
Simulation of Quantum Computers
Bernhard Ömer

4th October 1996

E-mail: oemer@tph.tuwien.ac.at

Supervisor: Doz. Dr. Karl Svozil

Department of Theoretical Physics

Technical University of Vienna

Abstract

The steady process of computer miniaturisation will soon come to a
scale where quantum effects on computation can no longer be ignored.
Hardware development will finally reach a point where boolean logic will no
longer be applicable and the classical concept of a universal deterministic
computer with the Turing machine as mathematical model will have to be
replaced by a quantum theory of computation.

The direct encoding of information as quantum states forces the pro-
grammer to deal with new restrictions (e.g. the limitation to unitary op-
erators) but also provides massive parallelism virtually for free, which can
be used to efficiently solve problems (e.g. prime factorisation) for which
no efficient classical algorithm is known.

This paper gives a general introduction to quantum computing and
deals with the problems of simulating quantum computers on classical
hardware. As an example, a simulation of Shor’s factorisation algorithm
is presented.

CONTENTS 1

Contents

1 Introduction 2
1.1 Computation and Computers . 2

1.1.1 Models of Computation 2
1.1.2 Computers as Physical Devices 2
1.1.3 Limitations of the Classical Concept 3

1.2 Classical vs. Quantum Computers 3
1.2.1 Quantum Bits . 3
1.2.2 Entanglement of States . 4
1.2.3 Measurement . 4
1.2.4 Reversibility of Computation 4

2 Principles of Quantum Computation 5
2.1 Quantum States and Operators 5

2.1.1 The Hilbert Space . 5
2.1.2 Unitary Operators . 5

2.2 Input and Output . 6
2.2.1 Initial State . 6
2.2.2 Measuring States . 6

2.3 Quantum Programming . 6
2.3.1 Quantum Parallelism . 6
2.3.2 Handling of Non-Reversible Functions 7
2.3.3 Scratch Space Management 7

3 The Quantum Class Library 8
3.1 General Information . 8

3.1.1 About the Program . 8
3.1.2 Hard- and Software . 8
3.1.3 Sourcefiles . 8

3.2 Simulation of Quantum Computers 9
3.2.1 Representation of Basevectors 9
3.2.2 Representation of Quantum States 9
3.2.3 Substates . 10
3.2.4 Operators . 10

3.3 Class Hierarchy . 11
3.3.1 File bitvec.h . 11
3.3.2 File terms.h . 11
3.3.3 File qustates.h . 11
3.3.4 File operator.h . 11

CONTENTS 2

4 Shor’s Algorithm for Quantum Factorisation 12
4.1 Motivation . 12
4.2 The Algorithm . 13

4.2.1 Modular Exponentiation 13
4.2.2 Finding a Factor . 13
4.2.3 Period of a Sequence . 14

4.3 The program shor . 15
4.3.1 Usage . 16
4.3.2 Error Messages . 17
4.3.3 Factoring 15 . 17

A QULIB Quick Reference 19
A.1 Constructors . 19
A.2 Member Functions . 20

B shor.cxx 21
B.1 Functions . 21
B.2 Main Program . 22

1 INTRODUCTION 3

1 Introduction

1.1 Computation and Computers

1.1.1 Models of Computation

From an abstract point of view, computation is a process of manipulating a finite
set of symbols (data) by applying a series of formal transformations (program).
The initial set is called the input, the result of the final transformation the output
of the program.

A computer is a physical device, which is able to carry out certain types of
operations, which are not only determined by the limitations of the employed
hardware, but primarily by the concept of computation used to construct the
machine itself and to interpret its results.

The theoretic concept behind nowadays computers is that of the abstract uni-
versal computer whose most popular representative is the Turing machine named
after Alan Turing, one of the pioneers of modern computer science. It can be
shown that all deterministic abstract machines with unlimited memory capac-
ity and a minimal set of basic instructions for reading, writing and conditional
branching are equivalent in the sense, that every machine can be programmed
to simulate and thus execute the programs of any machine of the class includ-
ing itself. All functions, which can be computed on a Turing machine are called
partial recursive or Turing computable.

However it is necessary to stress, that the universal computer is by no means
the only applicable concept of computation and that many problems can be
(and are actually) solved by using less powerful models like cellular automatons.
Anyway, according to Church’s theorem, any function which can be described by
an algorithm or calculated by any mechanical process is partial recursive, and in
this sense the Turing machine is in fact universal.

1.1.2 Computers as Physical Devices

To implement a computational model in a physical device, this computer must be
able to adept different internal states and provide means to perform the necessary
transformations on them and to extract the output information. The correlation
between the physical and the logical state of the machine is arbitrary (as long it
is consistent with the desired transformations) and requires interpretation.

In an ordinary RAM module, the common quantum state of thousands of
electrons is interpreted as only one bit, thus either as 0 or 1. This abstraction
is possible, because the great number of particles statistically washes away the
principal uncertainty of measurement inherent to any quantum system. This
allows us to implement the concept of a deterministic universal computer in non
deterministic hardware.

1 INTRODUCTION 4

However, with some problems (e.g. testing for prime numbers), indetermin-
istic behaviour can drastically reduce the average number of necessary compu-
tational steps. Algorithms which contain random elements (e.g. Monte Carlo
method for numerical integration) are called probabilistic. The computational
concept of a (classical) probabilistic algorithm is that of a Turing machine which
can “throw coins” i.e. can make random decisions, which of two (or more) com-
putational paths to follow. A random Turing machine can also simulate any
quantum system to arbitrary precision.

1.1.3 Limitations of the Classical Concept

The development of integrated circuits during the last decades shows a strong
trend toward miniaturisation reducing the number of electrons representing one
bit by a factor of 100 every ten years [1]. An extrapolation of this trend sug-
gests, that an atomic scale might be reached within the next two decades, where
quantum effects on register measurements can no longer be ignored.

The developers will be forced to either accept this limitation or to drastically
alter their concept of computation by creating computers which rely on quantum
effects rather than trying to avoid them.

1.2 Classical vs. Quantum Computers

This section introduces the most basic differences between classical and quantum
computers in a phenomenologic manner. For a more rigid and formal explanation,
please refer to section 2.

1.2.1 Quantum Bits

In a classical computer, the logical state is determined by the expectation value of
its register contents (e.g. tension of a capacitor). The interpretation as (classical)
bits is performed by comparing the measured value to a defined threshold, while
the great number of particles guarantees that the uncertainty of the measurement
is small enough to make errors practically impossible.

In a quantum computer, information is represented as the common quantum
state of many subsystems. Each subsystem is described by a combination of two
“pure” states interpreted as |0〉 and |1〉 (quantum bit, qubit). This can e.g. be
realised by the spin of a particle, the polarisation of a photon or by the ground
state and an excited state of an ion.

For a single qubit, this state can be described by the complex amplitudes a
and b of each of the two states (a|0〉+ b|1〉) with the condition aa∗ + bb∗ = 1.

It is obvious, that this interpretation stands in contradiction to classic boolean
logic, where intermediate states between 0 and 1 are not possible.

1 INTRODUCTION 5

1.2.2 Entanglement of States

The logical state of a classical register is determined by the states of all bits this
register contains. Those bits can be changed locally i.e. independently form one
another. The state of an n bit register, can therefore be described by n binary
values.

A quantum register containing more than one qubit can not be described by
simply listing the states of each qubit, moreover it is not even possible to define
the state of an isolated qubit:

Given an isolated system of two qubits, its state can be described by four com-
plex amplitudes a|0, 0〉+ b|1, 0〉+ c|0, 1〉+ d|1, 1〉. You can define the expectation
value for the first qubit, which is

√
bb∗ + dd∗ but there is no isolated state for the

first qubit anymore like e.g. (a+ c)|0〉+(b+d)|1〉 since |a|2 + |b|2 + |c|2 + |d|2 = 1
does not implicate that |a + c|2 + |b + d|2 = 1.

Therefore, manipulations on a single qubit effect the complex amplitudes of
the overall state and have a global character. To describe the combined state of
n entangled qubits, 2n complex numbers are necessary.

1.2.3 Measurement

In a classical computer, the formal description of the inner state and the mea-
surement of this state (i.e. the output of the program) is the same and given by
the binary values of the concerned bits. Moreover, the inner state is not effected
by the process of measurement (non destructive measurement).

According to the Kopenhagner interpretation of quantum physics, the out-
come of measurements on quantum systems (qubits) must be formulated in clas-
sical terms (binary bits). The quantum state of the system is thereby reduced: If
the first bit in the above mentioned 2 qubit state is measured, and a value of 1 is
observed, then the state will be reduced to b′|1, 0〉+ d′|1, 1〉 with |b′|2 + |d′|2 = 1,
thus all basevectors which 0 in the first bit (|0, 0〉 and |0, 1〉) will be set to an
amplitude of zero.

Therefore it is principally not possible to measure the state of a quantum
register itself; it is however possible, to estimate the expectation value of a qubit
by repeated measurements after the same calculation.

1.2.4 Reversibility of Computation

Heat dissipation is one of the major problems with the miniaturisation of classical
computers and constant cooling of all components is required. This is achieved by
the thermic coupling of the circuits to a heat reservoir like e.g. the surrounding
air.

For a quantum computer, cooling by heat coupling is no option since its logical
state is directly represented by the common quantum state of its registers. Any

2 PRINCIPLES OF QUANTUM COMPUTATION 6

heat coupling would necessarily result in the entanglement of this state with the
outside world and destroy the coherence of the computation.

The second law of thermodynamics postulates that any non-reversible state
change of a system must dissipate heat. Many common logical operations like
AND, OR or resetting a bit to 0 or 1 are non-reversible is the sense that the
input cannot be calculated from the output. Therefore, these operations cannot
directly be implemented in a quantum computer.

2 Principles of Quantum Computation

2.1 Quantum States and Operators

2.1.1 The Hilbert Space

The state of a quantum computer with n qubits is a point in a 2n-dimensional
Hilbert space H = C2n . The theoretical storage capacity therefore increases
exponentially with the number of qubits.

Any computational step can be described as an operator O : |ψ〉 → |φ〉 over
H or a subspace of H which transforms the input state |ψ〉 to the output state
|φ〉 = |O ψ〉.

2.1.2 Unitary Operators

As pointed out in (section 1.2.4), quantum computers can only perform reversible
operations. Every reversible operation can be described by a unitary operator U
which matches the condition U−1 = U †. Compositions of unitary operators are
also unitary since (UV)−1 = V †U †.

A general unitary transformation in the two dimensional Hilbert space C2 can
be defined as follows:

U2 (θ, δ, σ, τ) =
(

ei(δ+σ+τ) cos(θ
2) e−i(δ+σ−τ) sin(θ

2)
−ei(δ−σ+τ) sin(θ

2) ei(δ−σ−τ) cos(θ
2)

)

with θ, δ, σ, τ ∈ R

If this operator can be applied to arbitrary 2-dimensional subspaces of H,
than any unitary transformation can be constructed by composition. If only
subspaces corresponding to a subset of qubits are allowed, which is the case for
many proposed architectures, among them also the linear ion trap (Cirac-Zoller
device), then an additional 4-dimensional 2-qubit operator is needed to obtain a
mixing between separate qubits [2].

One possibility for this operator is the 2-qubit XOR which is defined as mxor :
|x, y〉 → |x, x⊕ y〉 or in matrix notation:

2 PRINCIPLES OF QUANTUM COMPUTATION 7

XOR =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

A quantum computer which is capable of performing U2 and XOR operations
can therfore perform any possible operation and is in this sense universal.

2.2 Input and Output

2.2.1 Initial State

To set a quantum computer to the desired input state |ψ〉, it suffices to provide
means to initially “cool” all qubits to |0〉 and then apply a unitary transformation
U which matches the condition U |0〉 = |ψ〉. One might think of U as a base
transformation which trivially exists for any desired |ψ〉.

2.2.2 Measuring States

Measuring n qubits reduces the dimensionality of H by a factor of 2n. The
outcome of the measurement is biased by the probability amplitude for a certain
bit configuration.

Consider two quantum registers with n and m qubits in the state

|ψ〉 =
2n−1
∑

i=0

2m−1
∑

j=0
ci,j|i, j〉 with

∑

i,j
ci,jc∗i,j = 1

The basevectors |i, j〉 are interpreted as a pair of binary numbers with i < 2n

and j < 2m. The probability p(I) to measure the number I in the first register
and the according post measurement state |ψ′I〉 are given by

p(I) =
2m−1
∑

j=0
cI,jc∗I,j, and |ψ′I〉 =

1
√

p(I)

2m−1
∑

j=0
cI,j|I, j〉

The measurement of qubits is the only non unitary operation, a quantum
computer must be able to perform during calculation.

2.3 Quantum Programming

2.3.1 Quantum Parallelism

Since all unitary transformations are linear operators, any operation performed
on a quantum state is simultaneous applied to all its basevectors, thus

2 PRINCIPLES OF QUANTUM COMPUTATION 8

U
∑

i
ci|i〉 =

∑

i
ciU |i〉

This unique feature of quantum computers is called quantum parallelism.
Since the number of basevectors exponentially increases with the number of

qubits, it is possible to solve certain problems (e.g. prime factorisation of large
numbers, see section 4) in polynomial time (i.e. the number of elementary op-
erations is a polynomial in the length of the input) where a classical computer
would need an exponential number of steps.

2.3.2 Handling of Non-Reversible Functions

One obvious problem of quantum computing is its restriction to reversible com-
putations. Consider a simple arithmetical operation like integer division by 2
(DIV2 ′|i〉 = |i/2〉 for even i and |(i− 1)/2〉 for odd i). Clearly, this operation is
non-reversible since DIV2 ′|0〉 = DIV2 ′|1〉.

However, if we use a second register with the initial value |0〉, then we can
define an operator DIV2 witch matches the condition DIV2 |x, 0〉 = |x, x/2〉 or
|x, (x− 1)/2〉 respectively. The behaviour of DIV2 |x, y 6= 0〉 is undefined and can
be set arbitrarily under the condition that DIV2 is unitary1.

Generally it can be said that for any function f : Bn → Bn (or equivalently
f : Z2n → Z2n) there exists a unitary operator F : C22n → C22n (thus working
on two n qubits registers) with F |x, 0〉 = |x, f(x)〉.

2.3.3 Scratch Space Management

While keeping a copy of the argument will allow us to compute non reversible
functions this also forces us to provide extra storage for intermediate results.
In longer calculations this would leave us with a steadily increasing amount of
“junk” bits which are of no concern for the final result.

A simple and elegant solution of this problem was proposed by Bennet [3, 4].
If a composition of two non-reversible functions f(x) = h(g(x)) is to be computed,
the scratch space for the intermediate result can be “recycled” using the following
procedure:

|x, 0, 0〉 → |x, g(x), 0〉 → |x, g(x), h(g(x))〉 → |x, 0, h(g(x))〉 = |x, 0, f(x)〉

The last step is merely the inversion of the first step and uncomputes the
intermediate result. The second register can then be reused for further compu-
tations.

1In this special case, just one additional qubit to hold the lowest bit of the argument would
suffice to extend DIV2 ′ to a unitary operator.

3 THE QUANTUM CLASS LIBRARY 9

If the computation of a function f(x) fills a scratch register with the junk
bits j(x) (i.e. |x, 0, 0〉 → |x, f(x), j(x)〉), a similar procedure can free the register
again:

|x, 0, 0, 0〉 → |x, f(x), j(x), 0〉 → |x, f(x), j(x), f(x)〉 → |x, 0, 0, f(x)〉

Again, the last step is the inversion of the first. The intermediate step is a
FANOUT operation which copies the function result into an additional empty
(i.e. in substate |0〉) register.

3 The Quantum Class Library

3.1 General Information

3.1.1 About the Program

QULIB is a C++ library for the simulation of quantum computers on an abstract
functional level. That means that, although the simulation of a certain hardware
architecture (like e.g. the linear ion trap) is also possible, its primary purpose is
the verification of high-level quantum algorithms especially in the field of number
theory. The main features are

• Basevectors of arbitrary length (no limitation by hardware wordlength)

• Efficient representation of quantum states by hashtables

• Nesting of substates and arbitrary combination of qubits

• Composition and cross product of quantum operators

• Easy extendibility by class inheritance

3.1.2 Hard- and Software

QULIB has been developed on an Intel 486DX4 PC with 100 MHz and 16 MB
RAM under Linux using the GNU C/C++ Compiler 2.7.2 but should compile
under any operating system with an ANSI C++ compiler.

3.1.3 Sourcefiles

Makefile Makefile for the QULIB library file libqu.a and
the program shor.

3 THE QUANTUM CLASS LIBRARY 10

bitvec.h, bitvec.cxx Representation and handling of bitvectors

terms.h, terms.cxx Internal types for the representation of quantum
states and terms (i.e. a basevector with a complex
amplitude)

qustates.h, qustates.cxx User classes for quantum states and substates

operator.h, operator.cxx User classes for quantum operators

shor.cxx Shor’s quantum algorithm for prime factorisation

3.2 Simulation of Quantum Computers

3.2.1 Representation of Basevectors

The Hilbert space H of a quantum computer with n qubits has 2n dimensions.
The basevectors of H are bitstrings of the length n, which are represented by the
class bitvec.

If the wordlength N of the computer is smaller than n, then an array is
dynamically allocated; if it N ≥ n, the vector is stored as an unsigned int,
which is considerably faster and should suffice for most applications.

3.2.2 Representation of Quantum States

A quantum state |ψ〉 ∈ H of n qubits can be described by 2n complex numbers.

|ψ〉 =
2n−1
∑

i=0
ci|i〉 with

2n−1
∑

i=0
cic∗i = 1

Only terms with ci 6= 0 must be stored, which can considerably reduce the
required amount of memory since registers which are entangled by an arithmetic
function (which is normally the case with all scratch registers) don’t require
additional entries.

The best datastructure for storing those terms is determined by the most
common forms of access, which, in our case, are sequential read out and adding
of terms, where it is crucial that the time to determine whether a basevector
is already in the list (and the amplitudes have to be added) and the time fore
adding a new entry (if the basevector in not in the list) are of the order O(1) i.e.
don’t increase with the size of the list. Removing of single elements is normally
not needed an may take longer.

A linear array in combination with a hashtable as index can meet all these
requirements. A basevector is thereby mapped onto the hashtable by a hashfunc-
tion which provides a pseudo-random distribution. The entry of the hashtable

3 THE QUANTUM CLASS LIBRARY 11

contains a pointer to the corresponding entry in the array or indicates that such
an entry doesn’t exist. The overhead for the detection and handling of collisions
is of order O(1) if the hashtable is considerably longer than the list itself.

The internal class termlist provides this datastructure with all necessary ac-
cess function and the ability to dynamically adapt the size of arrays and hashta-
bles by powers of 2. The class quBaseState is the user class representing the
common state of all qubits and contains two termlist objects which alternately
serve as argument or result of operations.

3.2.3 Substates

Since all qubits are entangled, substates can’t be represented as an isolated data-
structure, but are merely references to certain qubits of an associated basestate.
A reference to m qubits of an n qubit basestate represents a subspace S = C2m

of H.
The class quSubState and all its derived classes make this reference transpar-

ent to the user i.e. all manipulations on the substate are correctly mapped onto
its basestate:

Let |ψ〉 = |φ〉|χ〉 be the n qubit basestate of the substate |φ〉 referring to the
first m qubits of |ψ〉 and U : S → S a unitary operator

|ψ〉 = |φ〉|χ〉 =
2m−1
∑

i=0

2n−m−1
∑

j=0
ci,j|i, j〉, U |i〉 =

2m−1
∑

k=0

ui,k|k〉

Applying U to |φ〉 would be equivalent to applying U × ID(n − m) to |ψ〉
where ID(k) is the identity operator over C2k .

U × ID(n−m)|ψ〉 =
2m−1
∑

i=0

2n−m−1
∑

j=0

2m−1
∑

k=0

ui,kci,j|k, j〉

3.2.4 Operators

In principle, any unitary operator on n qubits can be represented by a complex
2n × 2n matrix. Applying this operator to a state with k nonzero terms would
require O(2nk) multiplications. Operators of this kind are represented by the
class opMatrix, which stores the nonzero elements of each row in an array of
linear lists.

Most operators, however, work on limited subspaces of only a few qubits or
(as e.g. all arithmetic operators) merely substitute basevectors with or without
an additional phase factor. QULIB provides classes for all these special cases:

The class opEmbedded represents operators of the kind OP = ID(n) × U ×
ID(m), opPermutation are operators of the form U |i〉 = ci|ji〉 and are stored as
a one dimensional array of terms.

3 THE QUANTUM CLASS LIBRARY 12

The class opFunction represents arithmetic functions of the form U |i, 0〉 →
|i, f(i)〉, where f(i) is defined as a virtual member function. The result of
U |i, j 6= 0〉 is undefined and would lead to an error.

A more general interface for user defined function is the class opGate for
operators of the form U |i〉 → c(i)|f(i)〉. The functions f(i) and c(i) are provided
by the user, who is responsible that the transformation is unitary.

3.3 Class Hierarchy

The following list contains all QULIB classes grouped by their header files. Vir-
tual base classes are signed with an asterix (*).

3.3.1 File bitvec.h

bitvec basevectors of H (bit strings)

3.3.2 File terms.h

term a basevector multiplied with a complex amplitude
termlist hashtable of terms representing a quantum state
probtree binary tree of vectors with a real amplitude to represent

the spectrum of a state

3.3.3 File qustates.h

quState * base class for all quantum states
quBaseState base state containing the actual state information
quSubState * substate referring to another base or substate

quVar container class for the assigning of substates
quCombState concatenation of 2 substates
quSubString coherent substring of qubits
quWord substring interpreted as word
quBit substring of length 1 i.e. a single qubit

3.3.4 File operator.h

opOperator * base class of all operators
opElementary * elementary (i.e. not composed) operator

opMatrix operator stored as array of nonzero matrix elements
opU2 general 1 bit unitary operator

opIdentity identity operator
opSwap operator for swapping to substrings

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 13

opPermutation operator stored in a linear list of replacing terms
opFunction * operator of the form |x, 0〉 → |x, f(x)〉
opEXPN modular exponentiation (|a, 0〉 → |a, xa mod N〉, see sec-

tion 4.2.1)
opGate * operator implemented as C++ function
opCk (k + 1)-dimensional controlled-NOT gate

opC0 inverts one arbitrary bit of state
opNot 1 bit NOT-gate

opC1 controlled-NOT with 1 arbitrary input
opXor 2 bit XOR-gate (controlled-NOT with 1 fixed input)

opC2 controlled-NOT with 2 arbitrary inputs
opToffoli 3 bit Toffoli-gate (controlled-NOT with 2 fixed inputs)

opCondPhase conditional phase gate with k arbitrary inputs
opX cond. phase gate with 2 inputs and φ = 2π

2n

opComposition composition of 2 operators
opEmbedded container class for operators working on substates
opVar container class for assigning and composing of operators

For a description of constructors and member functions please refer to ap-
pendix A.1 and A.2.

4 Shor’s Algorithm for Quantum Factorisation

4.1 Motivation

In contrast to finding and multiplying of large prime numbers, no efficient clas-
sical algorithm for the factorisation of large number is known. An algorithm is
called efficient if its execution time i.e. the number of elementary operations
is assymtotically polynomial in the length of its input measured in bits. The
best known (or at least published) classical algorithm (the quadratic sieve) needs
O

(

exp
(

(64
9)1/3N1/3(ln N)2/3

))

operations for factoring a binary number of N
bits [7] i.e. scales exponentially with the input size.

The multiplication of large prime numbers is therefore a one-way function i.e.
a function which can easily be evaluated in one direction, while its inversion is
practically impossible. One-way functions play a major roll in cryptography and
are essential to public key cryptosystems where the key for encoding is public
and only the key for decoding remains secret.

In 1978, Rivest, Shamir and Adleman developed a cryptographic algorithm
based on the one-way character of multiplying two large (typically above 100
decimal digits) prime numbers. The RSA method (named after the initials of
their inventors) became the most popular public key system and is implemented
in many communication programs (e.g. Netscape, PGP, etc.).

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 14

While it is generally believed (although not formally proved) that efficient
prime factorisation on a classical computer is impossible, an efficient algorithm
for quantum computers has been proposed in 1994 by P.W. Shor [6].

4.2 The Algorithm

This section describes Shor’s algorithm from a functional point of view which
means that it doesn’t deal with the implementation for a specific hardware ar-
chitecture. A detailed implementation for the Cirac-Zoller device can be found
in [8]. For a more rigid mathematical description, please refer to [9].

4.2.1 Modular Exponentiation

Let N = n1n2 with the greatest common divisor gcd(n1, n2) = 1 be the num-
ber to be factorised, x a randomly selected number relatively prime to N (i.e.
gcd(x,N) = 1) and FN the following function with the period r:

FN(k) = xk mod N, FN(k + r) = FN(k), xr ≡ 1 mod N

The function FN performs a modular exponentiation, its period r is the order
of x mod N . If r is even, we can define a y = xr/2, which satisfies the condition
y2 ≡ 1 mod N and therefore is the solution of one of the following systems of
equations:

y1 ≡ 1 mod n1 ≡ 1 mod n2

y2 ≡ −1 mod n1 ≡ −1 mod n2

y3 ≡ 1 mod n1 ≡ −1 mod n2

y4 ≡ −1 mod n1 ≡ 1 mod n2

The first two systems have the trivial solutions y1 = 1 and y2 = −1 which
don’t differ from those of the quadratic equation y2 = 1 in Z or a Galois field
GF(p) (i.e. Zp with prime p). The last two systems have the non-trivial solutions
y3 = a, y4 = −a, as postulated by the Chinese remainder theorem stating that
a system of k simultaneous congruences (i.e. a system of equations of the form
y ≡ ai mod mi) with coprime moduli m1, . . . , mk (i.e. gcd(mi,mj) = 1 for all
i 6= j) has a unique solution y with 0 ≤ x < m1m2 . . .mk.

4.2.2 Finding a Factor

If r is even and y = ±a with a 6= 1 and a 6= N − 1, then (a + 1) or (a − 1)
must have a common divisor with N because a2 ≡ 1 mod N which means that
a2 = cN + 1 with c ∈ N and therefore a2 − 1 = (a + 1)(a − 1) = cN . A factor

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 15

of N can then be found by using Euclid’s algorithm for determing gcd(N, a + 1)
and gcd(N, a− 1) which is defined as

gcd(a, b) =
{

b if a mod b = 0
gcd(b, a mod b) if a mod b 6= 0 with a > b

It can be shown that a random x matches the above mentioned conditions
with a probability p > 1

2 if N is not of the form N = pα or N = 2pα. Since there
are efficient classical algorithms to factorise pure prime powers (and of course
to recognise a factor of 2), an efficient probabilistic algorithm for factorisation
can be found if the period r of the modular exponentiation can be determined in
polynomial time.

4.2.3 Period of a Sequence

Let F be an operator of the form F |x, 0〉 → |x, f(x)〉 and f : Z → Z2m a function
with the unknown period r < 2n.

To determine r, we need two registers, with the sizes of 2n and m qubits,
which should be reset to |0, 0〉.

As a first step we produce a homogenous superposition of all basevectors in
the first register by applying an operator U with

U |0, 0〉 =
22n−1
∑

i=0
ci|i, 0〉 with |ci| =

1
2n

This can e.g. be achieved by transforming each qubit with the U2 (π
2) operator

(see section 2.1.2). Another possibility is the discrete fast Fourier transform
(FFT) which is defined for 2n qubits as

FFT |i〉 =
1
2n

∑

j = 022n−1e
2πi
22n ij|j〉

Applying F to the resulting state gives

|ψ〉 = F · FFT |0, 0〉 = F
1
2n

22n−1
∑

i=0
|i, 0〉 =

1
2n

22n−1
∑

i=0
|i, f(i)〉

A measurement of the second register with the result k = f(s) with s < r
reduces the state to

|ψ′〉 =
dq/re−1

∑

j=0
c′j|rj + s, k〉 with q = 22n and c′j =

√

√

√

√

⌈

r
q

⌉

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 16

The post-measurement state |ψ′〉 of the first register consists only of basevec-
tors of the form |rj + s〉 since f(rj + s) = f(s) for all j. It therefore has a
discrete, homogenous spectrum.

It is not possible to directly extract the period r or a multiple of it by mea-
surement of the first register because of the random offset s. The result of a
Fourier transform, however, is invariant (except for phase factors which don’t
effect the probability spectrum) to offsets of a periodic distribution.

|ψ̃′〉 = FFT |ψ′〉 =
q−1
∑

i=0
c̃′i|i, k〉

c̃′i =
√

r
q

p−1
∑

j=0
exp

(

2πi
q

i(jr + s)
)

=
√

r
q

eφi

p−1
∑

j=0
exp

(

2πi
ijr
q

)

with φi = 2πi
is
q

and p =
⌈q
r

⌉

If q = 22n is a multiple of r then c̃′i = eφi/
√

r if i is a multiple of q/r and 0
otherwise. But even if r is not a power of 2, the spectrum of |ψ̃′〉 shows distinct
peaks with a period of q/r because

lim
n→∞

1
n

n−1
∑

k=0

e2πikα =
{

1 if α ∈ Z
0 if α 6∈ Z

This is also the reason why we use a first register of 2n qubits when r < 2n

because it guarantees at least 2n elements in the above sum and thus a peak
width of order O(1).

If we now measure the first register we will get a value c close to λq/r with
λ ∈ Zr. This can be written as c/q = c · 2−2n ≈ λ/r. We can think of this as
finding a rational approximation a/b with a, b < 2n for the fixed point binary
number c · 2−2n. An an efficient classical algorithm for solving this problem using
continued fractions is described in [10] and also implemented in the program shor
(see section 4.3).

Since the form of a rational number is not unique, λ and r are only determined
by a/b = λ/r if gcd(λ, r) = 1. The probability that λ and r are coprime is greater
then 1/lnr, so only O(n) tries are necessary for a constant probability of success
as close at 1 as desired.

4.3 The program shor

The program shor is an implementation of Shor’s algorithm using the library
QULIB to simulate an abstract quantum computer. It is written in C++ under
Linux and should run on every computer with an ANSI C++ compiler.

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 17

For an overview of the used functions and a summary of the main program
please refer to appendix B.

4.3.1 Usage

shor is started from the command line with

shor <number> [options]

The first parameter is the number to be factorised. The following options are
supported:

-s seed sets the seed value for the pseudo random number generator needed for
the simulation of measurements and the selection of the base value x (see
section 4.2.1).

Any value from 0 to 231 − 1 is allowed. If no seed value is provided, the
actual system clock is used.

-t maxtries sets the maximum numbers of selections (i.e. measurements with-
out state reduction) from the same |ψ′〉 state in case of failure.

Of course, this would not be possible on a real quantum computer, but
it can be interpreted as repeating the computation with the same x value
(see section 4.2.1) and “by chance” measuring the same value in the second
register.

The default value for this option is 3. If you prefer a more “realistic”
simulation, set the value to 1 and after every failure the whole simulation
is restarted from scratch.

-g gates sets the maximum number of conditional phase gates per bit used in
the implementation of the fast Fourier transform (see [8] for details).

A lower number means that the FFT is less accurate but carried out faster
(O(n) instead of O(n2) elementary operators). There is a tradeoff between
faster execution and higher probability of failure due to less accurate peaks
in the spectrum (see section 4.2.3).

This option is realistic in the sense that it could be implemented on a real
quantum computer. If no value is given, the FFT is carried out exactly.

-q (operate quietly) No log output is produced and only the result of the
factorisation is printed.

-v (operate verbosely) Every step of the algorithm commented.

-l (log spectrums) After each operation or measurement the spectrum of the
quantum registers is printed.

4 SHOR’S ALGORITHM FOR QUANTUM FACTORISATION 18

-d (dump states) After each operation or measurement the state of the quan-
tum registers is printed

4.3.2 Error Messages

When called with an illegal syntax, shor produces a USAGE message. When a
number is cannot be factorised with Shor’s algorithm, the program terminates
with an explaining message:

number must be odd !

81 is a prime power of 3 !

59 is a prime number !

4.3.3 Factoring 15

15 is the smallest number which can be factorised with Shor’s algorithm. The
command shor 15 -v -t1 -s7 starts the simulation in verbose mode with a
random seed value of 7 and immediate recalculation in case of failure. The
following output is produced:

factoring 15: random seed = 7, tries = 1.
allocating 12 quBits with 256 terms.

RESET: reseting state to |0,0>
FFT: performing 1st Fourier transformation.
EXPN: trying x = 2. |a,0> --> |a,2^a mod 15>
MEASURE: 2nd register: |*,1>
FFT: performing 2nd Fourier transformation.
MEASURE: 1st register: |0,1>
<failed> measured zero in 1st register. trying again ...

RESET: reseting state to |0,0>
FFT: performing 1st Fourier transformation.
EXPN: trying x = 8. |a,0> --> |a,8^a mod 15>
MEASURE: 2nd register: |*,4>
FFT: performing 2nd Fourier transformation.
MEASURE: 1st register: |64,4>
rational approximation for 64/2^8 is 1/4, possible period: 4
8^2 mod 15 = 4. possible common factors of 15 with 5 and 3.
15 = 5 * 3.
program succeeded after 1 s and 2 iterations.

REFERENCES 19

The first try failed because 0 was measured in the first register of |ψ′〉 and
λ/r = 0 gives no information about the period r.

One might argue that this is not likely to happen, since the first register has
8 qubits which would suggest a probability of p = 1/q = 1/256 to measure 0.
In fact, if a number n is to be factored, one might expect a period about

√
n

assuming that the prime factors of n are of the same order of magnitude. This
would lead to a period q/

√
n after the FFT or p = 25.8%.

In the special case of a start value x = 2 the period of modular exponentiation
is 4 since 24 mod 15 = 1, consequently the Fourier spectrum shows 4 peaks at |0〉,
|64〉, |128〉 and |192〉 and p = 1/4 as expected. This can be verified by running
shor with the option -l.

The second try also had the same probability of failure since 8 is the multi-
plicative inverse to 2 in Z15, but this time, the measurement picked the second
peak in the spectrum at |64〉. With 64/28 = 1/4 = λ/r, the period r = 4 was
correctly identified and the possible common factors 82 ± 1 mod 15 with 15 have
been found.

References

[1] R. W. Keyes 1988 IBM J. Res. Develop. 32, 24

[2] D. Deutsch 1989 Quantum computational networks. Proceedings of the
Royal Society London A 439, 553-558

[3] C. H. Bennet 1973 IBM J. Res. Develop. 17, 525

[4] C. H. Bennet 1989 SIAM J.Comput. 18, 766

[5] Johannes Buchmann 1996 Faktorisierung großer Zahlen. Spektrum der
Wissenschaft 9/96, 80-88

[6] P.W. Shor. 1994 Algorithms for quantum computation: Discrete loga-
rithms and factoring

[7] Samuel L. Braunstein 1995 Quantum computation: a tutorial

[8] David Beckman et al. 1996 Efficient networks for quantum factoring

[9] Artur Ekert and Richard Jozsa. 1996 Shor’s Quantum Algorithm for
Factoring Numbers, Rev. Modern Physics 68 (3), 733-753

[10] G.H. Hardy and E.M. Wright 1965 An Introduction to the Theory of
Numbers (4th edition OUP)

A QULIB QUICK REFERENCE 20

A QULIB Quick Reference

A.1 Constructors
QUANTUM STATES

quBaseState(int bits,int buflen=256);
new base state with <bits> qubits and an initial buffer for
<buflen> terms.

quVar(); quVar(quVar& qs); quVar(quState& qs);
state variable either empty or set to state <qs>

quCombState(quState& head,quState& tail);
concatenation of <head> and <tail>

quSubString(int bits,int offs,quState& base);
substate of <bits> bits from state <base>, beginning at bit <offs>

quBit(int offs,quState& base);
bit <offs> of state <base>

quWord(int bits,int offs,quState& base);
substate of <bits> bits from state <base>, beginning at bit <offs>.
interpreted as word

OPERATORS

opMatrix(int n,term **m);
matrix op. operating on <n> bits, <m> is a 2 dim. array of nonzero
matrix elements (1st dim. is 2^n, all list terminated with term())

opU2(double theta,double delta=0,double sigma=0,double tau=0);
U2 = | e^i(del+sig+tau) cos(th/2) e^-i(del+sig-tau) sin(th/2) |

| -e^i(del-sig+tau) sin(th/2) e^i(del-sig-tau) cos(th/2) |
opIdentity(int n);

identity op. on <n> bits
opSwap(int n,int m,int o1,int o2);

swaps 2 not overlapping substrings of length <m>:
|a_0, .. a_o1, .. a_o1+m-1, .. a_o2, .. a_o2+m-1, .. a_n-1> -->
|a_0, .. a_o2, .. a_o2+m-1, .. a_o1, .. a_o1+m-1, .. a_n-1>

opPermutation(int n,term *p);
replaces an eigenvec. with an other eigenvec. with ampl. |i> --> p[i]

opEXPN(int arg,int fct,word x,word num);
modular exponentiation |a,0> --> |a,x^a mod num>

opCk(int n,int k,int o,int *i);
controlled-NOT: inverts bit <o> if all bits i[0] to i[k-1] are set

opC0(int n,int o);
|a_0, .. a_o, .. a_n-1> --> |a_0, .. NOT a_o, .. a_n-1>

opNot();
NOT-Gate: |0> --> |1>, |1> --> |0>

opC1(int n,int o,int i);
|a_0,.. a_o,.. a_n-1> --> |a_0,.. (a_i XOR a_o),.. a_n-1>

opXor();
XOR-Gate: |i,o> --> |i,i XOR o>

opC2(int n,int o,int i1,int i2);
|a_0, .. a_o, ..a_n-1> --> |a_0, .. (a_i1 AND a_i2) XOR a_o, .. a_n-1>

A QULIB QUICK REFERENCE 21

opToffoli();
Toffoli-Gate: |o,i1,i2> --> |(i1 AND i2) XOR o,i1,i2>

opCondPhase(int n,int k,int *i,double phi);
cond. phase gate: multiplies bit <o> with e^(i phi) if all bits i[0]
to i[k-1] are set

opX(int n,int i1,int i2,int pow);
|a_0, .. a_n-1> --> e^i(2 PI i1 i2 / 2^pow) |a_0, .. a_n-1>

opComposition(const opOperator& in,const opOperator& out);
opComposition(opOperator *in,opOperator *out);

composition out * in: |psi> --> out in |psi>
opEmbedded(int n,int offs,const opOperator& op);
opEmbedded(int n,int offs,opOperator *op);

|a_0..>|a_offs..>|..a_n-1> -> |a_0..> (op |a_offs..>) |..a_n-1>
opVar(); opVar(const opVar& op); opVar(const opOperator& op);

operator variable either empty or set to <op>

A.2 Member Functions
This list contains only functions declared in the base classes and no
constructors or destructors. Virtual functions are signed with an asterix.

QUANTUM STATES

int mapbits(); no. of referenced bits
bitvec measure(); destructive measurement
void opterm(const term& t); add term to base (op.interface)
void printvect(ostream& s,const bitvec& v); print vector to stream s
quState* newclone(); generate a copy of the object
bitvec select(); non-destructive measurement
void reduce(const bitvec& v); project state on (sub)vector v
void normalize(double epsilon=EPSILON); scale state to norm==1
probtree* newspectrum(); generate the spectrum of state

* void reset(const bitvec& v=bitvec(0)); reset state to (sub)vector v
* baseid base(); object ID
* int basebits(); no. of bits of base state
* quState* newsubstring(int bits,int offs); generate ref. object to substr.
* int isbasestate(); test if state is a basestate
* bitvec mapmask(); bitmask of referenced base bits
* complex ampl(const bitvec& v); complex amplitude of vector v
* int baseterms(); no. of corresponding base terms
* term& baseterm(int i); get baseterm (stating with 0)
* void opbegin(); open operator interface
* void opadd(const bitvec& v,const complex& z); add term (v,z) to base
* void opend(); close operator interface
* bitvec map(const bitvec& v); get ref. bits from base vector
* bitvec unmap(const bitvec& v); expand ref. bits to base vect.
* void _printvect(ostream& s,const bitvec& v); print vector w/o parentheses

ostream& operator << (ostream& s,const quState& qs);
output operator: prints spectrum of qs to stream s

ostream& printbase(ostream& s,quState& qs,char* prefix=0,char* postfix=0);

B SHOR.CXX 22

output function: prints base state with complex amplitudes
quCombState operator / (quState& head,quState& tail);

concats the states head and tail

OPERATORS

int bits() { return _bits; }; no. of qubits (dim = 2^bits)
quState& operator () (quState& qs); apply op. on qs (shorthand)

* void apply(quState& qs); apply op. on state qs
* opOperator *newclone(); generate a copy of the object

opComposition operator * (const opOperator& out,const opOperator& in);
produces a composition out*in of the operators out and in
(out*in)(qs) --> out(in(qs))

opComposition operator / (const opOperator& low,const opOperator& high);
produces the cross product of the ops. low and high
(low/high)(qs1/qs2) --> low(qs1)/high(qs2)

B shor.cxx

B.1 Functions
int factorize(word n,word *a,word *b);

returns 0 and sets *a and *b if n = (*a) * (*b)
returns 1 if n is a prime number

int testpower(word p,word b);
returns 1 if p is a power of b and 0 otherwise

word powmod(word x,word a,word n);
returns x^a mod n

int gcd(int a,int b);
returns the greatest common divisor of a and b

int randcoprime(n);
returns a random number 1 < r < (n-1) coprime to n

void approx(double x,word qmax,word *p,word *q);
finds the best rational approximation (*p)/(*q) to x with
denominator < qmax and sets *p and *q accordingly.

opVar opFFT(int n);
performs a fast Fourier transformation on qs using
Coppersmith’s algorithm

B SHOR.CXX 23

B.2 Main Program
word number; // number to be factored
word factor; // found factor
int width=duallog(number); // length of N in bits
int nreg1=2*width,nreg2=width; // width of registers
quBaseState qubase(nreg1+nreg2);// basestate
quWord reg1(nreg1,0,qubase); // register 1
quWord reg2(nreg2,nreg1,qubase);// register 2
word x; // base value
word mreg1,mreg2; // measurements of 1st and 2nd register
word pow; // pow^2==1 mod number
word a,b; // possible factors
word p,q; // fraction p/q for rational approximation
double qmax=1<<width; // maximal period

while(1) {
qubase.reset(); // reseting state
opFFT(nreg1)(reg1); // 1st Fourier transformation
x=randcoprime(number); // selecting random x
opEXPN(nreg1,nreg2,x,number)(qubase); // modular exponentiation
mreg2=reg2.measure().get-word(); // measure 2nd register
opFFT(nreg1)(reg1); // 2nd Fourier transformation
mreg1=reg1.select().getword(); // measure 1st register
if(mreg1==0) continue; // failed if measured zero

// finding rational approximation for mreg1/rmax^2
approx((double) mreg1/(qmax*qmax),(int) qmax,&p,&q);
if(q%2) continue; // failed if q is odd.
pow=powmod(x,q/2,number); // pow = x^(q/2) mod number
a=(pow+1)%number; // candidates with possible
b=(pow+number-1)%number; // common factors with number

// testing for common factors with number
if(a>1 && (factor=gcd(number,a))>1) break;
if(b>1 && (factor=gcd(number,b))>1) break;

};

