 0)) =

a− b

2
= 0 , (64)

and thus a = b = 1. Equations (62) and (63) can now be evaluated at t > 0 by substituting 1 for
a and b,

(1, ψ(t)) = e−(i/~)Et

[
e(i/~)At + e−(i/~)At

2

]
= e−(i/~)Et cos

At

~
, (65)

(2, ψ(t)) = e−(i/~)Et

[
e(i/~)At − e−(i/~)At

2

]
= i e−(i/~)Et sin

At

~
. (66)

Finally, the probability that the system is in state , 1) and , 2) is

|(1, ψ(t))|2 = cos2
At

~
, |(2, ψ(t))|2 = sin2 At

~
, (67)

respectively. This results in an oscillation of the transition probabilities.
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Figure 2: The two equivalent geometric arrangements of the ammonia (NH3) molecule.

Let us shortly mention one particular realization of a two-state system which, among many
others, has been discussed in the Feynman lectures [44]. Consider an ammonia (NH3) molecule.
If one fixes the plane spanned by the three hydrogen atoms, one observes two possible spatial
configurations , 1) and , 2), corresponding to position of the nitrogen atom in the lower or the
upper hemisphere, respectively (cf. Fig. 2). The nondiagonal elements of the Hamiltonian H12 =
H21 = −A correspond to a nonvanishing transition probability from one such configuration into
the other. If the ammonia has been originally in state , 1), it will constantly swing back and forth
between the two states, with a probability given by equations (67).

B From single to multiple quanta — “second” field quanti-
zation

The quantum formalism introduced in the main text is about single quantized objects. What if
one wants to consider many such objects? Do we have to add assumptions in order to treat such
multi-particle, multi-quanta systems appropriately?

The answer is yes. Experiment and theoretical reasoning (the representation theory of the
Lorentz group [86] and the spin-statistics theorem [56, 71, 17, 54]) indicate that there are (at least)
two basic types of states (quanta, particles): bosonic and fermionic states. Bosonic states have
what is called “integer spin;” i.e., sb = 0, ~, 2~, 3~, . . ., whereas fermionic states have “half-integer
spin;” sf = 1~

2 , 3~
2 , 5~

2 . . .. Most important, they are characterized by the way identical copies of
them can be “brought together.” Consider two boxes, one for identical bosons, say photons, the
other one for identical fermions, say electrons. For the first, bosonic, box, the probability that
another identical boson is added increases with the number of identical bosons which are already in
the box. There is a tendency of bosons to “condensate” into the same state. The second, fermionic
box, behaves quite differently. If it is already occupied by one fermion, another identical fermion
cannot enter. This is expressed in the Pauli exclusion principle: A system of fermions can never
occupy a configuration of individual states in which two individual states are identical.

How can the bose condensation and the Pauli exclusion principle be implemented? There are
several forms of implementation (e.g., fermionic behavior via Slater-determinants), but the most
compact and widely practiced form uses operator algebra. In the following we shall present this
formalism in the context of quantum field theory [52, 69, 56, 71, 17, 54, 46].

A classical field can be represented by its Fourier transform (“∗” stands for complex conjugation)

A(x, t) = A(+)(x, t) + A(−)(x, t) (68)
A(+)(x, t) = [A(−)(x, t)]∗ (69)

A(+)(x, t) =
∑

ki,si

aki,siuki,si(x)e−iωki
t , (70)

where ν = ωki/2π stands for the frequency in the field mode labeled by momentum ki and si is
some observable such as spin or polarization. uki,si stands for the polarization vector (spinor) at
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ki, si, and, most important with regards to the quantized case, complex-valued Fourier coefficients
aki,si

∈ C.
¿From now on, the ki, si-mode will be abbreviated by the symbol i; i.e., 1 ≡ k1, s1, 2 ≡ k2, s2,

3 ≡ k3, s3, . . ., i ≡ ki, si, . . ..
In (second16) quantization, the classical Fourier coefficients ai become re-interpreted as opera-

tors, which obey the following algebraic rules (scalars would not do the trick). For bosonic fields
(e.g., for the electromagnetic field), the commutator relations are (“†” stands for self-adjointness):

[
ai, a

†
j

]
= aia

†
j − a†jai = δij , (71)

[ai, aj ] =
[
a†i , a

†
j

]
= 0 . (72)

For fermionic fields (e.g., for the electron field), the anti-commutator relations are:

{ai, a
†
j} = aia

†
j + a†jai = δij , (73)

{ai, aj} = {a†i , a†j} = 0 . (74)

The anti-commutator relations, in particular {a†j , a†j} = 2(a†j)
2 = 0, are just a formal expression

of the Pauli exclusion principle stating that, unlike bosons, two or more identical fermions cannot
co-exist.

The operators a†i and ai are called creation and annihilation operators, respectively. This
terminology suggests itself if one introduces Fock states and the occupation number formalism. a†i
and ai are applied to Fock states to following effect.

The Fock space associated with a quantized field will be the direct product of all Hilbert spaces
Hi; i.e., ∏

i∈I
Hi , (75)

where I is an index set characterizing all different field modes labeled by i. Each boson (photon)
field mode is equivalent to a harmonic oscillator [46, 70]; each fermion (electron, proton, neutron)
field mode is equivalent to the Larmor precession of an electron spin.

In what follows, only finite-size systems are studied. The Fock states are based upon the
Fock vacuum. The Fock vacuum is a direct product of states | 0i〉 of the i’th Hilbert space Hi

characterizing mode i; i.e.,

| 0〉 =
∏

i∈I
| 0〉i =| 0〉1⊗ | 0〉2⊗ | 0〉3 ⊗ · · ·

= |
⋃

i∈I
{0i}〉 =| {01, 02, 03, . . .}〉 , (76)

where again I is an index set characterizing all different field modes labeled by i. “0i” stands for
0 (no) quantum (particle) in the state characterized by the quantum numbers i. Likewise, more
generally, “Ni” stands for N quanta (particles) in the state characterized by the quantum numbers
i.

The annihilation operators ai are designed to destroy one quantum (particle) in state i:

aj | 0〉 = 0 , (77)
aj | {01, 02, 03, . . . , 0j−1, Nj , 0j+1, . . .}〉 =

=
√

Nj | {01, 02, 03, . . . , 0j−1, (Nj − 1), 0j+1, . . .}〉 . (78)

The creation operators a†i are designed to create one quantum (particle) in state i:

a†j | 0〉 =| {01, 02, 03, . . . , 0j−1, 1j , 0j+1, . . .}〉 . (79)

More generally, Nj operators (a†j)
Nj create an Nj-quanta (particles) state

(a†j)
Nj | 0〉 ∝| {01, 02, 03, . . . , 0j−1, Nj , 0j+1, . . .}〉 . (80)

16of course, there is only “the one and only” quantization, the term “second” often refers to operator techniques
for multiquanta systems; i.e., quantum field theory
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Figure 3: Mach-Zehnder interferometer. A single quantum (photon, neutron, electron etc) is
emitted in L and meets a lossless beam splitter (half-silvered mirror) S1, after which its wave
function is in a coherent superposition of b and c. In beam path b a phase shifter shifts the phase
of state b by ϕ. The two beams are then recombined at a second lossless beam splitter (half-
silvered mirror) S2. The quant is detected at either D1 or D2, corresponding to the states d and
e, respectively.

For fermions, Nj ∈ {0, 1} because of the Pauli exclusion principle. For bosons, Nj ∈ N0. With
proper normalization [which can motivated by the (anti-)commutator relations and by |(X, X)|2 =
1], a state containing N1 quanta (particles) in mode 1, N2 quanta (particles) in mode 2, N3 quanta
(particles) in mode 3, etc., can be generated from the Fock vacuum by

|
⋃

i∈I
{Ni}〉 ≡| {N1, N2, N3, . . .}〉 =

∏

i∈I

(a†i )
Ni

√
Ni!

| 0〉 . (81)

As has been stated by Glauber [46, p. 64],

. . . in quantum theory, there is an infinite set of complex numbers which specifies the
state of a single mode. This is in contrast to classical theory where each mode may be
described by a single complex number. This shows that there is vastly more freedom
in quantum theory to invent states of the world than there is in the classical theory.
We cannot think of quantum theory and classical theory in one-to-one terms at all. In
quantum theory, there exist whole spaces which have no classical analogues, whatever.

C Quantum interference

In what follows, we shall make use of a simple “toolbox”-scheme of combining lossless elements of an
experimental setup for the theoretical calculation [49]. The elements of this “toolbox” are listed in
Table 1. These “toolbox” rules can be rigorously motivated by the full quantum optical calculations
(e.g., [103, 24]) but are much easier to use. In what follows, the factor i resulting from a phase shift
of π/2 associated with the reflection at a mirror M is omitted. However, at a half-silvered mirror
beam splitter, the relative factor i resulting from a phase shift of π/2 is kept. (A detailed calculation
[18] shows that this phase shift of π/2 is an approximation which is exactly valid only for particular
system parameters). T and R =

√
1− T 2 are transmission and reflection coefficients. Notice that

the “generic” beam splitter can be realized by a half-silvered mirror and a successive phase shift
of ϕ = −π/2 in the reflected channel; i.e., a → (b + ic)/

√
2 → (b + ie−iπ/2c)/

√
2 → (b + c)/

√
2.

Note also that, in the “second quantization” notation, for i < j,

| i〉 | j〉 ≡ a†ia
†
j | 0〉 =| i〉⊗ | j〉 =| 01, 02, 03, . . . , 0i−1, 1i, 0i+1, . . . , 0j−1, 1j , 0j+1, . . .〉 . (82)

In present-day quantum optical nonlinear devices (NL), parametric up- or down-conversion, i.e.,
the production of a single quant (particle) from two field quanta (particles) and the production of
two field quanta (particles) from a single one occurs at the very low amplitude rate of η ≈ 10−6.

In what follows, a lossless Mach-Zehnder interferometer drawn in Fig. 3 is discussed. The
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physical process symbol state transformation
reflection at mirror a → b = ia

a

b

M

“generic” beam splitter a → (b + c)/
√

2

PPP
³³³a b

c

transmission/reflection a → (b + ic)/
√

2
by a beam splitter a → Tb + iRc,
(half-silvered mirror) T 2 + R2 = 1, T, R ∈ [0, 1]

b

c

S1

a

phase-shift ϕ a → b = aeiϕ
ϕ

a b

parametric down-conversion |a〉 → η|b〉|c〉
NL

b

c

a

parametric up-conversion |a〉 | b〉 → η|c〉
NL

ca

b

amplification Aia → |b; G,N〉
G,N

a b

Table 1: “Toolbox” of lossless elements for quantum interference devices.
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computation proceeds by successive substitution (transition) of states; i.e.,

S1 : a → (b + ic)/
√

2 , (83)
P : b → beiϕ , (84)

S2 : b → (e + id)/
√

2 , (85)

S2 : c → (d + ie)/
√

2 . (86)

The resulting transition is

a → ψ = i

(
eiϕ + 1

2

)
d +

(
eiϕ − 1

2

)
e . (87)

Assume that ϕ = 0, i.e., there is no phase shift at all. Then, equation (87) reduces to a → id, and
the emitted quant is detected only by D1. Assume that ϕ = π. Then, equation (87) reduces to
a → −e, and the emitted quant is detected only by D2. If one varies the phase shift ϕ, one obtains
the following detection probabilities:

PD1(ϕ) = |(d, ψ)|2 = cos2(
ϕ

2
) , PD2(ϕ) = |(e, ψ)|2 = sin2(

ϕ

2
) . (88)

For some “mindboggling” features of Mach-Zehnder interferometry, see [10].

D Universal 2-port quantum gate

The elementary quantum interference device Tbs
21 depicted in Fig. (4.a) is just a beam splitter

followed by a phase shifter in one of the output ports. According to the “toolbox” rules of appendix
C, the process can be quantum mechanically described by17

P1 : 0 → 0eiα+β , (89)
P2 : 1 → 1eiβ , (90)
S : 0 → T 1′ + iR 0′ , (91)
S : 1 → T 0′ + iR 1′ , (92)

P3 : 0′ → 0′eiϕ . (93)

If 0 ≡ 0′ ≡
(

1
0

)
and 1 ≡ 1′ ≡

(
0
1

)
and R(ω) = sin ω, T (ω) = cos ω, then the corre-

sponding unitary evolution matrix which transforms any coherent superposition of 0 and 1 into a
superposition of 0′ and 1′ is given by

Tbs
21(ω, α, β, ϕ) =

[
ei β

(
i ei(α+ϕ) sin ω eiα cosω

eiϕ cosω i sin ω

)]−1

= e−i β

( −i e−i(α+ϕ) sin ω e−iϕ cos ω
e−iα cos ω −i sin ω

)
. (94)

The elementary quantum interference device TMZ
21 depicted in Fig. (4.b) is a (rotated) Mach-

Zehnder interferometer with two input and output ports and three phase shifters. According to
the “toolbox” rules, the process can be quantum mechanically described by

P1 : 0 → 0eiα+β , (95)
P2 : 1 → 1eiβ , (96)

S1 : 1 → (b + i c)/
√

2 , (97)

17Alternatively, the action of a lossless beam splitter may be described by the matrix

�
T (ω) i R(ω)
i R(ω) T (ω)

�
=

�
cos ω i sin ω
i sin ω cos ω

�
. A phase shifter in a two-dimensional Hilbert space is represented by either

�
eiϕ 0
0 1

�
or

�
1 0
0 eiϕ

�
. The action of the entire device consisting of such elements is calculated by multiplying the matrices

in reverse order in which the quanta pass these elements [103, 24].
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Figure 4: Elementary quantum interference device. An elementary quantum interference device
can be realized by a 4-port interferometer with two input ports 0,1 and two output ports 0′,1′.
Any two-dimensional unitary transformation can be realized by the devices. a) shows a realization
by a single beam splitter S(T ) with variable transmission t and three phase shifters P1, P2, P3; b)
shows a realization with 50:50 beam splitters S1( 1

2 ) and S2( 1
2 ) and four phase shifters P1, P2, P3, P4.
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S1 : 0 → (c + i b)/
√

2 , (98)
P3 : c → ceiω , (99)

S2 : b → (1′ + i0′)/
√

2 , (100)

S2 : c → (0′ + i1′)/
√

2 , (101)
P4 : 0′ → 0′eiϕ . (102)

When again 0 ≡ 0′ ≡
(

1
0

)
and 1 ≡ 1′ ≡

(
0
1

)
, then the corresponding unitary evolution

matrix which transforms any coherent superposition of 0 and 1 into a superposition of 0′ and 1′

is given by

TMZ
21 (α, β, ω, ϕ) = −i e−i(β+ ω

2 )

( −e−i (α+ϕ) sin ω
2 e−i ϕ cos ω

2
e−i α cos ω

2 sin ω
2

)
. (103)

The correspondence between Tbs
21(T (ω), α, β, ϕ) with TMZ

21 (α′, β′, ω′, ϕ′) in equations (94) (103)
can be verified by comparing the elements of these matrices. The resulting four equations can be
used to eliminate the four unknown parameters ω′ = 2ω, β′ = β − ω, α′ = α − π/2, β′ = β − ω
and ϕ′ = ϕ− π/2; i.e.,

Tbs
21(ω, α, β, ϕ) = TMZ

21 (α− π

2
, β − ω, 2ω, ϕ− π

2
) . (104)

Both elementary quantum interference devices are universal in the sense that every unitary
quantum evolution operator in two-dimensional Hilbert space can be brought into a one-to-one
correspondence to Tbs

21 and TMZ
21 ; with corresponding values of T, α, β, ϕ or α, ω, β, ϕ. This can

be easily seen by a similar calculation as before; i.e., by comparing equations (94) (103) with the
“canonical” form of a unitary matrix, which is the product of a U(1) = e−i β and of the unimodular
unitary matrix SU(2) [76]

T(ω, α, ϕ) =
(

ei α cosω −e−i ϕ sin ω
ei ϕ sin ω e−i α cosω

)
, (105)

where −π ≤ β, ω ≤ π, − π
2 ≤ α, ϕ ≤ π

2 . Let

T(ω, α, β, ϕ) = e−i βT(ω, α, ϕ) . (106)

A proper identification of the parameters α, β, ω, ϕ yields

T(ω, α, β, ϕ) = Tbs
21(ω −

π

2
,−α− ϕ− π

2
, β + α +

π

2
, ϕ− α +

π

2
) . (107)

Let us examine the realization of a few primitive logical “gates” corresponding to (unitary)
unary operations on qbits. The “identity” element I is defined by 0 → 0, 1 → 1 and can be
realized by

I = T bs
21 (−π

2
,−π

2
,
π

2
,
π

2
) = TMZ

21 (−π, π,−π, 0) =
(

1 0
0 1

)
. (108)

The “not” element is defined by 0 → 1, 1 → 0 and can be realized by

not = T bs
21 (0, 0, 0, 0) = TMZ

21 (− π

2
, 0, 0,− π

2
) =

(
0 1
1 0

)
. (109)

The next element, “
√
not” is a truly quantum mechanical; i.e., nonclassical, one, since it

converts a classical bit into a coherent superposition of 0 and 1.
√
not is defined by 0 → 0 + 1,

1 → −0 + 1 and can be realized by

√
not = T bs

21 (−π

4
,−π

2
,
π

2
,
π

2
) = TMZ

21 (−π,
3π

4
,−π

2
, 0) =

1√
2

(
1 −1
1 1

)
. (110)

Note that
√
not · √not = not · diag(1,−1) = not (mod 1). The relative phases in the output ports

showing up in diag(1,−1) can be avoided by defining

√
not

′
= T bs

21 (− π

4
, 0,

π

4
, 0) = TMZ

21 (− π

2
,
π

2
,− π

2
,− π

2
) =

1
2

(
1 + i 1− i
1− i 1 + i

)
. (111)
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With this definition,
√
not

′√
not

′
= not.

It is very important that the elementary quantum interference device realizes an arbitrary
quantum time evolution of a two-dimensional system. The performance of the quantum interference
device is determined by four parameters, corresponding to the phases α, β, ϕ, ω.
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