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Abstract

We use Greechie diagrams to construct finite orthomodular lattices ‘real-
izable’ in the orthomodular lattice of subspaces in a threedimensional Hilbert
space such that the set of two-valued states is not ‘large’ (i.e., full, separat-
ing, unital, nonempty, resp.). We discuss the number of elements of such
orthomodular lattices, of their sets of (ortho)generatorsand of their subsets
which do not admit ‘large’ set of two-valued states. We show connections
with other results of this type.

1 Introduction

Quantum logic, as it has been pioneered by Birkhoff and von Neumann [2], is
usually derived from Hilbert space. There, the logical primitives, such as proposi-
tions and the logical operators “and”, “or” and “not” are defined by Hilbert space
entities. For instance, consider the threedimensional, real Hilbert spaceR3 with
the usual scalar product(v,w) := ∑3

i=1viwi , v,w∈ R3. There, any proposition is
identified with a subspace ofR3. For instance, the zero vector corresponds to a
false statement. Any line spanned by a nonzero vector corresponds to the state-
ment that the physical system is in the pure state associatedwith the vector. Any
plain formed by the linear combination of two (non-colinear) vectorsv,w corre-
sponds to the statement that the physical system is either inthe pure statev or in
the pure statew. The whole Hilbert spaceR3 corresponds to the tautology (true
propositions). The logical “and”-operation is identified with the set theoretical
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intersection of two propositions; e.g., with the intersection of two lines. The logi-
cal “not”-operation, or the “complement”, is identified with taking the orthogonal
subspace; e.g., the complement of a line is the plain orthogonal to that line.

In this top-down approach, one arrives at a propositional calculus which re-
sembles the classical one, but differs from it in several important aspects. They are
non-Boolean, i.e., non-distributive, algebraic structures. Furthermore, as has first
been pointed out by Kochen and Specker in the context of partial algebras [12],
there exist certainfinite sets of lines, such that the associated propositional struc-
ture cannot be classically embedded. That is, there does notexist any classical,
i.e., two-valued, measure which could be interpreted as thefact that propositions
are either “true” (≡ measure value 1) or “false” (≡ measure value 0). Kochen
and Specker’s original construction used 117 lines. The number of lines has been
subsequently reduced [17, 18, 14, 4]. These constructions are examples of propo-
sitional structures without any two-valued measures.

This paper deals with the following questions: which orthomodular structure—
finite or infinite—underlies the Kochen–Specker construction. The question can
be approached from two different viewpoints: (i) Whichminimal set of propo-
sitions generates some Kochen–Specker type configurations? By “generate” we
mean the construction of the propositional structure containing it. (ii) What is the
minimal propositional structurecontaining some sort of Kochen–Specker type
configuration? In particular, is it finite or infinite?

2 Basic notions

The following definition gives two main concepts of a propositional structure.

2.1. Definition. An orthomodular posetis a structure(P,≤,′ ,0,1) fulfilling the
following conditions:

(1) (P,≤) is a partial ordered set such that 0≤ a≤ 1 for everya∈ P.
(2) ′:P→ P is an orthocomplementation, i.e., for everya,b∈ P: (a) a′′ = a,

(b) a≤ b impliesb′ ≤ a′, (c) a∨a′ = 1.
(3) If a≤ b′ then the supremuma∨b exists inP.
(4) If a≤ b then there is an elementc∈ L such thatc≤ a′ andb= a∨c (the

orthomodular law).

An orthomodular latticeis an orthomodular poset which is a lattice.
Elementsa,b of an orthomodular poset are calledorthogonal(denoted bya⊥

b) if a ≤ b′. A subsetO of an orthomodular poset is calledorthogonalif every
pair of its elements is orthogonal.

2.2. Definition. Let P1,P2 be orthomodular posets.P1 is orthorepresentablein
P2 if there is a mapping (calledorthoembedding) h: P1 → P2 such that for every
a,b∈ P1:
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(1) h(0) = 0,
(2) h(a′) = h(a)′,
(3) a≤ b if and only if h(a)≤ h(b),
(4) h(a∨b) = h(a)∨h(b) whenevera⊥ b.

P1 is representablein P2 if there is a mapping (calledembedding) h: P1 → P2 such
thath is orthoembedding and for everya,b∈ P1:

(4’) h(a∨b) = h(a)∨h(b).

The seth(P1) is then called an (ortho)representationof P1 in P2.
A suborthoposet(subortholattice, resp.) is a subset such that the identity map-

ping is orthoembedding (embedding, resp.).
Boolean subalgebraof an orthomodular poset is a suborthoposet which is a

Boolean algebra.Block is a maximal Boolean subalgebra.

As we will see later, there are latticesL1,L2 such thatL1 is a suborthoposet but
not a subortholattice ofL2. On the other hand, a suborthoposet of an orthomodular
lattice need not be a lattice.

2.3. Definition. Let L be an orthomodular lattice,G, L̄ ⊆ P and let us denote by
L(G) (P(G), resp.) the least subortholattice (suborthoposet, resp.)of L contain-
ing G. We say thatG generates(orthogenerates, resp.)L̄ if L̄ ⊆ L(G) (L̄ ⊆ P(G),
resp.).

P(G) andL(G) can be explicitly defined by the following process:P(G) =⋃∞
n=0Pn(G), L(G) =

⋃∞
n=0Ln(G), whereP0(G) = L0(G) = G and, for every natu-

ral numbern:

Ln+1(G) = {
∨

O; O is a finite subset ofLn(G)∪Ln(G)′},
Pn+1(G) = {

∨
O; O is a finite orthogonal subset ofPn(G)∪Pn(G)′}

(M′ denotes the set{a′; a∈ M}). Hence, every countable setG generates a count-
able subortholattice and orthogenerates a countable suborthoposet.

A very useful tool for constructing and representing some orthomodular posets
is the so-called Greechie diagram.

2.4. Definition. A diagramis a pair(V,E), whereV 6= /0 is a set ofvertices(usu-
ally drawn as points) andE ⊆ expV \{ /0} is a set ofedges(usually drawn as line
segments connecting corresponding points).

Let n ≥ 2 be a natural number. Aloop of ordern in a diagram(V,E) is a
sequence(e1, . . . ,en)∈En of mutually different edges such that there are mutually
different verticesv1, . . . ,vn with vi ∈ ei ∩ei+1 (i = 1, . . . ,n, en+1 = e1).

A Greechie diagramis a diagram fulfilling the following conditions:

(1) Every vertex belongs to at least one edge.
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(2) If there are at least two vertices then every edge is at least 2-element.
(3) Every edge which intersects with another edge is at least3-element.
(4) Every pair of different edges intersects in at most one vertex.
(5) There is no loop of order 3.
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Figure 1: Examples of diagrams which are not Greechie diagrams.

Some examples of diagrams which are not Greechie diagrams are given in
Fig. 1—these examples violates exactly one of conditions (2)–(5) in the above
definition. (We usually do not denote 1-element edges.) The condition (4) states
that in Greechie diagrams there is no loop of order 2.

Before we present the representation theorem let us recall that anatom in an
orthomodular posetP is a minimal element ofP\{0}.

2.5. Theorem. For every Greechie diagram with only finite edges there is exactly
one (up to an isomorphism) orthomodular poset such that there are one-to-one
correspondences between vertices and atoms and between edges and blocks which
preserve incidence relations. A Greechie diagram does not contain any loop of
order 4 if and only if the corresponding orthomodular poset is a lattice.

The proof can be found e.g. in [15]. Let us reserve the notionGreechie logic
for an orthomodular poset which can be represented by a Greechie diagram with
only finite edges. It is easy to see that such an orthomodular poset does not contain
any infinite chain, hence every its element is a supremum of a finite orthogonal
set of atoms.

Let us remark that there are finite orthomodular posets not representable by
Greechie diagrams—intersections of blocks might be greater than a 4-element
Boolean subalgebra and hence the condition (4) of Definition2.4 cannot be ful-
filled. On the other hand, every orthomodular poset with onlyfinite and at most
3-atomic blocks (the case we are interested about) is a Greechie logic.

We will have a special interest about the following example.

2.6. Definition. The 3-dimensionalHilbert logic H3 is the orthomodular lattice of
linear subspaces ofR3. The ordering is given by inclusion and the orthocomple-
mentation is given bya′ = {v∈ R3; v⊥ a} for everya∈ H3.

The least element ofH3 is 0= {(0,0,0)}, the greatest element ofH3 is 1=
R3. Moreovera∧ b = a∩ b and a∨ b = Sp(a∪ b) for everya,b ∈ H3, where
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Sp(G) is thespanof G in R3. (We will usually omit unnecessary parenthesis, e.g.,
Sp(1,0,0) denotes Sp({(1,0,0)}).)

Every element ofH3\{0,1} is either an atom or a coatom, every block inH3

is finite and at most 3-element, every suborthoposetP of H3 is a Greechie logic
and is uniquely determined by the setA1(P) of its 1-dimensional atoms (lines):

P= {0,1}∪A1(P)∪A1(P)
′.

(There might be also 2-dimensional atoms inP, e.g., ifP is 4-element.) Moreover,
for every setG of lines in H3 the set of lines of the orthomodular latticeL(G)
(orthomodular posetP(G), resp.) generated (orthogenerated, resp.) byG can
be expressed as follows:A1(P(G)) =

⋃∞
n=0Pn, A1(L(G)) =

⋃∞
n=0Ln, whereP0 =

L0 = G and, for every natural numbern:

Ln+1 = Ln∪{(a∨b)′; a,b∈ Ln},
Pn+1 = Pn∪{(a∨b)′; a,b∈ Pn such thata⊥ b}.

3 Two-valued states and Greechie diagrams

Let us present the main definition.

3.1. Definition. Let P be an orthomodular poset and letG⊂ P. A state son G is
a mappings: P→ [0,1] such that:

(1) s(0) = 0,
(2) s(a)≤ s(b) whenevera,b∈ G with a≤ b,
(3) ∑a∈Os(a)≤ 1 for every orthogonal setO⊂ G,
(4) ∑a∈Os(a) = 1 for every orthogonal setO⊂ G with

∨
O= 1.

A two-valued stateis a state with values in{0,1}.

If G= P then conditions (1)–(2) follows from conditions (3)-(4) and from the
orthomodular law and, moreover,s(a′) = 1−s(a) for everya∈ P.

The Kochen–Specker construction gives an example of a propositional struc-
ture without any two-valued state. We will use more general attempt and will
ask whether there is a propositional structure without ‘enough’ two-valued states.
Originally, ‘enough’ meant ‘at least one’. We will use also the following proper-
ties of state space, which are important in quantum logic theories.

3.2. Definition. Let P be an orthomodular poset and letG⊆ P. A setSof states
onG is called:

unital if for everya∈ G\{0} there is a states∈ Ssuch thats(a) = 1,
separatingif for every a,b ∈ G with a 6= b there is a states∈ S such that

s(a) 6= s(b),
full if for everya,b∈ G with a 6≤ b there is a states∈ Ssuch thats(a)> s(b).
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Existence of a unital set of states means that every proposition which is not
a tautology is sometimes false. Existence of a separating set of states means that
a different propositions are distinguishable. Existence of a full set of two-valued
states means that if some proposition does not imply another, then there is such
a state that the first is true while the second is not. These properties are largely
studied. An orthomodular poset with a full set of two-valuedstates is called a
concrete logic(see e.g. [20]), an orthomodular poset with a separating setof two-
valued states is called apartition logic—this notion is within orthomodular posets
equivalent to the notion ofautomaton logic(see e.g. [22, 23, 24]).

It is easy to see that a full set of states is separating and that a separating set of
two-valued states is unital. Before we give examples demonstrating differences in
the above defined notions let us give some criteria, how we canverify whether an
orthomodular poset given by a Greechie diagram has ‘enough’two-valued states.

3.3. Definition. Let P be an orthomodular poset and letA be the set of atoms inP.
A weight won A is a mappingw: A → [0,1] such that∑a∈Ow(a) = 1 for every
maximal orthogonal setO ⊆ P. A two-valuedweight is a weight with values in
{0,1}.

3.4. Lemma. Let P be a Greechie logic and letA be the set of atoms inP. Then
there is a one-to-one correspondence between two-valued statess on P and two-
valued weightsw on A given byw= s|A.

Proof. Obvious.

Due to this correspondence we may (and will) identify statesand weights and
study only the values of states on the set of atoms. Since every maximal orthogo-
nal set of atoms corresponds uniquely to a block, we need onlyto check that the
sum of values of a state on every edge in a Greechie diagram is equal to 1.

3.5. Proposition. Let P be a Greechie logic and letA be the set of atoms inP.
ThenP has a full set of two-valued states (i.e.,P is a concrete logic) if and only
if for every paira1,a2 ∈ P of different nonorthogonal atoms there is a two-valued
weightw on A such thatw(a1) = w(a2) = 1.

Proof. ⇒: Let a1,a2 ∈ A such thata1 6⊥ a2. Thena1 6≤ a′2 and there is a two-
valued statesonP such that 1= s(a1)> s(a′2) = 0. Hence,s(a2) = 1 and, accord-
ing to Lemma 3.4, it suffices to takew= s|A.

⇐: Let b1,b2 ∈ P such thatb1 6≤ b2, i.e.,b1 6⊥ b′2. There are orthogonal sets
A1,A2 6= /0 of atoms inP such thatb1=

∨
A1, b′2=

∨
A2. According to Lemma 3.4,

it suffices to prove that there are atomsa1 ∈ A1, a2 ∈ A′
2 and a weightw onA such

thatw(a1)=w(a2)= 1. Let us suppose first thatA1∩A2= /0. Then there are atoms
a1 ∈ A1 anda2 ∈ A2 such thata1 6= a2 anda1 6⊥ a2 and, due to our assumption, a
weightw onA such thatw(a1) = w(a2) = 1. Let us suppose now thatA1∩A2 6= /0.
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Then there is an atoma1 ≤ b1,b′2 and either there is an atoma2 6= a1 such that
a1 6⊥ a2, or a1 ⊥ a for every atoma 6= a1. In both cases there is a two-valued
weightw on A such thatw(a1) = 1; in the first case due to our assumption and in
the second case we can putw(a) = 1 iff a= a1.

The situation for a separating set of states is much more complicated and we
will state a criterion in a special case (which is in our interest here).

3.6. Proposition. Let P be a Greechie logic with at most 3-atomic blocks and let
A be the set of atoms inP. Then the set of two-valued states onP is separating
(i.e.,P is a partition logic) if and only if the following conditionshold:

(1) For every atoma∈ P there is a two-valued weightw onA such thatw(a) =
1.

(2) For every paira1,a2 ∈ P of different nonorthogonal atoms there are two-
valued weightsw+,w− onA such thatw+(a1) = w+(a2) andw−(a1) 6= w−(a2).

Proof. ⇒: Let a ∈ A. Thena 6= 0 and there is a two-valued states on P such
that 1= s(a)> s(0) = 0. Leta1,a2 ∈ A such thata1 6= a2 anda1 6⊥ a2. Then also
a1 6= a′2 and there are two-valued statess−,s+ on P such that and 1= s−(a1) >
s−(a2) = 0, 1= s+(a1)> s+(a′2) = 0, i.e.,s+(a1) = s+(a2). The rest follows from
Lemma 3.4.

⇐: Let b1,b2 ∈ P such thatb1 6= b2. Since every element ofP\{0,1} is either
an atom or a coatom, there are atomsa1,a2 ∈ P such thatb1 ∈ {0,a1,a′1,1} and
b2 ∈ {0,a2,a′2,1}. If a1 = a2 then there are two-valued weightsw+,w− onA such
that w+(a1) = 1 andw−(a1) = 0. If a1 6= a2 then there are two-valued weights
w+,w− on A such thatw+(a1) = w+(a2) andw−(a1) 6= w−(a2). In both cases
there are, according to Lemma 3.4, two-valued statess+,s− on P such that either
s+(b1) 6= s+(b2) or s−(b1) 6= s−(b2).

Let us present a lemma, which might simplify to verify criteria in Proposi-
tion 3.6.

3.7. Lemma. Let P be a Greechie logic and letA be the set of atoms inP. If W is
an at least 3-element set of two-valued weights onA such that{w−1(1); w∈W}
is a partition ofA then

(1) For every atoma∈ A there is a weightw∈W such thatw(a) = 1.
(2) For every paira1,a2 ∈ A there is a weightw∈W such thatw(a1) = w(a2).

Proof. Obvious.

Let us remark that in Greechie diagrams it suffices to use the above condi-
tions for every connected subdiagram separately (weights behave independently
on nonconnected subgraphs). In terms of orthomodular posets we can use the
following important notion.

7



3.8. Definition. Let P be a set of orthomodular posets such thatP1∩P2 = {0,1}
for every P1,P2 ∈ P with P1 6= P2. The horizontal sum∑P∈P P is defined as
(
⋃

P∈P P,
⋃

P∈P ≤P,
⋃

P∈P
′P, 0,1).

More generally we speak about the horizontal sum ofPi , i ∈ I . It is an ab-
breviation for saying that we take disjoint representations P̄i of Pi (e.g.,{i}×Pi),
identify all 0̄i (i ∈ I ) and all 1̄i (i ∈ I ) and take∑i∈I Pi . It is easy to see that a
horizontal sum of orthomodular posets (orthomodular lattices, resp.) is an ortho-
modular poset (orthomodular lattice, resp.) and that a set of states is nonempty
(unital, separating, full, resp.) on a horizontal sum if andonly if it is nonempty
(unital, separating, full, resp.) on every horizontal summand.

In a Greechie diagram every connected subdiagram corresponds to a horizon-
tal summand. (In particular, every finite 2-atomic block is ahorizontal summand.)
On the other hand, horizontal sum of Greechie logics is a Greechie logic with
the Greechie diagram, which is a (disjoint) union of summands with only one
exception—we loose isolated vertices (these correspond tothe trivial orthomodu-
lar poset{0,1}).

The notion of a horizontal sum is a special kind of the notion of pasting. We
are not interested here in a general setting (see e.g. [15]),thus we describe only
special cases how we can obtain a new Greechie logic using this process. Greechie
diagram of thepasting of Greechie logics Pi (i ∈ I ) for atoms ai ∈ Pi (i ∈ I ) we
obtain as follows: we take disjoint union of Greechie diagrams ofPi (i ∈ I ), iden-
tify vertices corresponding toai (i ∈ I ) and, if someai (i ∈ I ) belong to a 2-atomic
block, we delete necessary vertices corresponding to sucha′i such that the condi-
tion (3) of Definition 2.4 is fulfilled. Greechie diagram of thepasting of Greechie
logics Pi (i ∈ I ) for blocks Bi ⊆ Pi (i ∈ I ) with the same number of atoms we obtain
as follows: we take disjoint union of Greechie diagrams ofPi (i ∈ I ) and identify
edges corresponding toBi (i ∈ I ) (I.e., we identify also atoms in these blocks.) It
is easy to see that such pastings of (lattice) Greechie logics are (lattice) Greechie
logics.

The notion of a horizontal sum is related also to the following notion.

3.9. Definition. Let Pbe an orthomodular poset. Thedistanced onP is a mapping
d: P×P→ N∪{∞} defined by:

d(a,b) = inf {n∈ N; there are blocksB1, . . . ,Bn in P such that

Bi ∩Bi+1 6= {0,1} for i = 0, . . . ,n, B0 = {a}, Bn+1 = {b}}.

The distance function defines the largest decomposition ofP into horizontal
summands—the least summands are maximal subsets ofP\ {0,1} of elements
with finite distances joined with{0,1}.

The following result we will use in the sequel.
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3.10. Proposition. Every Greechie logic without any loop has a full set of two-
valued states.

Proof. The distance function onP decomposeP into the horizontal sum∑i∈I Pi

such that the distance of every pair of elements in every summand is finite. It
suffices to prove fullness for every summand. According to Proposition 3.5, it
suffices, for everyi ∈ I and for every paira1,a2 of different nonorthogonal atoms
in Pi , to find a weightw on the setA of atoms inPi such thatw(a1) = w(a2) = 1.
Let us putAn = {a∈ A; d(a,a1) = n} for every natural numbern and let us define
w by induction:

I. w(a1) = 1.

II. Let us suppose that there is a natural numbern ≥ 0 such thatw is defined
onA0∪· · ·∪An. Every element ofAn+1 belongs to some blockB in Pi such
thatB∩An 6= /0. For every such blockB we haveB∩An= {aB}. If w(aB)=1,
we putw|B∩A\An = 0. If w(aB) = 0, we can choose (B has at least three
atoms) properly abB ∈ B∩A\An and putw(bB) = 1, w|B∩A\ {bB} = 0.
Properly means that ifn= d(a2,a1)−2 thenbB is chosen such that it does
not belong to the same block asa2 and ifn= d(a2,a1)−1 thenbB = a2.

Let us present examples demonstrating differences in properties of state space.

3.11. Proposition. Let us consider the following conditions:

(1) The set of two-valued states is full.
(2) The set of two-valued states is separating but not full.
(3) The set of two-valued states is unital but not separating.
(4) The set of two-valued states is nonempty but not unital.
(5) The set of two-valued states is empty.

For each of the above conditions there is an orthomodular lattice with only finite
3-atomic blocks which fulfills it.
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Figure 2: Greechie diagrams of orthomodular posets with finite 3-atomic blocks
demonstrating differences of state spaces (ar re b denotes the diagram 2).
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Proof. (1) See Fig. 2.1. It is a Boolean algebra, which obviously hasa full set of
two-valued states.

(2) See Fig. 2.2. For every two-valued states we haves(a)+ s(b) ≤ (1−
s(ca)+1−s(da)+1−s(cb)+1−s(db))/2= (2−s(c)−s(d))/2≤ 3/2. Hence
s(a)+ s(b) ≤ 1 and, according to Proposition 3.5, this orthomodular lattice has
not a full set of two-valued states. The setS1 = {s1,s2,s3} of states given in
Fig. 3 fulfills conditions of Lemma 3.7. It can be checked thatthe set of all two-
valued states ‘symmetric’ to some state fromSdistinguish different nonorthogonal
atoms. Hence the set of two-valued states fulfills conditions of Proposition 3.6.
A smaller example of a separating set of states is given in Fig. 3. We can express
this orthomodular lattice as a partition logic on a 6-element set of these states—
see Fig. 4.1. (Compare with the representation on the 14-element set of states
in [24].)

(3) See Fig. 2.3. Let us use the previous result. For every two-valued states
with s(a1) = 1 we obtains(a2) = s(b) = 0, hences(a4) = 1. Using the symmetry
we obtains(a1) = s(a4) for every two-valued state, hence the set of two-valued
states is not separating. The unitality can be verified routinely.

(4) See Fig. 2.4. For every two-valued states there is ani ∈ {1,2,3} such that
s(ai) = 1 and therefores(b) = 0. Hence, the set of two-valued states is not unital.
Existence of a two-valued state can be verified routinely. (Let us note that if we
paste ‘sides of the triangle’ not only forb but for the whole block we obtain a
smaller example with 25 atoms.)

(5) See Fig. 2.5. According to part (3) of this proof,s(a1) = s(a2) = s(a3) =
s(a4) for every two-valued states. Hence all these values are equal to 0 and
s(b) = 1. The desired example we obtain by pasting this orthomodular lattice
with the orthomodular lattice from Fig. 2.4 forb’s or, more effectively, by pasting
for blocks containingb’s anda2’s.
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Figure 3: Separating set of two-valued states on an orthomodular lattice from
Fig.2.2. (only atoms in which the corresponding state is equal to 1 are marked).

4 Subortholattices ofH3

There are only several types of finite subortholattices ofH3. The following char-
acterization of finite subortholattices ofH3 seems to be in a common knowledge
(see e.g. [9, Example 1.5.3]), but we do not know a proper reference for its proof.
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Figure 4: Various representations of an orthomodular lattice from Fig. 2.2.

4.1. Lemma. Let L be a subortholattice ofH3 and let linesa1,a2,a3,b∈ L be such
thata1,a2,a3 are mutually orthogonal andb 6⊥ a1,a2,a3. Then there is a linec∈ L
such thatc 6⊥ a3 and the angle6 (c,a3) is greater than6 (b,a3).

Proof. Let us choose the system of coordinates such thata1 = Sp(1,0,0), a2 =
Sp(0,1,0), a3 = Sp(0,0,1), b= Sp(x,y,z) such thatx,y,z> 0. SinceL is a sub-
ortholattice ofH3, the following elements belong toL:

b̄ = (a1∨a2)∧b′ = Sp(y,−x,0)

c = (a1∨a3)∧ (b∨ b̄) = Sp(x+
y2

x
,0,z).

Hence,

0< cos6 (c,a3) =
z

√

(x+ y2

x )
2+z2

<
z

√

x2+y2+z2
= cos6 (b,a3)

4.2. Theorem. Let L ⊂ H3 be a finite orthomodular lattice. ThenL is a subortho-
lattice ofH3 if and only if exactly one of the following possibilities is fulfilled:

(1) L = {0,1}, i.e.,L is a 1-atomic Boolean algebra.
(2) L = {0,a,a′,1} for some linea∈ H3, i.e.,L is a 2-atomic Boolean algebra.
(3) L = {0,a1,a2,a3,a′1,a

′
2,a

′
3,1} for some orthogonal set{a1,a2,a3} of lines

in H3, i.e.,L is a 3-atomic Boolean algebra.
(4) L = {0,a,a′,1}∪G∪G′∪{a∨b; b∈ G}∪{a′∧b′; b∈ G} for some line

a ∈ H3 and some at least 2-element setG of mutually nonorthogonal atoms or-
thogonal toa, i.e.,L is a finite pasting of at least two 3-atomic Boolean algebras
for a given atom.

Proof. It is easy to see that each of these conditions excludes the others and gives
a subortholattice ofH3. Let us suppose that there is a finite subortholatticeL
of H3 which fulfills no condition (1)–(4) and seek a contradiction. There are
three mutually nonorthogonal linesa,b,c∈ L. Let d3 = (a∨b)′ ∈ L. SinceL is
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finite, there is a linee∈ L such that6 (e,d3) is the greatest among all lines fromL
nonorthogonal tod3. Sincea 6⊥ b there is ad1 ∈ {a,b} such thatd1 6⊥ e,e′ ∧d′

3.
Let us putd2 = d′

1∧d′
2 ∈ L. Hence, linesd1,d2,d3 are mutually orthogonal and

e 6⊥ d1,d2,d3. According to Lemma 4.1, there is an elementf ∈ L such thatf 6⊥ d3

and 6 ( f ,d3)< 6 (e,d3)—this contradicts to the selection ofe.

Greechie diagrams of finite subortholattices ofH3 are given in Fig. 5.
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Figure 5: Greechie diagrams of finite subortholattices ofH3.

4.3. Corollary. Every finite subortholattice ofH3 has a full set of two-valued
states.

Proof. It follows from Theorem 4.2 and Proposition 3.10.

As concerns infinite subortholattices ofH3, there is a countable subortholat-
tice ofH3 without any two-valued states (e.g., generated by finite sets without any
two-valued state—see Corollary 7.5). On the other hand, there are infinite sub-
ortholattices with a full set of two-valued states, e.g. infinite pastings of 3-atomic
Boolean algebras for a given atom (compare condition (4) of Theorem 4.2). It
seems to be an open problem whether there is an infinite subortholattice ofH3

which is not of this type and which has a two-valued state. Moreover, there might
be an interesting connection between the nonexistence of a two-valued state and
density inR3. This might give better insight into the nature of subortholattices
of H3 and the connection with famous Gleason theorem [6, 20], which (among
other things) states that there is no two-valued state onH3.

It should be noted that Greechie diagrams of subortholattices ofH3 are rela-
tively ‘complex’—the distance of every pair of elements is at most 2 (every pair
of different lines has a common orthogonal line). Hence, it is usually difficult to
give a Greechie diagram of an infinite subortholattice ofH3.

5 Realizability in H3

The study of finite suborthoposets ofH3 is more complicated. We would like to
know whether a Greechie logic is orthorepresentable inH3. The first problem
erases with the intrinsic geometrical structure ofH3.

5.1. Definition. Let P be an orthomodular poset. We say thatP is weakly realiz-
able in H3 if there is a mappingh: P→ H3 such that, for everya,b∈ P:
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(1) h(0) = 0,
(2) h(a′) = h(a)′,
(3) h(a)≤ h(b) whenevera≤ b,
(4) h(a) 6= 0 whenevera 6= 0.

If, moreover, the mappingh fulfills for everya,b∈ P:

(4’) h(a) 6= h(b) whenevera 6= b

we say thatP is realizable. The seth(P) is called a (weak) realizationof P in H3.

Weak realizability means that all orthogonality relationsremains true in the
images and, since every nonzero element has a nonzero image,if the set of two-
valued states onG⊆P is empty (not unital, resp.) then the set of two-valued states
on h(G) is empty (not unital. resp.), too. Realizability means that, moreover, the
mapping is one-to-one. Hence, if the set of two-valued states onG⊆P is not sepa-
rating (full, resp.), then the set of two-valued states onh(G) is not separating (full,
resp.), too. A realization need not be a suborthoposet because a new orthogonal
pairs might appear in the images.

Let us give a characterization of orthomodular posets weakly realizable inH3.

5.2. Lemma. Let PP be the pasting of a setP of orthomodular posets and let there
is a mappingh: PP →H3 such thath(P) is a weak realization ofP for everyP∈ P .
Thenh(PP ) is a weak realization ofPP in H3. In particular, every horizontal sum
of orthomodular posets weakly realizable inH3 is weakly realizable inH3.

Proof. Obvious.

5.3. Proposition. An orthomodular poset is weakly realizable inH3 if and only if
every its block is finite and at most 3-atomic.

Proof. ⇒: Every orthogonal set of nonzero elements in an orthomodular posetP
corresponds to an orthogonal set of nonzero elements inH3. Since such a set inH3

is at most 3-element, every block ofP is finite with at most three atoms.
⇐: Let P be an orthomodular poset with only finite at most 3-atomic blocks.

Let us decomposeP into the horizontal sum∑i∈I Pi of minimal horizontal sum-
mands. Let us choose a linel ∈ H3 and let us define a mappinghi for everyi ∈ I
as follows:h(0) = 0, h(1) = 1; if Pi is 4-element, then let us take an atomai ∈ Pi

and puth(ai) = l , h(a′i) = l ′; if Pi has more than four elements then every its block
has three atoms and we puth(a) = l , h(a′) = l ′ for every atoma ∈ Pi . It is easy
to see thathi(Pi) is a weak realization ofPi in H3 and that

⋃
i∈I hi(Pi) is a weak

realization ofP in H3.

The situation with realizability is more difficult and we do not know a charac-
terization of it. Some results we will present in the next section. Let us present
now another necessary condition.
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5.4. Proposition. Every orthomodular poset realizable inH3 is a lattice.

Proof. Let us suppose thatP is an orthomodular poset with a loop of order 4
realizable inH3 and seek a contradiction. There are nonzero mutually different
elementsa1 ⊥ a2 ⊥ a3 ⊥ a4 ⊥ a1 in P (see Fig. 6.2). Since for every pair of
different nonzero elements there is only one nonzero element in H3 orthogonal to
them,a1 = a3—a contradiction.

r r r r
1

r r r
r r rr r

a1 a2

a3a4

2

r r rrr
r

�
�
�

eA
A
A

e
a1 a2 a3

b

3

Figure 6: Greechie diagrams of some orthomodular posets nonrealizable inH3

(a r re b is an abbreviation of the Greechie diagram in Fig. 2.2.).

Examples of orthomodular posets nonrealizable inH3 are given in Fig. 6. The
first has a 4-atomic block, the second is not a lattice. The third example is much
more subtle an depends on the following intrinsic property of H3.

5.5. Lemma. Let L be a realization of an orthomodular lattice given in Fig. 2.2.
Then 6 (a,b) ∈ 〈arccos13,

π
2). On the other hand, for everyα ∈ 〈arccos1

3,
π
2) there

is a realization ofL such that6 (a,b) = α.

Proof. (See also [13]). Let us choose a coordinate system such thatc=Sp(1,0,0),
d = Sp(0,1,0). Hencee= Sp(0,0,1). Sinceca ⊥ c anddb ⊥ d, there arex,y∈
R\{0} such that

ca = Sp(0,y,1), db = Sp(x,0,1).

Sincecb ⊥ c,ca andda ⊥ d,db, a⊥ ca,da andb⊥ cb,db, we obtain

cb = Sp(0,−1,y), da = Sp(−1,0,x),

a= Sp(xy,−1,y), b= Sp(−1,xy,x).

Thus, using an elementary calculus,

cos6 (a,b) =
|xy|

√

(1+x2+x2y2)(1+y2+x2y2)
∈ (0,1/3〉.

For an arbitraryα ∈ 〈arccos13,
π
2) we can solve this equation and obtain, e.g.,

x= y=

√

√

√

√

1/cosα−1
2

−

√

(

1/cosα
2

)2

−1.
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Forα= arccos13 we have exactly one realization (two different solutions given
by the symmetry of the Greechie diagram). In Fig. 4.2 there isan example such
that symmetries of the realization are easily seen (with respect to the axiso of a
andb and to planes Sp{a,b}, Sp{o,a×b}). For α ∈ (arccos13,

π
2) we have two

different realizations (each symmetric with respect to theaxis ofa andb).
The orthomodular lattice given in Fig. 6.3 is not realizable, because for every

triple a1,a2,a3 ∈ H3 of mutually orthogonal nonzero elements and for everyb∈
H3 there is ani ∈ {1,2,3} such that6 (b,ai)≤ arccos 1√

3
.

Let us note that in [13] the above lemma is stated also forα = π
2. This is not

true, because then eitherx= 0 ory= 0 and we obtain only a weak realization.

6 Suborthoposets ofH3

We would like to present examples of orthomodular lattices orthorepresentable
in H3. To ensure that an orthomodular lattice is orthorepresentable in H3 it suf-
fices to find its realization inH3 such that there are not ordered (orthogonal, resp.)
pairs other than it was intended. E.g., it can be easily verified that an orthomodular
lattice given in Fig. 2.2 is orthorepresentable inH3 (see Fig. 4.2). We present par-
tial results which orthomodular lattices are orthorepresentable (realizable, resp.)
in H3. The idea of their proofs is that we can find uncountable many (continuum)
weak realizations while only for a countable many of them some images coincide
or, in case of orthorepresentability, give a new ordered (orthogonal, resp.) pair.

We show that there is a large class of infinite suborthoposetsof H3 with a full
set of two-valued states.

6.1. Proposition. Every horizontal sum of countable many countable orthomod-
ular lattices orthorepresentable (realizable, resp.) inH3 is orthorepresentable (re-
alizable, resp.) inH3.

Proof. It suffices to prove this proposition for two summands (we canproceed
by induction). LetL1,L2 be their orthorepresentations (realizations, resp.) inH3.
It suffices to prove that we can rotateL2 to L̄2 such thata1 6⊆ a2 anda2 6⊆ a1 for
everya1 ∈ L1\{0,1} and for everya2 ∈ L̄2\{0,1}, i.e. such thatl 6⊆⋃

(L1\{1})
for every linel ∈ L̄2. If L2 = {0,1} then the proof is complete. Let us suppose that
L2 6= {0,1}. Then there is a linel0 ∈ L2. Since

⋃
(L1 \ {1}) 6= R3 there is a line

l̄0 6⊆
⋃
(L1 \ {1}) and we can rotateL2 such thatl0 goes tol̄0. Rotating now the

image ofL2 aroundl̄0 we obtain an uncountable many possibilities while for only
a countable many of them there is a linel̄ ∈ L̄2 such that̄l ⊆⋃

(L1\{1}). Indeed,
for every l ∈ L2 all possible positions of̄l in a unit sphereS(0,1) in R3 form a
circleC with the center on̄l0 while, for everya∈ L1 \ {1}, a∩S(0,1) is either a
2-element set (a is a line) or a circle not identical toC; hencea∩S(0,1)∩C is at
most 2-element.
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6.2. Proposition. Every pasting for an atom of a pair of countable orthomodular
lattices orthorepresentable (realizable, resp.) inH3 is orthorepresentable (realiz-
able, resp.) inH3.

Proof. If we paste for an atom in a 2-atomic block then we obtain a horizontal sum
and the proof follows from Proposition 6.1. Let us suppose that we paste for atoms
in 3-atomic blocks. LetL1,L2 be orthorepresentations (realizations, resp.) inH3 of
given orthomodular lattices such thatL1∩L2 ∋ l0 wherel0 represents the atom in
bothL1,L2 for which we paste. It suffices to prove that there is a rotation L̄2 of L2

around the linel0 such thata1 6⊆ a2 anda2 6⊆ a1 for everya1 ∈ L1 \ {0,1, l0, l ′0}
and for everya2 ∈ L2 \ {0,1, l0, l ′0}, i.e., such thatl 6⊆ ⋃

(L1 \ {1, l ′0}) for every
line l ∈ L̄2. This gives only countable many restrictions to uncountable possible
positions ofL̄2, hence the proof is complete.

6.3. Corollary. Every countable Greechie logic with at most 3-atomic blocksand
without any loop is orthorepresentable inH3.

Proof. Every countable Greechie logic with only finite at most 3-atomic blocks
is a horizontal sum of subsequent countable pastings of finite 3-atomic Boolean
algebras for an atom. The rest follows from Theorem 4.2, Proposition 6.2 (using
the induction) and Proposition 6.1.

According to Proposition 3.10, Greechie logics from the above Corollary have
a full set of two-valued states.

6.4. Lemma. Let L1 be a countable orthomodular lattice orthorepresentable (re-
alizable, resp.) inH3 andL2 be an orthomodular lattice given in Fig. 7.1 such
that L1∩ L2 = {0,a,b,a′,b′,1} anda 6= b are nonorthogonal atoms inL1 (in its
realization, resp.). Then the pasting ofL1 andL2 is orthorepresentable (realizable,
resp.) inH3.
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Figure 7: Greechie diagrams of orthomodular lattices weakly realizable inH3.
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Proof. Let us suppose thatL1 is an orthorepresentation (realization, resp.) inH3

of a given orthomodular lattice. Ifa (b, resp.) is a 2-dimensional subspace ofH3

thena (b, resp.) is a part of a 4-element horizontal summand and this summand
might be considered as a part ofL2. The proof then follows from Proposition 6.2.
Let us suppose thata,b are lines. Let us consider all atomsca ≤ a′. We have
uncountable many possibilities which fill in the unit sphereS(0,1) a circleCa. Of
course,ca ≤ a′ andac = a′∧c′a ≤ a′ but all other ordering ofca andac with ele-
ments ofL1\{0,1} can be excluded if we exclude a countable many possibilities.
Similarly, if positions ofca fill a circle Ca then positions ofcb ⊥ ca,b fill a circle
Cb ⊂ b′ (a 6⊥ b). Again, there is only a countable many positions ofca for which
eithercb or bc = b′ ∧ c′b is ordered with some element ofL1 \ {0,1,b′}. Finally,
it can be shown that positions ofc fill a smooth curve onS(0,1) which is not a
circle. Hence, there is a possibility to chooseca such that we obtain the desired
orthorepresentation (realization, resp.).

6.5. Proposition. Let n ≥ 5 be a natural number and letB1, . . . ,Bn be finite 3-
atomic Boolean algebras such thatBi∩Bi+1= {0,ai ,a′i,1} for everyi ∈ {1, . . . ,n},
whereBn+1 = B1 anda1, . . . ,an are mutually different atoms. Then the pasting of
{B1, . . . ,Bn} (so-calledn-cycle) is orthorepresentable inH3.

Proof. It follows from Proposition 6.2 and from Lemma 6.4.

7 Kochen–Specker type configurations

We will give several examples of Kochen–Specker type configurations which arise
from Greechie diagrams. Some of these examples has been already used in the lit-
erature in the attempt to find a subset ofH3 without a two-valued state. We present
the connection to Greechie diagrams (this gives a better geometric insight), show a
nonexistence of a ‘large’ set of two-valued states for various concepts, and, more-
over, we do not stop in proving weak realizability but we discuss the real number
of elements.

7.1. Proposition. There is a finite suborthoposet ofH3 such that the set of two-
valued states on it is not full.

Proof. Let us consider a suborthoposetL of H3 given in Fig. 4.2. It is an or-
thorepresentation of an orthomodular lattice given in Fig.2.2, it is 28-element
(13-atomic) and the set of two-valued states onL is not full (see the proof of
Proposition 3.11.(1)). In fact, in the proof of Proposition3.11.(1) it was shown that
there is no two-valued state on the 8-element set{a,ca,da,c,d,cb,db,b} such that
s(a) = s(b) = 1 (a reformulation of fullness—see Proposition 3.5). This ortho-
modular lattice can be orthogenerated e.g. by the 6-elementset{a,ca,cb,b,db,da}
and generated e.g. by the 3-element set{a,cb,db}.
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7.2. Proposition. There is a finite suborthoposet ofH3 such that the set of two-
valued states on it is not separating.

Proof. Let us consider an orthomodular lattice given in Fig. 2.3. Itis an ortho-
modular lattice without a separating set of two-valued states (see the proof of
Proposition 3.11.(2)). It has 56 elements (27 atoms) and a 17-element subset
without a separating set of states (5 marked and 6 ‘hidden’ inevery circle). It
can be checked that it has the following realization (which forms a suborthoposet
of H3 given in Fig. 7.2—points in circles denotes the middle elements of the di-
agram from Fig. 2.2):f = Sp(0,0,1), a1

r re b1 given by Fig. 4.2;a2
r re b2 we

obtain from the representation on Fig. 4.2 rotating byπ/2 aroundf . There is a 10-
element set of orthogenerators (e.g.{a1,b1,ca1,cb1,da1,db1, f ,c2,cb2,db2}) and a
4-element set of generators (e.g.{a1,cb1,db1,cb2}).

Let us note that we can take a realization of an orthomodular lattice given in
Fig. 2.2 such that we obtain an orthorepresentation of the orthomodular lattice
given in Fig. 2.3, but the set of (ortho)generators is largerin this case.

7.3. Proposition. There is a finite suborthoposet ofH3 such that the set of two-
valued states on it is not unital.

Proof. Let us consider an orthomodular latticeL given in Fig. 7.3. It is an or-
thomodular lattice without a unital set of two-valued states. Indeed, for every
two-valued statesonL with s(a1) = 1 we haves( f ) = s(a2) = s(a5) = 0, s(ā2) =
s(ā5) = 1, s(ā3) = s(ā4) = 0, s(a3) = s(a4) = 1—a contradiction. It has 132 ele-
ments (65 atoms) and a 40-element subset without a unital setof states (6 hidden
in every circle and all markedai ’s andāi ’s). Let us find a weak realization ofL.
It can be done as follows: Putf = Sp(0,0,1), a1 = Sp(1,0,0), ā1 = Sp(0,1,0)
and letak, āk (k= 2, . . . ,5) be images ofa1, ā1 in rotations aroundf aboutk ·72◦.
Find a realization of the orthomodular lattice given in Fig.2.2 such that the angle
of images ofa,b is 72◦ (see the proof of Lemma 5.5) and rotate this realization
to the following pairs of lines:(a1,a2), (ā2, ā3), (a3,a4), (ā4, ā5), (a5,a1) (i.e., a
goes to the first andb to the second line for every pair). It can be checked that an
orthomodular poset orthogenerated by this weak realization is finite. (In fact, it is
a weak realization of an orthomodular lattice given in Fig. 7.4 by the same way.)

It can be shown that if we take the realization of the orthomodular lattice given
in Fig. 2.2 such that the angle betweena andb is equal to 72◦ by the expression
given in the proof of Lemma 5.5 as the first copy and if the second and the third
copy arise by rotations around the axis of the plane given bya andb such thatb
coincides witha of the next copy, then some elements coincide:

(ca,c,cb,bc,b,bd,db)1 = (d,db,da,ad,a,ac,ca)2,

(c,db,d,da,e)1 = (ca,d,c,e,cb)3.
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(Index denotes the number of the copy.) Hence, the weak realization of the or-
thomodular lattice from the above proof gives a 29-element subset ofH3 without
a unital set of two-valued states and the suborthoposet orthogenerated by it has
104 elements (51 atoms), is orthogenerated by a 16-element set and generated by
a 4-element set (e.g., elementsa,cb,db of some ar re b and some element from
the inner ‘pentagon’). The ‘almost’ Greechie diagram (20 points which belong
to exactly one edge are for simplicity omitted) of this suborthoposet ofH3 (real-
ization of the orthomodular lattice given in Fig. 7.4) is given in Fig. 8. Elements
of the 29-element subset without a unital set of two-valued states are all marked
points which are not crossed, a set of orthogenerators is e.g. the set of vertices of
both pentagons withai ’s and with the middle point, a set of generators is marked
by circles.

It should be noted that in [4, 27] there is an example of an 11-element set
of lines orthogenerating a 25-element set of lines and a 76-element (37-atomic)
suborthoposet ofH3 without a unital set of two-valued states. This suborthoposet
is generated by a 3-element set. The Greechie diagram of thisexample does not
seem to provide an easy survey, hence we omit it. A more detailed description of
this example is given in Section 8.

7.4. Proposition. There is a finite suborthoposet ofH3 such that the set of two-
valued states on it is empty.

Proof. Let us consider an orthomodular latticeL which is the pasting of the or-
thomodular lattice given in Fig. 7.3 fora1 and of the orthomodular lattice given in
Fig. 7.4 for its middle point. It is an orthomodular lattice without any two-valued
state. Indeed, ifs is a two-valued state onL thens(a1) = 0 (see above). Analo-
gously from the other diagram,s(a1) = 1—a contradiction. It has 374 elements
(186 atoms) and a 110-element subset without any two-valuedstate (6 ‘hidden’
in every circle and all marked except two of them—a1 and ā1). According to
Proposition 6.2, this orthomodular poset is weakly realizable in H3.

It can be shown that we can paste for the whole block and obtaina weak
realization which is a union of weak realizations of two copies of an orthomodular
lattice given in Fig. 7.4. Hence, this suborthoposet has 200elements (99 atoms)
and a 58-element subset without any two-valued state.

It should be noted that in [18] there is an example of a 33-element set of lines
without any two-valued state. Direction vectors of these lines arise by all permu-
tations of coordinates from(0,0,1), (0,±1,1) (0,±1,

√
2), (±1,±1,

√
2). This

set of lines orthogenerates a suborthoposet ofH3 with 116 elements (57 atoms).
Direction vectors of remaining lines arise by all permutations of coordinates from
(±1,±3,

√
2). This suborthoposet ofH3 has a 17-element set of orthogenerators

(e.g. lines with direction vectors(0,0,1), (0,1,0) and all coordinate permutations
from (0,1,

√
2), (1,±1,

√
2)) and a 3-element set of generators (e.g. lines with
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fa2

a5

a3

a1

a4

db1 = ca2 = d3 = c5

da1 = e3 = cb5

d1 = c3 = db4 = ca5

e1 = cb3 = da4

c1 = db2 = ca3 = d4 cb1 = da2 = e4 ca1 = d2 = c4 = db5

e2 = cb4 = da5

c2 = db3 = ca4 = d5

cb2 = da3 = e5

Figure 8: ‘Almost’ Greechie diagram of a suborthoposet ofH3 without a unital set
of two-valued states.

a1 = Sp( 1, 0, 0)

a2 = Sp(
√

3−
√

5,
√

5+
√

5, 0)

a3 = Sp(−
√

3+
√

5,
√

5−
√

5, 0)

a4 = Sp(−
√

3+
√

5, −
√

5−
√

5, 0)

a5 = Sp(
√

3−
√

5, −
√

5+
√

5, 0)

ca1= Sp( 0,−
√

−1+
√

5, 1)

da1= Sp( 0,
√

2,
√

−2+
√

5)

c1 = Sp(
√√

5,
√

2+
√

5,
√

3+
√

5)

d1 = Sp( −
√√

5,−
√

−2+
√

5,
√

2)

cb1= Sp(−
√

5+
√

5,
√

3−
√

5,2
√

−2+
√

5)

db1= Sp(
√√

5,−
√

−2+
√

5,
√

2)

e1 = Sp(
√√

5, −
√

2+
√

5,
√

3−
√

5)

c2 = Sp( −
√√

5,
√

2+
√

5,
√

3+
√

5)

cb2= Sp( −
√√

5, −
√

2+
√

5,
√

3−
√

5)

e2 = Sp(
√

5+
√

5,
√

3−
√

5,2
√

−2+
√

5)
f = Sp( 0, 0, 1)
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direction vectors(1,0,0), (1,1,0), (
√

2,1,1)). The ‘almost’ Greechie diagram
(24 points which belong to exactly one edge are for simplicity omitted) of this
example is given in Fig. 9 (one edge is denoted by a circle). The above mentioned
3-element set of generators is marked by circles.

7.5. Corollary. There is a 3-element set of lines inH3 such that no subortholattice
of H3 containing it has a two-valued state.

It seems to be an open question whether every 3-element set ofmutually
nonorthogonal lines inH3 generates a subortholattice without any two-valued
state. The least numbers in constructions are given in Tab. 1.

‘large’: full separating unital nonempty
example (figure) 4.2 7.2 [4, 27] 8 9

elements of a suborthoposet28 56 76 104 116
atoms of a suborthoposet 13 27 37 51 57
lines 8 17 25 29 33
orthogenerators 6 9 11 16 17
generators 3 4 3 4 3

Table 1: Numbers of elements of constructed propositional structures inH3 with-
out a ‘large’ set of two-valued states.

Let us note that the examples in Proposition 7.1 and in Proposition 7.2 ap-
peared in [13], the example in Fig. 7.4 appeared (not explicitly) in [13, 17] as a
part of their construction. In [1] the author uses (not explicitly) the orthomod-
ular lattice given in Fig. 7.3 and paste three copies to distinct atoms of a block
obtaining thus an orthomodular lattice without any two-valued state (however, his
estimation of lines does not seem to be correct).

In [14] the author uses weak realizability of an orthomodular lattice in Fig. 7.5
whenever we represent elementsa,b by lines inH3 such that their angle is less
than 45◦. This leads to the construction of an orthomodular lattice with 392 ele-
ments (146 atoms) weakly realizable inH3 and (at most) 130-element set of lines
without any two-valued state.

8 Discussion of physical relevance

In this final section we shall give a brief review of the physical relevance of
the above findings. The nonexistence of two-valued measureson certain finite
propositional structures in threedimensional Hilbert spaces has first been explic-
itly demonstrated by Kochen and Specker [13]. It is stronglyrecommended to
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21̄1̄

211

011̄

011

100

21̄1211̄

102

201̄

010

120

21̄0

001

1̄1̄2

112
1̄21̄

121

11̄0
110

101̄
101

11̄2

1̄12

121̄

1̄21

201
1̄02

210
1̄20

021

01̄2

012

021̄

Figure 9: ‘Almost’ Greechie diagram of a suborthoposet ofH3 without any two-
valued state (e.g. 1̄12 denotes Sp(1,−1,

√
2)).
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read this original account. Their result has given rise to a number of interpreta-
tions, by Kochen and Specker and others. A detailed overviewof the history of
the subject can, for instance, be found in the reviews by Mermin [14] and Brown
[3].

What does it physically mean thatthreenonorthogonal rays in threedimen-
sional Hilbert space are sufficient to generate a finite system of rays which have
no two-valued state? To state the associated Kochen–Specker paradox explicitly,
let us associate any onedimensional subspace Sp(v) spanned by a nonzero vector
v with the proposition that the physical system is in a pure state associated with
that subspace. That is,

Sp(1,0,0) = a, Sp(1,1,0) = b, Sp(
√

2,1,1) = c,

wherea,b andc are propositions. Ifa (similar for b andc) is measured, then
we associate the logical value “true” or “false” with the two-valued state function
s(a) = 1 ands(a) = 0, respectively.a,b,c generate the propositional structure
derived by Peres [18, 19, pp. 186–190]. That is, ifv andw are two vectors in
threedimensional Hilbert space corresponding to the propositionspv and pw, re-
spectively, then the vector productv×w corresponds to the proposition(pv∨ pw)

′.
In particular,

Sp(1,0,0) = a,

Sp(1,1,0) = b,

Sp(
√

2,1,1) = c,

Sp(0,0,1) = (Sp(1,0,0)∨Sp(1,1,0))′ =

(a∨b)′,

Sp(0,1,−1) = (Sp(1,0,0)∨Sp(
√

2,1,1))′ =

(a∨c)′,

Sp(0,1,0) = (Sp(1,0,0)∨Sp(0,0,1))′ =

(a∨ (a∨b)′)′,

Sp(0,1,1) = (Sp(1,0,0)∨Sp(0,1,−1))′ =

(a∨ (a∨c)′)′,

Sp(1,−1,0) = (Sp(1,1,0)∨Sp(0,0,1))′ =

(b∨ (a∨b)′)′,

Sp(−1,
√

2,0) = (Sp(
√

2,1,1)∨Sp(0,0,1))′ =

(c∨ (a∨b)′)′,

Sp(
√

2,−1,−1) = (Sp(
√

2,1,1)∨Sp(0,1,−1))′ =

(c∨ (a∨c)′)′,

Sp(−1,0,
√

2) = (Sp(
√

2,1,1)∨Sp(0,1,0))′ =

(c∨ (a∨ (a∨b)′)′)′,

Sp(
√

2,1,0) = (Sp(0,0,1)∨Sp(−1,
√

2,0))′ =

((a∨b)′∨ (c∨ (a∨b)′)′)′,
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Sp(1,
√

2,0) = (Sp(0,0,1)∨Sp(
√

2,−1,−1))′ =

((a∨b)′∨ (c∨ (a∨c)′)′)′,

Sp(1,0,
√

2) = (Sp(0,1,0)∨Sp(
√

2,−1,−1))′ =

((a∨ (a∨b)′)′∨ (c∨ (a∨c)′)′)′,

Sp(
√

2,1,−1) = (Sp(0,1,1)∨Sp(−1,
√

2,0))′ =

((a∨ (a∨c)′)′∨ (c∨ (a∨b)′)′)′,

Sp(
√

2,0,1) = (Sp(0,1,0)∨Sp(−1,0,
√

2))′ =

((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′,

Sp(
√

2,−1,0) = (Sp(0,0,1)∨Sp(1,
√

2,0))′ =

((a∨b)′∨ ((a∨b)′∨ (c∨ (a∨c)′)′)′)′,

Sp(
√

2,−1,1) = (Sp(0,1,1)∨Sp(−1,0,
√

2))′ =

((a∨ (a∨c)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′,

Sp(−1,1,
√

2) = (Sp(1,1,0)∨Sp(
√

2,0,1))′ =

(b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′,

Sp(0,
√

2,−1) = (Sp(1,0,0)∨Sp(−1,1,
√

2))′ =

(a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′,

Sp(
√

2,0,−1) = (Sp(0,1,0)∨Sp(1,0,
√

2))′ =

((a∨ (a∨b)′)′∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨c)′)′)′)′,

Sp(1,−1,
√

2) = (Sp(1,1,0)∨Sp(−1,1,
√

2))′ =

(b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′,

Sp(0,1,
√

2) = (Sp(1,0,0)∨Sp(0,
√

2,−1))′ =

(a∨ (a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′,

Sp(0,
√

2,1) = (Sp(1,0,0)∨Sp(1,−1,
√

2))′ =

(a∨ (b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′,

Sp(−1,−1,
√

2) = (Sp(1,−1,0)∨Sp(
√

2,0,1))′ =

((b∨ (a∨b)′)′∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′,

Sp(0,−1,
√

2) = (Sp(1,0,0)∨Sp(0,
√

2,1))′ =

(a∨ (a∨ (b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′,

Sp(1,1,
√

2) = (Sp(1,−1,0)∨Sp(0,
√

2,−1))′ =

((b∨ (a∨b)′)′∨ (a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′,

Sp(−1,
√

2,−1) = (Sp(
√

2,1,0)∨Sp(0,1,
√

2))′ =

(((a∨b)′∨ (c∨ (a∨b)′)′)′∨
(a∨ (a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′,

Sp(−1,
√

2,1) = (Sp(
√

2,1,0)∨Sp(0,−1,
√

2))′ =

(((a∨b)′∨ (c∨ (a∨b)′)′)′∨
(a∨ (a∨ (b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′)′,

Sp(1,
√

2,−1) = (Sp(
√

2,−1,0)∨Sp(0,1,
√

2))′ =

(((a∨b)′∨ ((a∨b)′∨ (c∨ (a∨c)′)′)′)′∨
(a∨ (a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′,

24



Sp(−1,0,1) = (Sp(0,1,0)∨Sp(−1,
√

2,−1))′ =

((a∨ (a∨b)′)′∨ (((a∨b)′∨ (c∨ (a∨b)′)′)′∨
(a∨ (a∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′)′,

Sp(1,
√

2,1) = (Sp(
√

2,−1,0)∨Sp(0,−1,
√

2))′ =

(((a∨b)′∨ ((a∨b)′∨ (c∨ (a∨c)′)′)′)′∨
(a∨ (a∨ (b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′)′,

Sp(1,0,1) = (Sp(0,1,0)∨Sp(−1,
√

2,1))′ =

((a∨ (a∨b)′)′∨ (((a∨b)′∨ (c∨ (a∨b)′)′)′∨
(a∨ (a∨ (b∨ (b∨ ((a∨ (a∨b)′)′∨ (c∨ (a∨ (a∨b)′)′)′)′)′)′)′)′)′)′.

Suppose, for the sake of contradiction, that each one of the above 33 propo-
sitions corresponds to an “element of physical reality” [8]. That is, suppose
that its value is either “true” (exclusive) or “false,” irrespective of whether it
has been actually measured or just counterfactually inferred. Let us further as-
sume with Peres [18, 19, pp. 186-190] that—provided these “elements of reality”
exist—Sp(0,0,1) = Sp(1,0,1) = Sp(0,1,1) = Sp(1,−1,

√
2) = Sp(1,0,

√
2) =

Sp(
√

2,1,1)=Sp(
√

2,0,1)=Sp(1,1,
√

2)=Sp(0,1,
√

2)=Sp(1,
√

2,1)= “true.”
One can follow Peres’ arguments to show that—provided these“elements of real-
ity” exist—all other rays belong to triads which are orthogonal to the above rays.
Therefore, these latter rays must correspond to propositions whose value is “false.”
In particular, Sp(1,0,0) = Sp(0,

√
2,1) = Sp(0,−1,

√
2) =“false,” associate with

s(Sp(1,0,0)) = s(Sp(0,
√

2,1)) = s(Sp(0,−1,
√

2)) = 0. Thus,s(Sp(1,0,0))+
s(Sp(0,

√
2,1))+s(Sp(0,−1,

√
2)) = 0+0+0= 0. But Sp(1,0,0), Sp(0,

√
2,1)

and Sp(0,−1,
√

2) are mutually orthogonal. This is in contradiction to the as-
sumption that for any orthogonal triad spanning the entire Hilbert space, the sum
of the measures should be one (cf. Definition 3.1.(4)). Notice that in order to arrive
at this Kochen–Specker paradox, we had to explicitly assumethe existence of the
“elements of reality,” irrespective of whether they have (or could have) actually
been measured or not.

What physical use can be a paradox? How can one measure a contradiction?
Indeed, what can actually be measured is merelyonetriplet of propositions corre-
sponding to some of the triads of mutually orthogonal rays. Such a measurement
can be performed with the operator discussed by Peres, or with an arrangement of
beam splitters discussed by Reck, Zeilinger, Bernstein andBertani [21].

For instance, afterc is found to be “true” (corresponding tos(c) = 1), then
measurement of the original values ofa or b is no longer possible. However,
suppose one would be willing to believe in the existence of “elements of real-
ity” [8, 16], which could merely becounterfactuallyinferred. Then one could
for instance—at least in principle—“measure” all 16 orthogonal triads by the pro-
duction of a state with 16 entangled subsystems. On each one of the 16 different
entangled subsystems one could measure one of the 16 different orthogonal tri-
ads. This is similar to a proposal by Greenberger, Horne and Zeilinger [7], which
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use three particles and eight-dimensional Hilbert space. Indeed, only in such a
way—namely by (counterfactually) inferring non-comeasurable propositions—
one would encounter a complete Kochen–Specker contradiction.

As has been already proven in Kochen and Specker’s original work [13, pp.
82–85, Theorem 4], the notion of tautology is connected to a classical (Boolean)
imbedding of a partial Boolean algebra. Indeed, there existpropositions which
are tautologies in the classical (Boolean) algebra but which are not tautologies
in the partial Boolean algebra if and only if the partial Boolean algebra does not
have a unital set of two-valued states and thus cannot be imbedded into a classical
(Boolean) algebra.

This is true for all partial Boolean algebras, in particularfor orthomodular
posets. Notice that the above result does not imply that every propositional struc-
ture giving rise to a (classical) Boolean tautology which isno quantum tautology
also has no two-valued measure (cf. below).

Until now, the lowest number of rays necessary to produce a classical tautol-
ogy which is not always true quantum mechanically is due to Schütte [4, 27]. The
eleven rays used by Schütte can also be generated by the three vectors(1,0,0),
(1,1,0) and (

√
2,1,1) (corresponding toa, b andc) used before. Indeed,d =

Sp(0,1,−1) = (Sp(1,1,0)∨Sp(
√

2,1,1))′ = (a∨c)′ and

a1 = Sp(1,0,0) = a,

a2 = Sp(0,1,0) = (Sp(1,0,0)∨Sp(0,0,1))′ =

(a∨ (a∨b)′)′,

b1 = Sp(0,1,1) = (Sp(1,0,0)∨Sp(0,1,−1))′ =

(a∨d)′,

b2 = Sp(1,0,1) = (Sp(0,1,0)∨Sp(−1,1,1))′ =

((a∨ (a∨b)′)′∨ (b∨d)′)′,

b3 = Sp(1,1,0) = b,

c1 = Sp(1,0,2) = (Sp(0,1,0)∨Sp(2,1,−1))′ =

((a∨ (a∨b)′)′∨ ((a∨d)′∨ (b∨ (a∨d)′)′)′)′,

c2 = Sp(2,0,1) = (Sp(0,1,0)∨Sp(−1,0,2))′ =

((a∨ (a∨b)′)′∨ ((a∨ (a∨b)′)′∨ ((a∨d)′∨ ((a∨d)′∨ (b∨ (a∨b)′)′)′)′)′)′,

d1 = Sp(−1,1,1) = (Sp(1,1,0)∨Sp(0,1,−1))′ =

(b∨d)′,

d2 = Sp(1,−1,1) = (Sp(1,1,0)∨Sp(0,1,1))′ =

(b∨ (a∨d)′)′,

d3 = Sp(1,1,−1) = (Sp(0,1,1)∨Sp(1,−1,0))′ =

((a∨d)′∨ (b∨ (a∨b)′)′)′,

d4 = Sp(1,1,1) = (Sp(0,1,−1)∨Sp(1,−1,0))′ =

(d∨ (b∨ (a∨b)′)′)′,
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where

Sp(2,1,−1) = (Sp(0,1,1)∨Sp(1,−1,1))′ =

((a∨d)′∨ (b∨ (a∨d)′)′)′,

Sp(−1,0,2) = (Sp(0,1,0)∨Sp(−2,1,−1))′ =

((a∨ (a∨b)′)′∨ ((a∨d)′∨ ((a∨d)′∨ (b∨ (a∨b)′)′)′)′)′,

Sp(2,−1,1) = (Sp(0,1,1)∨Sp(1,1,−1))′ =

((a∨d)′∨ ((a∨d)′∨ (b∨ (a∨b)′)′)′)′.

As we have mentioned above, there is not a unital set of two-valued states on
a suborthoposet orthogenerated by these rays (e.g., there is no two-valued state
s with s(Sp(1,0,0)) = 1). On the other hand, a two-valued can be defined by
s(Sp(0,1,0)) = s(Sp(0,1,1)) = s(Sp(1,1,0)) = s(Sp(1,1,1)) = s(Sp(1,1,2)) =
s(Sp(1,2,1)) = s(Sp(2,1,1)) = s(Sp(1,2,−1)) = s(Sp(−1,2,1)) =
s(Sp(1,5,2)) = s(Sp(2,5,1)) = s(Sp(−1,5,2)) = s(Sp(2,5,−1)) =
s(Sp(1,5,−2)) = s(Sp(−2,5,1)) = 1 and s(Sp(1,0,0)) = s(Sp(0,0,1)) =
s(Sp(1,0,1)) = s(Sp(0,1,−1)) = s(Sp(1,0,−1)) = s(Sp(1,−1,0)) =
s(Sp(1,1,−1)) = s(Sp(1,−1,1)) = s(Sp(−1,1,1)) = s(Sp(−1,−1,2)) =
s(Sp(−1,2,−1)) = s(Sp(2,−1,−1)) = s(Sp(1,−1,2)) = s(Sp(−1,1,2)) =
s(Sp(2,1,−1)) = s(Sp(2,−1,1)) = s(Sp(1,0,2)) = s(Sp(2,0,1)) =
s(Sp(−1,0,2)) = s(Sp(2,0,−1)) = s(Sp(1,−5,2)) = s(Sp(2,−5,1)) = 0.

Consider now the following propositions (notice that any binary operation is
either performed by orthogonal rays or by a ray and an orthocomplement of an-
other ray such that these rays are orthogonal):

f1 = d1 → b′2
= (d1∧b2)

′

f2 = d1 → b′3
= (d1∧b3)

′

f3 = d2 → a2∨b2

= (d2∧ (a2∨b2)
′)′

f4 = d2 → b′3
= (d2∧b3)

′

f5 = d3 → b′2
= (d3∧b2)

′

f6 = d3 → (a1∨a2 → b3)

= (d3∧ ((a1∨a2)
′∨b3)

′)′

f7 = d4 → a2∨b2

= (d4∧ (a2∨b2)
′)′
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f8 = d4 → (a1∨a2 → b3)

= (d4∧ ((a1∨a2)
′∨b3)

′)′

f9 = (a2∨c1)∨ (b3∨d1)

= ((a2∨c1)
′∧ (b3∨d1)

′)′

f10 = (a2∨c2)∨ (a1∨b1 → d1)

= ((a2∨c2)
′∧ ((a1∨b1)

′∨d1)
′)′

f11 = c1 → b1∨d2

= (c1∧ (b1∨d2)
′)′

f12 = c2 → b3∨d2

= (c2∧ (b3∨d2)
′)′

f13 = (a2∨c1)∨ [(a1∨a2 → b3)→ d3]

= ((a2∨c1)
′∧ (((a1∨a2)

′∨b3)
′∨d3)

′)′

f14 = (a2∨c2)∨ (b1∨d3)

= ((a2∨c2)
′∧ (b1∨d3)

′)′

f15 = c2 → [(a1∨a2 → b3)→ d4]

= (c2∧ (((a1∨a2)
′∨b3)

′∨d4)
′)′

f16 = c1 → (a1∨b1 → d4)

= (c1∧ ((a1∨b1)
′∨d4)

′)′

f17 = (a1 → a2)∨b1

= (a′1∨a2)∨b1.

The “implication” relation has been expressed asx→ y≡ x′∨y≡ (x∧y′)′.
As can be straightforwardly checked, the proposition formed by

F: f1∧ f2∧· · ·∧ f16 → f17

is a classical tautology. Nevertheless,F is not valid in threedimensional (real)
Hilbert spaceH3, since f1, f2, . . . , f16 = H3, whereas f17 = (Sp(1,0,0))′ =
Sp(0,1,0)∨Sp(0,0,1) 6= H3.

The three vectors(1,0,0), (1,1,0) and(
√

2,1,1) generating the Schütte rays
are not mutually orthogonal. Therefore, the correspondingpropositionsa, b andc
are not co-measurable. In the sense of partial algebras, they cannot be combined
by logical operations “or” (∨), “and” (∧), “not” ( ′) to form new expressions. Thus,
it would be incorrect to state that there exists a classical tautology in the three
variablesa, b andc which is no quantum tautology. Indeed, Coray proved [5] that
all classical tautologies in three variables are tautologies in all partial algebras, in
particular in the one associated with the logic of quantum observables.

However, also Schütte’s example is counterfactual in nature. Although every
operation or relation is solely defined on co-measurable propositions, the entire
formulaF contains 11 nonco-measurable variables (nonorthogonal rays). In order
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to be able to evaluate this formula, one would have to know thetruth value of all
these 11 variables. Since they are not co-measurable, this is possible only by
counterfactual inference; in very much the same way as discussed before in the
case of the original Kochen-Specker paradox. Indeed, Corey’s result shows that
any classical (Boolean) tautology which is no quantum tautology will have to
rely on at least four variables which cannot be mutually orthogonal (inH3), and
therefore must be based upon counterfactual inference.

Finally, let us shortly mention the relevance of these findings to the partition
logic of automata. Corollary 4.3 states that every finite subortholattice ofH3 has a
full (and thus separating) set of two-valued states. Thus, any finite subortholattice
of H3 can be expressed as an automaton logic. The subortholattices of H3 which
have no two-valued state are infinite.
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[4] K. Schüette,letter to Professor E. P. Specker,dated April 22nd, 1965; pub-
lished in E. Clavadetscher-Seeberger:Eine partielle Pr̈adikatenlogik. (Dis-
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