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According to the present state of the art, soft matter systems with purely repulsive interactions are
supposed to show under compression two different scenarios: either a re-entrant melting transition
or the formation of ordered structures of clusters. In the latter scenario, it is apparently energetically
most favourable that the particles form clumps of overlapping particles, so-called clusters, which
themselves arrange on a regular lattice. To accurately determine the phase behaviour of the system,
fast and efficient Monte Carlo simulation techniques are required. Technical problems that arise
in the simulations of the system during the process of cluster formation and during the freezing
transition have to be overcome. The simulation results are complemented by density-functional
theory calculations that confirm the occurrence of first-order phase transitions into cluster crystals
upon compression.

I. INTRODUCTION

During the past twenty years soft matter has become
a rapidly developing field of interest with a highly in-
terdisciplinary character, bringing together physicists,
chemists, and biologists in their investigations. One ob-
vious reason for these activities is certainly the fact that
soft matter is omnipresent in our daily life: from DNA
to proteins, from clay to plastics, from mayonnaise to
blood - soft matter is what we are made of and what we
use in countless everyday applications. Another reason is
the fact that many soft matter systems are of technolog-
ical relevance, for instance in the biotechnological, food,
or pharmaceutical industries. And finally, there is the
academic interest in exploring hitherto unknown scenar-
ios for the emergence of mesoscopic structures in novel,
composite systems.

Focusing on physics and physical chemistry, soft mat-
ter offers ideal possibilities for close cooperations between
experimentalists and theoreticians: the ability to control
the architecture and chemical nature of the constituting
entities of the soft systems, combined with the flexibil-
ity in influencing the properties of the solvent in which
they are immersed, give rise to an unprecedented freedom
in tuning the effective interactions between such entities
and opens up the possibility to steer the macroscopic
properties of the system [1, 2].

Typical soft matter systems that we deal with are dis-
persions of mesoscopic particles (with sizes ranging from
nm to � m) immersed in a microscopic solvent. These
mesoscopic particles are themselves aggregates of several
thousands of atoms or molecules arranged in complex,
but quite loose internal structures. On a macroscopic
level, distinct differences with respect to atomic systems
are observed: soft matter materials show a sensitive re-
action to mechanical deformations, which is several or-
ders of magnitude higher than in atomic systems and a
higher viscosity than atomic liquids, being in some cases
even unable to flow. Also on the microscopic level ob-
vious differences can easily be identified: in atomic sys-

tems the interaction potentials are essentially fixed by
the electronic properties [3]. In soft matter systems, on
the other hand, the huge number of degrees of freedom
of the constituent particles and of the solvent has to be
traced out by suitable methods [1], leading to effective
potentials between the mesoscopic particles (see Fig. 1).
Those potentials depend both on the architecture and
composition of these aggregates, as well as on the nature
of the solvent where they are immersed in, which per-
mits to modify them in a well-defined manner. Conse-
quently a large variety of effective interparticle potentials
can be obtained, that range from strongly repulsive, hard
sphere like interactions to so-called soft potentials that
either diverge weakly at the origin (like for star poly-
mers [4]) or even remain finite at short distances (like
for isolated non-intersecting polymer chains or dendritic
macromolecules [5, 6]). This corresponds to the fact that
due to their loose structure the mesoscopic particles are
now able to mutually overlap or even to intertwine.

FIG. 1: a) Schematic representation of a dendrimer, which
is a synthesised macromolecule built by branched units. b)
Schematic representation of a star polymer. c) Schematic
representation of an ’effective’ particle where all degrees of
freedom apart from the center of mass location have been
traced out and which interacts with other particles via a soft
potential.

In our investigations we will concentrate on soft matter
systems for which effective potentials are purely repulsive
and remain finite at short distances. Accurate theoreti-
cal concepts [1] as well as advanced numerical simulation
techniques [7] were developed to describe the properties
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of such systems even on a quantitative level. Up to now,
two different scenarios were identified [8] that describe
how these systems will behave upon compression: either
re-entrant melting will take place or they will freeze at all
temperatures into crystals where lattice sites are multi-
ply taken, i.e. each lattice site is occupied by a cluster of
particles. The first phenomenon has been verified for sev-
eral soft matter systems such as star polymers, microgels
or the before mentioned dendrimers [6, 9]: The systems
first freeze, but upon further compression, it becomes en-
ergetically more favourable for them to re-melt, i.e., they
again form a disordered structure. Several of these liquid-
solid-liquid transitions can take place upon compressing
the system, but the stable phase at high densities will
be the fluid one. In the clustering scenario [10], on the
other hand, particles start to sit very close or even on top
of each other, i.e., they form clusters which themselves
arrange in regular structures. This might seem counter-
intuitive at first, as it occurs at the complete absence of
attraction, and it demonstrates how fundamentally dif-
ferent soft matter realizes favourable arrangements com-
pared to systems with harshly repulsive potentials.

Compared to the re-entrant melting scenario, little has
been done up to now for the clustering transition. This
is mostly due to the fact that techniques developed to
describe atomic systems or systems that show re-entrant
melting break down as soon as clustering sets in and with-
out being generalised, they are not able to describe this
phenomenon. Thus, the aim of my project was to develop
techniques that give further and quantitative insight into
clustering.

This paper is organised as follows: In Sec. II we in-
troduce the model system under study. Sec. III focuses
on conventional simulation techniques and their intrinsic
problems, while in Sec. IV we present techniques designed
to overcome those problems. With these new methods at
hand, we analyse the system in Sec. V and draw our con-
clusions in Sec. VI.

II. THE SYSTEM

We propose a model system which we call generalised
exponential model of index n (GEM-n). Its interaction
is given by

Φ(r) = ε exp[−(r/σ)n]. (1)

ε and σ are energy and length parameters, r is the dis-
tance between the centers of two particles and n is an
arbitrary positive number. We also introduce the num-
ber density % and temperature T , as well as β = (kBT )−1,
with kB being Boltzmann’s constant.

A criterion put forward in [8] that determines whether
a system with a given bounded (i.e., finite) and entirely
repulsive potential will show re-entrant melting or will
freeze into cluster crystals is based on whether its Fourier
transform is positive semidefinite for all wave vectors or
not. For the GEM-n, it can be shown that for n ≤ 2, it
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FIG. 2: The potential of the GEM-n for n = 2, 4, 10, and
∞. The GEM-2 is equivalent to the Gaussian core model, the
GEM-∞ to the penetrable sphere model.

will show re-entrant melting, while for n > 2, clustering
will take place at all temperatures [11].

As an example of the clustering phenomenon, we show
two simulation snapshots in Fig. 3. At a low density
(left panel), the system is apparently in the fluid phase,
formed by isolated particles as well as small clusters,
whereas at a higher density (right panel), clusters of
particles whose crystalline arrangement is clearly visible
have formed upon compression.

FIG. 3: Two simulation snapshots of a GEM-4 system for
βε = 2.5 and %σ3 = 2.5 (left) and 7 (right). The inset in the
center shows a close up of one cluster. Particle diameters are
not drawn to scale.

Suitably tailored dendrimers that have been assembled
in a computer simulation show evidence for a GEM-n-
type of effective interaction with n > 2. Thus, our model
is able to reflect the properties of realistic systems [12].

III. MONTE CARLO SIMULATIONS

Monte Carlo (MC) methods are algorithms that use
random numbers to solve numerical problems which can
be described by a stochastic process. One major field of
application of MC methods can be found in statistical
mechanics, where these methods are used to determine
the thermodynamic or structural properties of a given
system. So let us assume that we study a system of N
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particles interacting via a given potential Φ(r) and con-
fined in a cubic box of box-length L (i.e., at fixed vol-
ume) and at fixed temperature T . At first, the particles
are placed in an arbitrary configuration within the box.
Then, each of the particles is moved randomly according
to

ri → ri + ∆ξξξi i = 1, ..., N (2)

where ri are the coordinates of particle i, ∆ is the maxi-
mum allowed displacement, which is arbitrary within the
constraint ∆ < L

2 , and the ξξξi are vectors that have ran-
dom numbers between −1 and 1 as components. After
the move, the particle is equally likely to be anywhere
in a cube of side 2∆ centred around its original position.
To decide whether such a move will be accepted or not,
the change in potential energy, ∆U = Unew−Uold, of the
system caused by the displacement of the particle is cal-

culated, where U =
∑

i<j

Φ(rij) is the potential energy for

a confirmation and rij is the vector connecting particles i
and j. If ∆U < 0, i.e., if the energy of the system is now
lower than before, the trial move is accepted and the par-
ticle is shifted to its new coordinates. On the other hand,
if ∆U > 0, the trial move is allowed with a probability of
exp(−β∆U). Disregarding if the new configuration has
been accepted or not, i.e. the system is still in the old
configuration, we consider it to be in a new configuration
for the purpose of taking ensemble averages. After this
trial move, the procedure is repeated with another, ran-
domly chosen particle and so forth, generating a random

walk through the space of all possible configurations.

This algorithm, which is called “Metropolis MC”, sat-
isfies the condition of “detailed balance” [7], which en-
sures that the MC algorithm generates a new state ac-
cording to the equilibrium probability distribution func-
tion of the ensembles. This condition, if fulfilled, ensures
that on average the system should go from a given old
state to a new state just as often as from the new state
to the old one.

In this conventional MC simulation algorithm, the de-
termination of the potential energy is the most time-
consuming part. In a system of N particles interacting
with each other via a pairwise additive potential Φ(r),
N(N − 1)/2 distances and interactions have to be calcu-
lated. Thus, the computing time needed to evaluate the
energy scales as N2.

In simulations of atomic or soft systems that show re-
entrant melting, already low particle numbers of around
500 correspond to sufficiently large simulation boxes to
provide reliable results. In case of the clustering scenario,
however, particles tend to form clumps and to overlap to
a large extend. Thus, significantly more particles are
needed to simulate systems of comparable size. In case
of the conventional MC simulations described in this sec-
tion, at least 5000 or even more particles are needed. For
such a large number of particles, simulations can take
several weeks per point in the T -% space of states.

IV. SPEEDING UP THE SIMULATIONS

In order to make MC simulations of clustering systems
feasible, we need to considerably speed up the simula-
tions. In this effort, we implement a specially designed,
discretised MC technique, the so-called Lattice Monte
Carlo (LMC), proposed by Panagiotopoulos [13], and on
the other hand, we use the standard technique of the cell
list method (cf. Sec. IV B).

A. Lattice Monte Carlo

1. Central idea

The central idea of LMC is illustrated in Fig. 4. Con-
sider a particle with a characteristic diameter σ. Intro-
ducing the lattice discretisation parameter ζ we construct
a series of lattice models, where we restrict allowed parti-
cle positions to be on a simple cubic grid of characteristic
spacing l. ζ is determined by the amount of grid sites per
particle diameter

ζ =
σ

l
, (3)

and it controls how closely the lattice model mimics the
continuum behaviour. It can easily be seen from the up-
per panels of Fig. 4, that a small value of ζ will have a
strong effect on the structural as well as the thermody-
namic properties of the system. To demonstrate this let
us consider (as this is done in our specific case) a system
that shows clustering upon compression, where particles
tend to sit very close or even on top of each other. Then
if ζ is very low, there are only few grid points available
for further particles to be positioned close to the center
of a tagged particle. However, as ζ increases, i.e. as the
grid becomes finer, more and more grid points are acces-
sible within the diameter of the tagged particle and the
features of clustering can be represented in an appropri-
ate way. Thus, artefacts due to the lattice discretisation
decrease as ζ is increased. For our implementation of the
LMC method, we again use a cubic box of box-length L.
The box is discretised via a grid using 2b (i.e. b bits) of
possible positions in each dimension. Thus, the discreti-
sation parameter now takes the form

ζ =
2b

L
. (4)

It should be noted that the product L × ζ has to be an
integer (even though L and ζ can take any real value
individually) so that we can use periodic boundary con-
ditions within the LMC simulations.

Due to the grid there is now only a finite number of
possible distances between two particles. Assuming that
the interaction potential between any two sites is trans-
lationally invariant, we can write the potential energy as

U =
∑

i<j

Φ(rij) =
∑

i<j

Φ(rij), (5)
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FIG. 4: Schematic representation of the refinement process
of the lattice model with increasing lattice discretisation pa-
rameter ζ = 1, 2, 4 and 8 as described in the text. For clarity,
a two dimensional system is shown, but the generalisation to
three dimensions is straight forward. Note that the number
of grid points within the tagged particle (grey sphere) grows
as ζ increases.

where rij is the vector connecting sites i and j and its
modulus rij is given by

rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2. (6)

Now, xk, yk, and zk are integers between 0 and 2b−1, k =
i, j. Since for a LMC simulation the possible distances rij

are limited to a finite number, it is obvious from Eq. (5)
that we only need to calculate interactions at all possible
distances once at the beginning of the simulation, storing
them in an array of length 3

[

22(b−1)
]

+ 1.

Depending on the functions involved in the evaluations
of the potential studied, the LMC method allows for a
speed up of around 20 compared to the conventional MC
scheme. This considerable reduction in computational
time can be traced back to the elimination of the mini-
mum distance image convention and the time consuming
evaluations of the potential for every pair of interacting
particles. If - as in our case - we use a power of 2 as
number of grid sites per dimension, a further speed up
can be achieved since periodic boundary conditions re-
duce to a bit operation: as soon as a particle leaves the
box, its coordinates will need more than b bits to be rep-
resented as a binary number on the computer. Trimming
to the lowest b bits, periodic boundary conditions are au-
tomatically fulfilled (see Fig. 5). Since computers use the
binary representation of numbers, bit operations can be
performed extremely fast.

x = 100 x = 00x = 11
00   01   10   11  100

FIG. 5: Schematic representation of periodic boundary con-
ditions within the LMC simulations using a discretisation of
2 bits per direction. Before the move (left panel), the parti-
cle has the x-coordinate x=11 in the binary representation.
During the move (central panel), the particle leaves the sim-
ulation box. To store the new coordinates (x=100) on the
computer, 3 bits are needed. Trimming the coordinates back
to 2 bits leads to the correct new coordinates within the box
(right panel).

2. The radial distribution function in LMC

In liquid state theory [14], the radial distribution func-
tion (RDF) is defined as

g(r) =
1

%σ3N

〈

N
∑

i=1

N
∑

j=1,j 6=i

δ(r − rij)

〉

(7)

where 〈. . .〉 denotes an ensemble average. The RDF gives
a measure of the probability to find a particle at a cer-
tain distance from a given particle compared to the same
probability in an ideal gas. For isotropic and homoge-
neous systems, the RDF is independent of the direction
and only depends on the distance r = |r| between the
particles.

In conventional MC simulations, the RDF is obtained
from a histogram of the observed particle distances,
which, at the end of the simulation, has to be scaled
according to the pre-factors in Eq. (7) and taking un-
der consideration the volumes of the spherical shells in
which we measured the histogram. The bin size ∆r of the
histogram (i.e. the thickness of the spherical shells) has
to be chosen sufficiently small to capture all correlations,
but large enough to minimise the statistical error per bin.
By measuring a histogram, the RDF is averaged per bin
which leads to a significant error at small distances since
the volume of the spherical shells over which we average
is small.

In LMC simulations, this problem is even more seri-
ous due to the fact that there are only few grid points
at small distances and that the number of available grid
points is not exactly proportional to the volume of a cor-
responding spherical shell. Fortunately, one can measure
the RDF in a different, and more efficient and accurate
way in LMC simulations by using Eq. (7) directly, which
can be done because particles can only be located at dis-
crete distances and since the number of possible particle
separations is finite. In the final result, one then has
to take into account how many times each of the given
distances can occur.
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The advantage of this approach is that the RDF mea-
sured in LMC contains valuable additional information
on the state of the system compared to the RDFs mea-
sured in conventional MC. In the fluid phase, particles
can - in principle - have any distance to each other. Dur-
ing the course of the simulation, all possible distances on
the grid will be visited, giving the impression that the
RDF is a continuous curve. If, on the other hand, the
system is in the solid phase, only a few, certain distances
between two particles will be possible (due to thermal
vibrations). In this case, the RDF will show pronounced
peaks at the corresponding distances (see Fig. 6). By
averaging, the RDF can be smoothed and reduced to the
form usually obtained by conventional MC.

0 1 2 3 4
r/σ
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40
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r)

LMC
conv. MC

FIG. 6: Simulation results for a GEM-4 at βε = 1 and %σ3 = 9
as obtained by conventional MC and LMC. During the simu-
lation, the system was in a cluster fcc phase. This can be seen
from the pronounced peaks in the LMC data. The clustering
phenomenon is reflected in the peak at r = 0.

3. Discretisation errors

By discretising the simulation cell as outlined in
Sec. IV A 1, we introduce two new errors to the determi-
nation of properties such as the pressure or the potential
energy of the system. These errors are additional to the
statistical error which is inherent to the conventional MC
simulations. The first error is a structural defect, which
will be dominant in case the underlying grid is not suffi-
ciently fine, as the use of a lattice introduces anisotropies.
However, the Shannon-Nyquist sampling theorem tells us
that discrete samples are a complete representation of
the original property if we choose the lattice discretisa-
tion parameter sufficiently large so that all relevant fre-
quencies of the structure factor of the system (which is
proportional to the Fourier transform of the RDF) are
captured. If this condition is fulfilled, the sampling of
the structure of the system (i.e., the measurement of the
RDF) is fine enough to not lose any information [15].

The other error is due to linearisation. Resulting
from the presence of the grid, we do obtain particle

positions that are no longer uniformly distributed in
[0, L) × [0, L) × [0, L) but rather form a set of discrete
positions {xi, yj , zk}, with i, j, k = 0, . . . , J , J being the
amount of available grid points per direction. This can
be interpreted that all possible positions in the volume
{[xi−δ/2, xi +δ/2)× [yj −δ/2, yj +δ/2)× [zk−δ/2, zk +
δ/2)} will be compared with the Boltzmann distribution
at {xi, yj , zk}. Taking averages of a property A, only
the function values A(xi, yj , zk) are used. Therefore, in-
tegrals in LMC simulations are reduced to a (Riemann)
sum over all grid sites. Thus, we can conclude that the
linearisation error scales the same way as Riemann sums
scale, i.e. with J−2. It has to be stressed that even when
performing an LMC simulation of infinite length, the end
result would still be afflicted with this linearisation error
since the discretisation of the grid remains fixed through-
out the simulation.

a b

f(x)

x

FIG. 7: One-dimensional representation of an integration in
the LMC scheme. Since only the discrete positions of the grid
(dashed lines) are allowed in interval [a,b), the MC summa-
tion converges towards the Riemann sum and not the integral
anymore.

B. Cell Lists

To speed-up simulations of systems with a large num-
ber of particles, Quentrec and Brot [16] developed the
so called cell list method. The cubic simulation cell is
divided into M ×M ×M sub-cells with a size rm = L/M
greater than the range of the potential. A two dimen-
sional representation of this idea is shown in Fig. 8.
Therefore, each particle in a given cell only interacts with
particles in the same or in the surrounding cells. Using
this method, we only need to consider 27NNm pairs of
particles, where Nm = N/M3 is the average number of
particles per cell, instead of 1

2N(N − 1) (cf. Sec. III).
To realise this method, linked lists can be used [7].

First, all particles have to be assigned to their respec-
tive cells, which is a rapid process. In an array called
“head-of-chain”, the identification number of one parti-
cle of each cell is stored. This number is then used to
address the element of a linked list array, which contains
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FIG. 8: Schematic representation of the cell list method in
two dimensions: the simulation box is divided into M × M
cells of length rm. A particle in cell i interacts only with all
particles of its cell or of the neighbouring cells (simply shaded
cells).

the identification number of the next particle in the cell.
In turn, the array element for this particle is the index of
the next one, and so forth. Via this method, one can ad-
dress all the particles in a cell until the element ’zero’ is
reached, which signals the end of the list. Then, one has
to move on to the head of chain of the next cell. After
each accepted MC move, there is the possibility that the
moved particle has left its cell. At the cost of some ex-
tra book-keeping, the time-consuming creation of a new
list after every accepted move can be avoided and the
existing linked list can be updated instead.

V. RESULTS

First, we want to study the influence of the lattice dis-
cretisation parameter ζ, which is controlled by the num-
ber of bits used, on the structural properties in a quali-
tative way. Fig. 9 shows three simulation snapshots of a
GEM-4 at %σ3 = 9 and βε = 1 (for the location of this
state cf. the phase diagram in Fig.14). The upper left
panel shows the system at b = 5. In each direction, there
are only 32 positions available, which strongly influences
the structure of the system. The same system is shown
for a grid at b = 6 (upper right panel). Now, the struc-
ture is already reproduced in a more appropriate way,
though the effects of the grid can still easily be seen. At
b = 8 (lower panel), the discretisation is sufficiently fine
to guarantee reliable results on the structure.

In Fig. 10 we show the structure in a more quantitative
way by studying the RDF within the same system. We
see that already at a discretisation of 6 bits per direction,
we get qualitative agreement with the data from conven-
tional MC simulations. At 8 bits, all the characteristic
features of the RDF are captured. It has to be stressed

FIG. 9: Snapshots from LMC simulations of a GEM-4 system
at %σ3 = 9 and βε = 1 for discretisations of b = 5 (upper left),
6 (upper right), and 8 (lower panel). Different shades are used
to adumbrate the third dimension.

that the data presented are from a system frozen into a
face centered cubic (fcc) crystal. In this case, the RDF
measured during the LMC simulation will exhibit very
distinct peaks at certain distances (cf. Fig. 6), while the
data presented in Fig. 10 have already been smoothed.
As it can be seen in Fig. 11, in the fluid state the data
for the RDF shows less fluctuations.
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FIG. 10: The radial distribution function for a GEM-4 sys-
tem at %σ3 = 9 and βε = 1 and frozen into a cluster fcc
crystal for LMC simulations at b = 6 and 8 and compared to
conventional MC simulation results.

We conclude the discussion of structural properties by
showing a radial distribution function for the centers of
mass of the clusters (instead of the particles themselves)
in Fig. 12. It can be seen that already at very low values
of b, we obtain qualitatively correct results. The curves
of b = 7, 8, and 9 coincide and reproduce the data of
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FIG. 11: The radial distribution function for a GEM-4 system
at %σ3 = 9 and βε = 1 in a supercooled liquid configuration
for LMC simulations at b = 6 (left) and b = 8 (right) in
comparison with conventional MC simulation results.

conventional MC perfectly.
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0
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FIG. 12: The radial distribution function for the centres of
mass of a GEM-4 system at %σ3 = 9 and βε = 1 as obtained
by LMC simulations at different levels of discretisation and
compared to results of conventional MC simulations.

Even though the results of the structural properties
might suffer from small fluctuations, the situation is dif-
ferent for the thermodynamic properties, such as the pres-
sure or the internal energy. They are calculated as en-
semble averages and hence are not affected by the small
deficiencies observed in the structural properties. From
our results for different levels of discretisation and by
comparing them to the results of the conventional MC
approach, we conclude that 8 bits are sufficient to gather
the required numerical accuracy in the structural and
the thermodynamic properties. We want to stress that
higher levels of discretisation go along with a consider-
ably larger demand in memory, since the size of the array
that stores all the possible interactions scales as 22(b−1)

(cf. Sec. IV A 1). Moreover, for these levels of discretisa-
tion, also considerably increased array access times have
to be taken into account.

In case of the GEM-n, the LMC technique and the use
of cell lists result in an average speed up of 15. This
has brought extensive quantitative studies of the GEM-
n within reach. In our studies, we concentrated on the

GEM-4 to analyse the clustering phenomenon in general.
The main aim of this study was to determine the phase
behaviour of the system. Supplementing the MC results
with liquid state and density functional theory (DFT)
calculations, we were able to calculate the free energies F
of the different phases (see Fig. 13) and to draw the phase
diagram (see Fig. 14). As already predicted in Ref. [1],
the system freezes at every temperature into a cluster
solid. The preferred structure at high densities is the fcc
structure. Above the triple temperature (βε)−1 ∼ 0.4,
a wedge shaped region of a body centered cubic (bcc)
cluster solid emerges between the liquid and the fcc phase
of the cluster solid. The details of this can be found in
Ref. [17].

0 2 4 6 8

ρσ3

-30

-20

-10

βF
ρσ

3 /N

fluid, theory
fcc, DFT
bcc, DFT
fluid, MC
fcc, MC
bcc, MC

~

FIG. 13: Modified free energy density βF̃%σ3/N =
βF%σ3/N + K1%σ3 according to LMC simulations and liquid
state and density functional theory calculations as a function
of the density at βε = 1 for the GEM-4 model. A term linear
in density was added for clarity, with K1 being an irrelevant
constant. The error bars of the LMC simulations are smaller
than the symbol sizes.
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FIG. 14: Phase diagram of the GEM-4 model.

VI. CONCLUSION

We studied a novel mechanism of cluster formation
in purely repulsive potentials. To reliably analyse the
behaviour of the system within MC simulations, suffi-
ciently large systems have to be studied. Conventional
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MC simulations suffer from inefficiently long simulations
times. However, by implementing a lattice Monte Carlo
method, where particles are just allowed to move on a
fine grid, and combining it with cell lists, extensive sim-
ulations become feasible without loosing accuracy in the
results. Thus, it was possible to study the system in de-
tail and to obtain a quantitative description of the phase
diagram [17].
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