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Abstract

We use Greechie diagrams to construct finite orthomodutidcda ‘real-
izable’ in the orthomodular lattice of subspaces in a thireedsional Hilbert
space such that the set of two-valued states is not ‘large; {ull, separat-
ing, unital, nonempty, resp.). We discuss the number of efgsof such
orthomodular lattices, of their sets of (ortho)generatond of their subsets
which do not admit ‘large’ set of two-valued states. We shonnections
with other results of this type.

1 Introduction

Quantum logic, as it has been pioneered by Birkhoff and voanNann [2], is
usually derived from Hilbert space. There, the logical ptivas, such as proposi-
tions and the logical operators “and”, “or” and “not” are aefil by Hilbert space
entities. For instance, consider the threedimensional,H#bert spaceR? with
the usual scalar product,w) := zi?’:lviwi, v,w € R3. There, any proposition is
identified with a subspace &2. For instance, the zero vector corresponds to a
false statement. Any line spanned by a nonzero vector qunets to the state-
ment that the physical system is in the pure state associatedhe vector. Any
plain formed by the linear combination of two (non-colineaectorsv,w corre-
sponds to the statement that the physical system is eitlibeipure stat® or in
the pure statev. The whole Hilbert spac®2 corresponds to the tautology (true
propositions). The logical “and™-operation is identifiedthwthe set theoretical
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intersection of two propositions; e.g., with the interg@atf two lines. The logi-
cal “not”-operation, or the “complement”, is identified Wwitaking the orthogonal
subspace; e.g., the complement of a line is the plain orthalgo that line.

In this top-down approach, one arrives at a propositioniubas which re-
sembles the classical one, but differs from it in severalrtgnt aspects. They are
non-Boolean, i.e., non-distributive, algebraic strueturFurthermore, as has first
been pointed out by Kochen and Specker in the context ofgbattyebras [12],
there exist certaifinite sets of lines, such that the associated propositional-struc
ture cannot be classically embedded. That is, there doesxigitany classical,
i.e., two-valued, measure which could be interpreted asattethat propositions
are either “true” € measure value 1) or “false’X measure value 0). Kochen
and Specker’s original construction used 117 lines. Thebmurof lines has been
subsequently reduced [17, 18, 14, 4]. These constructiea@mples of propo-
sitional structures without any two-valued measures.

This paper deals with the following questions: which ortloalmlar structure—
finite or infinite—underlies the Kochen—Specker constarctiThe question can
be approached from two different viewpoints: (i) Whichnimal set of propo-
sitions generates some Kochen—Specker type configuratiBys‘generate” we
mean the construction of the propositional structure aoimg it. (i) What is the
minimal propositional structure&ontaining some sort of Kochen—-Specker type
configuration? In particular, is it finite or infinite?

2 Basic notions

The following definition gives two main concepts of a propiosial structure.

2.1. Definition. An orthomodular posets a structurg P, <,,0,1) fulfilling the
following conditions:

(1) (P, <) is a partial ordered set such that(a < 1 for everya € P.

(2) ":P — P is an orthocomplementation, i.e., for everyp € P: (a)a”’ = a,
(b)a< bimpliest/ <d, (c)ava =1.

(3) If a< b/ then the supremumV b exists inP.

(4) If a<bthen there is an elemeant L such that < a andb=aVc (the
orthomodular law).

An orthomodular latticas an orthomodular poset which is a lattice.

Elementsa, b of an orthomodular poset are calledhogonal(denoted bya |
b) if a<b/. A subsetO of an orthomodular poset is call@ithogonalif every
pair of its elements is orthogonal.

2.2. Definition. Let P, P, be orthomodular posets?; is orthorepresentablén
P, if there is a mapping (calledrthoembeddingh: P, — P> such that for every
a,be Py



(1) h(0) =0,

(2) h(a) = h(a),

(3) a< bifand onlyifh(a) < h(b),

(4) h(aVb) = h(a) v h(b) wheneveia L b.

P is representablén P, if there is a mapping (calleembeddinyh: P, — P> such
thath is orthoembedding and for eveayb € Py:

(4) h(avb)=h(a)Vvh(b).
The seth(Py) is then called andrtho)representatiorof Py in P,.

A suborthoposefsubortholatticeresp.) is a subset such that the identity map-
ping is orthoembedding (embedding, resp.).

Boolean subalgebraf an orthomodular poset is a suborthoposet which is a
Boolean algebraBlockis a maximal Boolean subalgebra.

As we will see later, there are lattices, L, such that_; is a suborthoposet but
not a subortholattice df,. On the other hand, a suborthoposet of an orthomodular
lattice need not be a lattice.

2.3. Definition. Let L be an orthomodular latticé&s,L C P and let us denote by
L(G) (P(G), resp.) the least subortholattice (suborthoposet, resfl.)contain-
ing G. We say thaG generategorthogeneratesresp.)L if L C L(G) (L C P(G),
resp.).

P(G) andL(G) can be explicitly defined by the following proce€3(G) =
Un—oPn(G), L(G) = Up—oLn(G), wherePy(G) = Lo(G) = G and, for every natu-
ral numbem:

Lny1(G) = {\/O; Ois afinite subset ofn(G) ULn(G)'},
P1(G) = {\/O; Ois a finite orthogonal subset 8%(G) UP,(G)'}

(M’ denotes the s€&’; ac M}). Hence, every countable $8fgenerates a count-
able subortholattice and orthogenerates a countable thalpaset.

A very useful tool for constructing and representing sontle@nodular posets
is the so-called Greechie diagram.

2.4. Definition. A diagramis a pair(V,E), whereV # 0 is a set ofvertices(usu-
ally drawn as points) anll C expV \ {0} is a set ofedgequsually drawn as line
segments connecting corresponding points).

Let n > 2 be a natural number. Poop of ordern in a diagram(V,E) is a
sequencée, ..., e,) € E" of mutually different edges such that there are mutually
different verticess,...,vowithv, e gnNgr1 (i=1,...,n, €41 = €1).

A Greechie diagranms a diagram fulfilling the following conditions:

(1) Every vertex belongs to at least one edge.
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(2) If there are at least two vertices then every edge is at alement.
(3) Every edge which intersects with another edge is at Rastment.
(4) Every pair of different edges intersects in at most orréexe

(5) There is no loop of order 3.

S U N

1 2 3 4

Figure 1. Examples of diagrams which are not Greechie dmagra

Some examples of diagrams which are not Greechie diagraengiven in
Fig. 1—these examples violates exactly one of conditions(&) in the above
definition. (We usually do not denote 1-element edges.) Tmelition (4) states
that in Greechie diagrams there is no loop of order 2.

Before we present the representation theorem let us réadlahatomin an
orthomodular pose® is a minimal element oP \ {0}.

2.5. Theorem. For every Greechie diagram with only finite edges there isthxa
one (up to an isomorphism) orthomodular poset such thaé taer one-to-one
correspondences between vertices and atoms and betwessnagahblocks which
preserve incidence relations. A Greechie diagram doesaraam any loop of
order 4 if and only if the corresponding orthomodular poset lattice.

The proof can be found e.g. in [15]. Let us reserve the naBozechie logic
for an orthomodular poset which can be represented by a Giredimgram with
only finite edges. Itis easy to see that such an orthomodaketgloes not contain
any infinite chain, hence every its element is a supremum ofii forthogonal
set of atoms.

Let us remark that there are finite orthomodular posets nesentable by
Greechie diagrams—intersections of blocks might be grdhtn a 4-element
Boolean subalgebra and hence the condition (4) of DefinRidncannot be ful-
filled. On the other hand, every orthomodular poset with dimige and at most
3-atomic blocks (the case we are interested about) is a Gieekgic.

We will have a special interest about the following example.

2.6. Definition. The 3-dimensiondHilbert logic Hs is the orthomodular lattice of
linear subspaces ®3. The ordering is given by inclusion and the orthocomple-
mentation is given by = {ve R3; v L a} for everya € Ha.

The least element dfiz is 0= {(0,0,0)}, the greatest element éfz is 1=
R3. Moreoveranb =anb andavb = Splaub) for everya,b € Hz, where



Sp(G) is thespanof G in R3. (We will usually omit unnecessary parenthesis, e.g.,
Sp(1,0,0) denotes SE{(1,0,0)}).)

Every element oH3 \ {0, 1} is either an atom or a coatom, every blockdg
is finite and at most 3-element, every suborthop&set H3 is a Greechie logic
and is uniquely determined by the gt P) of its 1-dimensional atoms (lines):

P= {0, l} UA]_(P) UA]_(P)/.

(There might be also 2-dimensional atom#®ire.g., ifP is 4-element.) Moreover,
for every setG of lines in Hz the set of lines of the orthomodular lattie€G)
(orthomodular poseP(G), resp.) generated (orthogenerated, resp.)Gbgan
be expressed as follows (P(G)) = Un_o P, A1(L(G)) = Up_oLn, wherePy =
Lo = G and, for every natural numbar

L1 = Lpu{(avb);abelp},
P..1 = Pyu{(avb);abeP,suchthaa L b}.

3 Two-valued states and Greechie diagrams
Let us present the main definition.

3.1. Definition. Let P be an orthomodular poset and @&t P. A state sonG is
a mappings. P — [0, 1] such that:

(1) s(0) =0,
(2) s(a) < s(b) whenevem,b e Gwith a<hb,

(3) Yacos(a) <1 for every orthogonal s€ C G,

(4) Sacos(a) =1 for every orthogonal s€ C G with \/O= 1.

A two-valued statés a state with values if0, 1}.

If G = P then conditions (1)—(2) follows from conditions (3)-(4)dafnom the
orthomodular law and, moreovexa’) = 1 — s(a) for everya € P.

The Kochen—Specker construction gives an example of a pitiqaal struc-
ture without any two-valued state. We will use more genett@napt and will
ask whether there is a propositional structure without teyo two-valued states.
Originally, ‘enough’ meant ‘at least one’. We will use al$etfollowing proper-
ties of state space, which are important in quantum logicriks.

3.2. Definition. Let P be an orthomodular poset and @1C P. A setSof states
onGis called:
unital if for everya € G\ {0} there is a state € Ssuch thas(a) = 1,
separatingif for every a,b € G with a # b there is a stats € S such that
s(a) # s(b),

full if for everya, b € G with a £ bthere is a state € Ssuch thas(a) > s(b).
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Existence of a unital set of states means that every proposithich is not
a tautology is sometimes false. Existence of a separatingf séates means that
a different propositions are distinguishable. Existerfca full set of two-valued
states means that if some proposition does not imply anatten there is such
a state that the first is true while the second is not. Thespepties are largely
studied. An orthomodular poset with a full set of two-valusdtes is called a
concrete logidsee e.g. [20]), an orthomodular poset with a separatingfgeto-
valued states is calledpartition logic—this notion is within orthomodular posets
equivalent to the notion aiutomaton logidsee e.g. [22, 23, 24]).

It is easy to see that a full set of states is separating ana teparating set of
two-valued states is unital. Before we give examples deinaiirgg differences in
the above defined notions let us give some criteria, how weveafy whether an
orthomodular poset given by a Greechie diagram has ‘endughvalued states.

3.3. Definition. Let P be an orthomodular poset and febe the set of atoms iR.
A weight won A is a mappingv: A — [0, 1] such thaty ,c.ow(a) = 1 for every
maximal orthogonal séd C P. A two-valuedweight is a weight with values in

{0,1}.

3.4.Lemma. Let P be a Greechie logic and létbe the set of atoms iR. Then
there is a one-to-one correspondence between two-valatssbn P and two-
valued weightsv on A given byw = s|A.

Proof. Obvious.

Due to this correspondence we may (and will) identify statesweights and
study only the values of states on the set of atoms. Sincg evaximal orthogo-
nal set of atoms corresponds uniquely to a block, we needtordipeck that the
sum of values of a state on every edge in a Greechie diagraquad ®© 1.

3.5. Proposition. Let P be a Greechie logic and lét be the set of atoms iR.
ThenP has a full set of two-valued states (i.B.js a concrete logic) if and only

if for every pairay,ap € P of different nonorthogonal atoms there is a two-valued
weightw on A such thatv(a;) = w(az) = 1.

Proof. =: Leta,ay € A such thata; £ a,. Thena; £ &, and there is a two-
valued stats onP such that &= s(a;) > s(&,) = 0. Hences(ay) = 1 and, accord-
ing to Lemma 3.4, it suffices to take= g/A.

«<: Let by,by; € P such thato; £ by, i.e.,b; / b’2. There are orthogonal sets
A1, Az # 0 of atoms inP such thab; = \/ Aq, b’2 =\/A. According to Lemma 3.4,
it suffices to prove that there are atomse Ay, a € A, and a weightvon A such
thatw(a;) =w(az) = 1. Let us suppose first thaj N A, = 0. Then there are atoms
a1 € A; anday € Ay such thata; # ap anda; [ ap and, due to our assumption, a
weightw on A such thatv(a;) = w(ap) = 1. Let us suppose now thag N Az # 0.
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Then there is an atora < by,b,, and either there is an atoa # a; such that

a; [ ap, ora; 1 afor every atoma # a;. In both cases there is a two-valued
weightw on A such thaiv(a;) = 1; in the first case due to our assumption and in
the second case we can pua) = 1 iff a= ay.

The situation for a separating set of states is much more lboeigd and we
will state a criterion in a special case (which is in our ietgrhere).

3.6. Proposition. LetP be a Greechie logic with at most 3-atomic blocks and let
A be the set of atoms iR. Then the set of two-valued states Bnis separating
(i.e.,P is a partition logic) if and only if the following conditiorfsold:

(1) For every atona < P there is a two-valued weight onA such thatv(a) =
1.

(2) For every paimy,a; € P of different nonorthogonal atoms there are two-
valued weightsv, ,w_ onA such thatv, (a1) = w. (a2) andw_(a;) # w_(az).

Proof. =: Letae A. Thena# 0 and there is a two-valued sta®n P such
that 1= s(a) > s(0) = 0. Letay,ap € Asuch thaky # ap anda; £ ap. Then also
a1 # &, and there are two-valued statess; on P such that and £s_(a;) >
s_(az)=0,1=s(a1) >s.(a,) =0, i.e.,s¢(a1) = s+ (a). The rest follows from
Lemma 3.4.

«: Letbs, by € P such thab; # by. Since every element &\ {0, 1} is either
an atom or a coatom, there are atomsa, € P such that; € {0,a;,a3,1} and
by € {0,a,8,,1}. If a1 = ap then there are two-valued weights ,w_ on A such
thatw, (a;) =1 andw_(a;) = 0. If a3 # ap then there are two-valued weights
W, W_ on A such thatw, (a;) = w(a2) andw_(a;) # w_(a2). In both cases
there are, according to Lemma 3.4, two-valued states  on P such that either

Sy (b1) # s4-(b2) ors_(b1) #s_(by).

Let us present a lemma, which might simplify to verify cnéem Proposi-
tion 3.6.

3.7.Lemma. LetP be a Greechie logic and latbe the set of atoms iR. If W is
an at least 3-element set of two-valued weight#\@uch thafw1(1); w ¢ W}
is a partition ofA then

(1) For every atona < A there is a weightv € W such thatv(a) = 1.
(2) For every paimy,az € Athere is a weightv € W such thatv(a;) = w(ap).

Proof. Obvious.

Let us remark that in Greechie diagrams it suffices to use Iogeacondi-
tions for every connected subdiagram separately (weigths\e independently
on nonconnected subgraphs). In terms of orthomodular pagetcan use the
following important notion.



3.8. Definition. Let © be a set of orthomodular posets such #at P, = {0,1}
for every P,P> € P with P, # P,. The horizontal sumyp.»P is defined as

(Uper P, Upcer <p, Uper’®, 0,1).

More generally we speak about the horizontal sunifof € 1. It is an ab-
breviation for saying that we take disjoint representatigrof R (e.g.,{i} x R),
identify all 0; (i € I) and all1; (i € I) and takeJ ., P. It is easy to see that a
horizontal sum of orthomodular posets (orthomodulardaesj resp.) is an ortho-
modular poset (orthomodular lattice, resp.) and that a fsstates is nonempty
(unital, separating, full, resp.) on a horizontal sum if amdy if it is nonempty
(unital, separating, full, resp.) on every horizontal susimoh

In a Greechie diagram every connected subdiagram corrdspgora horizon-
tal summand. (In particular, every finite 2-atomic block soaizontal summand.)
On the other hand, horizontal sum of Greechie logics is a ¢hiedogic with
the Greechie diagram, which is a (disjoint) union of sumnsawith only one
exception—we loose isolated vertices (these correspotietivial orthomodu-
lar poset{0,1}).

The notion of a horizontal sum is a special kind of the notibpasting We
are not interested here in a general setting (see e.g. thbB,we describe only
special cases how we can obtain a new Greechie logic usmgrihcess. Greechie
diagram of thepasting of Greechie logics; B € I) for atoms ac P, (i € 1) we
obtain as follows: we take disjoint union of Greechie diagsafP (i € 1), iden-
tify vertices corresponding i@ (i € 1) and, if somey; (i € 1) belong to a 2-atomic
block, we delete necessary vertices corresponding to guslch that the condi-
tion (3) of Definition 2.4 is fulfilled. Greechie diagram oktpasting of Greechie
logics R (i € 1) for blocks BC R, (i € 1) with the same number of atoms we obtain
as follows: we take disjoint union of Greechie diagram®&di € 1) and identify
edges corresponding & (i € 1) (I.e., we identify also atoms in these blocks.) It
is easy to see that such pastings of (lattice) Greechiedagie (lattice) Greechie
logics.

The notion of a horizontal sum is related also to the follayunotion.

3.9. Definition. LetP be an orthomodular poset. THstanced onP is a mapping
d: P x P — NU{} defined by:

d(a,b) = inf{ne€ N; there are block8;,...,B,in P such that
BiNBiy1# {0,1} fori=0,...,n,Bo={a}, Bay1 = {b}}.

The distance function defines the largest decompositidd ioto horizontal
summands—the least summands are maximal subséts ¢0,1} of elements
with finite distances joined wit0, 1}.

The following result we will use in the sequel.



3.10. Proposition. Every Greechie logic without any loop has a full set of two-
valued states.

Proof. The distance function oR decomposé into the horizontal suny ;- B
such that the distance of every pair of elements in every samanis finite. It
suffices to prove fullness for every summand. According twpBsition 3.5, it
suffices, for every € | and for every paigy, ay of different nonorthogonal atoms
in B, to find a weightw on the sefA of atoms inP, such thatv(a;) = w(ap) = 1.

Let us putA, = {a€ A, d(a,a;) = n} for every natural numbearand let us define
w by induction:

l. w(al) =1.

Il. Let us suppose that there is a natural numiber O such thatv is defined
onAgU---UA,. Every element oA, ., belongs to some blodR in B such
thatBN A, # 0. For every such blocB we haveBN A, = {ag}. If w(ag)=1,
we putw|BNA\ A, = 0. If w(ag) = 0, we can chooseB(has at least three
atoms) properly &g € BNA\ A, and putw(bg) =1, w/BNA\ {bg} = 0.
Properly means that if = d(a,a;) — 2 thenbg is chosen such that it does
not belong to the same block asand ifn = d(az,a;) — 1 thenbg = ay.

Let us present examples demonstrating differences in piep@®f state space.

3.11. Proposition. Let us consider the following conditions:

(1) The set of two-valued states is full.

(2) The set of two-valued states is separating but not full.
(3) The set of two-valued states is unital but not separating.
(4) The set of two-valued states is nonempty but not unital.
(5) The set of two-valued states is empty.

For each of the above conditions there is an orthomodulacéat/ith only finite
3-atomic blocks which fulfills it.

da d dy ay az b a4 az
aq by
a p € b b b
—eo—o ac C
Ca C Gy a d a a a3 a a
1 2 3 4 5

Figure 2. Greechie diagrams of orthomodular posets wittefiBiatomic blocks
demonstrating differences of state spaces{eb denotes the diagram 2).



Proof. (1) See Fig. 2.1. Itis a Boolean algebra, which obviouslyaasl set of
two-valued states.

(2) See Fig. 2.2. For every two-valued stateve haves(a) + s(b) < (1—

S(Ca) +1—95(da) +1—5(cp) +1—95(dy))/2= (2—s(c) —s(d))/2 < 3/2. Hence
s(a) +s(b) < 1 and, according to Proposition 3.5, this orthomodulaidathas
not a full set of two-valued states. The &gt= {s;,5,s3} of states given in
Fig. 3 fulfills conditions of Lemma 3.7. It can be checked tet set of all two-
valued states ‘symmetric’ to some state fr8ulistinguish different nonorthogonal
atoms. Hence the set of two-valued states fulfills condstiohProposition 3.6.
A smaller example of a separating set of states is given inFigVe can express
this orthomodular lattice as a partition logic on a 6-eletrsst of these states—
see Fig. 4.1. (Compare with the representation on the IMezleset of states
in [24].)

(3) See Fig. 2.3. Let us use the previous result. For everyvialieed states
with s(a;) = 1 we obtains(ay) = s(b) = 0, hences(as) = 1. Using the symmetry
we obtains(a;) = s(as) for every two-valued state, hence the set of two-valued
states is not separating. The unitality can be verified nebyi

(4) See Fig. 2.4. For every two-valued statbere is an € {1, 2,3} such that
S(a) = 1 and thereforg(b) = 0. Hence, the set of two-valued states is not unital.
Existence of a two-valued state can be verified routinelgt (ks note that if we
paste ‘sides of the triangle’ not only fdr but for the whole block we obtain a
smaller example with 25 atoms.)

(5) See Fig. 2.5. According to part (3) of this prosfa;) = s(az) = s(ag) =
S(as) for every two-valued state. Hence all these values are equal to O and
s(b) = 1. The desired example we obtain by pasting this orthomodattce
with the orthomodular lattice from Fig. 2.4 fbis or, more effectively, by pasting
for blocks containingy’s anday’s.

> D>

S1 R 7) S3 S} S S6

Figure 3: Separating set of two-valued states on an ortharaodhttice from
Fig.2.2. (only atoms in which the corresponding state isaétpul are marked).

4 Subortholattices ofH;

There are only several types of finite subortholatticesl©fThe following char-
acterization of finite subortholattices B seems to be in a common knowledge
(see e.g. [9, Example 1.5.3]), but we do not know a propereats for its proof.
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{36} {2,5} {1,4} (1,v/2,1) (1,0,-1) (-1,v/2,-1)

{2,4,5) {3,5,6} (1,v/2,-3) (-1,4/2,3)
{1} } {1,4,6} {2} (v2,-1,0) (v/2,1,0)
{3,5} {3.4,6} (1L,v2,3) (-1,v2,-3)
{246} {3} {15} (L,v2,-1) (101 (-1,-v21)
1 2

Figure 4: Various representations of an orthomodulardattiom Fig. 2.2.

4.1.Lemma. LetL be a subortholattice dfz and let linesa,ap,as,b € L be such
thatas, ap, az are mutually orthogonal anil) a;,ap,a3. Thenthereis alinec L
such that / ag and the anglé (c,ag) is greater thari (b, az).

Proof. Let us choose the system of coordinates suchahat Sp(1,0,0), a =
Sp(0,1,0), a3 = Sp(0,0,1), b = Sp(x,y, z) such that,y,z > 0. SinceL is a sub-
ortholattice ofHz, the following elements belong ta

b = (a;Vvax)Ab =Spy,—x,0)

_ 2

¢ = (a1vag)A(bvb)=Spx+ y;,O,z).

Hence,
z

0<cos/(c,az) = <
2121 2
Jortri VR

= cos/(b,a3)

4.2. Theorem. LetL C H3 be a finite orthomodular lattice. Thénis a subortho-
lattice ofHgz if and only if exactly one of the following possibilities islfilled:
(1)L={0,1}, i.e.,L is a 1-atomic Boolean algebra.
(2)L=1{0,a,a,1} for some linea € Hs, i.e.,L is a 2-atomic Boolean algebra.
(B)L={0,a1,a,a3,a),a,, a5, 1} for some orthogonal sty ,ay,az} of lines
inHs, i.e.,L is a 3-atomic Boolean algebra.
4)L={0,ad,1}UGUG U{aVvb; be G}u{a Ab’; be G} for some line
a € Hz and some at least 2-element &bf mutually nonorthogonal atoms or-
thogonal taa, i.e.,L is a finite pasting of at least two 3-atomic Boolean algebras
for a given atom.

Proof. Itis easy to see that each of these conditions excludestleescind gives
a subortholattice oHsz. Let us suppose that there is a finite subortholattice
of Hsz which fulfills no condition (1)—(4) and seek a contradictioffhere are

three mutually nonorthogonal linesb,c € L. Letd; = (aVb) € L. SinceL is
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finite, there is a lin@ € L such that/ (e, d3) is the greatest among all lines frdm
nonorthogonal tal;. Sincea [ b there is ad; € {a,b} such thaid; } e & A dj.
Let us putd, = d’l A d’2 € L. Hence, linegly,dy, d3 are mutually orthogonal and
e [/ di,dp,d3. Accordingto Lemma 4.1, there is an elemért L such thatf / ds
and/(f,ds) < /(e ,dz)—this contradicts to the selection ef

Greechie diagrams of finite subortholatticedHafare given in Fig. 5.

o S e
4.2 4.3 4.n

1 2 3

Figure 5: Greechie diagrams of finite subortholatticeslof

4.3. Corollary. Every finite subortholattice dfl3 has a full set of two-valued
States.

Proof. It follows from Theorem 4.2 and Proposition 3.10.

As concerns infinite subortholattices ld§, there is a countable subortholat-
tice of Hz without any two-valued states (e.g., generated by finitew#hout any
two-valued state—see Corollary 7.5). On the other handgthee infinite sub-
ortholattices with a full set of two-valued states, e.g.nié pastings of 3-atomic
Boolean algebras for a given atom (compare condition (4)heofem 4.2). It
seems to be an open problem whether there is an infinite sudbattice ofHs
which is not of this type and which has a two-valued state.&dwer, there might
be an interesting connection between the nonexistencevad-adlued state and
density inR3. This might give better insight into the nature of suborétiites
of Hz and the connection with famous Gleason theorem [6, 20], vfamong
other things) states that there is no two-valued statid-pn

It should be noted that Greechie diagrams of suborthotettxtHs are rela-
tively ‘complex'—the distance of every pair of elements israost 2 (every pair
of different lines has a common orthogonal line). Hences iisually difficult to
give a Greechie diagram of an infinite subortholatticélgf

5 Realizability in Hz

The study of finite suborthoposetsidg is more complicated. We would like to
know whether a Greechie logic is orthorepresentableldn The first problem
erases with the intrinsic geometrical structure-gf

5.1. Definition. Let P be an orthomodular poset. We say tRat weakly realiz-
ablein Hs if there is a mappingy: P — Hs such that, for everg, b € P:

12



(4) h(a) # 0 wheneven # 0.
If, moreover, the mapping fulfills for everya,b € P:
(4) h(a) # h(b) wheneverlm # b
we say thaP is realizable The seh(P) is called a (ealk realizationof P in Ha.

Weak realizability means that all orthogonality relatioesnains true in the
images and, since every nonzero element has a nonzero irhdgeset of two-
valued states o6 C P is empty (not unital, resp.) then the set of two-valued state
onh(G) is empty (not unital. resp.), too. Realizability means thabreover, the
mapping is one-to-one. Hence, if the set of two-valued staé& C P is not sepa-
rating (full, resp.), then the set of two-valued state©i@®) is not separating (full,
resp.), too. A realization need not be a suborthoposet lsecawmew orthogonal
pairs might appear in the images.

Let us give a characterization of orthomodular posets weadlizable inHs.

5.2.Lemma. LetPyp be the pasting of a s&t of orthomodular posets and let there
is a mappindn: Pp — H3 such thah(P) is a weak realization d? for everyP € P.
Thenh(Pp) is a weak realization d?p in Hz. In particular, every horizontal sum
of orthomodular posets weakly realizableHg is weakly realizable if3.

Proof. Obvious.

5.3. Proposition. An orthomodular poset is weakly realizableHg if and only if
every its block is finite and at most 3-atomic.

Proof. =: Every orthogonal set of nonzero elements in an orthomaoghasetP
corresponds to an orthogonal set of nonzero elemeiits.i®ince such a set id3
is at most 3-element, every block Bfis finite with at most three atoms.

«<: Let P be an orthomodular poset with only finite at most 3-atomickso
Let us decomposP into the horizontal suny ., B of minimal horizontal sum-
mands. Let us choose a lihe& Hz and let us define a mappirg for everyi € |
as follows:h(0) = 0, h(1) = 1; if B, is 4-element, then let us take an atayre P,
and puth(a;) =1, h(a) =I’; if B has more than four elements then every its block
has three atoms and we @) =1, h(a’) = I’ for every atoma € B. It is easy
to see thah;(R) is a weak realization o in Hz and thatlJ;, hi(P) is a weak
realization ofP in Hs.

The situation with realizability is more difficult and we dotrknow a charac-
terization of it. Some results we will present in the nextteec Let us present
now another necessary condition.

13



5.4. Proposition. Every orthomodular poset realizablets is a lattice.

Proof. Let us suppose th& is an orthomodular poset with a loop of order 4
realizable inH3 and seek a contradiction. There are nonzero mutually difiter
elementsa; 1 ap | az L a4 1L a3 in P (see Fig. 6.2). Since for every pair of
different nonzero elements there is only one nonzero elemety orthogonal to
them,a; = ag—a contradiction.

a4 as b
1 2 3

Figure 6: Greechie diagrams of some orthomodular posetseatizable inH3
(a+~c+ b is an abbreviation of the Greechie diagram in Fig. 2.2.).

Examples of orthomodular posets nonrealizabld4rare given in Fig. 6. The
first has a 4-atomic block, the second is not a lattice. The #xample is much
more subtle an depends on the following intrinsic propeftiie

5.5.Lemma. LetL be a realization of an orthomodular lattice given in Fig..2.2
Then/(a,b) € <arcco%, ). On the other hand, for evety< (arcco%, 3) there
is a realization ok such that/ (a,b) = a.

Proof. (See also [13]). Let us choose a coordinate system sucb+h&p(1,0,0),
d = Sp(0,1,0). Hencee = Sp(0,0,1). Sincec, L canddy, L d, there arex,y €
R\ {0} such that

Ca= Slxov Ys 1>7 db - Smxa 07 1)
Sincecy L ¢,ca andd, L d,dy, a L cy,dy andb L ¢, dp, we obtain

%:Sq07_17y>7 da:SFX_:L?O:X):
a=Spxy,—Ly), b=Sp—1xyXx).
Thus, using an elementary calculus,

|xy|
V(1452 +x2y2) (1+y2 + x2y2)

cos/(a,b) = € (0,1/3).

For an arbitrana € (arcco%, 3) we can solve this equation and obtain, e.g.,

1/cosao—1 1/cosa 2
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Fora = arcco% we have exactly one realization (two different solutionsgi
by the symmetry of the Greechie diagram). In Fig. 4.2 theanigxample such
that symmetries of the realization are easily seen (withgetsto the axi® of a
andb and to planes S, b}, Sp{o,a x b}). Fora € (arcco%,g) we have two
different realizations (each symmetric with respect toakis ofa andb).

The orthomodular lattice given in Fig. 6.3 is not realizallecause for every
triple a1, ap, ag € Hz of mutually orthogonal nonzero elements and for evesy
Hs thereis an € {1,2,3} such that/(b,a;) < arccos\%.

Let us note that in [13] the above lemma is stated alsafer 5. This is not
true, because then either= 0 ory = 0 and we obtain only a weak realization.

6 Suborthoposets oHs

We would like to present examples of orthomodular latticebarepresentable
in H3. To ensure that an orthomodular lattice is orthoreprebémia Hs it suf-
fices to find its realization ikl3 such that there are not ordered (orthogonal, resp.)
pairs other than it was intended. E.qg., it can be easily eertfat an orthomodular
lattice given in Fig. 2.2 is orthorepresentabldif(see Fig. 4.2). We present par-
tial results which orthomodular lattices are orthorepnésigle (realizable, resp.)
in Hz. The idea of their proofs is that we can find uncountable maagt{nuum)
weak realizations while only for a countable many of them eamages coincide
or, in case of orthorepresentability, give a new ordereth@monal, resp.) pair.

We show that there is a large class of infinite suborthopasgéds with a full
set of two-valued states.

6.1. Proposition. Every horizontal sum of countable many countable orthomod-
ular lattices orthorepresentable (realizable, respb)siis orthorepresentable (re-
alizable, resp.) its.

Proof. It suffices to prove this proposition for two summands (we perceed
by induction). Letlq,L, be their orthorepresentations (realizations, resphian

It suffices to prove that we can rotéte to L, such thaia; € a, anda, < a; for
everya; € L1\ {0,1} and for everya, € Lo\ {0,1}, i.e. suchthak Z UJ(L1\ {1})

for every linel € Ly. If L, = {0, 1} then the proof is complete. Let us suppose that
L, # {0,1}. Then there is a ling € L,. SincelJ(L1\ {1}) # R3 there is a line

lo Z U(L1\ {1}) and we can rotate, such thalp goes tolg. Rotating now the
image ofL, aroundlp we obtain an uncountable many possibilities while for only
a countable many of them there is a line L, such that C [J(L1\ {1}). Indeed,
for everyl € L, all possible positions of in a unit spheres(0,1) in R3 form a
circle C with the center orip while, for everya € L1\ {1}, an§0,1) is either a
2-element setg(is a line) or a circle not identical t6; hencean §(0,1) NC is at
most 2-element.
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6.2. Proposition. Every pasting for an atom of a pair of countable orthomodular
lattices orthorepresentable (realizable, resp.H4ns orthorepresentable (realiz-
able, resp.) ifHs.

Proof. If we paste for an atom in a 2-atomic block then we obtain adoortal sum
and the proof follows from Proposition 6.1. Let us suppos¢\we paste for atoms
in 3-atomic blocks. Lek 1, Lo be orthorepresentations (realizations, respH3jof
given orthomodular lattices such tHatN L, > lg wherelg represents the atom in
bothLy, L, for which we paste. It suffices to prove that there is a rotetipof Lo
around the lindo such thata; ¢ ap anday Z & for everya; € L1\ {0,1,1o,15}
and for everyay € Lo\ {0,1,1o,13}, i.e., such that Z (L1 \ {1,15}) for every
linel € Lp. This gives only countable many restrictions to uncourtgtuissible
positions ofL,, hence the proof is complete.

6.3. Corollary. Every countable Greechie logic with at most 3-atomic blcuoks
without any loop is orthorepresentableHs.

Proof. Every countable Greechie logic with only finite at most 3naito blocks

is a horizontal sum of subsequent countable pastings oé faxdtomic Boolean
algebras for an atom. The rest follows from Theorem 4.2, &5ihipn 6.2 (using
the induction) and Proposition 6.1.

According to Proposition 3.10, Greechie logics from theva@orollary have
a full set of two-valued states.

6.4.Lemma. Let L1 be a countable orthomodular lattice orthorepresentable (r
alizable, resp.) iHz andLy be an orthomodular lattice given in Fig. 7.1 such
thatL1 L, = {0,a,b,a,b',1} anda # b are nonorthogonal atoms In (in its
realization, resp.). Then the pastingafandL is orthorepresentable (realizable,
resp.) inHs.

Ca C Co by ap 2
TR
a b a by
1 2 3 4 5

Figure 7: Greechie diagrams of orthomodular lattices weeddlizable inH3.
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Proof. Let us suppose that; is an orthorepresentation (realization, resp.Hin
of a given orthomodular lattice. H (b, resp.) is a 2-dimensional subspacdHaf
thena (b, resp.) is a part of a 4-element horizontal summand and timsysand
might be considered as a partlgf. The proof then follows from Proposition 6.2.
Let us suppose that b are lines. Let us consider all atorog< a. We have
uncountable many possibilities which fill in the unit sph&¢@, 1) a circleC,. Of
coursec, < @ andac = & Ac, < & but all other ordering o€, anda; with ele-
ments ofL; \ {0,1} can be excluded if we exclude a countable many possibilities
Similarly, if positions ofc, fill a circle C, then positions o€y, L ¢y, b fill a circle
C, C b’ (a £ b). Again, there is only a countable many positionggfor which
eithercy, or b = b A, is ordered with some element b{ \ {0,1,b'}. Finally,

it can be shown that positions offill a smooth curve or§(0,1) which is not a
circle. Hence, there is a possibility to choagesuch that we obtain the desired
orthorepresentation (realization, resp.).

6.5. Proposition. Let n > 5 be a natural number and IBt,...,B, be finite 3-
atomic Boolean algebras such tBahBi.1 = {0,&,a,1} foreveryi € {1,...,n},
whereB,, .1 = By anday, . .., a, are mutually different atoms. Then the pasting of
{By,...,Bn} (so-callech-cycle) is orthorepresentable Hs.

Proof. It follows from Proposition 6.2 and from Lemma 6.4.

7 Kochen-Specker type configurations

We will give several examples of Kochen—Specker type cordions which arise
from Greechie diagrams. Some of these examples has beadyalirsed in the lit-
erature in the attempt to find a subsetHafwithout a two-valued state. We present
the connection to Greechie diagrams (this gives a bettenge@ insight), show a
nonexistence of a ‘large’ set of two-valued states for waiconcepts, and, more-
over, we do not stop in proving weak realizability but we dissthe real number
of elements.

7.1. Proposition. There is a finite suborthoposet dg such that the set of two-
valued states on it is not full.

Proof. Let us consider a suborthopodebf H3z given in Fig. 4.2. It is an or-
thorepresentation of an orthomodular lattice given in R@, it is 28-element
(13-atomic) and the set of two-valued stateslors not full (see the proof of
Proposition 3.11.(1)). In fact, in the proof of Propositd1.(1) it was shown that
there is no two-valued state on the 8-elementaet,, da, C,d, cp, dy, b} such that
s(a) = s(b) = 1 (a reformulation of fullness—see Proposition 3.5). Thiho-
modular lattice can be orthogenerated e.g. by the 6-elese¢fd, c,, Cy, b, dp, da}
and generated e.g. by the 3-element{set,,dp}.
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7.2. Proposition. There is a finite suborthoposet dg such that the set of two-
valued states on it is not separating.

Proof. Let us consider an orthomodular lattice given in Fig. 2.3s l&n ortho-
modular lattice without a separating set of two-valuedestgsee the proof of
Proposition 3.11.(2)). It has 56 elements (27 atoms) and-aldiient subset
without a separating set of states (5 marked and 6 ‘hiddeervary circle). It
can be checked that it has the following realization (whmimfs a suborthoposet
of Hz given in Fig. 7.2—points in circles denotes the middle elets®f the di-
agram from Fig. 2.2):f = Sp(0,0,1), a; &~ by given by Fig. 4.2;a; «&+ by, we
obtain from the representation on Fig. 4.2 rotating#g aroundf. There is a 10-
element set of orthogenerators (e{gs, b1, Ca1,Cp1,da1, db1, T, C2, Cp2, dp2}) and a
4-element set of generators (e{@4, Cp1,dp1,Co2})-

Let us note that we can take a realization of an orthomodatticé given in
Fig. 2.2 such that we obtain an orthorepresentation of tki@orodular lattice
given in Fig. 2.3, but the set of (ortho)generators is lamgehis case.

7.3. Proposition. There is a finite suborthoposet dg such that the set of two-
valued states on it is not unital.

Proof. Let us consider an orthomodular lattitegiven in Fig. 7.3. It is an or-
thomodular lattice without a unital set of two-valued ssaténdeed, for every
two-valued stats on L with s(a;) = 1 we haves(f) =s(az) = s(as) =0, s(az) =
S(as) =1, s(az) = s(a4) = 0, s(az) = s(a4) = 1—a contradiction. It has 132 ele-
ments (65 atoms) and a 40-element subset without a unitaf sétes (6 hidden

in every circle and all marked’s anda;’s). Let us find a weak realization &f.

It can be done as follows: Pdt= Sp(0,0,1), a; = Sp(1,0,0), a3 = Sp(0,1,0)

and letay,ax (k=2,...,5) be images o0&y, a; in rotations around aboutk-72°.
Find a realization of the orthomodular lattice given in A such that the angle
of images ofa,b is 72 (see the proof of Lemma 5.5) and rotate this realization
to the following pairs of lines(as,ap), (az,a3), (a3, a4), (aa,as), (as,a1) (i.e.,a
goes to the first and to the second line for every pair). It can be checked that an
orthomodular poset orthogenerated by this weak realizagiéinite. (In fact, it is

a weak realization of an orthomodular lattice given in Fig. By the same way.)

It can be shown that if we take the realization of the orthontadattice given
in Fig. 2.2 such that the angle betweandb is equal to 72 by the expression
given in the proof of Lemma 5.5 as the first copy and if the sdcmd the third
copy arise by rotations around the axis of the plane givea adgdb such that
coincides witha of the next copy, then some elements coincide:

(C37 C7 Cb7bC7b7 bd7db)1 - (d7db7da7ad7a7aC7Ca>27
(C,db,d,da,e)l - (Ca7d707 € Cb)3'
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(Index denotes the number of the copy.) Hence, the weakzeg@ln of the or-
thomodular lattice from the above proof gives a 29-elemehsst ofHz without

a unital set of two-valued states and the suborthoposeb@etrerated by it has
104 elements (51 atoms), is orthogenerated by a 16-elemeand generated by
a 4-element set (e.g., elementgy,, d, of some ac+ b and some element from
the inner ‘pentagon’). The ‘almost’ Greechie diagram (2@hfgowhich belong
to exactly one edge are for simplicity omitted) of this suboposet oH3 (real-
ization of the orthomodular lattice given in Fig. 7.4) is@iin Fig. 8. Elements
of the 29-element subset without a unital set of two-valuates are all marked
points which are not crossed, a set of orthogenerators.isheeget of vertices of
both pentagons with;’s and with the middle point, a set of generators is marked
by circles.

It should be noted that in [4, 27] there is an example of an |@frent set
of lines orthogenerating a 25-element set of lines and aléi&ant (37-atomic)
suborthoposet dfl3 without a unital set of two-valued states. This suborthepos
is generated by a 3-element set. The Greechie diagram aéthisple does not
seem to provide an easy survey, hence we omit it. A more ddtdescription of
this example is given in Section 8.

7.4. Proposition. There is a finite suborthoposet dg such that the set of two-
valued states on it is empty.

Proof. Let us consider an orthomodular latticevhich is the pasting of the or-
thomodular lattice given in Fig. 7.3 f@g and of the orthomodular lattice given in
Fig. 7.4 for its middle point. It is an orthomodular latticéout any two-valued
state. Indeed, i§ is a two-valued state oh thens(a;) = O (see above). Analo-
gously from the other diagrans(a;) = 1—a contradiction. It has 374 elements
(186 atoms) and a 110-element subset without any two-vaitegd (6 ‘hidden’
in every circle and all marked except two of therar-anda;). According to
Proposition 6.2, this orthomodular poset is weakly realiean Hs.

It can be shown that we can paste for the whole block and olataireak
realization which is a union of weak realizations of two @of an orthomodular
lattice given in Fig. 7.4. Hence, this suborthoposet hasél®tents (99 atoms)
and a 58-element subset without any two-valued state.

It should be noted that in [18] there is an example of a 33-eldrget of lines
without any two-valued state. Direction vectors of thesediarise by all permu-
tations of coordinates frorf0,0,1), (0,41,1) (0,£1,v/2), (£1,+1,4/2). This
set of lines orthogenerates a suborthoposeipivith 116 elements (57 atoms).
Direction vectors of remaining lines arise by all permutasi of coordinates from
(+1,43,v/2). This suborthoposet d3 has a 17-element set of orthogenerators
(e.g. lines with direction vector®,0,1), (0,1,0) and all coordinate permutations
from (0,1,v/2), (1,+1,4/2)) and a 3-element set of generators (e.g. lines with
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d; = C3=0Ops = Cas5

€1 = Cp3 = s

dpy =Ca2 =0d3=Cs
(®)

78

Co2 =03 =65

CL=0Op=Ca3=0s

Cor=0pp =64

Cal = Or = Ca = dps

C2=0p3=Cay=0ds

Figure 8: ‘Almost’ Greechie diagram of a suborthoposetigfvithout a unital set

of two-valued states.

a; = Sp( 1, 0, 0)
a =Sp( V3-v5, V5+5, 0)
az = Sp(—v/3+ /5, 5-/5, 0)
as = Sp(—v3++v5, —vV5-15, 0)
as = Sp( V3-+v5, —V5+5, 0)
Ca1 = Sp( 0,—vV—-1+/5, 1)
da1= Sp( 0, V2, V=2+5)
o =sSp( VV5 V2145, V3+VE)
di = Sp( —VVB,—V/=2+ /5, V2)
1= Sp(—v5++v5,  V3-16,2/—2+5)
doi=Sp( VVE,—V-2+15, V2)
e =Sp( VVB, —V2+\6, 3-\5)
2 =sp( —VV5, V2B V3+V5)
we=5Sp(  —VVE, —V2+vB, V3-\5)
e =Sp( V5+v5, V3-16,2/-2+5)
f = Sp( 0, 0, 1)



direction vectorg1,0,0), (1,1,0), (v/2,1,1)). The ‘almost’ Greechie diagram
(24 points which belong to exactly one edge are for simplioiitted) of this
example is given in Fig. 9 (one edge is denoted by a circleg. diove mentioned
3-element set of generators is marked by circles.

7.5. Corollary. There is a 3-element set of linesHia such that no subortholattice
of H3 containing it has a two-valued state.

It seems to be an open question whether every 3-element saunfally
nonorthogonal lines iH3 generates a subortholattice without any two-valued
state. The least numbers in constructions are given in Tab. 1

‘large’ full | separating unital nonempty
example (figure) 4.2 72[[4,27]] 8 9
elements of a suborthoposet28 56 76| 104 116
atoms of a suborthoposet | 13 27 37| 51 57
lines 8 17 25| 29 33
orthogenerators 6 9 11| 16 17
generators 3 4 3 4 3

Table 1: Numbers of elements of constructed propositianatsires inHz with-
out a ‘large’ set of two-valued states.

Let us note that the examples in Proposition 7.1 and in Piopos/.2 ap-
peared in [13], the example in Fig. 7.4 appeared (not exly)an [13, 17] as a
part of their construction. In [1] the author uses (not exfli) the orthomod-
ular lattice given in Fig. 7.3 and paste three copies tomtstatoms of a block
obtaining thus an orthomodular lattice without any twoenl state (however, his
estimation of lines does not seem to be correct).

In [14] the author uses weak realizability of an orthomodladice in Fig. 7.5
whenever we represent elemeatd by lines inHs such that their angle is less
than 45. This leads to the construction of an orthomodular lattict B892 ele-
ments (146 atoms) weakly realizableHg and (at most) 130-element set of lines
without any two-valued state.

8 Discussion of physical relevance
In this final section we shall give a brief review of the phgsicelevance of
the above findings. The nonexistence of two-valued measresrtain finite

propositional structures in threedimensional Hilbertcgsahas first been explic-
itly demonstrated by Kochen and Specker [13]. It is strormrglyjommended to
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Figure 9: ‘Almost’ Greechie diagram of a suborthoposetigfwithout any two-

valued state (e.g.1R denotes S{, —1,v/2)).
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read this original account. Their result has given rise ta@lper of interpreta-
tions, by Kochen and Specker and others. A detailed overoieive history of
the subject can, for instance, be found in the reviews by Nteff#] and Brown
[3].

What does it physically mean th#tree nonorthogonal rays in threedimen-
sional Hilbert space are sufficient to generate a finite sysierays which have
no two-valued state? To state the associated Kochen—Spaatasiox explicitly,
let us associate any onedimensional subspa¢e) Spanned by a nonzero vector
v with the proposition that the physical system is in a puréeséasociated with
that subspace. That is,

Sp(1,0,0)=a, Sp(1,1,00=b, Sp(v2,1,1) =c,

wherea,b andc are propositions. I& (similar for b andc) is measured, then
we associate the logical value “true” or “false” with the twalued state function
s(a) = 1 ands(a) = 0, respectively.a, b,c generate the propositional structure
derived by Peres [18, 19, pp. 186-190]. That isy dndw are two vectors in
threedimensional Hilbert space corresponding to the mitipas p, and py, re-
spectively, then the vector produck w corresponds to the propositiopy V pw)’.

In particular,

Sp(1,0,0) = a,
Sp(1,1,0) = b,
Sp(v2,1,1) = ¢,
Sp(0,0,1) = (Sp(1,0,0)VvSp(1,1,0)) =
(avhby,
Sp0,1,—1) = (Sp(1,0,0)VSpv2,1,1))
(ave),
Sp(0,1,0) = (Sp(1,0,0)VvSp0,0,1)) =
(av(avhb)y,
Sp0,1,1) = (Sp(1,0,0)vSp0,1,—1)) =
(av(ave)),
Sp(1,-1,0) = (Sp(1,1,0)vSp0,0,1)) =
(bv(avhb)),
Sp(—1,v2,0) = (Sp(v2,1,1)VSp0,0,1)) =
(cv(avb)y,
Sp(v2,-1,-1) = (Sp(v2,1,1)vSp0,1,-1)) =
(cv(ave)),
Sp(—1,0,v2) = (Spv2,1,1)VSp0,1,0)) =
(cv(av(avhb))y,
Sp(v2,1,0) = (Sp0,0,1)VSp—1,v2,0)) =
(

(avh)'v(cv(avh))),
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Sp(1,v/2,0)
Sp(1,0,Vv2)
Spv2,1,-1)
Sp(v'2,0,1)
Sp(v2,-1,0)
Sp(v2,-1,1)
Sp—1,1,v2)
Sp0,v'2,-1)
Sp(v2,0,—1)
Sp(1,-1,v2)
Sp(0,1,v2)
Sp(0,v2,1)
Sp(—1,-1,v/2)
Sp0,—1,v/2)
Sp(1,1,v/2)

Sp(—1,v2,-1)

Sp(—1,v/2,1)

Sp(1,v2,-1)

(Sp(0,0,1) VSp(v2,—1,-1)) =
((avb)v(cv(avc)),
(Sp(0,1,0)VSp(V2,—1,-1)) =
((@av(avb))'v(cv(ave))),

(Sp(0,1,1) vV Sp(—1,v/2,0)) =

((av(avce)) v(cv(avh))y,

(Sp(0,1,0) vV Sp(—1,0,v/2))’ =
((av(avb))'v(cv(av (av b))")")',

(Sp(0,0,1) v Sp(1,v/2,0))
((avb)'v((avb)'v(c (aVC) ))),

(Sp(0,1,1) vVSp(—1,0,v/2))’ =
((av(ave)) v(cv(av(avb)))y,
(Sp(1,1,0)vVSp(v2,0,1)) =
(bv((av(avb))'v (Cv(av(av b))")")')',
(Sp(1,0,0) v Sp(—1,1,v/2))’
(av(bv((av(avb)) v(c v( V(avb))))) ),
(Sp(0,1,0) VSp(1,0,v2)) =
((av(avb))'v((av(avb)) v(cv(ave)))),
(Sp(1,1,0) vSp(—1,1,v2)) =

(bv (bv((av(avb)) v(cv(av(avb)))))),
(Sp(1,0,0) v Sp(0,v/2, 1)) =
(av(av(bv((av(avb))v(c
(Sp(1,0,0) vV Sp(1,—1,v2)) =
(@v(bv(bv((av(avb))v(cv(av(avb))))))),

(Sp(1,-1,0) vV Sp(v/2,0,1))’ =
((bv(avb))'v((av(avb))v(cv(av(avb))))),
(Sp(1,0,0) vSp(0,v/2,1)) =
(av(av(bv(bv((av(avb))v(cv(av(avh)))))))),
(Sp(1,—1,0) vV Sp0,v2, -1)) =

((bv(avb))'v(av(bv((av(avb)) v(cv(av(avb))))))),
(Sp(v2,1,0) vSp(0,1,v2)) =

(((avb)'v(cv(avh))) v
(av(av(bv((av(avb))v(cv(av(avb)))))))),
(Sp(v2,1,0) v Sp(0, —1,v2)) =

((avb)'v(cv(avh)))v
(av(av(bv(bv((av(avb))v(cv(av(avb))))))))),
(Sp(v2,—1,0) v Sp(0,1,v2)) =
(((avb)'v((avb)'v(cv(ave)))) v
(av(av(bv((av(avb))v(cv(av(avb)))))))),

v(@av(@avb)y))))),
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(av(avb))v(((avb)v(cv(avb))) v
av(av(bv(bv((av(avb)) v(cv(av(avb)))))))))).

Sp(—1,0,1) = (Sp0,1,0)VSp—1,v2,—1)) =
((av(avb))'v(((avb)Vv(cv(avb))) v
(av(av(bv((av(avb))v(cv(av(avb))))))))),

Sp(L,v2,1) = (Sp(V2,—1,0)VSp0,—1,v?2)) =
(((avb)v((avb)'v(cv(ave)))) v
(av(av(bv(bv((av(avb))v(cv(av(avb))))))))),

Sp(1,0,1) = (Sp(0,1,0)vSp—1,v2,1)) =
(

(

Suppose, for the sake of contradiction, that each one oflibeea33 propo-
sitions corresponds to an “element of physical reality”. [8[hat is, suppose
that its value is either “true” (exclusive) or “false,” igpective of whether it
has been actually measured or just counterfactually edlertet us further as-
sume with Peres [18, 19, pp. 186-190] that—provided thearients of reality”
exist—Sp0,0,1) = Sp(1,0,1) = Sp(0,1,1) = Sp(1,—1,v2) = Sp(1,0,v2) =
Sp(v/2,1,1) =Sp(v/2,0,1) = Sp(1,1,v/2) =Sp(0,1,v2) = Sp(1,v/2,1) = “true.”
One can follow Peres’ arguments to show that—provided tfedsenents of real-
ity” exist—all other rays belong to triads which are orthagbto the above rays.
Therefore, these latter rays must correspond to propasititnose value is “false.”
In particular, Sp1,0,0) = Sp(0,v/2,1) = Sp(0, —1,/2) =“false,” associate with
s(Sp(1,0,0)) = s(Sp(0,v/2,1)) = s(Sp(0, —1,/2)) = 0. Thus,s(Sp(1,0,0)) +
s(Sp(0,v/2,1)) +s(Sp(0,—1,v/2)) = 0+0+0= 0. But S{1,0,0), Sp(0,+/2,1)
and Sp0, —1,/2) are mutually orthogonal. This is in contradiction to the as-
sumption that for any orthogonal triad spanning the entitbétit space, the sum
of the measures should be one (cf. Definition 3.1.(4)). Ndtiat in order to arrive
at this Kochen—Specker paradox, we had to explicitly asshmexistence of the
“elements of reality,” irrespective of whether they have ¢ould have) actually
been measured or not.

What physical use can be a paradox? How can one measure adiotibn?
Indeed, what can actually be measured is mewabtriplet of propositions corre-
sponding to some of the triads of mutually orthogonal rayschSa measurement
can be performed with the operator discussed by Peres, lmawiarrangement of
beam splitters discussed by Reck, Zeilinger, BernsteirBarthni [21].

For instance, aftec is found to be “true” (corresponding &ic) = 1), then
measurement of the original values afor b is no longer possible. However,
suppose one would be willing to believe in the existence tdrfeents of real-
ity” [8, 16], which could merely becounterfactuallyinferred. Then one could
for instance—at least in principle—"measure” all 16 ortbogl triads by the pro-
duction of a state with 16 entangled subsystems. On eachfdhe &6 different
entangled subsystems one could measure one of the 16 diffetaogonal tri-
ads. This is similar to a proposal by Greenberger, Horne aichger [7], which
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use three particles and eight-dimensional Hilbert spandedd, only in such a
way—namely by (counterfactually) inferring non-comeadile propositions—
one would encounter a complete Kochen—Specker contradicti

As has been already proven in Kochen and Specker’s origingt Y13, pp.
82-85, Theorem 4], the notion of tautology is connected ttassecal (Boolean)
imbedding of a partial Boolean algebra. Indeed, there gxigpositions which
are tautologies in the classical (Boolean) algebra but kvhi@ not tautologies
in the partial Boolean algebra if and only if the partial Bearh algebra does not
have a unital set of two-valued states and thus cannot bedideloeinto a classical
(Boolean) algebra.

This is true for all partial Boolean algebras, in particular orthomodular
posets. Notice that the above result does not imply thayguepositional struc-
ture giving rise to a (classical) Boolean tautology whichasquantum tautology
also has no two-valued measure (cf. below).

Until now, the lowest number of rays necessary to producassdal tautol-
ogy which is not always true quantum mechanically is due tdi8e [4, 27]. The
eleven rays used by Schitte can also be generated by tlevibeeors(1,0,0),
(1,1,0) and (v/2,1,1) (corresponding t@, b andc) used before. Indeed| =
Sp0,1,—1) = (Sp(1,1,0) vSp(v/2,1,1))' = (avc) and

a3 = Sp(1,0,0) =a,

a = Sp(0,1,0)=(Sp(1,0,0)V Sp0,0,1)) =
(av(avh)),

by = Sp0,1,1) = (Sp(1,0,0)vSp0,1,—1)) =
(avd),

b, = Sp(1,0,1)=(Sp0,1,0)vSp—1,1,1)) =
(av(avb)) v (bvd)Y,

bs = Sp(1,1,0)=bh,

c = Sp(1,0,2)=(Sp(0,1,0)vSp2,1,—1)) =
((av(avb)) v((avd) v (bv(avd))),

2 = Sp2,0,1)=(Sp0,1,0)vSp(—1,0,2)) =
(av(avb)) v(@v(avh)) v(@vd) v(@vd)v(bv(@vh)))))y,

d = Sp(—1,1,1)=(Sp(1,1,0)vSp0,1,-1)) =

(bvd),

d» = Sp1,-1,1) = (Sp(1,1,0)vSp0,1,1)) =
(bv (avd)y,

d3 = Sp1,1,-1)=(Sp0,1,1)vSp1,-1,0)) =
((avd)'v(bv(avb))',

d = Sp(lll):(Sp(Ol -1)vSp1,-1,0)) =
(dv(bv(avb
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where

Sp(2,1,-1) = (Sp(O,l,l)\/Sp(l,fl,l))':
((avd)' v (bv(avd))Y,

Sp(—1,0,2) = (Sp0,1,0)vSp—2,1,-1)) =
((av(avb))v((avd) v ((avd) v (bv(avb))))Y,

Sp(2,-1,1) = (Sp(O,l,l)\/Sp(l,l,fl))':
(

(avd) v ((avd) Vv (bv(avb)))y.

As we have mentioned above, there is not a unital set of tuwedastates on

a suborthoposet orthogenerated by these rays (e.g., thativo-valued state

s with s(Sp(1,0,0)) = 1). On the other hand, a two-valued can be defined by
s(Sp(0,1,0)) = s(Sp(0,1,1)) = s(Sp(1,1,0)) = s(Sp(1,1,1)) = s(Sp(1,1,2)) =
s(Sp(1,2,1)) = s(Sp2,1,1)) = s(Sp(1,2,—-1)) = s(Sp—1,2,1)) =
s(Sp(1,5,2)) = s(Sp(2,5,1)) = s(Sp(—1,5,2)) = s(Sp2,5,—1))
s(Sp(1,5,—-2)) = s(Sp(—2,5,1)) = 1 and s(Sp(1,0,0)) = s(Sp(0,0,1)) =
(Sp(1,0,1)) = s(Sp0,1,—-1)) = s(Sp(1,0,—1)) = s(Sp(1,—-1,0))

(
(
(
(

7))

s(Sp(1,1,-1)) = s(Sp(1,—-1,1)) = s(Sp(—1,1,1)) = s(Sp(—1,—-1,2))
S(Sp(—1,2,—-1)) = s(Sp(2,—1,—-1)) = s(Sp(1,—-1,2)) = s(Sp(—1,1,2)) =
s(Sp(2,1,-1)) = s(Sp(2,—-1,1)) = s(Sp(1,0,2)) = s(Sp(2,0,1))
S(Sp(—1,0,2)) =s(Sp(2,0,—1)) = s(Sp(1, —5,2)) =s(Sp(2,—5,1)) = 0.

Consider now the following propositions (notice that angdsy operation is
either performed by orthogonal rays or by a ray and an ortmpéement of an-
other ray such that these rays are orthogonal):

f1 = d1 — bf2
= (dl/\ bz)/
f2 = dl — b%
= (diA b3)/
f3 = dy—aVvh
= (dz/\ (az\/ bz)/),
fg = dp b
= (dz/\ b3)/
fs = d3— b
= (d3Abp)
fe = dz3— (alva2—>b3)
= (dg/\((al\/az)/\/be,),)/
f; = dg—ayVvhby
= (d4/\ (az\/ bz)/)/
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fg = d4—>(a1\/a2—>b3)
d4/\((a1va2) \/bg))

(
fg = (az\/Cl) (b3\/d1)
= ((@Vve) A(bsvdy))
fio = (az V Cz) (al Vb — dl)
— ((@Ver) Al(@aVby) Ve
fi1 = ¢ —biVvds
= (Cl/\ (bl\/dz)/),
fio = co—b3Vvds
(Cz N (b3 V dz) )
fiz = (az\/ Cl) [(al\/ o — b3) — dg]
= ((@2ve) A(((aVaz)' V) vds)')
fia = (az V Cz) (bl V dg)
= ((a2ver)' A(brvds)')
fis = c— [(al\/ a — bg) — d4]
= (Cz/\(((al\/az)/\/bg)/\/d4)/)/
file = ¢ — (al\/ b1 — d4)
= (Cl/\((al\/bl)/\/d4)/)/
fi7 = (a1 — a2) V by
(@) Vag)Vhbs.

The “implication” relation has been expressedkas y=x vy = (XAY)'.
As can be straightforwardly checked, the proposition fatring

F: finfoA-- A f16— f17

is a classical tautology. Neverthelegsjs not valid in threedimensional (real)
Hilbert spaceHs, since f1, fo,..., f1g = Hz, whereasfi; = (Sp(1,0,0)) =
Sp(0,1,0) v Sp(0,0,1) # Hs.

The three vectorél, 0,0), (1,1,0) and(+/2,1,1) generating the Schitte rays
are not mutually orthogonal. Therefore, the correspongnogositionsa, b andc
are not co-measurable. In the sense of partial algebrasc#mnot be combined
by logical operations “or”Y), “and” (A), “not” (') to form new expressions. Thus,
it would be incorrect to state that there exists a classeaology in the three
variablesa, b andc which is no quantum tautology. Indeed, Coray proved [5] that
all classical tautologies in three variables are taut@egn all partial algebras, in
particular in the one associated with the logic of quantuseotables.

However, also Schitte’s example is counterfactual inneatAlthough every
operation or relation is solely defined on co-measurabl@gsitions, the entire
formulaF contains 11 nonco-measurable variables (nonorthogoysil.rbn order
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to be able to evaluate this formula, one would have to knowirtlté value of all
these 11 variables. Since they are not co-measurable,stipessible only by
counterfactual inference; in very much the same way as siésrlibefore in the
case of the original Kochen-Specker paradox. Indeed, Goregult shows that
any classical (Boolean) tautology which is no quantum tautplagll have to
rely on at least four variables which cannot be mutually @gtnal (inHsz), and
therefore must be based upon counterfactual inference.

Finally, let us shortly mention the relevance of these figdito the partition
logic of automata. Corollary 4.3 states that every finiteosthmlattice ofH3 has a
full (and thus separating) set of two-valued states. Thugfiaite subortholattice
of Hz can be expressed as an automaton logic. The suborthatadfiet which
have no two-valued state are infinite.

Acknowledgement

This research has been partially supported by the Austiaeeh program AK-
TION.

References

[1] V. Alda: On0-1 measure for projectorApl. Mat. 25(1980), 373-374.

[2] G. Birkhof, J. von NeumannThe logic of quantum mechanicAnn. of
Math. 37 (1936), 823-834.

[3] H. R. Brown: Bell's other theorem and its connection with nonlocalitgrtp
[, in Bell's theorem and the foundations of modern physksVan der
Merwe, F. Selleri and G. Tarozzi (World Scientific, Singagdt992), 104—
116.

[4] K. Schuette]etter to Professor E. P. Speckeiated April 22nd, 1965; pub-
lished in E. Clavadetscher-Seebergeme partielle Padikatenlogik (Dis-
sertation, ETH-Zurich, Zurich, 1983).

[5] G. Coray:Validité dans les algbres de Boole partielle€omm. Math. Helv.
45(1970), 49-82.

[6] A. Gleason: Measures on a closed subspaces of a Hilbert spac&lath.
Mech.6 (1957), 883-894.

[7] D. M. Greenberger, M. Horne and A. Zeilinger: Bell's Theorem, Quan-
tum Theory, and Conceptions of the Universd. by M. Kafatos (Kluwer,
Dordrecht, 1989); D. M. Greenberger, M. A. Horne, A. Shimamd A.
Zeilinger, Am. J. Phys8(1990), 1131.

29



[8] A. Einstein, B. Podolsky and N. Rose@an quantum-mechanical descrip-
tion of physical reality be considered complet®hys. Reva7, 777 (1935);
reprinted in J. A. Wheeler and W. H. Zurek, ed3uantum Theory and Mea-
suremen{Princeton University Press, Princeton, 1983), 145-151.

[9] G. Kalmbach:Orthomodular LatticesAcademic Press, New York, 1983.

[10] G. KalImbach:Measures and Hilbert Lattice$Vorld Scientific, Singapore,
1986.

[11] S. Kochen and E. P. Speckdme calculus of partial propositional functions
in Proceedings of the 1964 International Congress for Logietidology
and Philosophy of Science, Jerusal@dorth Holland, Amsterdam, 1965),
45-57.

[12] S. Kochen and E. P. Speckérogical Structures arising in quantum theory
in Symposium on the Theory of Models, Proceedings of the 1966&
tional Symposium at Berkeléiorth Holland, Amsterdam, 1965), 177-189.

[13] S. Kochen and E. P. SpeckeFhe problem of hidden varibles in quantum
mechanicsJournal of Mathematics and Mechanics(1967), 59-87.

[14] N. D. Mermin: Hidden variables and the two theorems of John BRé#v.
Mod. Phys65(1993), 803-815.

[15] M. Navara, V. Rogalewicz:The pasting constructions for orthomodular
posetsMath. Nachrichterd54(1991), 157-168.

[16] A.Peres:Unperformed experiments have no resuitsi. J. Phys46(1978),
745.

[17] A. Peres:Cryptodeterminism and quantum theolty Microphysical Reality
and Quantum Formalism (Kluwer Academic Publishers, Datal;,e1988),
115-123.

[18] A. Peres: Two simple proofs of the Kochen—Specker theor@niPhys. A:
Math. Gen24(1991), L175-L178.

[19] A. Peres:Quantum Theory: Concepts & MethodKluwer Academic Pub-
lishers, Dordrecht, 1993).

[20] P. Ptak and S. Pulmannov@rthomodular Structures as Quantum Logics
Kluwer Academic Publishers, Dordrecht, 1991.

[21] M. Reck, A. Zeilinger, H. J. Bernstein and P. Bertakixperimental real-
ization of any discrete unitary operatdPhys. Rev. Lett73, 58 (1894); see
also F. D. MurnaghanThe Unitary and Rotation GroupSpartan Books,
Washington, 1962).

30



[22] M. Schaller, K. Svozil:Partition logics of automatal Nuovo Cimento109
B (1994), 167-176.

[23] M. Schaller, K. Svozil: Automaton partition logic versus quantum logic
Inter. J. Theor. Phy85(1996), 911-940.

[24] M. Schaller, K. Svozil: Automaton logicInter. J. Theor. Phy84 (1995),
1741-1749.

[25] E. P. SpeckerDie Logik nicht gleichzeitig entscheidbarer Aussadeialec-
tical1l4(1960), 175-182.

[26] K. Svozil: Randomness and Undecidability in Physi@gorld Scientific,
Singapore, 1993.

[27] K. Svozil: A constructivist manifesto for the physical sciences The
Foundational Debate, Complexity and Constructivity in Manatics and
Physics Werner DePauli Schimanovich, Eckehart Kohler and Froddr
Stadler, eds. (Kluwer, Dordrecht, Boston, London, 1995),88.

31



