
Preliminary Project Proposal

Redundancy-Aware Peer-to-Peer
Protocol (RAPP)

Bernhard Ömer

20th October 2000

Abstract

This proposal is about developing a distributed peer-to-peer file-
sharing system which is able to automatically identify multiple in-
stances of identical data and takes advantage of this redundancy.

The main research effort is to investigate, how the above con-
cept can be used to improve scalability, efficiency, robustness, load-
balancing and anonymity in peer-to-peer file-sharing systems and the
development of a protocol (RAPP) together with a reference im-
plementation which allows the construction of a content-addressed,
searchable file-sharing network on top of the existing IP-based infras-
tructure of the Internet.

E-mail: oemer@tph.tuwien.ac.at

Homepage: http://tph.tuwien.ac.at/~oemer



1 Motivation

1.1 Client-Server Systems

While the Internet itself has been designed as a decentralized peer-to-peer
network, most IP-based information services and protocols imply a client-
server architecture. This is especially true for file-transfer protocols like ftp,
http or nfs. With the rising numbers of users and the ever increasing avail-
ability and popularity of storage-intensive multimedia content, the principal
limitation of client-server concepts becomes more and more apparent: As
bandwidth requirements for client-server architectures scale with the size of
the content as well as with the number of users, the reliable distribution of
even moderately sized content causes considerable costs on the side of the
publisher.

While this problem can in principle be addressed by the use of mirror and
proxy servers, both approaches require a considerable amount of administra-
tion overhead on the side of the publisher and good will on the side of the
consumer.

1.2 Peer-to-Peer File-sharing

One might argue that the above problem is inherent to the process of dis-
tributing content, but this is not the case: Usually, the combined resources
of all parties involved in the process of delivery would be more than sufficient
to allow for an efficient distribution of even very large files, if all, or at least
some of them would chose to offer downloaded content again for redistribu-
tion and – equally important – let the others know about it before they chose
to consult the original publisher.

Peer-to-Peer file-sharing systems (FSSs) try to at least partially automate
this process, by

• enabling each user to act as a server as well as a client,

• providing automated means to announce and search content and

• defining a protocol which allows different users to communicate this
content.

Many common FSSs like e.g. napster or scour.net only decentralize the
actual data transfer and delegate the the arrangement of connections and all
search functionality to a single directory server.

1



Real peer-to-peer systems like gnutella or freenet avoid the use of central-
ized servers (and thus eliminate any single point of failure) by organizing all
users into a loosely coupled network of equal nodes.

1.3 Specifying Content

Digital content usually comes in the form of binary files. The only means
that most operating systems provide to specify the content of a file, is by
an unstructured textual name which, at the same time, severs as content
description and (in combination with the pathname) as access key to the
filesystem. Consequently, most FSSs address files as a tuples of node-ID,
pathname and filename (just like HTTP-URLs).

Since filenames are basically arbitrary, they are in an n-to-m relation to
the actual data. This has two serious consequences which limit the the above
aspect of FSSs as implicit mirroring/proxy-networks:

1. Integrity: A user can never be sure whether two files of the same
name actually contain the same data.

2. Polymorphism: A user also can’t be sure whether two files with
different names are in fact different.

This leads to several practical problems, e.g.

• A user never knows how many distinct files match his search criteria.

• Downloads have necessarily to be restricted to point-to-point connec-
tions.

• Load-balancing through simultaneous partial downloads from multiple
hosts are impossible.

• Partially downloaded files have to be discarded if the peer leaves the
network.

Current FFSs basically use two ways to address the above issue. Systems
like freenet rely on user-provided, descriptive keys and provide means to
ensure that any key is globally unique within the system. However, besides
the administration overhead for providing the descriptions, this only solves
the integrity issue.

Another possibility, which doesn’t require user interaction, is to tag files
with hash values. At first glance, one might think that this would solve
both problems; this, however, is not the case: Since in a scalable distributed

2



system no node can be expected to know about all files within the system
and only the filename-space is searchable, using hash-values as tags can only
eliminate the polymorphism problem within the results of a single query.

2 Redundancy-Aware Peer-to-Peer Protocol

2.1 Content Based Addressing

The above problems are rooted in the fact that conventional FFSs only main-
tain one searchable database of filenames plus their location within the net-
work and consequently suffer from the same n-to-m relation from filename
to file content as conventional filesystems

The main concept of redundancy-aware FSSs is to separate the search
process into two parts: The search for filenames and the search for instances
of a certain file. This can be realized by introducing a hash-value of the
content as a global file identifier (GFID).

The system consequently has to maintain two global, searchable databases:
A name-database (NDB) which holds all known names for each GFID (n-to-
1) and a host-database (HDB) with, for each GFID, maintains a list of all
nodes hosting an instance of the file (1-to-m). This has several advantages:

• Since files are addressed via a content based key, all instances of a
file are identifiable and accessible within to the system, regardless of
naming and location.

• Parallel downloads allow load balancing over all nodes which carry an
instance of a file.

• Partial downloads can be resumed at any time.

• The GFID can be used to verify the integrity of downloaded files.

• The separation of short-lived (HDB) and long-lived (NDB) meta-data
allows for more efficient distributed implementations and caching strate-
gies.

• If the GFID of the file is known to the user, no name-search is necessary
to retrieve the file from the network. This e.g. allows for RAPP-URLs
referring to a file to be embedded as links in HTML pages.

• Users aren’t restricted to the generic RAPP search function, but can
implement more efficient centralized or content specific name-databases.

3



• Since name-GFID mappings never get obsolete, NDB directories can
also be distributed on permanent media.

2.2 Network Architecture

As RAPP is supposed to be a strict peer-to-peer protocol, no functionality
must be delegated to centralized servers and all peers must – in principle –
be able to perform the same tasks. This also excludes the use of external
services like NTP or DNS or specialized servers to act as entry points to the
system (i.e. new users must be able to connect to any peer).

The consequence from the above is, that peers have to maintain a network
of connections to neighboring peers and have to ensure that the network
graph remains coherent at all times. Other than coherence, RAPP shouldn’t
require a certain network topology to function. This esp. means that, while
an average interconnection rate of 3 or above would be preferable, leafnodes
and massive connected nodes should be allowed (e.g. to allow clients from a
LAN to connect to the network through a peer running on a not-forwarding
application firewall)

2.3 Design Principles

The overall design of RAPP should stick to the following principles:

1. The KISS Principle: Keep it small and simple (unless you have a
very good reason not to).

2. Flexibility: RAPP has to consider and deal with many common an-
noyances of today’s Internet, as firewalls, NAT, dynamic IPs, port-
filters, etc. Victims of those measures should not be additionally dis-
criminated against.

3. Scalability: There should be no inherent limits to the protocol neither
in the number of users, nor in the number of files. Scalability has
priority over completeness.

4. Robustness: Don’t rely on anything, don’t waste time if you have a
fallback and never give up if you don’t. Best effort is all we end up
with anyhow, so don’t bother to reach perfection unless it comes as a
bargain.

5. Laziness: Remain passive and don’t speak up unless you have to. This
esp. means no keep-alive packets, no useless pings, no test packets, etc.

4



6. Curiosity: Evaluate every packet passed through you for useful infor-
mation, including circumstantial data like delay times or packet loss.

7. Caching: Don’t throw away information before you’re sure you don’t
need it anymore.

8. Fairness: Do unto others as you would have others do unto you (and
check on occasion whether they comply)

9. Privacy: RAPP isn’t meant to provide real anonymity, but rather the
anonymity of the mass. It is not a design goal to resist a determined
attack with high level, long term traffic analysis, but it should provide
you at least with plausible denyability in most situations.

2.4 Basic Communication Protocol

According to the principle “first make it work, then make it fast”, RAPP
should be based on a very simple basic protocol, which emphasizes robust-
ness over efficency and works as a fallback for optional higher level protocol
elements like an efficient search mechanism (see section 2.4.2), dynamic adap-
tion of the network topology, social engineering, etc.

As RAPP is to be based on TCP/IP, this leaves us two choices for the
transport protocol:

• Nodes with routable addresses open a TCP and a UDP port and use
UDP to communicate among themselves.

• Nodes behind firewalls don’t open any port and use TCP to initiate
connections to their neighbors (which consequently have to be outside
the firewall).

Just like gnutella, nodes can broadcast requests to their neighbors, which
get propagated in a store and forward fashion throughout the network. A
maximum-hops counter, which depends on the type of request and is de-
creased by at least one, each time a packet is forwarded, limits the maximum
recursion depth and implements a “horizon”. A time-to-live (TTL) field addi-
tionally limits the temporal scope of requests, helps to get obsolete packages
out of the network and can be used as a means of flow-control. The TTL is
also essential to indicate how long peers should remember forwarded packets
as this allows the nodes to reclaim routing information from local data and
also allows the system to sort out bogus reply packets which aren’t related
to a prior request.

5



However, it would be inefficient (and, since we use UDP, also risky with
respect to packet loss) to forward replies all the way back through the in-
coming path, so each request also contains a field for a UDP return address.
Peers who aren’t able (or, for privacy reasons, aren’t willing) to receive UDP
replies themselves can leave the field empty, and any peer along the forward
path can fill this field with his own UDP address, thereby effectively short-
cutting the reply path. The very fact, that this possibility exists buys users
plausible denyability: They can always claim the they’re just receiving replies
for another peer.

The above protocol can basically be used for all type of requests, like
search queries, download requests or to look for peers who are willing to
accept a new neighbor-connection. And while more efficient protocols, as
e.g. for name-search or for directly requesting downloads from peers who are
known to carry a certain file, can be additionally implemented, the above
mechanism can always serve as a fallback, should the higher protocol fail.

2.4.1 Downloads

Download requests can also be broadcast in the above manner. All peers
who have an instance of the requested GFID reply with an invitation packet
indicating that they are willing to act as server for this file.

Servers with a public IPs include their IP and UDP/TCP port number
in the reply, servers behind firewalls initiate a TCP connection to the port
named in the request package (which must not necessarily be the originator
of the request but, as explained above, can be any host along the request
path who is willing to serve as a proxy for this download, which allows even
peers behind two different firewalls to communicate, which otherwise would
be impossible).

The client (i.e. the downloading peer) then requests unknown blocks of
the file in a round-robin fashion from all servers while using the TTL field
and the number of simultaneously requested blocks for flow control. The
servers also serve block-requests in a round-robin fashion until the TTL of a
request expires, in which case, any open block requests are discarded.

With any reply package, a server sends header information indicating how
many blocks have been requested and how many have already been answered.
The client can thereby estimate the packet loss on each connection and use
this information for flow control and the scheduling of further block requests.

6



2.4.2 Distributed Name Search

One of the biggest challenges in designing RAPP is the implementation of an
efficient search mechanism to find NDB records (i.e. filename-GFID pairs)
for given name patterns.

While a broadcast-based mechanism as described in section 2.4 could be
used for name search (like in gnutella), the scalability of this approach is
limited by the number of queries each node can process.

As the latter is typically limited by the available bandwidth peers are
willing to contribute (local memory and CPU time are orders of magni-
tude cheaper than bandwidth) and NDB-data is long lived, this suggests the
implementation of caching/mirroring strategies. Besides the general design
principles named in section 2.3, any solution would also have to meet the
following criteria:

1. Compatibility: If a query can’t be served, the basic communication
protocol (s. section 2.4) should be used as a fallback.

2. Controllability: Any peer must (within certain bounds) be able to
control how many local resources he is willing to contribute.

3. Economy: Only peers who intend to mirror data should take part in
its distribution.

4. Query Independence: The implementation should not be restricted
to certain types of queries.

A simple mechanism to meet the above criteria would be, to enable neigh-
bors to mirror their filelists, so that they don’t have to forward queries with
a remaining hop-count of 1 and thereby reduce the overall network load of
distributing a query by a factor equivalent to the average interconnection
rate of the network graph. Recursive adaption of this method can further
reduce network load at the cost of local workload, but would also require con-
siderable startup costs, which can be an issue, as neighbor relations aren’t
permanent but prone to change as peers connect and disconnect to and from
the system.

A more sophisticated method could be, to have every peer (or at least
every peer with a public IP) mirror a well defined part of the global NDB;
e.g. a peer could advertise that he is willing to mirror all names of GFIDs
starting with a certain bitstring. Since a bitstring is relatively short, it could
be made a part of the standard header for all RAPP packets which contain the
host-address, so no explicit announcement mechanism would be necessary.

7



All peers monitor their connections for new mirrors; if one is found, peers
which cache matching bitstrings synchronize their local databases, while all
others check whether they have unannounced files with matching GFIDs,
and if so, directly announce them to the mirroring host. Occasional rean-
nouncements and resynchronizations as well as a limited TTL for database
entries can ensure that unhosted files slowly disappear from the NDB and
new entries get propagated throughout their appropriate mirrors.

All queries get tagged with an initially empty bitstring. When receiving
a query, a peer first checks if he is mirroring the respective file-list and if
so, answers the query, else he searches his local file-list for matches (ignoring
the tag-string) and checks whether he knows about at least 2 mirrors who
left-match the query tag, but differ on the following bit. If this is the case,
the query gets forwarded to these hosts with the bit appended to the tag
string; otherwise the query gets forwarded normally. To minimize the chance
that this happens, new hosts can exchange an initial list of mirrors with the
peers they connect to.

3 Goals

It is necessary to state that the above suggestions are just that – ideas which
will have yet to stand the test of the realities which constitute the Internet
as is is today, and will, once that the first prototype is out there, be under
constant attack of the powers that be, e.g. ISP which try to limit their
costumers’ access, script kiddies’ vandalism or hackers wanting to expose
vulnerabilities of the system. The real challenge therfore is, to make the
ideas presented above work in real life and to be flexible enough the adapt
them, should this prove necessary.

My personal motivation to pursue a project like this is, besides the sci-
entific value, the fact that – to the best of my knowledge – no such system
is currently out there, and that I would really like to use such a program
myself.

To make RAPP a reality, I suggest the following schedule:

1. Design of a minimal protocol which meets the principle design criteria
presented above.

2. Prototype implementation of the protocol.

3. Publishing of the prototype, collecting feedback and experimental data
(alpha testing).

8



4. Gradual improvement of the protocol and the prototype to address
issues arising in the alpha test-phase.

5. Protocol feature freeze.

6. Development of a reference implementation.

7. Beta testing of the reference implementation.

8. Release of the final protocol spec.

9. Version 1.0 of the reference implementation.

Bernhard Ömer

Vienna, the 20th October 2000

9


